1
|
Roth SK, Uth C, Orizar I, Rico A, Hedberg P, Norkko A, Lewandowska A. Synergistic effects of the antibiotic ciprofloxacin and a simulated heatwave on the Baltic Sea dinoflagellate Apocalathium malmogiense. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107155. [PMID: 40258321 DOI: 10.1016/j.marenvres.2025.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Climate change-driven heatwaves in the Baltic Sea are becoming more frequent and intense, potentially exacerbating phytoplankton blooms that impact biodiversity and ecosystem functioning. Alongside this, chemical pollutants, such as antibiotics, may compound these effects. This study examined the combined impacts of a simulated heatwave (+5 °C) and the antibiotic ciprofloxacin (0.1 μg L-1) on the dinoflagellate Apocalathium malmogiense. We assessed cell counts, size, growth rates, Chlorophyll-a (Chl-a) content, and nutrient uptake. The simulated heatwave increased growth and Chl-a content but reduced cell size, while ciprofloxacin alone had no effect on growth response parameters. However, the combination of both stressors significantly reduced cell counts (-17 %), Chl-a content (-34 %), and growth rates (-20 %). Ciprofloxacin also decreased nitrogen uptake by over 40 %, exacerbating the nitrogen deficit caused by the heatwave. This study highlights the importance of testing global change stressors in combination, as synergistic effects may otherwise go undetected if only studied in isolation.
Collapse
Affiliation(s)
- Sabrina K Roth
- Tvärminne Zoological Station, University of Helsinki, Finland.
| | - Catharina Uth
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Iris Orizar
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Per Hedberg
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, Finland
| | | |
Collapse
|
2
|
He S, Xie L, Zhang D, Han S, Shi H, Yu S, Deng Y, Wang S, Wu C. A nanocatalytic membrane with sono-responsive antibacterial therapy (SRAT) for rapid sterilization and enhanced chronic wound healing. NANOSCALE 2025; 17:9552-9561. [PMID: 40130604 DOI: 10.1039/d5nr00211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pathogenic bacteria in infected microenvironments can severely disrupt the normal progression of wound healing. Sono-responsive nanomaterials have emerged as a promising alternative to conventional antibiotics for combating bacterial infections. Despite the advantageous sono-excited antibacterial properties of n-type barium titanate (BaTiO3, BTO), developing bioheterojunctions (bioHJs) with compatible sono-physical characteristics remains a key strategy for achieving superior sono-antibacterial efficiency. Here, we constructed a novel PN-bioHJ by integrating two-dimensional p-type black phosphorus (BP) with three-dimensional n-type cubic BTO and modifying it onto a poly(lactic-co-glycolic acid) (PLGA) spinning membrane to enhance antibacterial performance under ultrasonic (US) stimulation. The successful construction of PN-bioHJs can significantly enhance the yield of ROS production for sono-responsive antibacterial therapy (SRAT). Additionally, the biodegradable PLGA membrane provides a biocompatible and scalable platform for the acoustic activation of the PN-bioHJs while facilitating localized antibacterial therapy. The designed sono-responsive nanocatalytic membrane demonstrates excellent bactericidal performance with antibacterial rates exceeding 99% under US stimulation. In vivo tests further revealed that the proposed membrane shows excellent biocompatibility and the ability to mitigate pathogenic virulence factors, potentially aiding in the regeneration of infected tissues. This work introduces a promising strategy for leveraging acoustically activated membranes in biomedical applications, paving the way for advanced solutions to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Lu Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Shihao Han
- Sichuan Police College, Luzhou 646000, China
| | - Hongxing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Yi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Song Wang
- Department of Orthopedics Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chao Wu
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
- Institute of Digital Medicine, Zigong Academy of Big Data for Medical Science and Artificial Intelligence, Zigong, China
| |
Collapse
|
3
|
Lee JJ, Choi M, Jeon Y, Khanal D, Lee J, Kim D, Chan HK, Hwang SJ. Physicochemical characterization and nanochemical analysis of ciprofloxacin hydrophobic ion Pairs for enhanced encapsulation in PLGA nanoparticle. Int J Pharm 2025; 672:125314. [PMID: 39909154 DOI: 10.1016/j.ijpharm.2025.125314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
This study investigates the physicochemical transformation of ciprofloxacin (CIP) through hydrophobic ion pairing with five counter ions-sodium oleate, sodium laurate, sodium caprate, disodium pamoate, and sodium deoxycholate-to enhance compatibility with hydrophobic Poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Complexation efficiencies (CE) reached up to 92.26 %, with ciprofloxacin pamoate (CIP-PAM) achieving over 90 % CE at a 1:0.5 M ratio. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses showed reduced crystallinity across all complexes, with CIP-PAM exhibiting an amorphous form. Optical photothermal infrared spectroscopy (O-PTIR) confirmed uniform complexation within particles, while CIP-PAM displayed a broad peak and weak intensity in the 900-1300 cm-1 region, supporting its amorphous nature. Log P values demonstrated increased hydrophobicity for all complexes, with ciprofloxacin oleate (CIP-OLE) showing a 93-fold increase (p < 0.001). In vitro dissociation patterns varied: CIP-OLE maintained steady release in DW (49.7 %) and PBS (32.3 %) over 48 h, whereas CIP-PAM exhibited strong stability in DW (25.2 %) and a contrasting 68.1 % release in PBS, highlighting solvent-dependent dissociation behaviors. PLGA nanoparticles prepared via S/O/W achieved particle sizes under 200 nm, with CIP-PAM showing the highest encapsulation efficiency (63.02 % vs 17.21 % (CIP)). These findings underscore the importance of counter ion selection to optimize CIP compatibility with hydrophobic carriers, providing a basis for improved drug loading of hydrophilic antibiotics.
