1
|
Wu H, Sun Z, Gan J, Wen C, Shi Z, Liu S, Ji Y. Efficacy of cholinesterase inhibitors treatment in dementia with Lewy bodies: A 3-year follow-up 'real world' study. J Alzheimers Dis 2025:13872877251330902. [PMID: 40259559 DOI: 10.1177/13872877251330902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
BackgroundDementia with Lewy bodies (DLB) is the second most common dementia after Alzheimer's disease. Currently, no specific therapeutic agents are available for DLB. However, evidence of cholinergic deficits suggests that enhancing central cholinergic function may be a viable therapeutic approach.ObjectiveTo assess cognitive changes in DLB patients treated with cholinesterase inhibitors (ChEIs) in a real-world setting.MethodsThis retrospective study in a prospective database analyzed data from three dementia clinics between May 2012 and December 2022. Patients with DLB were divided into two groups: those treated with ChEIs and those untreated. Differences in changes in multiple cognitive-related scales between the two groups were analyzed.ResultsThe study included 204 DLB patients, with 133 (65.2%) in the ChEIs group and 71 (34.8%) in the non-ChEIs group. Initial demographic and clinical characteristics were similar between groups. Over time, patients in the ChEIs group showed significantly higher scores on the Mini-Mental State Examination and the Montreal Cognitive Assessment compared to the non-ChEIs group, indicating improved cognitive function. No significant differences were observed in activities of daily living scores.ConclusionsChEIs improved cognitive symptoms in DLB patients in the "real world" study. These findings are consistent with those from a previous small-sample randomized controlled trial. Longitudinal data indicate sustained benefits with continuous ChEIs use in three years. Overall, ChEIs show substantial potential for improving cognitive symptoms in DLB patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zhen Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Linfen Central Hospital, Linfen, Shanxi, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and neurodegenerative diseases, Tianjin dementia institute, Tianjin Huanhu Hospital, Tianjin, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Sadiq AH, Alam MJ, Begum F, Hasan M, Kristof J, Mamun MA, Maniruzzaman M, Shimizu K, Kanazawa T, Kahyo T, Setou M, Shimizu K. Enhancing Galantamine Distribution in Rat Brain Using Microplasma-Assisted Nose-to-Brain Drug Delivery. Int J Mol Sci 2025; 26:1710. [PMID: 40004175 PMCID: PMC11855811 DOI: 10.3390/ijms26041710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Nose-to-brain (N2B) drug delivery is a promising technique for the treatment of brain diseases. It allows a drug to enter the brain without passing through the blood-brain barrier. However, the nasal cavity and nasal mucosa can restrict the amount of drug absorbed. Recent studies of non-thermal plasma (NTP) have shown improvement in in vitro drug delivery to cells and tissues. However, whether NTP treatments can enhance the in vivo delivery of drugs for neurodegenerative disease like Alzheimer's disease (AD) into the brain via the N2B technique remains unclear. The drug used in this study was galantamine hydrobromide. Galantamine is used to treat patients with mild to moderate AD. Based on the principle of NTP, a type of dielectric barrier discharge (DBD) plasma, which we called spiral DBD microplasma, was designed. It was inserted into the nose of a rat to a depth of 2 mm. The spiral DBD microplasma was driven by a sinusoidal voltage for 4 min, followed by the immediate administration of galantamine. The effect of the microplasma treatment on the distribution of galantamine in the brain was evaluated using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). The results showed a high distribution of galantamine in the left and right brain hemispheres of the rat treated with plasma discharge compared to a control treated without plasma discharge. The spiral DBD microplasma is a novel contribution to DBD plasma designs. In addition, this technique for drug delivery has also created a novel approach with potential for becoming a non-invasive method of enhancing drug distribution in the brain for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Abubakar Hamza Sadiq
- Graduate School of Science and Technology, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
| | - Md Jahangir Alam
- Graduate School of Medical Photonics, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (M.J.A.); (F.B.)
| | - Farhana Begum
- Graduate School of Medical Photonics, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (M.J.A.); (F.B.)
| | - Mahedi Hasan
- Graduate School of Science and Technology, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
| | - Jaroslav Kristof
- Organization for Innovation and Social Collaboration, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan;
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Md. Maniruzzaman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Kosuke Shimizu
- Nanotheranostics Laboratory, Division of Innovative Diagnostic and Therapeutic Research, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan;
| | - Takanori Kanazawa
- Graduate School of Biomedical Science, Tokushima University, Shoumachi, Tokushima 770-8505, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Kazuo Shimizu
- Graduate School of Science and Technology, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
- Graduate School of Medical Photonics, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (M.J.A.); (F.B.)
- Organization for Innovation and Social Collaboration, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan;
| |
Collapse
|
3
|
Moss DE, Perez RG. The phospho-tau cascade, basal forebrain neurodegeneration, and dementia in Alzheimer's disease: Anti-neurodegenerative benefits of acetylcholinesterase inhibitors. J Alzheimers Dis 2024; 102:617-626. [PMID: 39533696 DOI: 10.1177/13872877241289602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A conundrum in Alzheimer's disease (AD) is why the long-term use of acetylcholinesterase (AChE) inhibitors, intended for treatment of dementia, results in slowing neurodegeneration in the cholinergic basal forebrain, hippocampus, and cortex. The phospho-tau cascade hypothesis presented here attempts to answer that question by unifying three hallmark features of AD into a specific sequence of events. It is proposed that the hyperphosphorylation of tau protein leads to the AD-associated deficit of nerve growth factor (NGF), then to atrophy of the cholinergic basal forebrain and dementia. Because the release of pro-nerve growth factor (pro-NGF) is activity-dependent and is controlled by basal forebrain projections to the hippocampus and cortex, our hypothesis is that AChE inhibitors act by increasing acetylcholine-dependent pro-NGF release and, thus, augmenting the availability of mature NGF and improving basal forebrain survival. If correct, improved central nervous system-selective AChE inhibitor therapy started prophylactically, before AD-associated basal forebrain atrophy and cognitive impairment onset, has the potential to delay not only the onset of dementia but also its rate of advancement. The phospho-tau hypothesis thus suggests that preventing hyperphosphorylation of tau protein, early should be a high priority as a strategy to help reduce dementia and its associated widespread social and economic suffering.
Collapse
Affiliation(s)
- Donald E Moss
- Professor Emeritus, University of Texas at El Paso, El Paso, TX, USA
| | | |
Collapse
|
4
|
Saker D, Sencar L, Coskun G, Sapmaz Ercakalli T, Yilmaz DM, Polat S. Galantamine and wedelolactone combined treatment suppresses LPS-induced NLRP3 inflammasome activation in microglial cells. Immunopharmacol Immunotoxicol 2024; 46:805-814. [PMID: 39279139 DOI: 10.1080/08923973.2024.2405579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
CONTEXT Inflammasome NLR family pyrin domain-containing 3 (NLRP3) is associated with neurological disorders. Neuroinflammation can be suppressed by inhibiting NLRP3 inflammasome activation, decreasing neurodegenerative disorder progression. We devised a therapeutic technique that can reduce neuroinflammation induced by microglial activation, avoiding neurodegeneration. We aimed to investigate the mechanisms underlying the pharmacological effects of galantamine and wedelolactone by evaluating the response of the nuclear factor kappa B (NF-κB) signaling pathway and NLRP3 inflammasome in lipopolysaccharide (LPS)-activated N9 microglia. METHODS LPS and adenosine triphosphate were used to activate the NLRP3 inflammasome in N9 microglial cells, which were pretreated with galantamine and wedelolactone. Caspase-1, NLRP3, NF-κB, and interleukin (IL)-1β levels were measured using RT-qPCR and immunostaining. RESULTS Combined administration of galantamine and wedelolactone rescued microglial cells from LPS-induced cell death. Furthermore, treatment with galantamine and wedelolactone led to the suppression of NF-κB expression. NLRP3, caspase-1, and IL-1β levels were decreased by the combined treatment. DISCUSSION AND CONCLUSION The concurrent administration of galantamine and wedelolactone effectively suppresses the production of inflammatory cytokines and NLRP3 inflammasome activation in microglia. This inhibitory effect is likely linked to the NF-κB signaling pathway modulation. Therefore, this combined treatment is a potential therapeutic approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Gulfidan Coskun
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Tugce Sapmaz Ercakalli
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
5
|
Andrys R, Monnier C, Antonijević Miljaković E, Mickova V, Musilek K, Zemanova L. Towards cost-effective drug discovery: Reusable immobilized enzymes for neurological disease research. Talanta 2024; 276:126263. [PMID: 38788378 DOI: 10.1016/j.talanta.2024.126263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Enzyme handling and utilization bears many challenges such as their limited stability, intolerance of organic solvents, high cost, or inability to reuse. Most of these limitations can be overcome by enzyme immobilization on the surface of solid support. In this work, the recombinant form of human cholinesterases and monoamine oxidases as important drug targets for neurological diseases were immobilized on the surface of magnetic non-porous microparticles by a non-covalent bond utilizing the interaction between a His-tag terminus on the recombinant enzymes and cobalt (Co2+) ions immobilized on the magnetic microparticles. This type of binding led to targeted enzyme orientation, which completely preserved the catalytic activity and allowed high reproducibility of immobilization. In comparison with free enzymes, the immobilized enzymes showed exceptional stability in time and the possibility of repeated use. Relevant Km, Vmax, and IC50 values using known inhibitors were obtained using particular immobilized enzymes. Such immobilized enzymes on magnetic particles could serve as an excellent tool for a sustainable approach in the early stage of drug discovery.
