1
|
Shabanur Matada MS, Nutalapati V, Velappa Jayaraman S, Sivalingam Y. Tuning Mn-MOF by Incorporating a Phthalocyanine Derivative as an Enzyme Mimic for Efficient EGFET-based Ascorbic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20806-20819. [PMID: 40152426 DOI: 10.1021/acsami.4c23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In this study, we present the effect of catalytic performance in Mn-MOF upon incorporating varied concentrations of phthalocyanine derivative (H2PcP8OH16) for ascorbic acid detection in an extended gate field-effect transistor (EGFET) configuration. The fabricated Mn-OM-MOF-2/CP electrode demonstrated notable selectivity toward ascorbic acid in physiological conditions of sweat, with a sensitivity of 71.375 μA·mM-1·cm-2, a response time of less than 6 s, and a linear range from 5 to 240 μM. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.26 and 0.78 μM, respectively. Remarkably, the prepared electrodes followed the Michaelis-Menten kinetics. Among them, the Mn-OM-MOF-2/CP electrode demonstrated the highest affinity for ascorbic acid, with a Km value of 0.142 mM. To gain deeper insights into the charge transfer mechanism during ascorbic acid interaction with Mn-OM-MOF-2/CP, we employed the scanning Kelvin probe (SKP) technique and conducted post-FTIR analysis to understand the sensing mechanism. Additionally, post-UV-visible (UV-vis) measurements were performed to explore how the incorporation of the phthalocyanine derivative enhances affinity. Additional studies using standard artificial sweat have confirmed the Mn-OM-MOF-2/CP electrode's good recovery. Overall, the results of the EGFET method demonstrated the suitability of the Mn-OM-MOF-2/CP electrode for rapid, noninvasive, single-use ascorbic acid detection in 1× phosphate buffer saline (1× PBS).
Collapse
Affiliation(s)
- Mallikarjuna Swamy Shabanur Matada
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Surya Velappa Jayaraman
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Computer Science, KPR College of Arts Science and Research, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
2
|
Quds R, Sharma M, Mahmood R. Cytoprotective effect of l-carnitine against mancozeb-induced oxidative damage in human erythrocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106301. [PMID: 40015893 DOI: 10.1016/j.pestbp.2025.106301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
Mancozeb is a commonly used fungicide that protects crops from numerous fungal pathogens. However, due to its widespread application, mancozeb has emerged as a significant human health hazard. Mancozeb causes oxidative damage to human cells, including erythrocytes. In this study, we have investigated the cytoprotective potential of the dietary antioxidant, l-carnitine, on mancozeb-induced oxidative damage in human erythrocytes. Incubation of erythrocytes with 100 μM mancozeb for 24 h caused a substantial elevation of markers of hemoglobin, lipid and protein oxidation. Intracellular levels of reactive oxygen and nitrogen species were considerably increased, and the antioxidant defense system of erythrocytes was severely compromised. Several enzymes catalyzing vital metabolic processes in erythrocytes were significantly inhibited. Mancozeb damaged the plasma membrane, increasing osmotic fragility and cell lysis. Membrane damage resulted in morphological transformation of the normal biconcave erythrocytes to echinocytes and stomatocytes. Erythrocytes incubated with l-carnitine (100-750 μM) for 2 h prior to mancozeb treatment showed a marked reduction in oxidative damage. l-carnitine effectively neutralized free radicals and reactive species, thereby significantly diminishing oxidative stress. The activities of antioxidant and metabolic enzymes were also restored. Preincubation with l-carnitine stabilized the erythrocyte membrane and maintained its standard biconcave shape. Incubation of erythrocytes with l-carnitine alone did not alter any of the above parameters. Thus, l-carnitine can serve as an effective protectant against pesticide-induced cytotoxicity in human erythrocytes.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
3
|
Goldman DM, Warbeck CB, Barbaro R, Khambatta C, Nagra M. Assessing the Roles of Retinol, Vitamin K2, Carnitine, and Creatine in Plant-Based Diets: A Narrative Review of Nutritional Adequacy and Health Implications. Nutrients 2025; 17:525. [PMID: 39940383 PMCID: PMC11820685 DOI: 10.3390/nu17030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Plant-based diets are associated with numerous health benefits, including reduced risks of chronic diseases. However, questions persist regarding the implications of lower dietary intakes of certain non-essential nutrients, such as retinol, vitamin K2, carnitine, and creatine, which are primarily found in animal-derived foods. This narrative review evaluates the roles of these nutrients in human physiology and examines whether their absence in plant-based diets is likely to impact health outcomes. Retinol requirements can be met through the consumption of provitamin A carotenoids in plant foods, even in individuals with reduced conversion efficiency. Endogenous synthesis adequately supports physiological needs for vitamin K2, and currently available evidence does not consistently demonstrate that dietary vitamin K2 provides additional benefits for bone or cardiovascular health. Carnitine and creatine levels may differ between individuals following omnivorous and plant-based diets, but these differences do not result in compromised muscle function, cognitive health, or metabolic outcomes. Current evidence does not indicate that the absence of these non-essential nutrients in plant-based diets adversely affects health or confers disadvantages compared to omnivorous diets.
Collapse
Affiliation(s)
- David M. Goldman
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Research and Development, Metabite Inc., New York, NY 10036, USA
| | - Cassandra B. Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Robby Barbaro
- Mastering Diabetes, Santa Monica, CA 90405, USA;
- Amla Green, St. Petersburg, FL 33705, USA;
| | | | - Matthew Nagra
- Department of Family Practice, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
4
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
5
|
Rovira J, Ramirez-Bajo MJ, Bañon-Maneus E, Ventura-Aguiar P, Arias-Guillén M, Romano-Andrioni B, Ojeda R, Revuelta I, García-Calderó H, Barberà JA, Dantas AP, Diaz-Ricart M, Crispi F, García-Pagán JC, Campistol JM, Diekmann F. Mediterranean Diet Pattern: Potential Impact on the Different Altered Pathways Related to Cardiovascular Risk in Advanced Chronic Kidney Disease. Nutrients 2024; 16:3739. [PMID: 39519573 PMCID: PMC11547550 DOI: 10.3390/nu16213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the most common cause of mortality in chronic kidney disease (CKD) patients. Several studies suggest that the Mediterranean diet reduces the risk of CVD due to its influence on endothelial function, inflammation, lipid profile, and blood pressure. Integrating metabolomic and proteomic analyses of CKD could provide insights into the pathways involved in uremia-induced CVD and those pathways modifiable by the Mediterranean diet. METHODS We performed metabolomic and proteomic analyses on serum samples from 19 patients with advanced CKD (aCKD) and 27 healthy volunteers. The metabolites were quantified using four different approaches, based on their properties. Proteomic analysis was performed after depletion of seven abundant serum proteins (Albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, and fibrinogen). Integrative analysis was performed using MetaboAnalyst 4.0 and STRING 11.0 software to identify the dysregulated pathways and biomarkers. RESULTS A total of 135 metabolites and 75 proteins were differentially expressed in aCKD patients, compared to the controls. Pathway enrichment analysis showed significant alterations in the innate immune system pathways, including complement, coagulation, and neutrophil degranulation, along with disrupted linoleic acid and cholesterol metabolism. Additionally, certain key metabolites and proteins were altered in aCKD patients, such as glutathione peroxidase 3, carnitine, homocitrulline, 3-methylhistidine, and several amino acids and derivatives. CONCLUSIONS Our findings reveal significant dysregulation of the serum metabolome and proteome in aCKD, particularly in those pathways associated with endothelial dysfunction and CVD. These results suggest that CVD prevention in CKD may benefit from a multifaceted approach, including dietary interventions such as the Mediterranean diet.
Collapse
Affiliation(s)
- Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
| | - María José Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
| | - Elisenda Bañon-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
| | - Pedro Ventura-Aguiar
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| | - Marta Arias-Guillén
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| | - Barbara Romano-Andrioni
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| | - Raquel Ojeda
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| | - Ignacio Revuelta
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| | - Héctor García-Calderó
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic_Clínic Barcelona, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-RareLiver), Department of Medicine and Health Sciences, University of Barcelona, CSUR_EVH, 08036 Barcelona, Spain; (H.G.-C.); (J.C.G.-P.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28200 Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain;
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), 30627 Madrid, Spain
| | - Ana Paula Dantas
- Cardiovascular Institute, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Maribel Diaz-Ricart
- Hematopathology, Centre Diagnòstic Biomèdic (CDB), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain;
- Barcelona Endothelium Team (BET), 08036 Barcelona, Spain
| | - Fàtima Crispi
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain;
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic_Clínic Barcelona, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-RareLiver), Department of Medicine and Health Sciences, University of Barcelona, CSUR_EVH, 08036 Barcelona, Spain; (H.G.-C.); (J.C.G.-P.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28200 Madrid, Spain
| | - Josep M. Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomètiques August Pi i Sunyer (IDIBAPS), 08027 Barcelona, Spain; (M.J.R.-B.); (E.B.-M.); (P.V.-A.); (M.A.-G.); (I.R.); (J.M.C.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), 28029 Madrid, Spain
- Department of Nephrology and Kidney Transplantation, Clínic’s Institute of Nephrology and Urology (ICNU), Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (B.R.-A.); (R.O.)
| |
Collapse
|
6
|
Li P, Li Z, Shi P, Tan G, Zeng J, Huang P. Metabolome analysis of egg yolk and white following dietary supplementation with Ampelopsis grossedentata extract. Poult Sci 2024; 103:104110. [PMID: 39106697 PMCID: PMC11343058 DOI: 10.1016/j.psj.2024.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 08/09/2024] Open
Abstract
Eggs are recognized for their rich nutrient profile, providing essential proteins and lipids with notable functional properties. This study examines the effects of incorporating Water Extract of Ampelopsis grossedentata (WEA) into poultry feed on egg quality, focusing on lipid content, choline, L-carnitine levels, and flavonoid compound deposition. Our results show significant increases in essential amino acids, flavonoids, and other bioactive compounds in eggs from WEA-treated hens, suggesting enhanced cardiovascular, antioxidant, and anti-inflammatory benefits. Additionally, we observed elevated levels of choline and betaine in egg yolks, alongside increased L-carnitine content, which may contribute to improved lipid metabolism and reduced cardiovascular disease risk. KEGG pathway analysis revealed upregulation of metabolites involved in critical metabolic pathways, enhancing the nutritional profile of eggs. Flavonoid compounds, traditionally associated with plant-based foods, were also significantly increased, with notable levels of 7, 4'-dihydroxyflavone, daidzein, and glycitein identified in WEA-treated eggs, indicating potential health benefits. These findings suggest that WEA supplementation can produce functional eggs with improved nutritional quality, offering a novel approach to enhancing egg production and meeting the growing demand for functional foods. Further research is needed to fully understand the bioavailability and health impacts of these enriched compounds.