Collapse
Affiliation(s)
- Jong-Ju Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Minji Choi
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Yuim Jeon
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Juseung Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dowoong Kim
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - Sung-Joo Hwang
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
4
|
Rasool N, Thakur Y, Singh Y. Antibacterial Lecithin/Chitosan Nanoparticles for the Sustained Release of Ciprofloxacin to Treat Ocular Bacterial Infections. Chem Asian J 2025; 20:e202400933. [PMID: 39714370 DOI: 10.1002/asia.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of these preparations available in market is to utilize nanomaterial as drug-carrier only, with less focus on developing functional-nanomaterials, which is a key knowledge gap in the field. To address this, we developed a nanoparticulate system from bioactive-polymers, having intrinsic antimicrobial and mucoadhesiveness, loaded with ciprofloxacin (cipro) to treat ocular bacterial infections. Cipro-loaded lecithin/chitosan nanoparticles were prepared and characterized for their physiochemical properties. They exhibited good drug loading efficiency and showed sustained drug-release for 72 h, with slow release for first 4 h followed by a burst release in phosphate buffered saline and simulated tear fluid. Cipro-loaded nanoparticles were assessed for their antibacterial potential against Staphylococcus aureus (96 %) and Pseudomonas aeruginosa (72 %) using optical density, disc-diffusion method, live-dead assay, and demonstrated promising antibacterial properties. The drug-loaded nanoparticles showed good cytocompatibility (~90 %) towards murine fibroblasts and rabbit corneal cells. Being amphiphilic in nature, the nanoparticles exhibited mucoadhesiveness, hemocompatibility (<4 %) and, thus, proving to be a promising candidate for treating ocular infections. This approach ensures efficient drug delivery and synergic/additive therapeutic effects.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Yashika Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
5
|
Wu ZF, Luo XX, Shi XF, Wang BJ, Sun HW, Sun ZN, Mao YQ, Xiong HM. Carbon dots derived from organic drug molecules with improved therapeutic effects and new functions. NANOSCALE 2025; 17:4958-4973. [PMID: 39885774 DOI: 10.1039/d4nr04467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Carbon dots (CDs) are new types of fluorescent nanomaterials with particle diameters of 1∼10 nm and have excellent photoluminescence (PL) properties, good biocompatibility, simple preparation methods and numerous raw materials; consequently, they are promising in the biomedical field. In recent years, to overcome drug resistance and toxic side effects of traditional organic drugs, the synthesis of CDs from drug molecules has become an effective strategy, which produces CDs with the same therapeutic effects as the raw drugs and even possessing new properties. At present, many CDs derived from organic drugs have been developed, which can be classified according to their sources such as antibiotics, anti-inflammatory drugs, and guanidine drugs. This article focuses on the progress of the above-mentioned drug-derived CDs compared with their drug precursors in terms of therapeutic efficacy, enhanced performance and new additional functions, with special attention to the structure-activity relationship between the drug precursors and the CD-based therapeutic agents. It demonstrates the feasibility of designing new drug-derived CDs for clinical applications, summarizes the shortcomings and research gaps of the existing work, and provides a reference for related work in the future.
Collapse
Affiliation(s)
- Zhao-Fan Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Xiao-Xiao Luo
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Xiao-Feng Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China.
| | - Bao-Juan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Hao-Wen Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Zhao-Nan Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yuan-Qing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China.