Collapse
Affiliation(s)
- Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Charline Monnier
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Evica Antonijević Miljaković
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic; Department of Toxicology "Akademik Danilo Soldatovic", University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11 000, Belgrade, Serbia.
| | - Veronika Mickova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Lucie Zemanova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Gronich N. Central Nervous System Medications: Pharmacokinetic and Pharmacodynamic Considerations for Older Adults. Drugs Aging 2024; 41:507-519. [PMID: 38814377 PMCID: PMC11193826 DOI: 10.1007/s40266-024-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Most drugs have not been evaluated in the older population. Recognizing physiological alterations associated with changes in drug disposition and with the ultimate effect, especially in central nervous system-acting drugs, is fundamental. While considering pharmacokinetics, it should be noted that the absorption of most drugs from the gastrointestinal tract does not change in advanced age. There are only few data about the effect of age on the transdermal absorption of medications such as fentanyl. Absorption from an intramuscular injection may be similar in older adults as in younger patients. The distribution of lipophilic drugs (such as diazepam) is increased owing to a relative increase in the percentage of body fat, causing drug accumulation and prolonged drug elimination following cessation. Phase I drug biotransformation is variably decreased in aging, impacting elimination, and hepatic drug clearance has been shown to decrease in older individuals by 10-40% for most drugs studied. Lower doses of phenothiazines, butyrophenones, atypical antipsychotics, antidepressants (citalopram, mirtazapine, and tricyclic antidepressants), and benzodiazepines (such as diazepam) achieve the same extent of exposure. For renally cleared drugs with no prior metabolism (such as gabapentin), the glomerular filtration rate appropriately estimates drug clearance. Important pharmacodynamic changes in older adults include an increased sedative effect of benzodiazepines at a given drug exposure, and a higher sensitivity to mu opiate receptor agonists and to opioid adverse effects. Artificial intelligence, physiologically based pharmacokinetic modeling and simulation, and concentration-effect modeling enabling a differentiation between the pharmacokinetic and the pharmacodynamic effects of aging might help to close some of the gaps in knowledge.
Collapse
Affiliation(s)
- Naomi Gronich
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Clalit Health Services, 7 Michal St, 3436212, Haifa, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
7
|
Nguyen-Thi PT, Vo TK, Le HT, Nguyen NTT, Nguyen TT, Van Vo G. Translation from Preclinical Research to Clinical Trials: Transdermal Drug Delivery for Neurodegenerative and Mental Disorders. Pharm Res 2024; 41:1045-1092. [PMID: 38862719 DOI: 10.1007/s11095-024-03718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
Neurodegenerative diseases (NDs), particularly dementia, provide significant problems to worldwide healthcare systems. The development of therapeutic materials for various diseases has a severe challenge in the form of the blood-brain barrier (BBB). Transdermal treatment has recently garnered widespread favor as an alternative method of delivering active chemicals to the brain. This approach has several advantages, including low invasiveness, self-administration, avoidance of first-pass metabolism, preservation of steady plasma concentrations, regulated release, safety, efficacy, and better patient compliance. Topics include the transdermal method for therapeutic NDs, their classification, and the mechanisms that allow the medicine to enter the bloodstream through the skin. The paper also discusses the obstacles and potential outcomes of transdermal therapy, emphasizing the benefits and drawbacks of different approaches.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi, 100000, Vietnam
| | - Huong Thuy Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Nhat Thang Thi Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam.
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Havreng-Théry C, Oquendo B, Zolnowski-Kolp V, Krolak-Salmon P, Bertin-Hugault F, Lafuente-Lafuente C, Belmin J. Cholinesterase inhibitors and memantine are associated with a reduced mortality in nursing home residents with dementia: a longitudinal observational study. Alzheimers Res Ther 2024; 16:117. [PMID: 38812028 PMCID: PMC11134888 DOI: 10.1186/s13195-024-01481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND A large proportion of nursing home (NH) residents suffer from dementia and effects of conventional anti-dementia drugs on their health is poorly known. We aimed to investigate the associations between exposure to anti-dementia drugs and mortality among NH residents. METHODS This retrospective longitudinal observational study involved 329 French NH and the residents admitted in these facilities since 2014 and having major neurocognitive disorder. From their electronic health records, we obtained their age, sex, level of dependency, Charlson comorbidity index, and Mini mental examination score at admission. Exposure to anti-dementia drugs was determined using their prescription into 4 categories: none, exposure to acetylcholinesterase inhibitors (AChEI) alone, exposure to memantine alone, exposure to AChEI and memantine. Survival until the end of 2019 was studied in the entire cohort by Cox proportional hazards. To alleviate bias related to prescription of anti-dementia drugs, we formed propensity-score matched cohorts for each type of anti-dementia drug exposure, and studied survival by the same method. RESULTS We studied 25,358 NH residents with major neurocognitive disorder. Their age at admission was 87.1 + 7.1 years and 69.8% of them were women. Exposure to anti-dementia drugs occurred in 2,550 (10.1%) for AChEI alone, in 2,055 (8.1%) for memantine alone, in 460 (0.2%) for AChEI plus memantine, whereas 20,293 (80.0%) had no exposure to anti-dementia drugs. Adjusted hazard ratios for mortality were significantly reduced for these three groups exposed to anti-dementia drugs, as compared to reference group: HR: 0.826, 95%CI 0.769 to 0.888 for AChEI; 0.857, 95%CI 0.795 to 0.923 for memantine; 0.742, 95%CI 0.640 to 0.861 for AChEI plus memantine. Results were consistent in propensity-score matched cohorts. CONCLUSION The use of conventional anti-dementia drugs is associated with a lower mortality in nursing home residents with dementia and should be widely used in this population.
Collapse
Affiliation(s)
- Charlotte Havreng-Théry
- Laboratoire LIMICS, Sorbonne Université, Paris, France
- Service de Gériatrie, Hôpital Charles Foix, Ivry-sur-Seine, 94200, France
- Présage Care, Paris, France
| | - Bruno Oquendo
- Service de Gériatrie, Hôpital Charles Foix, Ivry-sur-Seine, 94200, France
| | | | | | | | - Carmelo Lafuente-Lafuente
- Service de Gériatrie, Hôpital Charles Foix, Ivry-sur-Seine, 94200, France
- Laboratoire CEPIA, Université Paris Est, Créteil, France
| | - Joël Belmin
- Laboratoire LIMICS, Sorbonne Université, Paris, France.
- Service de Gériatrie, Hôpital Charles Foix, Ivry-sur-Seine, 94200, France.
| |
Collapse
|
9
|
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer's Disease Drug Determination. BIOSENSORS 2024; 14:93. [PMID: 38392012 PMCID: PMC10886970 DOI: 10.3390/bios14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Rezeda Shamagsumova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Marina Larina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
10
|
Bierly JJ, Peterson BL. Distribution of donepezil in postmortem casework. J Forensic Leg Med 2024; 101:102625. [PMID: 38043240 DOI: 10.1016/j.jflm.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Donepezil is one of the primary treatments options for patients suffering from Alzheimer's Disease. In a review of more than 2200 postmortem donepezil positive blood specimens, 76% of concentrations were higher than the proposed therapeutic range. Means and medians were similar between central blood specimens and peripheral specimens, indicating minimal postmortem redistribution. Postmortem concentrations may not reflect those circulating antemortem. Mean and median postmortem blood concentrations were approximately 3-fold higher than those in antemortem blood specimens. Additionally, in cases where antemortem blood was available for testing, large increases in donepezil concentrations were reported between antemortem and postmortem specimens without documented administration by medical personnel. Elevated blood donepezil concentrations have been reported in multiple postmortem cases where cause of death was unrelated. The blood concentrations reported in cases where donepezil did not contribute to death overlapped with those in suspected drug overdose cases where other drugs may have been present. In 4 out of 5 suspected donepezil overdose cases, blood concentrations greater than 1000 ng/mL were reported, whereas less than 1% of all postmortem blood samples reviewed achieved these concentrations. Blood concentrations greater than 1000 ng/mL should be considered contributory when a drug overdose is suspected. Postmortem donepezil concentrations should be interpreted with caution in the context of a comprehensive case history.