Collapse
Affiliation(s)
- Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - PanPan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Guifeng Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; College of Veterinary, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
7
|
Sharma B, Schmidt L, Nguyen C, Kiernan S, Dexter-Meldrum J, Kuschner Z, Ellis S, Bhatia ND, Agriantonis G, Whittington J, Twelker K. The Effect of L-Carnitine on Critical Illnesses Such as Traumatic Brain Injury (TBI), Acute Kidney Injury (AKI), and Hyperammonemia (HA). Metabolites 2024; 14:363. [PMID: 39057686 PMCID: PMC11278892 DOI: 10.3390/metabo14070363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
L-carnitine (LC) through diet is highly beneficial for critical patients. Studies have found that acetyl-L-carnitine (ALC) can reduce cerebral edema and neurological complications in TBI patients. It significantly improves their neurobehavioral and neurocognitive functions. ALC has also been shown to have a neuroprotective effect in cases of global and focal cerebral ischemia. Moreover, it is an effective agent in reducing nephrotoxicity by suppressing downstream mitochondrial fragmentation. LC can reduce the severity of renal ischemia-reperfusion injury, renal cast formation, tubular necrosis, iron accumulation in the tubular epithelium, CK activity, urea levels, Cr levels, and MDA levels and restore the function of enzymes such as SOD, catalase, and GPx. LC can also be administered to patients with hyperammonemia (HA), as it can suppress ammonia levels. It is important to note, however, that LC levels are dysregulated in various conditions such as aging, cirrhosis, cardiomyopathy, malnutrition, sepsis, endocrine disorders, diabetes, trauma, starvation, obesity, and medication interactions. There is limited research on the effects of LC supplementation in critical illnesses such as TBI, AKI, and HA. This scarcity of studies highlights the need for further research in this area.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Lee Schmidt
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Samantha Kiernan
- Touro College of Osteopathic Medicine–Harlem, New York, NY 10027, USA;
| | - Jacob Dexter-Meldrum
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Scott Ellis
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals, Elmhurst, 79-01 Broadway, New York, NY 11373, USA; (C.N.); (Z.K.); (S.E.); (N.D.B.); (G.A.); (J.W.); (K.T.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.S.); (J.D.-M.)
| |
Collapse
|
8
|
Sekiguchi K, Abe T, Shiomi E, Ikarashi D, Matsuura T, Maekawa S, Kato R, Kanehira M, Takata R, Sugimura J, Sekiguchi T, Obara W. Abnormal carnitine metabolism in hemodialysis patients on different anticoagulants. Ther Apher Dial 2024; 28:364-370. [PMID: 38087844 DOI: 10.1111/1744-9987.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 04/30/2024]
Abstract
INTRODUCTION We aimed to determine whether unfractionated heparin (UH) and low molecular weight heparin (LH) contribute to aberrant carnitine metabolism in patients receiving hemodialysis. METHODS The rate of increase in serum free fatty acids (FFAs) and the ratio of acylcarnitine to free carnitine (AC/FC) from before to after hemodialysis were determined in patients receiving UH and LH. Additionally, the effect of switching patients to UH from LH was examined. RESULTS AC/FC was significantly higher in the UH group. In addition, serum FFAs in that group increased to 0.825 ± 0.270 after dialysis from 0.172 ± 0.160 before dialysis, showing a positive correlation with AC/FC. Furthermore, AC/FC was observed to be significantly higher in patients who were switched to UH from LH at 3 months after the change. CONCLUSION Compared with UH, LH has a lesser effect on lipid metabolism, suggesting that it also has a lesser effect on carnitine metabolism.
Collapse
Affiliation(s)
- Kie Sekiguchi
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Takaya Abe
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Ei Shiomi
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Daiki Ikarashi
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Tomohiko Matsuura
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Shigekatsu Maekawa
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Renpei Kato
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Mitsugu Kanehira
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Ryo Takata
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Jun Sugimura
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | | | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| |
Collapse
|
9
|
Liu C, Zou Y, Zhang M, Chi C, Zhang D, Wu F, Ding CF. A simple strategy for d/l-carnitine analysis in food samples using ion mobility spectrometry and theoretical calculations. Food Chem 2024; 442:138457. [PMID: 38271903 DOI: 10.1016/j.foodchem.2024.138457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
This work presents a straightforward approach to the separation d/l-carnitine (d/l-Carn) using ion mobility-mass spectrometry (IM-MS) and theoretical calculations. Natamycin (Nat) was used as separation reagent to interact with the Carn, metal ions (G) were employed as ligand, the resultant ternary complexes [d/l-Carn + Nat + G]+ were observed experimentally. IM-MS results revealed that d/l-Carn could be baseline separated via complex formation using Li+, Na+, K+, Rb+, and Cs+, with a maximum peak separation resolution (Rp-p) of 2.91; Theoretical calculations were performed to determine the optimal conformations of [d/l-Carn + Nat + Li/K]+, and the predicted collisional cross section values were consistent with the experimental values. Conformational analysis was used to elucidate the enantiomeric separation of d/l-Carn at the molecular level via the formation of ternary complexes. Furthermore, quantitative analyses for the determination of the enantiomers were established with effective linearity and acceptable sensitivity. Finally, the proposed method was successfully applied in the determination of d/l-Carn in food samples.
Collapse
Affiliation(s)
- Cong Liu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ying Zou
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Manli Zhang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chaoxian Chi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Di Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100084, China
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
10
|
Caro-Ramírez JY, Franca CA, Lavecchia M, Naso LG, Williams PAM, Ferrer EG. Exploring the potential anti-thyroid activity of Acetyl-L-carnitine: Lactoperoxidase inhibition profile, iodine complexation and scavenging power against H 2O 2. Experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124098. [PMID: 38460232 DOI: 10.1016/j.saa.2024.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Carlos A Franca
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Martín Lavecchia
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina.
| |
Collapse
|
11
|
Naeimzadeh F, Sadeghi A, Saghaleini S, Sarbakhsh P, Mahmoodpoor A, Gharekhani A. Effect of parenteral L-carnitine in hospitalized patients with moderate to severe COVID-19: A randomized double-blind clinical trial. BIOIMPACTS : BI 2024; 15:30261. [PMID: 39963575 PMCID: PMC11830133 DOI: 10.34172/bi.2024.30261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 02/20/2025]
Abstract
Introduction Pro-inflammatory responses have an important role in developing coronavirus disease 2019 (COVID-19). L-carnitine (LC) has been known to possess anti-inflammatory, anticoagulant, and antiviral effects. So, we aimed to evaluate the efficacy of LC in hospitalized patients with moderate-to-severe COVID-19. Methods This double-blind, placebo-controlled, randomized clinical trial was conducted on hospitalized patients with moderate to severe COVID-19. The patients were randomized (1:1) to receive LC (n = 50) at a dose of 20 mg/kg or matching placebo (n = 51) from normal saline once daily for 14 days or until hospitalization and standard care. The primary outcome was hospital mortality and disease severity according to the World Health Organization's clinical progression scale. We also assessed the free carnitine level at baseline and the end of the study. C-reactive protein (CRP), ferritin, D-dimer, lactate dehydrogenase (LDH), and improvement of respiratory conditions were chosen as secondary outcomes. Results From 104 patients who met the inclusion criteria, 101 individuals' data were analyzed. The LC group showed a significant reduction in LDH levels (P = 0.003), although CRP, ferritin, and D-dimer levels did not significantly differ from the placebo group. Also, no significant difference was observed in disease severity, oxygenation status, hospital mortality, or hospital stay between the two groups. Additionally, there was no increase in serum-free carnitine levels in the LC group (P > 0.05 for all). Conclusion The results of the current study did not support the superiority of LC over placebo in improving oxygenation, decreasing mortality, and hospital stay, as well as CRP, ferritin, and D-dimer in moderate to severe COVID-19 patients. Trial Registration IRCT20170609034406N10; https://en.irct.ir/trial/60306.
Collapse
Affiliation(s)
- Farnaz Naeimzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Iran
- Department of Clinical Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seiedhadi Saghaleini
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharekhani
- Department of Clinical Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Kapur N, Alam MA, Hassan SA, Patel PH, Wempe LA, Bhogoju S, Goretsky T, Kim JH, Herzog J, Ge Y, Awuah SG, Byndloss M, Baumler AJ, Zadeh MM, Sartor RB, Barrett T. Enhanced mucosal mitochondrial function corrects dysbiosis and OXPHOS metabolism in IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584471. [PMID: 38559035 PMCID: PMC10979996 DOI: 10.1101/2024.03.14.584471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Mitochondrial (Mito) dysfunction in IBD reduces mucosal O2 consumption and increases O2 delivery to the microbiome. Increased enteric O2 promotes blooms of facultative anaerobes (eg. Proteobacteria ) and restricts obligate anaerobes (eg. Firmicutes ). Dysbiotic metabolites negatively affect host metabolism and immunity. Our novel compound (AuPhos) upregulates intestinal epithelial cell (IEC) mito function, attenuates colitis and corrects dysbiosis in humanized Il10-/- mice. We posit that AuPhos corrects IBD-associated dysbiotic metabolism. Methods Primary effect of AuPhos on mucosal Mito respiration and healing process was studied in ex vivo treated human colonic biopsies and piroxicam-accelerated (Px) Il10-/- mice. Secondary effect on microbiome was tested in DSS-colitis WT B6 and germ-free 129.SvEv WT or Il10-/- mice reconstituted with human IBD stool (Hu- Il10-/- ). Mice were treated orally with AuPhos (10- or 25- mg/kg; q3d) or vehicle, stool samples collected for fecal lipocalin-2 (f-LCN2) assay and microbiome analyses using 16S rRNA sequencing. AuPhos effect on microbial metabolites was determined using untargeted global metabolomics. AuPhos-induced hypoxia in IECs was assessed by Hypoxyprobe-1 staining in sections from pimonidazole HCl-infused DSS-mice. Effect of AuPhos on enteric oxygenation was assessed by E. coli Nissle 1917 WT (aerobic respiration-proficient) and cytochrome oxidase (cydA) mutant (aerobic respiration-deficient). Results Metagenomic (16S) analysis revealed AuPhos reduced relative abundances of Proteobacteria and increased blooms of Firmicutes in uninflamed B6 WT, DSS-colitis, Hu-WT and Hu- Il10-/- mice. AuPhos also increased hypoxyprobe-1 staining in surface IECs suggesting enhanced O2 utilization. AuPhos-induced anaerobiosis was confirmed by a significant increase in cydA mutant compared to WT (O2-utlizing) E.coli . Ex vivo treatment of human biopsies with AuPhos showed significant increase in Mito mass, and complexes I and IV. Further, gene expression analysis of AuPhos-treated biopsies showed increase in stem cell markers (Lgr4, Lgr5, Lrig1), with concomitant decreases in pro-inflammatory markers (IL1β,MCP1, RankL). Histological investigation of AuPhos-fed Px- Il10-/- mice showed significantly decreased colitis score in AuPhos-treated Px- Il10-/- mice, with decrease in mRNA of pro-inflammatory cytokines and increase in Mito complexes ( ND5 , ATP6 ). AuPhos significantly altered microbial metabolites associated with SCFA synthesis, FAO, TCA cycle, tryptophan and polyamine biosynthesis pathways. AuPhos increased pyruvate, 4-hydroxybutyrate, 2-hydroxyglutarate and succinate, suggesting an upregulation of pyruvate and glutarate pathways of butyrate production. AuPhos reduced IBD-associated primary bile acids (BA) with concomitant increase in secondary BA (SBA). AuPhos treatment significantly decreased acylcarnitines and increased L-carnitine reflective of enhanced FAO. AuPhos increases TCA cycle intermediates and creatine, energy reservoir substrates indicating enhanced OxPHOS. Besides, AuPhos also upregulates tryptophan metabolism, decreases Kynurenine and its derivatives, and increases polyamine biosynthesis pathway (Putresceine and Spermine). Conclusion These findings indicate that AuPhos-enhanced IEC mitochondrial function reduces enteric O2 delivery, which corrects disease-associated metabolomics by restoring short-chain fatty acids, SBA, AA and IEC energy metabolism. Graphical abstract
Collapse
|
13
|
Keshani M, Alikiaii B, Babaei Z, Askari G, Heidari Z, Sharma M, Bagherniya M. The effects of L-carnitine supplementation on inflammation, oxidative stress, and clinical outcomes in critically Ill patients with sepsis: a randomized, double-blind, controlled trial. Nutr J 2024; 23:31. [PMID: 38444016 PMCID: PMC10916166 DOI: 10.1186/s12937-024-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Sepsis, a life-threatening organ dysfunction caused by a host's dysregulated response to infection with an inflammatory process, becomes a real challenge for the healthcare systems. L-carnitine (LC) has antioxidant and anti-inflammatory properties as in previous studies. Thus, we aimed to determine the effects of LC on inflammation, oxidative stress, and clinical parameters in critically ill septic patients. METHODS A randomized double-blinded controlled trial was conducted. A total of 60 patients were randomized to receive LC (3 g/day, n = 30) or placebo (n = 30) for 7 days. Inflammatory and oxidative stress parameters (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), 28-day mortality rate, and some monitoring variables were evaluated. RESULTS There was no statistically significant difference between study arms in baseline characteristics and disease severity scores. CRP (p < 0.001) and ESR (p: 0.004) significantly reduced, and SOD (p < 0.001) and TAC (p < 0.001) significantly improved in the LC group after 7 days. Between-group analysis revealed a significant reduction in CRP (p: 0.001) and serum chloride (p: 0.032), an increase in serum albumin (p: 0.036) and platelet (p: 0.004) significantly, and an increase in SOD marginally (p: 0.073). The 28-day mortality rate was also lower in the LC group compared with placebo (7 persons vs. 15 persons) significantly (odds ratio: 0.233, p: 0.010). CONCLUSIONS L-carnitine ameliorated inflammation, enhanced antioxidant defense, reduced mortality, and improved some clinical outcomes in critically ill patients with sepsis. TRIAL REGISTRATION IRCT20201129049534N1; May 2021.