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
6
|
Luo S, Li XR, Gong XT, Kulikovsky A, Qu F, Beis K, Severinov K, Dubiley S, Feng X, Dong SH, Nair SK. Trojan horse peptide conjugates remodel the activity spectrum of clinical antibiotics. Proc Natl Acad Sci U S A 2025; 122:e2319483121. [PMID: 39739799 PMCID: PMC11725936 DOI: 10.1073/pnas.2319483121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/16/2024] [Indexed: 01/02/2025] Open
Abstract
Infections caused by gram-negative pathogens continue to be a major risk to human health because of the innate antibiotic resistance endowed by their unique cell membrane architecture. Nature has developed an elegant solution to target gram-negative strains, namely by conjugating toxic antibiotic warheads to a suitable carrier to facilitate the active import of the drug to a specific target organism. Microcin C7 (McC) is a Trojan horse peptide-conjugated antibiotic that specifically targets enterobacteria by exploiting active import through oligopeptide transport systems. Here, we characterize the molecular mechanism of McC recognition by YejA, the solute binding protein of the Escherichia coli oligopeptide transporter. Structure-guided mutational and functional analysis elucidates the determinants of substrate recognition. We demonstrate that the peptide carrier can serve as a passport for the entry of molecules that are otherwise not taken into E. coli cells. We show that peptide conjugation can remodel the antibiotic spectrum of clinically relevant parent compounds. Bioinformatics analysis reveals a broad distribution of YejA-like transporters in only the Proteobacteria, underscoring the potential for the development of Trojan horse antibiotics that are actively imported into such gram-negative bacteria.
Collapse
Affiliation(s)
- Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Xin-Rong Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Xiao-Tong Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Alexey Kulikovsky
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
| | - Feng Qu
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OxfordshireOX11 OFA, United Kingdom
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OxfordshireOX11 OFA, United Kingdom
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
- Waksman Institute for Microbiology, Rutgers University, Piscataway, NJ08901
| | - Svetlana Dubiley
- Institute of Gene Biology, Russian Academy of Sciences, Moscow119334, Russia
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan410082, People’s Republic of China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan410082, People’s Republic of China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL61801
| |
Collapse
|
7
|
Rahman KMT, Amaratunga R, Butzin XY, Singh A, Hossain T, Butzin NC. Rethinking dormancy: Antibiotic persisters are metabolically active, non-growing cells. Int J Antimicrob Agents 2025; 65:107386. [PMID: 39551274 DOI: 10.1016/j.ijantimicag.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVES Bacterial persisters are a subpopulation of multidrug-tolerant cells capable of surviving and resuming activity after exposure to bactericidal antibiotic concentrations, contributing to relapsing infections and the development of antibiotic resistance. In this study, we challenge the conventional view that persisters are metabolically dormant by providing compelling evidence that an isogenic population of Escherichia coli remains metabolically active in persistence. METHODS Using transcriptomic analysis, we examined E. coli persisters at multiple time points following exposure to bactericidal concentrations of ampicillin (Amp). Some genes were consistently upregulated in Amp treated persisters compared to the untreated controls, a change that can only occur in metabolically active cells capable of increasing RNA levels. RESULTS Some of the identified genes have been previously linked to persister cells, while others have not been associated with them before. If persister cells were metabolically dormant, gene expression changes over time would be minimal during Amp treatment. However, network analysis revealed major shifts in gene network activity at various time points of antibiotic exposure. CONCLUSIONS These findings reveal that persisters are metabolically active, non-dividing cells, thereby challenging the traditional view that they are dormant.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Ruqayyah Amaratunga
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Xuan Yi Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA; Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, South Dakota, USA.