Collapse
|
11
|
Varadharajan A, Davis AD, Ghosh A, Jagtap T, Xavier A, Menon AJ, Roy D, Gandhi S, Gregor T. Guidelines for pharmacotherapy in Alzheimer's disease - A primer on FDA-approved drugs. J Neurosci Rural Pract 2023; 14:566-573. [PMID: 38059250 PMCID: PMC10696336 DOI: 10.25259/jnrp_356_2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023] Open
Abstract
The growing prevalence of dementia makes it important for us to better understand its pathophysiology and treatment modalities, to improve the quality of life of patients and caregivers. Alzheimer's disease (AD), a neurodegenerative disease, is the most common form of amnestic dementia in the geriatric population. Pathophysiology of AD is widely attributed to aggregation of amyloid-beta (Aβ) plaques and hyperphosphorylation of tau proteins. Initial treatment modalities aimed to increase brain perfusion in a non-specific manner. Subsequent therapy focused on rectifying neurotransmitter imbalance in the brain. Newer drugs modify the progression of the disease by acting against aggregated Aβ plaques. However, not all drugs used in therapy of AD have been granted approval by the United States Food and Drug Administration (FDA). This review categorizes and summarizes the FDA-approved drugs in the treatment of AD in a manner that would make it a convenient reference for researchers and practicing physicians alike. Drugs that mitigate symptoms of dementia may be categorized into mitigators of Behavioral and Psychological Symptoms of Dementia (BPSD), and mitigators of cognitive decline. BPSD mitigators include brexpiprazole, an atypical antipsychotic with a once-daily dosage suited to treat agitation in dementia patients, and suvorexant, an orexin receptor antagonist used to treat sleep disturbances. Cognitive decline mitigators include cholinesterase inhibitors such as donepezil, rivastigmine, and galantamine and glutamate inhibitors such as memantine. Donepezil is the most commonly prescribed drug. It is cheap, well-tolerated, and may be prescribed orally once daily, or as a transdermal patch once weekly. It increases ACh levels, enhances oligodendrocyte differentiation and also protects against Aβ toxicity. However, regular cardiac monitoring is required due to reports of cardiac conduction side effects. Rivastigmine requires a twice-daily oral dosage or once-daily replacement of transdermal patch. It has fewer cardiac side effects than donepezil, but local application-site reactions have been noted. Galantamine, in addition to improving cognitive symptoms in a short span of time, also delays the development of BPSDs and has minimal drug-drug interactions by virtue of having multiple metabolic pathways. However, cardiac conduction disturbances must be closely monitored for. Memantine, a glutamate regulator, acts as an anti-Parkinsonian agent and an antidepressant, in addition to improving cognition and neuroprotection, and requires a once-daily dosage in the form of immediate-release or sustained-release oral tablets. Disease-modifying drugs such as aducanumab and lecanemab reduce the Aβ burden. Both act by binding with fibrillary conformations of Aβ plaques in the brain. These drugs have a risk of causing amyloid-related imaging abnormalities, especially in persons with ApoE4 gene. Aducanumab is administered once every 4 weeks and lecanemab once every 2 weeks. The decision on the choice of the drug must be made after considering the availability of drug, compliance of patient (once-daily vs. multiple doses daily), cost, specific comorbidities, and the risk-benefit ratio for the particular patient. Other non-pharmacological treatment modalities must also be adopted to have a holistic approach toward the treatment of AD.
Collapse
Affiliation(s)
- Ashvin Varadharajan
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Aarjith Damian Davis
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Aishwarya Ghosh
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Tejaswini Jagtap
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anjo Xavier
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Dwaiti Roy
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandhya Gandhi
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Thomas Gregor
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Wang Z, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-empowered therapeutics targeting neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1907. [PMID: 37248794 PMCID: PMC10525015 DOI: 10.1002/wnan.1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Neurodegenerative diseases are posing pressing health issues due to the high prevalence among aging populations in the 21st century. They are evidenced by the progressive loss of neuronal function, often associated with neuronal necrosis and many related devastating complications. Nevertheless, effective therapeutical strategies to treat neurodegenerative diseases remain a tremendous challenge due to the multisystemic nature and limited drug delivery to the central nervous system. As a result, there is a pressing need to develop effective alternative therapeutics to manage the progression of neurodegenerative diseases. By utilizing the functional reconstructive materials and technologies with specific targeting ability at the nanoscale level, nanotechnology-empowered medicines can transform the therapeutic paradigms of neurodegenerative diseases with minimal systemic side effects. This review outlines the current applications and progresses of the nanotechnology-enabled drug delivery systems to enhance the therapeutic efficacy in treating neurodegenerative diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
13
|
Peyronneau MA, Kuhnast B, Nguyen DL, Jego B, Sayet G, Caillé F, Lavisse S, Gervais P, Stankoff B, Sarazin M, Remy P, Bouilleret V, Leroy C, Bottlaender M. [ 18F]DPA-714: Effect of co-medications, age, sex, BMI and TSPO polymorphism on the human plasma input function. Eur J Nucl Med Mol Imaging 2023; 50:3251-3264. [PMID: 37291448 DOI: 10.1007/s00259-023-06286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [18F]DPA-714 and their influence on the plasma input function in a large cohort of 201 subjects who underwent brain and whole-body PET imaging to investigate the role of neuroinflammation in neurological diseases. METHODS The non-metabolized fraction of [18F]DPA-714 was estimated in venous plasma of 138 patients and 63 healthy controls (HCs; including additional arterial sampling in 16 subjects) during the 90 min brain PET acquisition using a direct solid-phase extraction method. The mean fraction between 70 and 90 min post-injection ([18F]DPA-71470-90) and corresponding normalized plasma concentration (SUV70-90) were correlated with all factors using a multiple linear regression model. Differences between groups (arterial vs venous measurements; HCs vs patients; high- (HAB), mixed- (MAB) and low-affinity binders (LAB); subjects with vs without co-medications, females vs males were also assessed using the non-parametric Mann-Whitney or Kruskal-Wallis ANOVA tests. Finally, the impact of co-medications on the brain uptake of [18F]DPA-714 at equilibrium was investigated. RESULTS As no significant differences were observed between arterial and venous [18F]DPA-71470-90 and SUV70-90, venous plasma was used for correlations. [18F]DPA-71470-90 was not significantly different between patients and HCS (59.7 ± 12.3% vs 60.2 ± 12.9%) despite high interindividual variability. However, 47 subjects exhibiting a huge increase or decrease of [18F]DPA-71470-90 (up to 88% or down to 23%) and SUV70-90 values (2-threefold) were found to receive co-medications identified as inhibitors or inducers of CYP3A4, known to catalyse [18F]DPA-714 metabolism. Comparison between cortex-to-plasma ratios using individual input function (VTIND) or population-based input function derived from untreated HCs (VTPBIF) indicated that non-considering the individual metabolism rate led to a bias of about 30% in VT values. Multiple linear regression model analysis of subjects free of these co-medications suggested significant correlations between [18F]DPA-71470-90 and age, BMI and sex while TSPO polymorphism did not influence the metabolism of the radiotracer. [18F]DPA-714 metabolism fell with age and BMI and was significantly faster in females than in males. Whole-body PET/CT exhibited a high uptake of the tracer in TSPO-rich organs (heart wall, spleen, kidneys…) and those involved in metabolism and excretion pathways (liver, gallbladder) in HAB and MAB with a strong decrease in LAB (-89% and -85%) resulting in tracer accumulation in plasma (4.5 and 3.3-fold increase). CONCLUSION Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [18F]DPA-714 and consequently its human brain and peripheral uptake. TRIAL REGISTRATION INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.
Collapse
Affiliation(s)
- M A Peyronneau
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France.
| | - B Kuhnast
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - D-L Nguyen
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Jego
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - G Sayet
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - F Caillé
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - S Lavisse
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
| | - P Gervais
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de La Moelle Epinière, Hôpital de La Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - M Sarazin
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurologie de La Mémoire Et du Langage, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - P Remy
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
- Centre Expert Parkinson, Neurologie, Hôpital Henri Mondor, AP-HP, F-94010, Créteil, France
- Université Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, Université PSL, F-75005, Paris, France
| | - V Bouilleret
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurophysiologie Clinique et d'Epileptologie, Hôpital Bicêtre, AP-HP, Université Paris Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - C Leroy
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - M Bottlaender
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Université Paris Saclay, UNIACT, Neurospin, CEA, Gif-Sur-Yvette, F-91190, France
| |
Collapse
|
14
|
Ure A, Cox GR, Haslam R, Williams K. Acetylcholinesterase inhibitors for autistic spectrum disorders. Cochrane Database Syst Rev 2023; 6:CD013851. [PMID: 37267443 PMCID: PMC10233795 DOI: 10.1002/14651858.cd013851.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Autism spectrum disorder (autism) is a neurodevelopmental condition characterised by impairments in social communication and interaction, plus restricted, repetitive patterns of behaviour and interests. Whilst some people embrace autism as part of their identity, others struggle with their difficulties, and some seek treatment. There are no current interventions that result in complete reduction of autism features. Acetylcholine is a neurotransmitter for the cholinergic system and has a role in attention, novelty seeking, and memory. Low levels of acetylcholine have been investigated as a potential contributor to autism symptomatology. Donepezil, galantamine, and rivastigmine (commonly referred to as acetylcholinesterase inhibitors) all inhibit acetylcholinesterase, and have slightly different modes of action and biological availability, so their effectiveness and side-effect profiles may vary. The effect of various acetylcholinesterase inhibitor on core autism features across the lifespan, and possible adverse effects, have not been thoroughly investigated. OBJECTIVES To evaluate the efficacy and harms of acetylcholinesterase inhibitors for people with the core features (social interaction, communication, and restrictive and repetitive behaviours) of autism. To assess the effects of acetylcholinesterase inhibitors on non-core features of autism. SEARCH METHODS In November 2022, we searched CENTRAL, MEDLINE, Embase, eight other databases, and two trials registers. We also searched the reference lists of included studies and relevant reviews, and contacted authors of relevant studies. SELECTION CRITERIA Randomised controlled trials (RCTs), comparing acetylcholinesterase inhibitors (e.g. galantamine, donepezil, or rivastigmine) of varying doses, delivered orally or via transdermal patch, either as monotherapy or adjunct therapy, with placebo. People of any age, with a clinical diagnosis of autism were eligible for inclusion. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our primary outcomes were core features of autism and adverse effects. Secondary outcomes were language, irritability, hyperactivity, and general health and function. We used GRADE to assess certainty of evidence. MAIN RESULTS We included two RCTs (74 participants). One study was conducted in Iran, the second in the USA, although exact location in the USA is unclear. Galantamine plus risperidone versus placebo plus risperidone One study compared the effects of galantamine plus risperidone to placebo plus risperidone (40 participants, aged 4 years to 12 years). Primary and secondary outcomes of interest were measured postintervention, using subscales of the Aberrant Behavior Checklist (score 0 to 3; higher scores = greater impairment). Very low-certainty evidence showed there was little to no difference between the two groups postintervention for social communication (mean difference (MD) -2.75, 95% confidence interval (CI) -5.88 to 0.38), and restricted and repetitive behaviour (MD -0.55, 95% CI -3.47 to 2.37). Overall autism features were not assessed. Adverse events may be higher in the galantamine plus risperidone group (75%) compared with the placebo plus risperidone group (35%): odds ratio 5.57, 95% CI 1.42 to 21.86, low-certainty evidence. No serious adverse events were reported. Low-certainty evidence showed a small difference in irritability (MD -3.50, 95% CI -6.39 to -0.61), with the galantamine plus risperidone group showing a greater decline on the irritability subscale than the placebo group postintervention. There was no evidence of a difference between the groups in hyperactivity postintervention (MD -5.20, 95% CI -10.51 to 0.11). General health and function were not assessed. Donepezil versus placebo One study compared donepezil to placebo (34 participants aged 8 years to 17 years). Primary outcomes of interest were measured postintervention, using subscales of the Modified Version of The Real Life Rating Scale (scored 0 to 3; higher scores = greater impairment). Very low-certainty evidence showed no evidence of group differences immediately postintervention in overall autism features (MD 0.07, 95% CI -0.19 to 0.33), or in the autism symptom domains of social communication (MD -0.02, 95% CI -0.34 to 0.30), and restricted and repetitive behaviours (MD 0.04, 95% CI -0.27 to 0.35). Significant adverse events leading to study withdrawal in at least one participant was implied in the data analysis section, but not explicitly reported. The evidence is very uncertain about the effect of donepezil, compared to placebo, on the secondary outcomes of interest, including irritability (MD 1.08, 95% CI -0.41 to 2.57), hyperactivity (MD 2.60, 95% CI 0.50 to 4.70), and general health and function (MD 0.03, 95% CI -0.48 to 0.54) postintervention. Across all analyses within this comparison, we judged the evidence to be very low-certainty due to high risk of bias, and very serious imprecision (results based on one small study with wide confidence intervals). The study narratively reported adverse events for the study as a whole, rather than by treatment group. AUTHORS' CONCLUSIONS Evidence about the effectiveness of acetylcholinesterase inhibitors as a medication to improve outcomes for autistic adults is lacking, and for autistic children is very uncertain. There is a need for more evidence of improvement in outcomes of relevance to clinical care, autistic people, and their families. There are a number of ongoing studies involving acetylcholinesterase inhibitors, and future updates of this review may add to the current evidence.