Collapse
Affiliation(s)
- Mahdi Keshani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Babaei
- Department of Nursing and Midwifery, Islamic Azad University Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Manoj Sharma
- Department of Social & Behavioral Health, School of Public Health, & Department of Internal Medicine, University of Nevada, Las Vegas, USA
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Hafezi M, Arabipoor A, Ghaffari F, Vesali S, Zareei M, Hessari ZH. Adding L-carnitine to antagonist ovarian stimulation doesn't improve the outcomes of IVF/ ICSI cycle in patients with polycystic ovarian syndrome: a double-blind randomized clinical trial. J Ovarian Res 2024; 17:9. [PMID: 38191449 PMCID: PMC10775512 DOI: 10.1186/s13048-023-01319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE To investigate the effect of L-carnitine supplementation during the controlled ovarian stimulation (COS) cycle with antagonist protocol in patients with polycystic ovary syndrome (PCOS) diagnosis undergoing IVF/ICSI treatment. METHODS AND MATERIALS This was a double-blind clinical trial study including 110 patients with PCOS attended to Royan Institute between March 2020 and February 2023. At the beginning of the COS cycle, the eligible patients were allocated into two groups randomly according to the coding list of the drugs prepared by the statistical consultant. In the experimental group, patients received 3 tablets daily (L-carnitine 1000 mg) from the second day of menstruation of the previous cycle until the puncture day in the cases of freeze-all embryos (6 weeks) or until the day of the pregnancy test (8 weeks) in fresh embryo transfer cycle. In the control group, patients received 3 placebo tablets for the same period of time. Weight assessment and fasting blood sugar and insulin tests, as well as serum lipid profile were also measured at the baseline and ovum pick-up day. The results of the COS cycle as well as the implantation and pregnancy rates were compared between groups. RESULTS Finally, 45 cases in L-carnitine group versus 47 cases in the placebo group were completed study per protocol. Data analysis showed that the two groups were homogeneous in terms of demographic characteristics and baseline laboratory tests and severity of PCOS. There is no statistically significant difference in terms of the oocyte recovery ratio and oocyte maturity rate, and the number and quality of embryos, as well as the rates of the fertilization, chemical and clinical pregnancy between groups. However, the means of weight (P < 0.001) and serum levels of fasting blood sugar (P = 0.021), fasting insulin (P = 0.004), triglyceride (P < 0.001) and cholesterol (P < 0.001), LDL (P < 0.001) have significantly decreased in women after consuming L-carnitine supplementation. CONCLUSION The oral intake of L-carnitine during COS in PCOS women for 6 weeks had no effect on COS and pregnancy outcomes. However, taking this supplement for 6 weeks has been associated with weight loss and improved lipid profile and serum glucose. TRIAL REGISTRATION The study was registered in the Clinicaltrials.gov site on December 17, 2020 (NCT04672720).
Collapse
Affiliation(s)
- Maryam Hafezi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 16656-59911, Number 12, East Hafez Avenue, Bani Hashem Street, Resalat Highway, Tehran, Iran.
| | - Arezoo Arabipoor
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 16656-59911, Number 12, East Hafez Avenue, Bani Hashem Street, Resalat Highway, Tehran, Iran
| | - Firouzeh Ghaffari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 16656-59911, Number 12, East Hafez Avenue, Bani Hashem Street, Resalat Highway, Tehran, Iran
| | - Samira Vesali
- Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Maryam Zareei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Hajinaghibali Hessari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 16656-59911, Number 12, East Hafez Avenue, Bani Hashem Street, Resalat Highway, Tehran, Iran
| |
Collapse
|
15
|
De Marchi F, Venkatesan S, Saraceno M, Mazzini L, Grossini E. Acetyl-L-carnitine and Amyotrophic Lateral Sclerosis: Current Evidence and Potential use. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:588-601. [PMID: 36998125 DOI: 10.2174/1871527322666230330083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHODS In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| | - Massimo Saraceno
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| |
Collapse
|
16
|
Jennaro TS, Puskarich MA, Flott TL, McLellan LA, Jones AE, Pai MP, Stringer KA. Kidney function as a key driver of the pharmacokinetic response to high-dose L-carnitine in septic shock. Pharmacotherapy 2023; 43:1240-1250. [PMID: 37775945 PMCID: PMC10841498 DOI: 10.1002/phar.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
STUDY OBJECTIVE Levocarnitine (L-carnitine) has shown promise as a metabolic-therapeutic for septic shock, where mortality approaches 40%. However, high-dose (≥ 6 grams) intravenous supplementation results in a broad range of serum concentrations. We sought to describe the population pharmacokinetics (PK) of high-dose L-carnitine, test various estimates of kidney function, and assess the correlation of PK parameters with pre-treatment metabolites in describing drug response for patients with septic shock. DESIGN Population PK analysis was done with baseline normalized concentrations using nonlinear mixed effect models in the modeling platform Monolix. Various estimates of kidney function, patient demographics, dose received, and organ dysfunction were tested as population covariates. DATA SOURCE We leveraged serum samples and metabolomics data from a phase II trial of L-carnitine in vasopressor-dependent septic shock. Serum was collected at baseline (T0); end-of-infusion (T12); and 24, 48, and 72 h after treatment initiation. PATIENTS AND INTERVENTION Patients were adaptively randomized to receive intravenous L-carnitine (6 grams, 12 grams, or 18 grams) or placebo. MEASUREMENTS AND MAIN RESULTS The final dataset included 542 serum samples from 130 patients randomized to L-carnitine. A two-compartment model with linear elimination and a fixed volume of distribution (17.1 liters) best described the data and served as a base structural model. Kidney function estimates as a covariate on the elimination rate constant (k) reliably improved model fit. Estimated glomerular filtration rate (eGFR), based on the 2021 Chronic Kidney Disease Epidemiology collaboration (CKD-EPI) equation with creatinine and cystatin C, outperformed creatinine clearance (Cockcroft-Gault) and older CKD-EPI equations that use an adjustment for self-identified race. CONCLUSIONS High-dose L-carnitine supplementation is well-described by a two-compartment population PK model in patients with septic shock. Kidney function estimates that leverage cystatin C provided superior model fit. Future investigations into high-dose L-carnitine supplementation should consider baseline metabolic status and dose adjustments based on renal function over a fixed or weight-based dosing paradigm.
Collapse
Affiliation(s)
- Theodore S. Jennaro
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Thomas L. Flott
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. McLellan
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Mrozek W, Socha J, Sidorowicz K, Skrok A, Syrytczyk A, Piątkowska-Chmiel I, Herbet M. Pathogenesis and treatment of depression: Role of diet in prevention and therapy. Nutrition 2023; 115:112143. [PMID: 37562078 PMCID: PMC10299949 DOI: 10.1016/j.nut.2023.112143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
In recent years, there has been a significant increase in depression, which is related to, among other things, the COVID-19 pandemic. Depression can be fatal if not treated or if treated inappropriately. Depression is the leading cause of suicide attempts. The disease is multifactorial, and pharmacotherapy often fails to bring satisfactory results. Therefore, increasingly more importance is attached to the natural healing substances and nutrients in food, which can significantly affect the therapy process and prevention of depressive disorders. A proper diet is vital to preventing depression and can be a valuable addition to psychological and pharmacologic treatment. An inadequate diet may reduce the effectiveness of antidepressants or increase their side effects, leading to life-threatening symptoms. This study aimed to review the literature on the pathogenesis of the development and treatment of depression, with particular emphasis on dietary supplements and the role of nutrition in the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Weronika Mrozek
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Justyna Socha
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Klara Sidorowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Skrok
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Syrytczyk
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
18
|
Rastgoo S, Fateh ST, Nikbaf-Shandiz M, Rasaei N, Aali Y, Zamani M, Shiraseb F, Asbaghi O. The effects of L-carnitine supplementation on inflammatory and anti-inflammatory markers in adults: a systematic review and dose-response meta-analysis. Inflammopharmacology 2023; 31:2173-2199. [PMID: 37656233 DOI: 10.1007/s10787-023-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
L-carnitine supplementation may be beneficial in improving inflammatory conditions and reducing the level of inflammatory cytokines. Therefore, according to the finding of randomized controlled trials (RCTs), the systematic review and meta-analysis aimed to investigate the effect of L-carnitine supplementation on inflammation in adults. To obtain acceptable articles up to October 2022, a thorough search was conducted in databases including PubMed, ISI Web of Science, the Cochrane Library, and Scopus. A random-effects model was used to estimate the weighted mean difference (WMD). We included the 48 RCTs (n = 3255) with 51 effect sizes in this study. L-carnitine supplementation had a significant effect on C-reactive protein (CRP) (p < 0.001), interleukin-6 (IL-6) (p = 0.001), tumor necrosis factor-α (TNF-α) (p = 0.002), malondialdehyde (MDA) (p = 0.001), total antioxidant capacity (TAC) (p = 0.029), alanine transaminase (ALT) (p < 0.001), and aspartate transaminase (AST) (p < 0.001) in intervention, compared to the placebo group. Subgroup analyses showed that L-carnitine supplementation had a lowering effect on CRP and TNF-α in trial duration ≥ 12 weeks in type 2 diabetes and BMI ≥ 25 kg/m2. L-carnitine supplementation reduced ALT levels in overweight and normal BMI subjects at any trial dose and trial duration ≥ 12 weeks and reduced AST levels in overweight subjects and trial dose ≥ 2 g/day. This meta-analysis revealed that L-carnitine supplementation effectively reduces the inflammatory state by increasing the level of TAC and decreasing the levels of CRP, IL-6, TNF-α and MDA in the serum.
Collapse
Affiliation(s)
- Samira Rastgoo
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yasaman Aali
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Omid Asbaghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Constantin‐Teodosiu D. LTE: Does caffeine truly raise muscle carnitine in humans? Physiol Rep 2023; 11:e15736. [PMID: 37653640 PMCID: PMC10471790 DOI: 10.14814/phy2.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Dumitru Constantin‐Teodosiu
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Queen's Medical CentreUniversity of Nottingham Medical SchoolNottinghamUK
| |
Collapse
|
20
|
Hsieh MT, Lee PC, Chiang YT, Lin HY, Lee DY. The Effects of a Curcumin Derivative and Osimertinib on Fatty Acyl Metabolism and Mitochondrial Functions in HCC827 Cells and Tumors. Int J Mol Sci 2023; 24:12190. [PMID: 37569564 PMCID: PMC10418893 DOI: 10.3390/ijms241512190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Drug combination therapy is a key approach in cancer treatments, aiming to improve therapeutic efficacy and overcome drug resistance. Evaluation of intracellular response in cancer cells to drug treatment may disclose the underlying mechanism of drug resistance. In this study, we aimed to investigate the effect of osimertinib, a tyrosine kinase inhibitor (TKI), and a curcumin derivative, 35d, on HCC827 cells and tumors by analyzing alterations in metabolome and related regulations. HCC827 tumor-bearing SCID mice and cultured HCC827 cells were separately examined. The treatment comprised four conditions: vehicle-only, 35d-only, osimertinib-only, and a combination of 35d and osimertinib. The treated tumors/cells were subsequently subjected to metabolomics profiling, fatty acyl analysis, mitochondrial potential measurement, and cell viability assay. Osimertinib induced changes in the ratio of short-chain (SC) to long-chain (LC) fatty acyls, particularly acylcarnitines (ACs), in both tumors and cells. Furthermore, 35d enhanced this effect by further lowering the SC/LC ratio of most ACs. Osimertinib and 35d also exerted detrimental effects on mitochondria through distinct mechanisms. Osimertinib upregulated the expression of carnitine palmitoyltransferase I (CPTI), while 35d induced the expression of heat shock protein 60 (HSP60). The alterations in ACs and CPTI were correlated with mitochondrial dysfunction and inhibited cell growth. Our results suggest that osimertinib and 35d disrupted the fatty acyl metabolism and induced mitochondrial stress in cancer cells. This study provides insights into the potential application of fatty acyl metabolism inhibitors, such as osimertinib or other TKIs, and mitochondrial stress inducers, such as curcumin derivatives, as combination therapy for cancer.
Collapse
Affiliation(s)
- Min-Tsang Hsieh
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pei-Chih Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan
| | - Yi-Ting Chiang
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Pharmacy Department, China Medical University Hsinchu Hospital, Hsinchu Country 302, Taiwan
| | - Hui-Yi Lin
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
21
|
Jing Z, Iba T, Naito H, Xu P, Morishige JI, Nagata N, Okubo H, Ando H. L-carnitine prevents lenvatinib-induced muscle toxicity without impairment of the anti-angiogenic efficacy. Front Pharmacol 2023; 14:1182788. [PMID: 37089945 PMCID: PMC10116043 DOI: 10.3389/fphar.2023.1182788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Lenvatinib is an oral tyrosine kinase inhibitor that acts on multiple receptors involved in angiogenesis. Lenvatinib is a standard agent for the treatment of several types of advanced cancers; however, it frequently causes muscle-related adverse reactions. Our previous study revealed that lenvatinib treatment reduced carnitine content and the expression of carnitine-related and oxidative phosphorylation (OXPHOS) proteins in the skeletal muscle of rats. Therefore, this study aimed to evaluate the effects of L-carnitine on myotoxic and anti-angiogenic actions of lenvatinib. Co-administration of L-carnitine in rats treated with lenvatinib for 2 weeks completely prevented the decrease in carnitine content and expression levels of carnitine-related and OXPHOS proteins, including carnitine/organic cation transporter 2, in the skeletal muscle. Moreover, L-carnitine counteracted lenvatinib-induced protein synthesis inhibition, mitochondrial dysfunction, and cell toxicity in C2C12 myocytes. In contrast, L-carnitine had no influence on either lenvatinib-induced inhibition of vascular endothelial growth factor receptor 2 phosphorylation in human umbilical vein endothelial cells or angiogenesis in endothelial tube formation and mouse aortic ring assays. These results suggest that L-carnitine supplementation could prevent lenvatinib-induced muscle toxicity without diminishing its antineoplastic activity, although further clinical studies are needed to validate these findings.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomohiro Iba
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Vascular Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Pingping Xu
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun-ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironao Okubo
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Bunkyō, Tokyo, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- *Correspondence: Hitoshi Ando,
| |
Collapse
|
22
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
23
|
Novel Targeted Zinc Oxide Nanoflakes Loaded L-Carnitine as a Corrective Tool for Sperm Parameters Disorders: Technetium 99 m Radiolabeling and In Vivo Biodistribution Studies. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Metabolic Profiling Reveals Changes in Serum Predictive of Venous Ulcer Healing. Ann Surg 2023; 277:e467-e474. [PMID: 35916649 PMCID: PMC9831039 DOI: 10.1097/sla.0000000000004933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to identify potential biomarkers predictive of healing or failure to heal in a population with venous leg ulceration. SUMMARY BACKGROUND DATA Venous leg ulceration presents important physical, psychological, social and financial burdens. Compression therapy is the main treatment, but it can be painful and time-consuming, with significant recurrence rates. The identification of a reliable biochemical signature with the ability to identify nonhealing ulcers has important translational applications for disease prognostication, personalized health care and the development of novel therapies. METHODS Twenty-eight patients were assessed at baseline and at 20 weeks. Untargeted metabolic profiling was performed on urine, serum, and ulcer fluid, using mass spectrometry and nuclear magnetic resonance spectroscopy. RESULTS A differential metabolic phenotype was identified in healing (n = 15) compared to nonhealing (n = 13) venous leg ulcer patients. Analysis of the assigned metabolites found ceramide and carnitine metabolism to be relevant pathways. In this pilot study, only serum biofluids could differentiate between healing and nonhealing patients. The ratio of carnitine to ceramide was able to differentiate between healing phenotypes with 100% sensitivity, 79% specificity, and 91% accuracy. CONCLUSIONS This study reports a metabolic signature predictive of healing in venous leg ulceration and presents potential translational applications for disease prognostication and development of targeted therapies.
Collapse
|
25
|
Paredes-Fuentes AJ, Oliva C, Urreizti R, Yubero D, Artuch R. Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up. Crit Rev Clin Lab Sci 2023; 60:270-289. [PMID: 36694353 DOI: 10.1080/10408363.2023.2166013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The currently available biomarkers generally lack the specificity and sensitivity needed for the diagnosis and follow-up of patients with mitochondrial diseases (MDs). In this group of rare genetic disorders (mutations in approximately 350 genes associated with MDs), all clinical presentations, ages of disease onset and inheritance types are possible. Blood, urine, and cerebrospinal fluid surrogates are well-established biomarkers that are used in clinical practice to assess MD. One of the main challenges is validating specific and sensitive biomarkers for the diagnosis of disease and prediction of disease progression. Profiling of lactate, amino acids, organic acids, and acylcarnitine species is routinely conducted to assess MD patients. New biomarkers, including some proteins and circulating cell-free mitochondrial DNA, with increased diagnostic specificity have been identified in the last decade and have been proposed as potentially useful in the assessment of clinical outcomes. Despite these advances, even these new biomarkers are not sufficiently specific and sensitive to assess MD progression, and new biomarkers that indicate MD progression are urgently needed to monitor the success of novel therapeutic strategies. In this report, we review the mitochondrial biomarkers that are currently analyzed in clinical laboratories, new biomarkers, an overview of the most common laboratory diagnostic techniques, and future directions regarding targeted versus untargeted metabolomic and genomic approaches in the clinical laboratory setting. Brief descriptions of the current methodologies are also provided.
Collapse
Affiliation(s)
- Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Delia Yubero
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Zamani M, Pahlavani N, Nikbaf-Shandiz M, Rasaei N, Ghaffarian-Ensaf R, Asbaghi O, Shiraseb F, Rastgoo S. The effects of L-carnitine supplementation on glycemic markers in adults: A systematic review and dose-response meta-analysis. Front Nutr 2023; 9:1082097. [PMID: 36704801 PMCID: PMC9871499 DOI: 10.3389/fnut.2022.1082097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Background and aims Hyperglycemia and insulin resistance are concerns today worldwide. Recently, L-carnitine supplementation has been suggested as an effective adjunctive therapy in glycemic control. Therefore, it seems important to investigate its effect on glycemic markers. Methods PubMed, Scopus, Web of Science, and the Cochrane databases were searched in October 2022 for prospective studies on the effects of L-carnitine supplementation on glycemic markers. Inclusion criteria included adult participants and taking oral L-carnitine supplements for at least seven days. The pooled weighted mean difference (WMD) was calculated using a random-effects model. Results We included the 41 randomized controlled trials (RCTs) (n = 2900) with 44 effect sizes in this study. In the pooled analysis; L-carnitine supplementation had a significant effect on fasting blood glucose (FBG) (mg/dl) [WMD = -3.22 mg/dl; 95% CI, -5.21 to -1.23; p = 0.002; I 2 = 88.6%, p < 0.001], hemoglobin A1c (HbA1c) (%) [WMD = -0.27%; 95% CI, -0.47 to -0.07; p = 0.007; I 2 = 90.1%, p < 0.001] and homeostasis model assessment-estimate insulin resistance (HOMA-IR) [WMD = -0.73; 95% CI, -1.21 to -0.25; p = 0.003; I 2 = 98.2%, p < 0.001] in the intervention compared to the control group. L-carnitine supplementation had a reducing effect on baseline FBG ≥100 mg/dl, trial duration ≥12 weeks, intervention dose ≥2 g/day, participants with overweight and obesity (baseline BMI 25-29.9 and >30 kg/m2), and diabetic patients. Also, L-carnitine significantly affected insulin (pmol/l), HOMA-IR (%), and HbA1c (%) in trial duration ≥12 weeks, intervention dose ≥2 g/day, and participants with obesity (baseline BMI >30 kg/m2). It also had a reducing effect on HOMA-IR in diabetic patients, non-diabetic patients, and just diabetic patients for insulin, and HbA1c. There was a significant nonlinear relationship between the duration of intervention and changes in FBG, HbA1c, and HOMA-IR. In addition, there was a significant nonlinear relationship between dose (≥2 g/day) and changes in insulin, as well as a significant linear relationship between the duration (weeks) (coefficients = -16.45, p = 0.004) of intervention and changes in HbA1C. Conclusions L-carnitine could reduce the levels of FBG, HbA1c, and HOMA-IR. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022358692.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat-e Heydariyeh, Iran,Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran,*Correspondence: Farideh Shiraseb ✉
| | - Samira Rastgoo
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Samira Rastgoo ✉
| |
Collapse
|
27
|
Al-Dhuayan IS. Biomedical role of L-carnitine in several organ systems, cellular tissues, and COVID-19. BRAZ J BIOL 2023; 82:e267633. [PMID: 36629544 DOI: 10.1590/1519-6984.267633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Carnitine is a conditionally necessary vitamin that aids in energy creation and fatty acid metabolism. Its bioavailability is higher in vegetarians than in meat-eaters. Deficits in carnitine transporters occur because of genetic mutations or in conjunction with other illnesses. Carnitine shortage can arise in health issues and diseases-including hypoglycaemia, heart disease, starvation, cirrhosis, and ageing-because of abnormalities in carnitine control. The physiologically active form of L-carnitine supports immunological function in diabetic patients. Carnitine has been demonstrated to be effective in the treatment of Alzheimer's disease, several painful neuropathies, and other conditions. It has been used as a dietary supplement for the treatment of heart disease, and it also aids in the treatment of obesity and reduces blood glucose levels. Therefore, L-carnitine shows the potential to eliminate the influences of fatigue in COVID-19, and its consumption is recommended in future clinical trials to estimate its efficacy and safety. This review focused on carnitine and its effect on tissues, covering the biosynthesis, metabolism, bioavailability, biological actions, and its effects on various body systems and COVID-19.