Collapse
Affiliation(s)
- Alexandra Ure
- Department of Paediatrics, Monash University, Melbourne, Australia
- Developmental Paediatrics, Monash Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Georgina R Cox
- Department of Paediatrics, Monash University, Melbourne, Australia
- Neurodevelopment and Disability, The Royal Children's Hospital, Melbourne, Australia
| | - Richard Haslam
- Mental Health Department, The Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Melbourne, Australia
- Developmental Paediatrics, Monash Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Valis M, Dlabkova A, Hort J, Angelucci F, Pejchal J, Kuca K, Pavelek Z, Karasova JZ, Novotny M. The measured CSF/plasma donepezil concentration ratio but not individually measured CSF and plasma concentrations significantly increase over 24 h after donepezil treatment in patients with Alzheimer's disease. Biomed Pharmacother 2023; 159:114223. [PMID: 36630846 DOI: 10.1016/j.biopha.2023.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The acetylcholinesterase inhibitor donepezil is administered as a treatment for Alzheimer's disease (AD). However, the appropriate donepezil dosage is still a matter of debate. METHODS Forty AD patients receiving 10 mg/day of donepezil were randomly divided into four groups based on the time of plasma and cerebrospinal fluid (CSF) sampling: 6 h (n = 5), 12 h (n = 12), 18 h (n = 6) and 24 h (n = 17) after donepezil administration. High-performance liquid chromatography measured the donepezil concentration in plasma samples and CSF samples collected at 4-time points. RESULTS Plasma and CSF levels among the groups were not significantly different. Conversely, the CSF/plasma donepezil concentration ratio considerably increased in the 24 h group compared to the 6 h (p < 0.005) and 12 h (p < 0.05) groups. CONCLUSION The measurement of the CSF/plasma donepezil concentration ratio could be used to better evaluate the optimal dose of donepezil.
Collapse
Affiliation(s)
- Martin Valis
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.
| | - Alzbeta Dlabkova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, the University of Defense in Brno, Hradec Kralove, Czech Republic.
| | - Jakub Hort
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Francesco Angelucci
- Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, the University of Defense in Brno, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zbysek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, the University of Defense in Brno, Hradec Kralove, Czech Republic; Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Michal Novotny
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer's disease. Cell Signal 2023; 102:110539. [PMID: 36455831 DOI: 10.1016/j.cellsig.2022.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the world. Although the basic pathology of the disease is elucidated, it is difficult to restore or prevent the worsening of neurodegeneration and its symptoms. Antibody and small molecule-based approaches have been studied and are in study individually, but a combined approach like conjugation has not been performed to date. The conjugation between antibodies and drugs which are already used for Alzheimer's treatment or developed specifically for this purpose may have better efficacy and dual action in mitigating Alzheimer's disease. A probable mechanism for antibody-drug conjugates in Alzheimer's disease is discussed in the present review.
Collapse
|
17
|
Eyüp Başaran. Schiff Base Derivatives Based on Ampyrone as Promising Acetylcholinesterase Inhibitors: Synthesis, Spectral Characterization, Biological Activity, and SwissADME Predictions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Roles of Curcumin on Cognitive Impairment Induced by a Mixture of Heavy Metals. Neurotox Res 2022; 40:1774-1792. [PMID: 36197595 DOI: 10.1007/s12640-022-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/31/2022]
Abstract
We aimed to explore the molecular mechanisms of curcumin's protective action against heavy metal-related cognitive impairment (CI). In silico analysis, CTD, SwissADME, AutoDock Vina, Metascape, GeneMania, and MIENTURNET were key approaches. The server-predicted interactions (41.7%) and physical interactions (35.7%) were found to be the most important interactions in the gene network analysis. The most important pathways involved in curcumin's protective activity against heavy metals were categorized as "regulation of neuron apoptotic process" and "negative regulation of apoptotic signaling route". These pathways were also emphasized in the protein-protein interaction enrichment analysis. Curcumin was also well-positioned inside the CASP3 binding region. Three key miRNAs linked to CI, mixed heavy metals, and curcumin (hsa-miR-34a-5p, hsa-miR-24-3p, and hsa-miR-128-3p) were observed. These miRNAs were found to be related to the important pathways related to CI and involved in curcumin's protective activity against mixed heavy metals such as "apoptosis multiple species", "apoptosis", and "Alzheimer's disease". We also created and tested in silico sponges that inhibited these miRNAs. Curcumin's physicochemical characteristics and pharmacokinetics are consistent with its therapeutic benefits in CI, owing to its high gastrointestinal absorption and ability to cross the blood-brain barrier, and it is not a P-glycoprotein substrate. Our findings emphasize the protective effects of curcumin in CI caused by heavy metal mixtures and pave the way for molecular mechanisms involved in CI pathology.
Collapse
|
19
|
Truong C, Recto C, Lafont C, Canoui-Poitrine F, Belmin JB, Lafuente-Lafuente C. Effect of Cholinesterase Inhibitors on Mortality in Patients With Dementia: A Systematic Review of Randomized and Nonrandomized Trials. Neurology 2022; 99:e2313-e2325. [PMID: 36096687 DOI: 10.1212/wnl.0000000000201161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cholinesterase inhibitors (ChEIs) have cardiovascular effects in addition to their neurologic activity and might alter mortality. We wanted to know whether treatment with ChEIs modifies mortality in patients with dementia. METHODS We searched PubMed, Embase, Cochrane CENTRAL, ClinicalTrials.gov, and ICRTP, from their inception to November 2021, and screened bibliographies of reviews, guidelines, and included studies. We included randomized controlled trials (RCTs) and nonrandomized controlled studies at lower risk of bias comparing ChEI treatment with placebo or usual treatment, for 6 months or longer, in patients with dementia of any type. Two investigators independently assessed studies for inclusion, assessed their risk of bias, and extracted data using predefined forms. Any discordance between investigators was solved by discussion and consensus. Data on all-cause and cardiovascular mortality, measured as either crude death rates or multivariate adjusted hazard ratios (HRs), were pooled using a random-effect model. Information size achieved was assessed using trial sequential analysis (TSA). We followed Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. RESULTS Twenty-four studies (12 RCTs, 12 cohorts, mean follow-up 6-120 months), cumulating 79,153 patients with Alzheimer (13 studies), Parkinson (1), vascular (1), or any type (9) dementia, fulfilled inclusion criteria. Pooled all-cause mortality in control patients was 15.1 per 100 person-years. Treatment with ChEIs was associated with lower all-cause mortality (unadjusted risk ratio [RR] 0.74, 95% CI 0.66-0.84; adjusted HR 0.77, 95% CI 0.70-0.84, moderate-quality to high-quality evidence). This result was consistent between randomized and nonrandomized studies and in several sensitivity analyses. No difference appeared between subgroups by type of dementia, age, individual drug, or dementia severity. Less data were available for cardiovascular mortality (3 RCTs, 2 cohorts, 9,182 patients, low-quality to moderate-quality evidence), which was also lower in patients treated with ChEIs (unadjusted RR 0.61, 95% CI 0.40-0.93, adjusted HR 0.47, 95% CI 0.32-0.68). In TSA analysis, the results for all-cause mortality were conclusive but not those for cardiovascular mortality. DISCUSSION There is moderate-quality to high-quality evidence of a consistent association between long-term treatment with ChEIs and a reduction in all-cause mortality in patients with dementia. These findings may influence decisions to prescribe ChEIs in those patients. TRIAL REGISTRATION INFORMATION This systematic review was registered in the PROSPERO international prospective register of systematic reviews with the number CRD42021254458 (June 11, 2021).
Collapse
Affiliation(s)
- Céline Truong
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Caryn Recto
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Charlotte Lafont
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Florence Canoui-Poitrine
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Joel Belmin Belmin
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Carmelo Lafuente-Lafuente
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France.
| |
Collapse
|
20
|
Pozzi FE, Conti E, Appollonio I, Ferrarese C, Tremolizzo L. Predictors of response to acetylcholinesterase inhibitors in dementia: A systematic review. Front Neurosci 2022; 16:998224. [PMID: 36203811 PMCID: PMC9530658 DOI: 10.3389/fnins.2022.998224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background The mainstay of therapy for many neurodegenerative dementias still relies on acetylcholinesterase inhibitors (AChEI); however, there is debate on various aspects of such treatment. A huge body of literature exists on possible predictors of response, but a comprehensive review is lacking. Therefore, our aim is to perform a systematic review of the predictors of response to AChEI in neurodegenerative dementias, providing a categorization and interpretation of the results. Methods We conducted a systematic review of the literature up to December 31st, 2021, searching five different databases and registers, including studies on rivastigmine, donepezil, and galantamine, with clearly defined criteria for the diagnosis of dementia and the response to AChEI therapy. Records were identified through the string: predict * AND respon * AND (acetylcholinesterase inhibitors OR donepezil OR rivastigmine OR galantamine). The results were presented narratively. Results We identified 1,994 records in five different databases; after exclusion of duplicates, title and abstract screening, and full-text retrieval, 122 studies were finally included. Discussion The studies show high heterogeneity in duration, response definition, drug dosage, and diagnostic criteria. Response to AChEI seems associated with correlates of cholinergic deficit (hallucinations, fluctuating cognition, substantia innominate atrophy) and preserved cholinergic neurons (faster alpha on REM sleep EEG, increased anterior frontal and parietal lobe perfusion after donepezil); white matter hyperintensities in the cholinergic pathways have shown inconsistent results. The K-variant of butyrylcholinesterase may correlate with better response in late stages of disease, while the role of polymorphisms in other genes involved in the cholinergic system is controversial. Factors related to drug availability may influence response; in particular, low serum albumin (for donepezil), CYP2D6 variants associated with reduced enzymatic activity and higher drug doses are the most consistent predictors, while AChEI concentration influence on clinical outcomes is debatable. Other predictors of response include faster disease progression, lower serum cholesterol, preserved medial temporal lobes, apathy, absence of concomitant diseases, and absence of antipsychotics. Short-term response may predict subsequent cognitive response, while higher education might correlate with short-term good response (months), and long-term poor response (years). Age, gender, baseline cognitive and functional levels, and APOE relationship with treatment outcome is controversial.
Collapse
Affiliation(s)
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
In silico identification of the potential molecular mechanisms involved in protective effects of prolactin on motor and memory deficits induced by 1,2-Diacetylbenzene in young and old rats. Neurotoxicology 2022; 93:45-59. [PMID: 36100143 DOI: 10.1016/j.neuro.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023]
Abstract
We aimed to identify the molecular mechanisms through which prolactin protects against 1,2-Diacetylbenzene (DAB)-induced memory and motor impairments. The gene expression omnibus database (no. GSE119435), transcriptomic data, GeneMANIA, ToppGeneSuite, Metascape, STRING database, Cytoscape, and Autodock were used as the core tools in in-silico analyses. We observed that prolactin may improve memory and motor deficits caused by DAB via 13 genes (Scn5a, Lmntd1, LOC100360619, Rgs9, Srpk3, Syndig1l, Gpr88, Egr2, Ctxn3, Drd2, Ttr, Gpr6, and Ecel1) in young rats and 9 genes (Scn5a, Chat, RGD1560608, Ucma, Lrrc31, Gpr88, Col1a2, Cnbd1, and Ttr) in old rats. Almost all of these genes were downregulated in both young and old rats given DAB, but they were increased in both young and old rats given prolactin. Co-expression interactions were identified as the most important interactions (83.2 % for young rats and 100 % for old rats). The most important mechanisms associated with prolactin's ability to counteract DAB were identified, including "learning and memory," and "positive regulation of ion transport" in young rats, as well as "acetylcholine related pathways," "inflammatory response pathway," and "neurotransmitter release cycle" in old rats. We also identified several key miRNAs associated with memory and motor deficits, as well as prolactin and DAB exposure (rno-miR-141-3p, rno-miR-200a-3p, rno-miR-124-3p, rno-miR-26, and rno-let-7 families). The most significant transcription factors associated with differentially expressed gene regulation were Six3, Rxrg, Nkx26, and Tbx20. These findings will contribute to our understanding of the processes through which prolactin's beneficial effects counteract DAB-induced memory and motor deficits.
Collapse
|
22
|
Yaowaluk T, Senanarong V, Limwongse C, Boonprasert R, Bunditvorapoom D, Kaewsutthi S, Kijsanayotin P. Association study identifies genetic determinants and non-genetic factors on steady-state plasma and therapeutic outcome of galantamine in mixed dementia. Eur J Clin Pharmacol 2022; 78:1249-1259. [PMID: 35633386 DOI: 10.1007/s00228-022-03322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to evaluate the influence of genetic polymorphisms of drug-metabolizing enzyme genes, transporter gene, pathological gene (APOE), and non-genetic factors on therapeutic outcomes as well as steady-state plasma concentrations (Cpss) of galantamine in Thai patients with mixed dementia. METHODS Fifty-one Thai patients with mixed dementia who received galantamine for at least 6 months were recruited. CYP2D6, CYP3A5, and ABCB1 polymorphisms were detected by TaqMan® Genotyping Assay. UGT1A1 and APOE polymorphism was detected by direct Sanger sequencing technique and restriction fragment length polymorphism technique. Cpss of galantamine was measured by ultra-performance liquid chromatography. Associations of genetic and non-genetic factors with Cpss and clinical outcomes (change in cognitive function as measured by the Thai Mental State Examination (ΔTMSE) scores) were determined by using univariate and multivariate analysis. RESULTS The multivariate regression model revealed that patients who carried one or more detrimental allelic variant (CYP2D6, CYP3A5, and UGT1A1) showed a tendency toward a higher galantamine adjusted Cpss (B = 34.559, 95% CI = 0.741-68.377, p value = 0.045). Logistic regression analysis also revealed CYP2D6*10 carriers were significantly associated with higher ΔTMSE (B = 5.227, 95% CI = 2.395-8.060, p value = 0.001). UGT1A1 mutant alleles and non-genetic factors including concomitant use of statin drugs and higher education level can attenuate therapeutic outcomes of galantamine. CONCLUSION Pharmacokinetic-related genes including CYP2D6*10 and UGT1A1 mutant alleles were significantly associated with galantamine adjusted Cpss and cognitive function. Determination of Cpss and genotype could be an adjunct examination to provide further explanation in interindividual variability of galantamine therapeutic outcome.
Collapse
Affiliation(s)
- Thitipon Yaowaluk
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Vorapun Senanarong
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rasda Boonprasert
- Clinical Toxicology Laboratory, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Duangkamon Bunditvorapoom
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supannee Kaewsutthi
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimol Kijsanayotin
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
23
|
Saeedi M, Mehranfar F. Challenges and approaches of drugs such as Memantine, Donepezil, Rivastigmine and Aducanumab in the treatment, control and management of Alzheimer's disease. Recent Pat Biotechnol 2022; 16:102-121. [PMID: 35236274 DOI: 10.2174/1872208316666220302115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a kinds of neuropsychiatric illnesses that affect the central nervous system. In this disease, the accumulation of amyloid-beta increases, and phosphorylated tau (P-tau) protein, one of the ways to treat this disease is to reduce the accumulation of amyloid-beta. Various studies have demonstrated that pharmacological approaches have considerable effects in the treatment of AD, despite the side effects and challenges. Cholinesterase inhibitors and the NMDA receptor antagonist memantine are presently authorized therapies for AD. Memantine and Donepezil are the most common drugs for the prevention and therapy of AD with mechanisms such as lessened β-amyloid plaque, effect on N-Methyl-D-aspartate (NMDA) receptors. Diminution glutamate and elevated acetylcholine are some of the influences of medications administrated to treat AD, and drugs can also play a role in slowing the progression of cognitive and memory impairment. A new pharmacological approach and strategy is required to control the future of AD. This review appraises the effects of memantine, donepezil, rivastigmine, and aducanumab in clinical trials, in vitro and animal model studies that have explored how these drugs versus AD development and also discuss possible mechanisms of influence on the brain. Research in clinical trials has substantial findings that support the role of these medications in AD treatment and ameliorate the safety and efficacy of AD therapy, although more clinical trials are required to prove their effectiveness.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
24
|
|
25
|
Pereira FSDO, Barbosa FAR, Canto RFS, Lucchese C, Pinton S, Braga AL, Azeredo JBD, Quines CB, Ávila DS. Dihydropyrimidinone-derived selenoesters efficacy and safety in an in vivo model of Aβ aggregation. Neurotoxicology 2021; 88:14-24. [PMID: 34718060 DOI: 10.1016/j.neuro.2021.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
In a previous in vitro study, dihydropyrimidinone-derived selenoesteres demonstrated antioxidant properties, metal chelators and inhibitory acetylcholinesterase (AChE) activity, making these compounds promising candidates for Alzheimer's Disease (AD) treatment. However, these effects have yet to be demonstrated in an in vivo animal model; therefore, this study aimed to evaluate the safety and efficacy of eight selenoester compounds in a Caenorhabditis elegans model using transgenic strains for amyloid-beta peptide (Aβ) aggregation. The L1 stage worms were acutely exposed (30 min) to the compounds at concentrations ranging from 5 to 200 μM and after 48 h the maintenance temperature was increased to 25 ° C for Aβ expression and aggregation. After 48 h, several parameters related to phenotypic manifestations of Aβ toxicity and mechanistic elucidation were analyzed. At the concentrations tested no significant toxicity of the compounds was found. The selenoester compound FA90 significantly reduced the rate of paralyzed worms and increased the number of swimming movements compared to the untreated worms. In addition, FA90 and FA130 improved egg-laying induced by levamisole and positively modulated HSP-6 and HSP-4 expression, thereby increasing reticular and mitochondrial protein folding response in C. elegans, which could attenuate Aβ aggregation in early exposure. Therefore, our initial screening using an alternative model demonstrated that FA90, among the eight selenoesters evaluated, was the most promising compound for AD evaluation screening in more complex animals.