Collapse
Affiliation(s)
- I S Al-Dhuayan
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
28
|
Ito W, Uchiyama K, Mitsuno R, Sugita E, Nakayama T, Ryuzaki T, Takahashi R, Katsumata Y, Hayashi K, Kanda T, Washida N, Sato K, Itoh H. Correlation between acylcarnitine/free carnitine ratio and cardiopulmonary exercise test parameters in patients with incident dialysis. Front Physiol 2023; 14:1155281. [PMID: 36960161 PMCID: PMC10027696 DOI: 10.3389/fphys.2023.1155281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Objective: Diminished physical capacity is common and progressive in patients undergoing dialysis, who are also prone to deficiency in carnitine, which plays a pivotal role in maintaining skeletal muscle and cardiac function. The present study aimed to evaluate the association of carnitine profile with exercise parameters in patients with incident dialysis. Design and Methods: This was a single-center cross-sectional study including 87 consecutive patients aged 20-90 years who were initiated on dialysis in Keio University Hospital between December 2019 and December 2022 and fulfilled the eligibility criteria. Exercise parameters were evaluated via cardiopulmonary testing (CPX) using the electronically braked STRENGTH ERGO 8 ergometer, whereas the carnitine profile was assessed by determining serum free carnitine (FC), acylcarnitine (AC) levels and AC/FC ratio. Results: The mean cohort age was 62.1 ± 15.2 years, with male and hemodialysis predominance (70% and 73%, respectively). AC/FC was 0.46 ± 0.15, and CPX revealed peak oxygen consumption (VO2) of 13.9 ± 3.7 (mL/kg/min) with percent-predicted peak VO2 of 53.6% ± 14.7% and minute ventilation (VE)/carbon dioxide output (VCO2) slope of 35.1 ± 8.0. Fully-adjusted multivariate linear regression analysis showed that AC/FC was significantly associated with decreased peak VO2 (β, -5.43 [95% confidence interval (CI), -10.15 to -0.70]) and percent-predicted peak VO2 (β, -19.98 [95% CI, -38.43 to -1.52]) and with increased VE/VCO2 slope (β, 13.76 [95% CI, 3.78-23.75]); FC and AC did not exhibit similar associations with these parameters. Moreover, only AC/FC was associated with a decreased peak work rate (WR), percent-predicted WR, anaerobic threshold, delta VO2/delta WR, and chronotropic index. Conclusion: In patients on incident dialysis, exercise parameters, including those related to both skeletal muscle and cardiac function, were strongly associated with AC/FC, a marker of carnitine deficiency indicating altered fatty acid metabolism. Further studies are warranted to determine whether carnitine supplementation can improve exercise capacity in patients on incident dialysis.
Collapse
Affiliation(s)
- Wataru Ito
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Kiyotaka Uchiyama
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Kiyotaka Uchiyama,
| | - Ryunosuke Mitsuno
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Erina Sugita
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Takashin Nakayama
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Toshinobu Ryuzaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Rina Takahashi
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Kanda
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Washida
- Department of Nephrology, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Crefcoeur LL, Heiner‐Fokkema MR, Maase RE, Visser G, de Sain‐van der Velden MGM. Assessment of carnitine excretion and its ratio to plasma free carnitine as a biomarker for primary carnitine deficiency in newborns. JIMD Rep 2023; 64:57-64. [PMID: 36636597 PMCID: PMC9830017 DOI: 10.1002/jmd2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/16/2023] Open
Abstract
In the Netherlands, newborns are referred by the newborn screening (NBS) Program when a low free carnitine (C0) concentration (<5 μmol/l) is detected in their NBS dried blood spot. This leads to ~85% false positive referrals who all need an invasive, expensive and lengthy evaluation. We investigated whether a ratio of urine C0 / plasma C0 (RatioU:P) can improve the follow-up protocol for primary carnitine deficiency (PCD). A retrospective study was performed in all Dutch metabolic centres, using samples from newborns and mothers referred by NBS due to low C0 concentration. Samples were included when C0 excretion and plasma C0 concentration were sampled on the same day. RatioU:P was calculated as (urine C0 [μmol/mmol creatinine])/(plasma C0 [μmol/l]). Data were available for 59 patients with genetically confirmed PCD and 68 individuals without PCD. The RatioU:P in PCD patients was significantly higher (p value < 0.001) than in those without PCD, median [IQR], respectively: 3.4 [1.2-9.5], 0.4 [0.3-0.8], area under the curve (AUC) 0.837. Classified for age (up to 1 month) and without carnitine suppletion (PCD; N = 12, Non-PCD; N = 40), medians were 6.20 [4.4-8.8] and 0.37 [0.24-0.56], respectively. The AUC for RatioU:P was 0.996 with a cut-off required for 100% sensitivity at 1.7 (yielding one false positive case). RatioU:P accurately discriminates between positive and false positive newborn referrals for PCD by NBS. RatioU:P is less effective as a discriminative tool for PCD in adults and for individuals that receive carnitine suppletion.
Collapse
Affiliation(s)
- Loek L. Crefcoeur
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Division of Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Emma Children's HospitalAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Rose E. Maase
- Department Biologicals, Screening and InnovationDutch National Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Division of Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Emma Children's HospitalAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
| | | |
Collapse
|
30
|
Grasso D, Geminiani M, Galderisi S, Iacomelli G, Peruzzi L, Marzocchi B, Santucci A, Bernini A. Untargeted NMR Metabolomics Reveals Alternative Biomarkers and Pathways in Alkaptonuria. Int J Mol Sci 2022; 23:ijms232415805. [PMID: 36555443 PMCID: PMC9779518 DOI: 10.3390/ijms232415805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.
Collapse
Affiliation(s)
- Daniela Grasso
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Silvia Galderisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Gabriella Iacomelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Luana Peruzzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
- Centro Regionale Medicina di Precisione, 53100 Siena, Italy
- ARTES 4.0, 56025 Pontedera, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A, Moro 2, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
31
|
Harrison EE, Waters ML. Application of an Imprint‐and‐Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N‐Oxide and Its Precursors in Complex Mixtures. Angew Chem Int Ed Engl 2022; 61:e202205193. [DOI: 10.1002/anie.202205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Emily E. Harrison
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Marcey L. Waters
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
32
|
Eskandani M, Navidshad B, Eskandani M, Vandghanooni S, Aghjehgheshlagh FM, Nobakht A, Shahbazfar AA. The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens. Poult Sci 2022; 101:102162. [PMID: 36191516 PMCID: PMC9529590 DOI: 10.1016/j.psj.2022.102162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the production performance, antioxidant parameters, egg yolk cholesterol content, and expression of genes related to cholesterol metabolism in laying hens fed L-carnitine (LC) and L-carnitine-loaded solid lipid nanoparticles (LC-SLNs). A total of 350 Hy-Line (w-36) laying hens at 50 wk of age (1520.0 ± 0.7 g) were randomly assigned to 35 units (5 replicates and 50 hens in each treatment) with seven dietary treatments as a completely randomized design. The dietary treatments were corn-soybean meal-based diets, including 1) Control (basal diet); 2) Basal diet +50 mg/kg LC (50LC); 3) Basal diet +100 mg/kg LC (100LC); 4) Basal diet +150 mg/kg LC (150LC); 5) Basal diet +50 mg/kg LC-SLNs (50LC-SLNs); 6) Basal diet +100 mg/kg LC-SLNs (100LC-SLNs) and 7) Basal diet +150 mg/kg LC-SLNs (150LC-SLNs). Results showed that the 50LC-SLNs had the least feed conversion ratio (FCR) in all groups (P < 0.05). The dietary supplementation of 100LC-SLNs decreased (P < 0.01) the egg yolk cholesterol concentration from 14.71 to 11.76 mg/g yolk (25%). The 50LC-SLNs group produced the most total antioxidant capacity with a difference of 58.44% compared to the control group (P < 0.01). The greatest amount of total superoxide dismutase was found for 50LC-SLNs (P < 0.05), while the glutathione peroxidase was not affected by the experimental treatments (P > 0.05). Serum malondialdehyde levels were reduced by 50.52% in laying hens fed 50LC-SLNs compared to the control group (P < 0.05). The transcript level of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased (P < 0.01) in the LC and LC-SLNs groups. The expression of cholesterol 7α-hydroxylase was significantly increased (P < 0.01) in the plain LC (∼83%) and LC-SLNs (∼91%) groups. The inclusion of LC-SLNs in the diet increased (P < 0.05) the villus height and decreased villus width in all three parts of the small intestine. Dietary inclusion of LC was found to reduce egg yolk and serum cholesterol content by improving the production performance and antioxidant status. The LC-SLNs groups were more affected than the plain LC groups, which may be attributed to the increased bioavailability of LC.
Collapse
|
33
|
Jing Z, Okubo H, Morishige JI, Xu P, Hasan N, Nagata N, Ando H. Lenvatinib causes reduced expression of carnitine/organic cation transporter 2 and carnitine deficiency in the skeletal muscle of rats. Toxicol Lett 2022; 366:17-25. [PMID: 35788046 DOI: 10.1016/j.toxlet.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
Abstract
Lenvatinib, an oral tyrosine kinase inhibitor, is widely used to treat several types of advanced cancers but often causes muscular adverse reactions. Although carnitine supplementation may prevent these effects, the mechanism underlying lenvatinib-induced skeletal muscle impairment remains poorly understood. To this end, we aimed to investigate the impact of lenvatinib on carnitine disposition in rats. Once-daily administration of lenvatinib repeated for two weeks did not affect urinary excretion or serum concentration of carnitines throughout the treatment period but ultimately decreased the L-carnitine content in the skeletal muscle. The treatment decreased the expression of carnitine/organic cation transporter (OCTN) 2, a key transporter of carnitine, in skeletal muscle at the protein level but not at the mRNA level. In cultured C2C12 myocytes, lenvatinib inhibited OCTN2 expression in a dose-dependent manner at the protein level. Furthermore, lenvatinib dose-dependently decreased the protein levels of carnitine-related genes, adenosine triphosphate content, mitochondrial membrane potential, and markers of mitochondrial function in vitro. These results reveal the deleterious effects of lenvatinib on OCTN2 expression, carnitine content, and mitochondrial function in skeletal muscle that may be associated with muscle toxicity.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironao Okubo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Pingping Xu
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nazmul Hasan
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
34
|
Harrison EE, Waters ML. Application of an Imprint‐and‐Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N‐Oxide and Its Precursors in Complex Mixtures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emily E. Harrison
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry UNITED STATES
| | - Marcey L. Waters
- UNC Chapel Hill Dept. of Chemistry CB 3290 27599 Chapel Hill UNITED STATES
| |
Collapse
|
35
|
Effect of acute high-intensity exercise on myocardium metabolic profiles in rat and human study via metabolomics approach. Sci Rep 2022; 12:6791. [PMID: 35473956 PMCID: PMC9042871 DOI: 10.1038/s41598-022-10976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Acute high-intensity exercise can affect cardiac health by altering substance metabolism. However, few metabolomics-based studies provide data on the effect of exercise along with myocardial metabolism. Our study aimed to identify metabolic signatures in rat myocardium during acute high-intensity exercise and evaluate their diagnostic potential for sports injuries. We collected rat myocardium samples and subjects’ serum samples before and after acute high-intensity exercise for metabolite profiling to explore metabolic alterations of exercise response in the myocardium. Multivariate analysis revealed myocardium metabolism differed before and after acute high-intensity exercise. Furthermore, 6 target metabolic pathways and 12 potential metabolic markers for acute high-intensity exercise were identified. Our findings provided an insight that myocardium metabolism during acute high-intensity exercise had distinct disorders in complex lipids and fatty acids. Moreover, an increase of purine degradation products, as well as signs of impaired glucose metabolism, were observed. Besides, amino acids were enhanced with a certain protective effect on the myocardium. In this study, we discovered how acute high-intensity exercise affected myocardial metabolism and exercise-related heart injury risks, which can provide references for pre-competition screening, risk prevention, and disease prognosis in competitive sports and effective formulation of exercise prescriptions for different people.