Collapse
Affiliation(s)
- Flávia Suelen de Oliveira Pereira
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Flavio Augusto Rocha Barbosa
- Laboratory of Synthesis of Bioactive Selenium Compounds (LabSelen), Chemistry Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Rômulo Farias Santos Canto
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Simone Pinton
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Antônio Luiz Braga
- Laboratory of Synthesis of Bioactive Selenium Compounds (LabSelen), Chemistry Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Juliano Braun de Azeredo
- Graduate Program in Pharmaceutical Sciences, Pharmacy Course, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Caroline Brandão Quines
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
26
|
Anjireddy K, Subramanian K. A new mode of Thinfilm and Nanofiber for burst release of the drug for Alzheimer disease; A complete scenario from dispersible polymer to formulation methodology. Mini Rev Med Chem 2021; 22:949-966. [PMID: 34629042 DOI: 10.2174/1389557521666211008152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is usually caused intellectual deterioration which happened due to the degeneration of cholinergic neurons. Donepezil is employed for cholinesterase enzyme Inhibition (ChEI) to treat AD in a wider population. Over the years, researchers finding difficulties prompted through traditional dosage forms particularly in geriatric patience. To avoid swallowing difficulties brought about with the aid of the AD population, researchers majorly focused on oral thin-film technology (OTF). This technology strongly eliminates issues caused by solid oral dosage forms. It is one of the quality strategies to an alternate drug that is used in the first-pass metabolism or pre systematic metabolism. The solubility of the drug is a higher trouble and it can expand by way of lowering particle size. Nanofibers are the excellent desire to minimize the drug particles to the submicron stage and can increase the drug release rate drastically. It can be prepared by Electrospinning technology by incorporating polymeric material into poorly soluble drugs. Mostly natural and biodegradable polymers prefer in all pharmaceutical preparations. Polymers employed for oral delivery should be stable, possess mucoadhesive property, and should release the drug by diffusion, degradation, and swelling mechanism. The objective of the present review explains various thin-film and nanofiber formulations used for faster drug release in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Keshireddy Anjireddy
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu. India
| | - Karpagam Subramanian
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu. India
| |
Collapse
|
27
|
Magar P, Parravicini O, Štěpánková Š, Svrčková K, Garro AD, Jendrzejewska I, Pauk K, Hošek J, Jampílek J, Enriz RD, Imramovský A. Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE. Int J Mol Sci 2021; 22:9447. [PMID: 34502357 PMCID: PMC8430704 DOI: 10.3390/ijms22179447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
Collapse
Affiliation(s)
- Pratibha Magar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| | - Oscar Parravicini
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Katarina Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Adriana D. Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | | | - Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| | - Jan Hošek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| |
Collapse
|
28
|
Romidepsin and metformin nanomaterials delivery on streptozocin for the treatment of Alzheimer's disease in animal model. Biomed Pharmacother 2021; 141:111864. [PMID: 34323698 DOI: 10.1016/j.biopha.2021.111864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Brain insulin signal anomalies are implicated in Alzheimer's disease (AD) pathology. In this background, metformin, an insulin sensitizer's neuroprotective effectiveness, has been established in the prior findings. In the present investigation, combining an epigenetic modulator, romidepsin, and metformin will improve the gene expressions of neurotrophic factors and reduce AD-associated biochemical and cellular changes by loading them mainly into a nanocarrier surface-modified framework for improved therapeutic effectiveness and bioavailability. In the present investigation, the mediated intra-cerebroventricular streptozocin (3 mg/kg) AD of the model was loaded with metformin and romidepsin into a poloxamer stabilized polymer nanocarrier system. Free combination drug therapy (Romidepsin 25 mg/kg and metformin 5 mg/kg) reduced biochemical and cellular variations over three weeks, respectively, compared to either free treatment (Romidepsin 50 mg/kg and metformin 10 mg/kg). The nanoformulations (Romidepsin 25 mg/kg and Metformin 5 mg/kg), as shown by enhanced significantly reduce stress and high neurotrophic factors, has also exerted superior neurological effectiveness than the free combination of drugs. Eventually, through the Poloxamer stable polymeric nanocarrier framework, the synergistic neuroprotective efficacy of metformin and romidepsin has improved.
Collapse
|
29
|
Sutthapitaksakul L, Dass CR, Sriamornsak P. Donepezil—an updated review of challenges in dosage form design. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Kowalska M, Wize K, Prendecki M, Lianeri M, Kozubski W, Dorszewska J. Genetic Variants and Oxidative Stress in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:208-223. [PMID: 32091332 DOI: 10.2174/1567205017666200224121447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
In an aging society, the number of people suffering from Alzheimer's Disease (AD) is still growing. Currently, intensive research is being carried out on the pathogenesis of AD. The results of these studies indicated that oxidative stress plays an important role in the onset and development of this disease. Moreover, in AD oxidative stress is generated by both genetic and biochemical factors as well as the functioning of the systems responsible for their formation and removal. The genetic factors associated with the regulation of the redox system include TOMM40, APOE, LPR, MAPT, APP, PSEN1 and PSEN2 genes. The most important biochemical parameters related to the formation of oxidative species in AD are p53, Homocysteine (Hcy) and a number of others. The formation of Reactive Oxygen Species (ROS) is also related to the efficiency of the DNA repair system, the effectiveness of the apoptosis, autophagy and mitophagy processes as well as the antioxidant potential. However, these factors are responsible for the development of many disorders, often with similar clinical symptoms, especially in the early stages of the disease. The discovery of markers of the early diagnosis of AD may contribute to the introduction of pharmacotherapy and slow down the progression of this disease.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wize
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Margarita Lianeri
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
31
|
Tampio J, Löffler S, Guillon M, Hugele A, Huttunen J, Huttunen KM. Improved l-Type amino acid transporter 1 (LAT1)-mediated delivery of anti-inflammatory drugs into astrocytes and microglia with reduced prostaglandin production. Int J Pharm 2021; 601:120565. [PMID: 33812973 DOI: 10.1016/j.ijpharm.2021.120565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can have protective effects in the brain by inhibition of cyclooxygenases (COX). However, the delivery into the brain across the blood-brain barrier (BBB) and particularly into the brain parenchymal cells is hindered. Therefore, in the present study, we developed four l-type amino acid transporter 1 (LAT1)-utilizing prodrugs of flurbiprofen, ibuprofen, naproxen, and ketoprofen, since LAT1 is expressed on both, the BBB endothelial cells as well as parenchymal cells. The cellular uptake and utilization of LAT1 by novel prodrugs were studied in mouse cortical primary astrocytes and immortalized microglia (BV2), and the release of the parent NSAID in several tissue and cell homogenates. Finally, the effects of the studied prodrugs on prostaglandin E2 (PGE2) production and cell viability were explored. The gained results showed that all four prodrugs were carried into their target cells via LAT1. They also released their parent NSAIDs via carboxylesterases (CES) and most likely also other un-identified enzymes, which need to be carefully considered when administrating these compounds orally or intravenously. Most importantly, all the studied prodrugs reduced the PGE2 production in astrocytes and microglia after lipopolysaccharide (LPS)-induced inflammation by 29-94% and without affecting the cell viability with the studied concentration (20 µM).