Collapse
|
36
|
Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants (Basel) 2022; 11:antiox11040745. [PMID: 35453430 PMCID: PMC9024607 DOI: 10.3390/antiox11040745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, the importance of bioenergetics in the reproductive process has emerged. For its energetic demand, the oocyte relies on numerous mitochondria, whose activity increases during embryo development under a fine regulation to limit ROS production. Healthy oocyte mitochondria require a balance of pyruvate and fatty acid oxidation. Transport of activated fatty acids into mitochondria requires carnitine. In this regard, the interest in the role of carnitines as mitochondrial modulators in oocyte and embryos is increasing. Carnitine pool includes the un-esterified l-carnitine (LC) and carnitine esters, such as acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC). In this review, carnitine medium supplementation for counteracting energetic and redox unbalance during in vitro culture and cryopreservation is reported. Although most studies have focused on LC, there is new evidence that the addition of ALC and/or PLC may boost LC effects. Pathways activated by carnitines include antiapoptotic, antiglycative, antioxidant, and antiinflammatory signaling. Nevertheless, the potential of carnitine to improve energetic metabolism and oocyte and embryo competence remains poorly investigated. The importance of carnitine as a mitochondrial modulator may suggest that this molecule may exert a beneficial role in ovarian disfunctions associated with metabolic and mitochondrial alterations, including PCOS and reproductive aging.
Collapse
|
37
|
Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics and biodistribution of ergothioneine, an endogenous organic cation/carnitine transporter 1 substrate, in rats. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:341-351. [PMID: 35291466 PMCID: PMC8911105 DOI: 10.1007/s40005-022-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
Purpose This study aimed to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression levels of organic cation/carnitine transporter 1 (OCTN1) as well as the pharmacokinetics and biodistribution of ergothioneine, an OCTN1 substrate, in rats. Methods Rats pretreated with 1,25(OH)2D3 (2.56 nmol/kg/day) for four days were administered ergothioneine (2 mg/kg) intravenously. The expression levels of rat OCTN1 (rOCTN1) in organs were determined using real-time quantitative polymerase chain reaction. Ergothioneine levels in plasma, urine, and organs (with and without intravenous injection of exogenous ergothioneine) were determined using liquid chromatography-tandem mass spectrometry. Results 1,25(OH)2D3 pretreatment resulted in a significant decrease in rOCTN1 mRNA expression levels in the kidney and brain, a significant increase in basal plasma levels of ergothioneine (from 48 h), and a significant decrease in the tissue-plasma partition coefficient (Kp) in all tissues (except the heart and lungs) and the basal urine levels of ergothioneine. After intravenous administration, the pharmacokinetic profiles of ergothioneine were consistent with the basal levels of endogenous ergothioneine, with an increase in AUC∞ by 85%, a significant decrease in total clearance by 49%, and a decrease in Vss by 32% in 1,25(OH)2D3-treated rats. The Kp value and urinary recovery of ergothioneine also decreased in the 1,25(OH)2D3-treated group. Conclusion This study showed the effects of 1,25(OH)2D3 on the expression and function of rOCTN1 by investigating the interaction between 1,25(OH)2D3 and ergothioneine. Dose adjustment and possible changes in bioavailability should be considered before the co-administration of vitamin D or its active forms and OCTN1 substrates. Supplementary Information The online version contains supplementary material available at 10.1007/s40005-022-00563-1.
Collapse
|
38
|
Nejati M, Abbasi S, Farsaei S, Shafiee F. L-carnitine supplementation ameliorates insulin resistance in critically ill acute stroke patients: a randomized, double-blinded, placebo-controlled clinical trial. Res Pharm Sci 2022; 17:66-77. [PMID: 34909045 PMCID: PMC8621844 DOI: 10.4103/1735-5362.329927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 10/03/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND PURPOSE Insulin resistance (IR) can negatively affect clinical outcomes in acute ischemic stroke (IS) patients. Safe and cost-saving interventions are still needed to improve glycemic indices in this population. The primary objective was to evaluate L-carnitine (LC) effects in acute IS patients' homeostatic model assessment of IR (HOMA-IR). EXPERIMENTAL APPROACH In this randomized, double-blind placebo-controlled clinical trial, critically ill IS patients were allocated to receive daily oral L-carnitine (1.5 g) or a placebo for six days. Fasting serum levels of glucose, insulin, C-reactive protein, LC, and HOMA-IR were measured on days 1 and 7. Mechanical ventilation duration, ICU/hospital duration, illness severity score, sepsis, and death events were assessed. FINDINGS/RESULTS Forty-eight patients were allocated to the research groups, 24 patients in each group, and all were included in the final analysis. LC administration showed a decrease in mean difference of HOMA-IR and insulin levels at day 7 compared to placebo, -0.94 ± 1.92 vs 0.87 ± 2.24 (P = 0.01) and -2.26 ± 6.81 vs 0.88 ± 4.95 (P = 0.03), respectively. However, LC administration did not result in significant improvement in clinical outcomes compared to placebo. The short duration of intervention and low sample size limited our results. CONCLUSION AND IMPLICATION Supplementation of L-carnitine improved HOMA-IR index in acute IS patients admitted to the critical care unit. Supplementation of LC would be a potential option to help to control IR in critically ill acute IS patients.
Collapse
Affiliation(s)
- Malihe Nejati
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Birjand University of Medical Sciences, Birjand, I.R. Iran
| | - Saeed Abbasi
- Anaesthesiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Shadi Farsaei
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
39
|
The Anti-Adiposity Mechanisms of Ampelopsin and Vine Tea Extract in High Fat Diet and Alcohol-Induced Fatty Liver Mouse Models. Molecules 2022; 27:molecules27030607. [PMID: 35163881 PMCID: PMC8838172 DOI: 10.3390/molecules27030607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the anti-obesity effects of AG extract in diet-induced obese mice and rats. To verify these findings, we herein investigated the effects of AG extract and its principal compound, ampelopsin, in high-fat diet (HFD)- and alcohol diet-fed mice, olive oil-loaded mice, and differentiated 3T3-L1 cells. The results obtained showed that AG extract and ampelopsin significantly suppressed increases in the weights of body, livers and abdominal fat and also up-regulated the expression of carnitine palmitoyltransferase 1A in HFD-fed mice. In olive oil-loaded mice, AG extract and ampelopsin significantly attenuated increases in serum triglyceride (TG) levels. In differentiated 3T3-L1 cells, AG extract and ampelopsin promoted TG decomposition, which appeared to be attributed to the expression of hormone-sensitive lipase. In alcohol diet-fed mice, AG extract and ampelopsin reduced serum levels of ethanol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) and liver TG. An examination of metabolic enzyme expression patterns revealed that AG extract and ampelopsin mainly enhanced the expression of aldehyde dehydrogenase and suppressed that of cytochrome P450, family 2, subfamily e1. In conclusion, AG extract and ampelopsin suppressed diet-induced intestinal fat accumulation and reduced the risk of fatty liver associated with HFD and alcohol consumption.
Collapse
|
40
|
Association between Levocarnitine Treatment and the Change in Knee Extensor Strength in Patients Undergoing Hemodialysis: A Post-Hoc Analysis of the Osaka Dialysis Complication Study (ODCS). Nutrients 2022; 14:nu14020343. [PMID: 35057527 PMCID: PMC8782050 DOI: 10.3390/nu14020343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Carnitine deficiency is prevalent in patients undergoing hemodialysis, and it could result in lowered muscle strength. So far, the effect of treatment with levocarnitine on lower limb muscle strength has not been well described. This observational study examined the association between treatment with levocarnitine with the change in knee extensor strength (KES) in hemodialysis patients. Eligible patients were selected from the participants enrolled in a prospective cohort study for whom muscle strength was measured annually. We identified 104 eligible patients for this analysis. During the one-year period between 2014 to 2015, 67 patients were treated with intravenous levocarnitine (1000 mg per shot, thrice weekly), whereas 37 patients were not. The change in KES was significantly higher (p = 0.01) in the carnitine group [0.02 (0.01–0.04) kgf/kg] as compared to the non-carnitine group [−0.02 (−0.04 to 0.01) kgf/kg]. Multivariable-adjusted regression analysis showed the positive association between the change in KES and the treatment with levocarnitine remained significant after adjustment for the baseline KES and other potential confounders. Thus, treatment with intravenous levocarnitine was independently and positively associated with the change in KES among hemodialysis patients. Further clinical trials are needed to provide more solid evidence.
Collapse
|
41
|
Kamoen V, Vander Stichele R, Campens L, De Bacquer D, Van Bortel L, de Backer TL. Propionyl-L-carnitine for intermittent claudication. Cochrane Database Syst Rev 2021; 12:CD010117. [PMID: 34954832 PMCID: PMC8710338 DOI: 10.1002/14651858.cd010117.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Peripheral arterial disease (PAD) is a manifestation of systemic atherosclerosis. Intermittent claudication is a symptomatic form of PAD that is characterized by pain in the lower limbs caused by chronic occlusive arterial disease. This pain develops in a limb during exercise and is relieved with rest. Propionyl-L-carnitine (PLC) is a drug that may alleviate the symptoms of PAD through a metabolic pathway, thereby improving exercise performance. OBJECTIVES The objective of this review is to determine whether propionyl-L-carnitine is efficacious compared with placebo, other drugs, or other interventions used for treatment of intermittent claudication (e.g. exercise, endovascular intervention, surgery) in increasing pain-free and maximum walking distance for people with stable intermittent claudication, Fontaine stage II. SEARCH METHODS The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and the World Health Organization International Clinical Trials Registry Platform and the ClinicalTrials.gov trials register to July 7, 2021. We undertook reference checking and contact with study authors and pharmaceutical companies to identify additional unpublished and ongoing studies. SELECTION CRITERIA Double-blind randomized controlled trials (RCTs) in people with intermittent claudication (Fontaine stage II) receiving PLC compared with placebo or another intervention. Outcomes included pain-free walking performance (initial claudication distance - ICD) and maximal walking performance (absolute claudication distance - ACD), analyzed by standardized treadmill exercise test, as well as ankle brachial index (ABI), quality of life, progression of disease, and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, extracted data, and evaluated trials for risk of bias. We contacted study authors for additional information. We resolved any disagreements by consensus. We performed fixed-effect model meta-analyses with mean differences (MDs) and 95% confidence intervals (CIs). We graded the certainty of evidence according to GRADE. MAIN RESULTS We included 12 studies in this review with a total number of 1423 randomized participants. A majority of the included studies assessed PLC versus placebo (11 studies, 1395 participants), and one study assessed PLC versus L-carnitine (1 study, 26 participants). We identified no RCTs that assessed PLC versus any other medication, exercise, endovascular intervention, or surgery. Participants received PLC 1 grams to 2 grams orally (9 studies) or intravenously (3 studies) per day or placebo. For the comparison PLC versus placebo, there was a high level of both clinical and statistical heterogeneity due to study size, participants coming from different countries and centres, the combination of participants with and without diabetes, and use of different treadmill protocols. We found a high proportion of drug company-backed studies. The overall certainty of the evidence was moderate. For PLC compared with placebo, improvement in maximal walking performance (ACD) was greater for PLC than for placebo, with a mean difference in absolute improvement of 50.86 meters (95% CI 50.34 to 51.38; 9 studies, 1121 participants), or a 26% relative improvement (95% CI 23% to 28%). Improvement in pain-free walking distance (ICD) was also greater for PLC than for placebo, with a mean difference in absolute improvement of 32.98 meters (95% CI 32.60 to 33.37; 9 studies, 1151 participants), or a 31% relative improvement (95% CI 28% to 34%). Improvement in ABI was greater for PLC than for placebo, with a mean difference in improvement of 0.09 (95% CI 0.08 to 0.09; 4 studies, 369 participants). Quality of life improvement was greater with PLC (MD 0.06, 95% CI 0.05 to 0.07; 1 study, 126 participants). Progression of disease and adverse events including nausea, gastric intolerance, and flu-like symptoms did not differ greatly between PLC and placebo. For the comparison of PLC with L-carnitine, the certainty of evidence was low because this included a single, very small, cross-over study. Mean improvement in ACD was slightly greater for PLC compared to L-carnitine, with a mean difference in absolute improvement of 20.00 meters (95% CI 0.47 to 39.53; 1 study, 14 participants) or a 16% relative improvement (95% CI 0.4% to 31.6%). We found no evidence of a clear difference in the ICD (absolute improvement 4.00 meters, 95% CI -9.86 to 17.86; 1 study, 14 participants); or a 3% relative improvement (95% CI -7.4% to 13.4%). None of the other outcomes of this review were reported in this study. AUTHORS' CONCLUSIONS When PLC was compared with placebo, improvement in walking distance was mild to moderate and safety profiles were similar, with moderate overall certainty of evidence. Although In clinical practice, PLC might be considered as an alternative or an adjuvant to standard treatment when such therapies are found to be contraindicated or ineffective, we found no RCT evidence comparing PLC with standard treatment to directly support such use.
Collapse
Affiliation(s)
- Victor Kamoen
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Laurence Campens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cardiovascular Center, Ghent University Hospital, Ghent, Belgium
| | - Dirk De Bacquer
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Luc Van Bortel
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | - Tine Lm de Backer
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
- Cardiovascular Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Liu H, Fa K, Hu X, Li Z, Ma K, Liao M, Zhang L, Schweins R, Maestro A, Li P, Webster JRP, Petkov J, Thomas RK, Lu JR. How do chain lengths of acyl-l-carnitines affect their surface adsorption and solution aggregation? J Colloid Interface Sci 2021; 609:491-502. [PMID: 34863541 DOI: 10.1016/j.jcis.2021.11.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS l-carnitines in our body systems can be readily converted into acyl-l-carnitines which have a prominent place in cellular energy generation by supporting the transport of long-chain fatty acids into mitochondria. As biocompatible surfactants, acyl-l-carnitines have potential to be useful in technical, personal care and healthcare applications. However, the lack of understanding of the effects of their molecular structures on their physical properties has constrained their potential use. EXPERIMENTS This work reports the study of the influence of the acyl chain lengths of acyl-l-carnitines (CnLC) on solubility, surface adsorption and aggregation. Critical micellar concentrations (CMCs) of CnLC were determined by surface tension measurements. Neutron reflection (NR) was used to further examine the structure and composition of the adsorbed CnLC layer. The structural changes of the micellar aggregates under different concentrations of CnLC, pH and ionic strength were determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). FINDINGS C12LC is fully soluble over a wide temperature and concentration range. There is however a strong decline of solubility with increasing acyl chain length. The adsorption and aggregation behavior of C14LC was therefore studied at 30 °C and C16LC at 45 °C. The solubility boundaries displayed distinct hysteresis with respect to heating and cooling. The CMCs of C12LC, C14LC and C16LC at pH 7 were 1.1 ± 0.1, 0.10 ± 0.02 and 0.010 ± 0.005 mM, respectively, with the limiting values of the area per molecule at the CMC being 45.4 ± 2, 47.5 ± 2 and 48.8 ± 2 Å2 and the thicknesses of the adsorbed CnLC layers at the air/water interface increasing from 21.5 ± 2 to 22.6 ± 2 to 24.2 ± 2 Å, respectively. All three surfactants formed core-shell spherical micelles with comparable dimensional parameters apart from an increase in core radius with acyl chain length. This study outlines the effects of acyl chain length on the physicochemical properties of CnLCs under different environmental conditions, serving as a useful basis for developing their potential applications.
Collapse
Affiliation(s)
- Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kun Ma
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ralf Schweins
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France
| | - Armando Maestro
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France
| | - Peixun Li
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - John R P Webster
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Jordan Petkov
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Arxada, Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, UK.
| | - Robert K Thomas
- Physical and Theoretical Chemistry, University of Oxford, South Parks, Oxford OX1 3QZ, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
43
|
Sangouni AA, Pakravanfar F, Ghadiri-Anari A, Nadjarzadeh A, Fallahzadeh H, Hosseinzadeh M. The effect of L-carnitine supplementation on insulin resistance, sex hormone-binding globulin and lipid profile in overweight/obese women with polycystic ovary syndrome: a randomized clinical trial. Eur J Nutr 2021; 61:1199-1207. [PMID: 34727201 DOI: 10.1007/s00394-021-02659-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. Insulin resistance and dyslipidemia are linked to PCOS. L-Carnitine supplementation as a management strategy for women with PCOS has been proposed. The effect of L-carnitine supplementation on insulin resistance, sex hormone-binding globulin (SHBG) and lipid profile in overweight/obese women with PCOS was investigated. METHODS This randomized, double-blind, controlled clinical trial, was conducted on 62overweight/obese women with PCOS. Participants were randomly assigned into two groups to receive 1000 mg/day L-carnitine or placebo (1000 mg starch) for 12 weeks. RESULTS L-Carnitine supplementation compared to the placebo showed a significant improvement in insulin [- 0.7 (- 7.3 to 4.0) vs. 0.7 (- 3.0 to 5.2); P = 0.001], homeostatic model assessment for insulin resistance [- 0.4 (- 1.7 to 1.1) vs. 0.0 (- 0.7 to 1.3); P = 0.002], quantitative insulin sensitivity check index (+ 0.01 ± 0.02 vs. - 0.01 ± 0.01; P = 0.02) and a non-significant change toward improvement in SHBG (+ 11.5 ± 40.2 vs. - 3.2 ± 40.2; P = 0.2). However, there was no significant differences between the two groups in serum levels of fasting plasma glucose, total cholesterol, triglyceride, low density lipoprotein-cholesterol and high density lipoprotein cholesterol (P > 0.05). CONCLUSION 12-week L-carnitine supplementation in overweight or obese women with PCOS ameliorate insulin resistance, but has no effect on SHBG and lipid profile. Studies with higher dosages and duration of L-carnitine intake are required. The trial was registered on 30 December 2019 at Iranian Registry of Clinical Trials IRCT20191016045131N1. TRIAL REGISTRATION Registered on 30th December 2019 at Iranian Registry of Clinical Trials (IRCT20191016045131N1).
Collapse
Affiliation(s)
- Abbas Ali Sangouni
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pakravanfar
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Ghadiri-Anari
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Nadjarzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Research Center of Prevention and Epidemiology of Non-Communicable Disease, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
44
|
Yano J, Ito S, Kodama G, Nakayama Y, Kaida Y, Yokota Y, Kinoshita Y, Tashiro K, Fukami K. Kinetics of Serum Carnitine Fractions in Patients with Chronic Kidney Disease Not on Dialysis. Kurume Med J 2021; 66:153-160. [PMID: 32848104 DOI: 10.2739/kurumemedj.ms663001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Carnitine plays a pivotal role in energy synthesis through β-oxidation in mitochondria. Serum and tissue levels of free carnitine are significantly decreased in dialysis patients, whereas acylcarnitine levels are increased. However, the precise kinetics and fate of carnitine fractions in chronic kidney disease (CKD) patients who are not on dialysis have not been clarified. This study aims to determine the kinetics of serum carnitine fractions in patients who were not on dialysis. METHODS Seventy-five CKD patients not on dialysis were recruited in this study. Serum and urinary carnitine fraction levels were measured to evaluate the kinetics and regulation of serum carnitine fractions. Carnitine fractions were measured by the enzymatic cycling method. RESULTS Total and free serum carnitine levels did not change with progression of CKD, whereas acylcarnitine levels and the acyl/free carnitine ratio significantly increased. Serum acylcarnitine levels were inversely associated with estimated glomerular filtration rate (r2 = 0.239, p < 0.001), but free carnitine levels were not. Serum free carnitine levels were positively associated with urinary free carnitine excretion (r2 = 0.214, p < 0.001), but serum acylcarnitine levels were not. Multiple stepwise regression analysis revealed that urinary free carnitine excretion and blood urea nitrogen were independent determinants of serum free carnitine and acylcarnitine levels, respectively. CONCLUSIONS The present study demonstrated that serum acylcarnitine levels increased with renal dysfunction independent of urinary excretion levels. Serum free carnitine was not affected by renal function in CKD patients who were not on dialysis.
Collapse
Affiliation(s)
- Junko Yano
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| | - Sakuya Ito
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| | - Goh Kodama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| | - Yosuke Nakayama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| | - Yusuke Kaida
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| | - Yunosuke Yokota
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| | - Yukie Kinoshita
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine
| | - Kyoko Tashiro
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine
| |
Collapse
|
45
|
Grucz TM, Crow J, Sugrue D, Davis S, Gager E, Beattie J, Shermock KM, Jarrell AS. Levocarnitine supplementation for management of hypertriglyceridemia in patients receiving parenteral nutrition. Nutr Clin Pract 2021; 37:1172-1179. [PMID: 34528297 DOI: 10.1002/ncp.10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Levocarnitine deficiency has been observed in patients receiving parenteral nutrition (PN) and can cause or worsen hypertriglyceridemia. The objective was to characterize use of levocarnitine supplementation in PN and evaluate its effect on triglyceride levels in hospitalized adults. METHODS This retrospective, single-center study included patients with triglyceride levels ≥175 mg/dl while receiving PN who had a subsequent reduction in lipid injectable emulsion dose. A piecewise linear regression was used to evaluate trends in triglyceride levels before and after the intervention, defined as initiation of levocarnitine in PN for the levocarnitine group, or reduction in lipid injectable emulsion alone for the control group. RESULTS Two hundred sixty-one patients who received PN had an elevated triglyceride level and lipid injectable emulsion dose reduction, of which 97 (37.2%) received levocarnitine in PN. The median (IQR) levocarnitine dose added to PN was 8.0 (5.7-9.9) mg/kg. Triglyceride levels at 30 days post-intervention did not differ between groups (125 vs 176 mg/dl, P = .345). The addition of levocarnitine to PN was associated with a significantly greater rate of reduction in triglyceride levels pre-intervention to post-intervention compared with a reduction in lipid injectable emulsion alone (-11 vs -3 mg/dl per day; 95% CI, -15 to -2; P = .012). CONCLUSION In hospitalized adults with hypertriglyceridemia who had a lipid injectable emulsion dose reduction, the addition of levocarnitine in PN was not associated with a difference in triglyceride levels at 30 days; however, a greater rate of improvement in pre-intervention to post-intervention triglyceride levels was observed.