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Susanne Löffler
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Melina Guillon
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Agathe Hugele
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
32
|
Bakker C, Tasker T, Liptrot J, Hart EP, Klaassen ES, Prins S, van der Doef TF, Brown GA, Brown A, Congreve M, Weir M, Marshall FH, Cross DM, Groeneveld GJ, Nathan PJ. First-in-man study to investigate safety, pharmacokinetics and exploratory pharmacodynamics of HTL0018318, a novel M 1 -receptor partial agonist for the treatment of dementias. Br J Clin Pharmacol 2021; 87:2945-2955. [PMID: 33351971 PMCID: PMC8359307 DOI: 10.1111/bcp.14710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
AIMS HTL0018318 is a selective M1 receptor partial agonist currently under development for the symptomatic treatment of cognitive and behavioural symptoms in Alzheimer's disease and other dementias. We investigated safety, tolerability, pharmacokinetics and exploratory pharmacodynamics (PD) of HTL0018318 following single ascending doses. METHODS This randomized, double-blind, placebo-controlled study in 40 healthy younger adult and 57 healthy elderly subjects, investigated oral doses of 1-35 mg HTL0018318. Pharmacodynamic assessments were performed using a battery of neurocognitive tasks and electrophysiological measurements. Cerebrospinal fluid concentrations of HTL0018318 and food effects on pharmacokinetics of HTL0018318 were investigated in an open label and partial cross-over design in 14 healthy subjects. RESULTS Pharmacokinetics of HTL0018318 were well-characterized showing dose proportional increases in exposure from 1-35 mg. Single doses of HTL0018318 were associated with mild dose-related adverse events of low incidence in both younger adult and elderly subjects. The most frequently reported cholinergic AEs included hyperhidrosis and increases in blood pressure up to 10.3 mmHg in younger adults (95% CI [4.2-16.3], 35-mg dose) and up to 11.9 mmHg in elderly subjects (95% CI [4.9-18.9], 15-mg dose). There were no statistically significant effects on cognitive function but the study was not powered to detect small to moderate effect sizes of clinical relevance. CONCLUSION HTL0018318 showed well-characterized pharmacokinetics and following single doses were generally well tolerated in the dose range studied. These provide encouraging data in support of the development for HTL0018318 for Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
| | | | | | - Ellen P Hart
- Centre for Human Drug Research (CDHR), Leiden, Netherlands
| | | | - Samantha Prins
- Centre for Human Drug Research (CDHR), Leiden, Netherlands
| | | | | | | | | | | | | | | | - Geert Jan Groeneveld
- Centre for Human Drug Research (CDHR), Leiden, Netherlands.,Leiden University Medical Centre, Leiden, The Netherlands
| | - Pradeep J Nathan
- Sosei Heptares, Cambridge, UK.,Department of Psychiatry, University of Cambridge, UK.,School of Psychological Sciences, Monash University, Australia
| |
Collapse
|
33
|
Cox GR, Williams K, Woon JM, Haslam R, Ure A. Acetylcholinesterase inhibitors for autistic spectrum disorders. Hippokratia 2021. [DOI: 10.1002/14651858.cd013851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Georgina R Cox
- Department of Paediatrics; Monash University; Melbourne Australia
- Neurodevelopment and Disability; The Royal Children's Hospital; Melbourne Australia
| | - Katrina Williams
- Department of Paediatrics; Monash University; Melbourne Australia
- Department of Paediatrics; University of Melbourne; Melbourne Australia
- Developmental Paediatrics; Monash Children's Hospital; Melbourne Australia
- Murdoch Children's Research Institute; Melbourne Australia
| | - Jade M Woon
- Neurodevelopment and Disability; The Royal Children's Hospital; Melbourne Australia
| | - Richard Haslam
- Mental Health Department; The Royal Children's Hospital; Melbourne Australia
- Department of Paediatrics; University of Melbourne; Melbourne Australia
| | - Alexandra Ure
- Department of Paediatrics; Monash University; Melbourne Australia
- Mental Health Department; The Royal Children's Hospital; Melbourne Australia
- Developmental Paediatrics; Monash Children's Hospital; Melbourne Australia
- Murdoch Children's Research Institute; Melbourne Australia
| |
Collapse
|
34
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
35
|
Akıncıoğlu H, Gülçin İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:703-715. [PMID: 31902355 DOI: 10.2174/1389557520666200103100521] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.
Collapse
Affiliation(s)
- Hulya Akıncıoğlu
- Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100-Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240-Erzurum, Turkey
| |
Collapse
|
36
|
Moss DE. Is Combining an Anticholinergic with a Cholinesterase Inhibitor a Good Strategy for High-Level CNS Cholinesterase Inhibition? J Alzheimers Dis 2020; 71:1099-1103. [PMID: 31476160 DOI: 10.3233/jad-190626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The currently approved cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) produce gastrointestinal toxicity which limits dosing to that which produces only about 25% to 35% CNS cholinesterase inhibition in Alzheimer's disease patients undergoing treatment, below the minimum therapeutic target of about 40% to 50% CNS inhibition considered necessary to treat cognitive impairment. A recent strategy for producing high-level CNS acetylcholinesterase (AChE) inhibition (50% or higher) is to co-administer a muscarinic anticholinergic with the AChE inhibitor to block the dose-limiting cholinergic overstimulation of the gastrointestinal system, allow more robust AChE inhibition in the CNS, and improve efficacy in the treatment of Alzheimer's disease. Unfortunately, most common muscarinic anticholinergics, including solifenacin, readily penetrate the CNS and are directly associated with long-term exacerbation of the underlying neuropathology of Alzheimer's disease and increased brain atrophy. The co-administration of an anticholinergic with an AChE inhibitor is a rational strategy for improving efficacy in the symptomatic treatment of dementia, but there are significant long-term risks that have not yet been considered. For long-term safety against accelerating the underlying disease processes in Alzheimer's disease, anticholinergics used to increase the tolerability of AChE inhibitors should not penetrate, or have very limited penetration, of the blood-brain barrier. Neurotrophic-mediated mechanisms by which cholinergic drugs may affect neurodegeneration in Alzheimer's disease are explored and improved treatment options are suggested.
Collapse
Affiliation(s)
- Donald E Moss
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
37
|
Patel R, Barker J, ElShaer A. Pharmaceutical Excipients and Drug Metabolism: A Mini-Review. Int J Mol Sci 2020; 21:E8224. [PMID: 33153099 PMCID: PMC7662502 DOI: 10.3390/ijms21218224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Conclusions from previously reported articles have revealed that many commonly used pharmaceutical excipients, known to be pharmacologically inert, show effects on drug transporters and/or metabolic enzymes. Thus, the pharmacokinetics (absorption, distribution, metabolism and elimination) of active pharmaceutical ingredients are possibly altered because of their transport and metabolism modulation from the incorporated excipients. The aim of this review is to present studies on the interaction of various commonly-used excipients on pre-systemic metabolism by CYP450 enzymes. Excipients such as surfactants, polymers, fatty acids and solvents are discussed. Based on all the reported outcomes, the most potent inhibitors were found to be surfactants and the least effective were organic solvents. However, there are many factors that can influence the inhibition of CYP450, for instance type of excipient, concentration of excipient, type of CYP450 isoenzyme, incubation condition, etc. Such evidence will be very useful in dosage form design, so that the right formulation can be designed to maximize drug bioavailability, especially for poorly bioavailable drugs.
Collapse
Affiliation(s)
| | | | - Amr ElShaer
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK; (R.P.); (J.B.)
| |
Collapse
|
38
|
Chamnanphon M, Wainipitapong S, Wiwattarangkul T, Chuchuen P, Nissaipan K, Phaisal W, Tangwongchai S, Sukasem C, Wittayalertpanya S, Gaedigk A, Aniwattanapong D, Chariyavilaskul P. CYP2D6 Predicts Plasma Donepezil Concentrations in a Cohort of Thai Patients with Mild to Moderate Dementia. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:543-551. [PMID: 33177862 PMCID: PMC7649971 DOI: 10.2147/pgpm.s276230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/06/2020] [Indexed: 12/01/2022]
Abstract
Purpose Donepezil, a drug frequently used to treat dementia, is mainly metabolized by cytochrome P450 2D6 (CYP2D6). This study investigated the relationships between CYP2D6 genotype and activity scores as well as predicted phenotype of plasma donepezil concentrations in 86 Thai dementia participants. Materials and Methods CYP2D6 was genotyped using bead-chip technology (Luminex xTAG® v.3). Steady-state trough plasma donepezil concentrations were measured using high-performance liquid chromatography. Results Sixteen genotypes were found but the most frequent genotypes detected among our participants were CYP2D6*10/*10 (27.9%) and *1/*10 (26.7%). One-third of the participants had an activity score of 1.25 which predicted that they were normal metabolizers. The overall median (interquartile range) of plasma donepezil concentration was 51.20 (32.59–87.24) ng/mL. Normal metabolizers (NMs) had lower plasma donepezil concentrations compared to intermediate metabolizers (IMs) (41.15 (28.44–67.65) ng/mL vs 61.95 (35.25–97.00) ng/mL). Multivariate analysis showed that CYP2D6 activity score (r2 = 0.50) and the predicted phenotype (independent of dose) could predict the plasma donepezil concentration (r2 = 0.49). Conclusion Plasma donepezil concentration in NMs was lower compared to IMs. Additional studies with larger sample size and use of next-generation sequencing as well as its outcomes are warranted to confirm the benefit of using pharmacogenetic-guided treatment for donepezil.
Collapse
Affiliation(s)
- Monpat Chamnanphon
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sorawit Wainipitapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Phenphichcha Chuchuen
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kunathip Nissaipan
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Weeraya Phaisal
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Delirium Superimposed on Dementia in Perioperative Period and Intensive Care. J Clin Med 2020; 9:jcm9103279. [PMID: 33066174 PMCID: PMC7601948 DOI: 10.3390/jcm9103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Delirium is a life-threatening condition, the causes of which are still not fully understood. It may develop in patients with pre-existing dementia. Delirium superimposed on dementia (DSD) can go completely unnoticed with routine examination. It may happen in the perioperative period and in the critical care setting, especially in the ageing population. Difficulties in diagnosing and lack of specific pharmacological and non-pharmacological treatment make DSD a seriously growing problem. Patient-oriented, multidirectional preventive measures should be applied to reduce the risk of DSD. For this reason, anesthesiologists and intensive care specialists should be aware of this interesting condition in their everyday clinical practice.