Collapse
Affiliation(s)
- Traci M Grucz
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jessica Crow
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - David Sugrue
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Stephanie Davis
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Erin Gager
- Department of Clinical Nutrition, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jessica Beattie
- Department of Clinical Nutrition, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,Department of Clinical Nutrition, Duke University Hospital, Durham, North Carolina, USA
| | - Kenneth M Shermock
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Andrew S Jarrell
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,Department of Pharmacy, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
46
|
Saito M, Takizawa T, Miyaoka H. Factors associated with blood carnitine levels in adult epilepsy patients with chronic valproic acid therapy. Epilepsy Res 2021; 175:106697. [PMID: 34175794 DOI: 10.1016/j.eplepsyres.2021.106697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
AIMS Valproic acid (VPA) is a widely used antiepileptic drug for the treatment of epilepsy, seizures, and bipolar and psychiatric disorders. A deficiency of carnitine, a compound involved in energy production, is associated with chronic VPA use. However, the clinical factors affecting blood carnitine levels and their pathophysiology remain unclear. Hence, we aimed to identify the factors that correlated with serum carnitine levels in epilepsy patients receiving chronic VPA therapy. METHODS This observational study included 138 epilepsy patients receiving chronic VPA therapy. Serum total and free carnitine levels, routine blood tests and drug concentrations were assessed. The correlation between carnitine levels and other factors were calculated using Spearman's rank correlation coefficients, and a principal component analysis (PCA) and a multiple linear regression analysis were performed. RESULTS Overall, serum free carnitine levels showed significant negative correlations with epilepsy duration, VPA treatment duration, daily VPA dose, and blood VPA concentration. A significant positive correlation was observed with erythrocyte count, hemoglobin levels, and creatinine levels. Of the 138 patients, 21 (15.2 %) with serum free carnitine levels of <20 μmol/L had significantly longer disease duration, a higher daily VPA dose, and lower blood clobazam concentrations. In the 48 VPA monotherapy patients, serum free carnitine levels showed a significant negative correlation with disease duration and duration of VPA therapy. Furthermore, in the 2.1 % patients receiving VPA monotherapy, serum free carnitine levels were <20 μmol/L. PCA resulted in seven factor solution (eigenvalue >1; 71.67 % explained variance). Component 1 clearly revealed the maximal loading for serum free carnitine level (.792) and the most negative loading for disease duration of epilepsy (-.595). A linear regression analysis revealed that the duration of epilepsy, serum creatinine level, and daily dose of VPA were significant (p < .01) factors that affected serum free carnitine levels. CONCLUSIONS The effects of combination therapy with VPA and other anti-epileptic drug(s) on carnitine levels are higher than that of VPA monotherapy. Additionally, epilepsy duration may affect serum free carnitine level.
Collapse
Affiliation(s)
- Masanori Saito
- Department of Psychiatry, Kitasato University School of Medicine, Japan.
| | - Takeya Takizawa
- Department of Psychiatry, Kitasato University School of Medicine, Japan
| | - Hitoshi Miyaoka
- Department of Psychiatry, Kitasato University School of Medicine, Japan
| |
Collapse
|
47
|
Sugiyama M, Hazama T, Nakano K, Urae K, Moriyama T, Ariyoshi T, Kurokawa Y, Kodama G, Wada Y, Yano J, Otsubo Y, Iwatani R, Kinoshita Y, Kaida Y, Nasu M, Shibata R, Tashiro K, Fukami K. Effects of Reducing L-Carnitine Supplementation on Carnitine Kinetics and Cardiac Function in Hemodialysis Patients: A Multicenter, Single-Blind, Placebo-Controlled, Randomized Clinical Trial. Nutrients 2021; 13:nu13061900. [PMID: 34073024 PMCID: PMC8230272 DOI: 10.3390/nu13061900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
L-carnitine (LC) supplementation improves cardiac function in hemodialysis (HD) patients. However, whether reducing LC supplementation affects carnitine kinetics and cardiac function in HD patients treated with LC remains unclear. Fifty-nine HD patients previously treated with intravenous LC 1000 mg per HD session (three times weekly) were allocated to three groups: LC injection three times weekly, once weekly, and placebo, and prospectively followed up for six months. Carnitine fractions were assessed by enzyme cycling methods. Plasma and red blood cell (RBC) acylcarnitines were profiled using tandem mass spectrometry. Cardiac function was evaluated using echocardiography and plasma B-type natriuretic peptide (BNP) levels. Reducing LC administration to once weekly significantly decreased plasma carnitine fractions and RBC-free carnitine levels during the study period, which were further decreased in the placebo group (p < 0.001). Plasma BNP levels were significantly elevated in the placebo group (p = 0.03). Furthermore, changes in RBC (C16 + C18:1)/C2 acylcarnitine ratio were positively correlated with changes in plasma BNP levels (β = 0.389, p = 0.005). Reducing LC administration for six months significantly decreased both plasma and RBC carnitine levels, while the full termination of LC increased plasma BNP levels; however, it did not influence cardiac function in HD patients.
Collapse
Affiliation(s)
- Miki Sugiyama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
- Sugi Hospital, Omuta, Fukuoka 837-0916, Japan
| | - Takuma Hazama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Kaoru Nakano
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Kengo Urae
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Tomofumi Moriyama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Takuya Ariyoshi
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Yuka Kurokawa
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Goh Kodama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | | | - Junko Yano
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
- Kurume Ekimae Clinic, Kurume, Fukuoka 830-0023, Japan
| | | | | | - Yukie Kinoshita
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (Y.K.); (K.T.)
| | - Yusuke Kaida
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Makoto Nasu
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Ryo Shibata
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
| | - Kyoko Tashiro
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (Y.K.); (K.T.)
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan; (M.S.); (T.H.); (K.N.); (K.U.); (T.M.); (T.A.); (Y.K.); (G.K.); (J.Y.); (Y.K.); (M.N.); (R.S.)
- Correspondence: ; Tel.: +81-942317002
| |
Collapse
|
48
|
Brown SA, Izzy M, Watt KD. Pharmacotherapy for Weight Loss in Cirrhosis and Liver Transplantation: Translating the Data and Underused Potential. Hepatology 2021; 73:2051-2062. [PMID: 33047343 DOI: 10.1002/hep.31595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Thirty percent of patients with cirrhosis are obese and the prevalence of obesity increases after transplant to >40% post-transplant. There are currently four weight loss medications approved by the FDA for treatment of obesity (orlistat, phentermine-topiramate, naltrexone-bupropion, and liraglutide). The aim of this review was to investigate the data on the use of these weight loss medications and alternative medicines in patients with cirrhosis and in liver transplant recipients (LTRs). APPROACH AND RESULTS While there is paucity of data for these medications in patients with cirrhosis and LTRs, Liraglutide appears to be generally safe in view of its pharmacokinetic properties. Phentermine-topiramate seems to have the highest weight loss potential but special consideration should be given to neuropsychiatric disorders, cardiovascular comorbidities, and drug interactions. There are emerging data on use of alternative medicines for weight loss but more data are needed. CONCLUSIONS The use of weight loss medications is feasible in this patient population but the decision of which medication to prescribe should be individualized based on the degree of renal and hepatic impairment, other co-morbidities, and concomitant medications.
Collapse
Affiliation(s)
- Sara A Brown
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, TN, USA
| | - Manhal Izzy
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, TN, USA
| | - Kymberly D Watt
- Division of Gastroenterology and Hepatology, The Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
49
|
Pagali S, Edquist C, O'Rourke N. Managing valproic acid toxicity-related hyperammonaemia: an unpredicted course. BMJ Case Rep 2021; 14:14/4/e241547. [PMID: 33875509 PMCID: PMC8057561 DOI: 10.1136/bcr-2020-241547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 20-year-old woman presented following an intentional overdose of valproic acid. Use of valproic acid, either acute or chronic, can result in hyperammonaemia. Mild hyperammonaemia with chronic use is mostly asymptomatic but can also present with concern for encephalopathy. Acute valproic acid toxicity results in significant hyperammonaemia, which can contribute to encephalopathy. Levocarnitine is the treatment of choice in valproic acid toxicity-related hyperammonaemia. For severe cases of encephalopathy, intermittent haemodialysis can also be considered. To our knowledge, this is the first case report to clearly show symptom relapse and hyperammonaemia after discontinuing levocarnitine. We recommend levocarnitine therapy for at least 72 hours, followed by an additional 24 hours of monitoring for symptom relapse and hyperammonaemia after levocarnitine discontinuation.
Collapse
Affiliation(s)
- Sandeep Pagali
- Medicine - Division of Hospital Internal Medicine & Division of Geriatric Medicine and Gerontology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Christopher Edquist
- Medicine - Division of Hospital Internal Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Nicholas O'Rourke
- Department of Pharmacy, Mayo Clinic Rochester, Rochester, Minnesota, USA
| |
Collapse
|
50
|
Takashima H, Maruyama T, Abe M. Significance of Levocarnitine Treatment in Dialysis Patients. Nutrients 2021; 13:1219. [PMID: 33917145 PMCID: PMC8067828 DOI: 10.3390/nu13041219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 01/04/2023] Open
Abstract
Carnitine is a naturally occurring amino acid derivative that is involved in the transport of long-chain fatty acids to the mitochondrial matrix. There, these substrates undergo β-oxidation, producing energy. The major sources of carnitine are dietary intake, although carnitine is also endogenously synthesized in the liver and kidney. However, in patients on dialysis, serum carnitine levels progressively fall due to restricted dietary intake and deprivation of endogenous synthesis in the kidney. Furthermore, serum-free carnitine is removed by hemodialysis treatment because the molecular weight of carnitine is small (161 Da) and its protein binding rates are very low. Therefore, the dialysis procedure is a major cause of carnitine deficiency in patients undergoing hemodialysis. This deficiency may contribute to several clinical disorders in such patients. Symptoms of dialysis-related carnitine deficiency include erythropoiesis-stimulating agent-resistant anemia, myopathy, muscle weakness, and intradialytic muscle cramps and hypotension. However, levocarnitine administration might replenish the free carnitine and help to increase carnitine levels in muscle. This article reviews the previous research into levocarnitine therapy in patients on maintenance dialysis for the treatment of renal anemia, cardiac dysfunction, dyslipidemia, and muscle and dialytic symptoms, and it examines the efficacy of the therapeutic approach and related issues.
Collapse
Affiliation(s)
| | | | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan; (H.T.); (T.M.)
| |
Collapse
|