Collapse
|
40
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
41
|
Kabir MT, Uddin MS, Begum MM, Thangapandiyan S, Rahman MS, Aleya L, Mathew B, Ahmed M, Barreto GE, Ashraf GM. Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning. Curr Pharm Des 2020; 25:3519-3535. [PMID: 31593530 DOI: 10.2174/1381612825666191008103141] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
In the brain, acetylcholine (ACh) is regarded as one of the major neurotransmitters. During the advancement of Alzheimer's disease (AD) cholinergic deficits occur and this can lead to extensive cognitive dysfunction and decline. Acetylcholinesterase (AChE) remains a highly feasible target for the symptomatic improvement of AD. Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AChE for myasthenia gravis had effectively proven that AChE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEIs) have been continued to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs which are under development and their respective mechanisms of actions.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Moss DE. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Are Irreversible Inhibitors the Future? Int J Mol Sci 2020; 21:E3438. [PMID: 32414155 PMCID: PMC7279429 DOI: 10.3390/ijms21103438] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Decades of research have produced no effective method to prevent, delay the onset, or slow the progression of Alzheimer's disease (AD). In contrast to these failures, acetylcholinesterase (AChE, EC 3.1.1.7) inhibitors slow the clinical progression of the disease and randomized, placebo-controlled trials in prodromal and mild to moderate AD patients have shown AChE inhibitor anti-neurodegenerative benefits in the cortex, hippocampus, and basal forebrain. CNS neurodegeneration and atrophy are now recognized as biomarkers of AD according to the National Institute on Aging-Alzheimer's Association (NIA-AA) criteria and recent evidence shows that these markers are among the earliest signs of prodromal AD, before the appearance of amyloid. The current AChE inhibitors (donepezil, rivastigmine, and galantamine) have short-acting mechanisms of action that result in dose-limiting toxicity and inadequate efficacy. Irreversible AChE inhibitors, with a long-acting mechanism of action, are inherently CNS selective and can more than double CNS AChE inhibition possible with short-acting inhibitors. Irreversible AChE inhibitors open the door to high-level CNS AChE inhibition and improved anti-neurodegenerative benefits that may be an important part of future treatments to more effectively prevent, delay the onset, or slow the progression of AD.
Collapse
Affiliation(s)
- Donald E Moss
- Department of Psychology, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
43
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
44
|
Kaur A, Nigam K, Bhatnagar I, Sukhpal H, Awasthy S, Shankar S, Tyagi A, Dang S. Treatment of Alzheimer's diseases using donepezil nanoemulsion: an intranasal approach. Drug Deliv Transl Res 2020; 10:1862-1875. [PMID: 32297166 DOI: 10.1007/s13346-020-00754-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer disease (AD) is very common among the older people. There are few medications available as oral and suspension dosage forms for the management of AD. Due to the rising cases of AD and the associated risks of the existing line of treatment, oil in water (o/w) nanoemulsion (NE) loaded with donepezil was prepared to explore intranasal route of administration. The NE was prepared using labrasol (10%), cetyl pyridinium chloride (1% in 80% water), and glycerol (10%), with a drug concentration of 1 mg/ml. The developed NE was characterized for particle size, polydispersity index (PDI), and zeta potential. In vitro release studies were conducted to observe the release of drug. Further in vivo studies of developed NE were done on Sprague Dawley rats using technetium pertechnetate (99mTc) labeled formulations to investigate the nose to brain drug delivery pathway. The nanoemulsion showed particle size of 65.36 nm with a PDI of 0.084 and zeta potential of -10.7 mV. In vitro release studies showed maximum release of 99.22% in 4 h in phosphate-buffered saline, 98% in 2 h in artificial cerebrospinal fluid, and 96% in 2 h in simulated nasal fluid. The cytotoxicity and antioxidant activity of the NE showed dose-dependent cytotoxicity and % radical scavenging activity (%RSA). The images of giemsa staining also confirmed that the developed formulation has no impact on the morphology of cells. Scintigrams showed maximum uptake of NE in the brain. The findings suggested that the developed NE loaded with donepezil hydrochloride could serve as a new approach for the treatment of Alzheimer via nose to brain drug delivery. Graphical abstract.
Collapse
Affiliation(s)
- Atinderpal Kaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Kuldeep Nigam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Ishita Bhatnagar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Himanshu Sukhpal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Stuti Awasthy
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Shivanika Shankar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India
| | - Amit Tyagi
- Nuclear Medicine Division, INMAS, Defense Research and Development Organization, New Delhi, 110061, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201307, India.
| |
Collapse
|
45
|
El-Saber Batiha G, Magdy Beshbishy A, G. Wasef L, Elewa YHA, A. Al-Sagan A, Abd El-Hack ME, Taha AE, M. Abd-Elhakim Y, Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic ( Allium sativum L.): A Review. Nutrients 2020; 12:E872. [PMID: 32213941 PMCID: PMC7146530 DOI: 10.3390/nu12030872] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| | - Lamiaa G. Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Yaser H. A. Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ahmed A. Al-Sagan
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt;
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan;
| |
Collapse
|
46
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
47
|
Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Strzalka K, Aguilar LF. An in vitro study on the interaction of the anti-Alzheimer drug rivastigmine with human erythrocytes. Chem Biol Interact 2020; 319:109019. [PMID: 32092302 DOI: 10.1016/j.cbi.2020.109019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The inhibition of the enzyme acetylcholinesterase (AChE) is a frequently used therapeutic option to treat Alzheimer's disease (AD). By decreasing the levels of acetylcholine degradation in the synaptic space, some cognitive functions of patients suffering from this disease are significantly improved. Rivastigmine is one of the most widely used AChE inhibitors. The objective of this work was to determine the effects of this drug on human erythrocytes, which have a type of AChE in the cell membrane. To that end, human erythrocytes and molecular models of its membrane constituted by dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. They correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. The experimental results obtained by X-ray diffraction and differential scanning calorimetry (DSC) indicated that rivastigmine molecules were able to interact with both phospholipids. Fluorescence spectroscopy results showed that rivastigmine produce a slight change in the acyl chain packing order and a weak displacement of the water molecules of the hydrophobic-hydrophilic membrane interface. On the other hand, observations by scanning electron microscopy (SEM) showed that the drug changed the normal biconcave shape of erythrocytes in stomatocytes (cup-shaped cells) and echinocytes (speculated shaped).
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Mario Suwalsky
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Luis F Aguilar
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
48
|
An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Saf 2020; 19:147-157. [PMID: 31976781 DOI: 10.1080/14740338.2020.1721456] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Alzheimer's disease (AD) is the most common cause of major neurocognitive disorders with a prevalence in the US of about 5.7 million in 2018. With the disease burden projected to increase dramatically in the coming years, it is imperative to review the current available treatment regimens for their safety and utility. The cholinesterase inhibitors (ChEIs) have continued to play a pivotal role in managing the symptoms and possibly slowing the rate of progression of AD since 1993. Owing to their being a mainstay in the treatment of AD, the safety and efficacy of prescribing these drugs needs to be reviewed often, especially with the approval of new formulations and doses.Areas covered: The three ChEIs currently approved by the FDA are donepezil, rivastigmine and galantamine. This article will review the safety and tolerability of these ChEIs and analyze the potential disease modifying properties of these drugs. The authors have reviewed all recent literature including review articles, meta-analyzes, clinical trials and more.Expert opinion: These ChEIs differ subtly in their mechanisms of action, in their tolerability and safety and FDA-approved indications. All are considered first-line, symptomatic treatments of the various phases of AD and may even have potentially disease-modifying effects.
Collapse
|
49
|
Shamsi A, Mohammad T, Anwar S, Alajmi MF, Hussain A, Hassan MI, Ahmad F, Islam A. Probing the interaction of Rivastigmine Tartrate, an important Alzheimer's drug, with serum albumin: Attempting treatment of Alzheimer's disease. Int J Biol Macromol 2020; 148:533-542. [PMID: 31954794 DOI: 10.1016/j.ijbiomac.2020.01.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023]
Abstract
The present study was aimed at investigating the binding between an important drug of Alzheimer's therapy, Rivastigmine tartrate (RT), with Bovine serum albumin (BSA). BSA is a model protein that is increasingly being used for studies related to drug-protein interaction owing to its structural similarity with human serum albumin (HSA) which is extremely abundant in the circulatory system comprising around 60% of the total plasma protein. Fluorescence spectroscopy implied that complex formation is taking place between BSA and RT; binding constant calculated was of the order of 104 M-1 implicative of the strength of this interaction. Fluorescence spectroscopy was carried out at three different temperatures in a bid to find out the operative mode of quenching; static quenching was taking place for RT-BSA interaction with a binding constant of 2.5 × 104 M-1 at 298 K. Further, changes in Far UV CD spectra clearly implied that RT induces structural transition in BSA suggestive of RT-BSA complex formation. The negative value of ∆G0 as obtained from fluorescence spectroscopy and isothermal titration calorimetry (ITC) suggests the reaction to be spontaneous and thermodynamically favorable. Additionally, molecular docking was employed to investigate different forces and critical residues involved in RT-BSA interaction. Furthermore, all-atom molecular dynamics simulation for 50 ns was performed on the BSA-RT complex to investigate its conformational behavior, stability and dynamics.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
50
|
Sharma P, Tripathi MK, Shrivastava SK. Cholinesterase as a Target for Drug Development in Alzheimer's Disease. Methods Mol Biol 2020; 2089:257-286. [PMID: 31773661 DOI: 10.1007/978-1-0716-0163-1_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an enormous healthcare challenge, and 50 million people are currently suffering from it. There are several pathophysiological mechanisms involved, but cholinesterase inhibitors remained the major target from the last 2-3 decades. Among four available therapeutics (donepezil, rivastigmine, galantamine, and memantine), three of them are cholinesterase inhibitors. Herein, we describe the role of acetylcholine sterase (AChE) and related hypothesis in AD along with the pharmacological and chemical aspects of the available cholinesterase inhibitors. This chapter discusses the development of several congeners and hybrids of available cholinesterase inhibitors along with their binding patterns in enzyme active sites.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Manish Kumar Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|