| |
Collapse
|
8
|
Davati N, Ghorbani A. Comparison of the antibiotic resistance mechanisms in a gram-positive and a gram-negative bacterium by gene networks analysis. PLoS One 2024; 19:e0311434. [PMID: 39546505 PMCID: PMC11567557 DOI: 10.1371/journal.pone.0311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
Nowadays, the emergence of some microbial species resistant to antibiotics, both gram-positive and gram-negative bacteria, is due to changes in molecular activities, biological processes and their cellular structure in order to survive. The aim of the gene network analysis for the drug-resistant Enterococcus faecium as gram-positive and Salmonella Typhimurium as gram-negative bacteria was to gain insights into the important interactions between hub genes involved in key molecular pathways associated with cellular adaptations and the comparison of survival mechanisms of these two bacteria exposed to ciprofloxacin. To identify the gene clusters and hub genes, the gene networks in drug-resistant E. faecium and S. Typhimurium were analyzed using Cytoscape. Subsequently, the putative regulatory elements were found by examining the promoter regions of the hub genes and their gene ontology (GO) was determined. In addition, the interaction between milRNAs and up-regulated genes was predicted. RcsC and D920_01853 have been identified as the most important of the hub genes in S. Typhimurium and E. faecium, respectively. The enrichment analysis of hub genes revealed the importance of efflux pumps, and different enzymatic and binding activities in both bacteria. However, E. faecium specifically increases phospholipid biosynthesis and isopentenyl diphosphate biosynthesis, whereas S. Typhimurium focuses on phosphorelay signal transduction, transcriptional regulation, and protein autophosphorylation. The similarities in the GO findings of the promoters suggest common pathways for survival and basic physiological functions of both bacteria, including peptidoglycan production, glucose transport and cellular homeostasis. The genes with the most interactions with milRNAs include dpiB, rcsC and kdpD in S. Typhimurium and EFAU004_01228, EFAU004_02016 and EFAU004_00870 in E. faecium, respectively. The results showed that gram-positive and gram-negative bacteria have different mechanisms to survive under antibiotic stress. By deciphering their intricate adaptations, we can develop more effective therapeutic approaches and combat the challenges posed by multidrug-resistant bacteria.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Ciprofloxacin/pharmacology
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Enterococcus faecium/drug effects
- Enterococcus faecium/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Gene Ontology
- Gene Regulatory Networks/drug effects
- Genes, Bacterial
- Multigene Family
- Promoter Regions, Genetic
- Protein Interaction Maps/drug effects
- Protein Interaction Maps/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
Collapse
Affiliation(s)
- Nafiseh Davati
- Faculty of Food Industry, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Abozar Ghorbani
- Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Karaj, Iran
| |
Collapse
|
9
|
Murray AK, Stanton IC, Tipper HJ, Wilkinson H, Schmidt W, Hart A, Singer AC, Gaze WH. A critical meta-analysis of predicted no effect concentrations for antimicrobial resistance selection in the environment. WATER RESEARCH 2024; 266:122310. [PMID: 39217643 DOI: 10.1016/j.watres.2024.122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health with a growing body of evidence demonstrating that selection for AMR can occur at environmental antimicrobial concentrations. Understanding the concentrations at which selection for resistance may occur is critical to help inform environmental risk assessments and highlight where mitigation strategies are required. A variety of experimental and data approaches have been used to determine these concentrations. However, there is minimal standardisation of existing approaches and no consensus on the relative merits of different methods. We conducted a semi-systematic literature review to collect and critically appraise available minimal selective concentration (MSC) and predicted no effect concentration for resistance (PNECR) data and the approaches used to derive them. There were 21 relevant articles providing 331 selective concentrations, ranging from 0.00087 µg/L (ciprofloxacin) to 2000 µg/L (carbenicillin). Meta-analyses of these data found that selective concentrations are highly compound-dependent, and only a subset of all antimicrobials have been the focus of most of the research. The variety of approaches that have been used, knowledge gaps and future research priorities were identified, as well as recommendations for those considering the selective risks of antimicrobials in the environment.
Collapse
Affiliation(s)
- Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment & Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom.
| | - Isobel C Stanton
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Holly J Tipper
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Helen Wilkinson
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Alwyn Hart
- Chief Scientist's Group, Environment Agency, Bristol BS1 5AH, United Kingdom
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment & Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
10
|
Abduljalil JM, Elfiky AA. Machine-Learning Approach to Identify Potential Dengue Virus Protease Inhibitors: A Computational Perspective. J Phys Chem B 2024; 128:11229-11242. [PMID: 39484814 DOI: 10.1021/acs.jpcb.4c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The global prevalence of dengue virus (DENV), a widespread flavivirus, has led to varied epidemiological impacts, economic burdens, and health consequences. The alarming increase in infections is exacerbated by the absence of approved antiviral agents against the DENV. Within flaviviruses, the NS3/NS2B serine protease plays a pivotal role in processing the viral polyprotein into distinct components, making it an attractive target for antiviral drug development. In this study, machine-learning (ML) techniques were employed to build predictive models for the screening of a library containing 32,000 protease inhibitors. Utilizing GNINA for structure-based virtual screening, the top potential candidates underwent a subsequent evaluation of their absorption, distribution, metabolism, excretion, and toxicity properties. Selected compounds were subjected to molecular dynamics simulations and binding free energy calculations via MM/GBSA. The results suggest that comp530 possesses binding potential to DENV protease as a noncovalent inhibitor with multiple positions for chemical substitutions, presenting opportunities for optimizing their selectivity and specificity. However, other compounds predicted via ML models may still provide a promising start for covalent inhibitors.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
11
|
Huang Y, Guo W, Wang X, Chang J, Lu B. An acidity-triggered aggregation nanoplatform based on degradable mesoporous organosilica nanoparticles for precise drug delivery and phototherapy of focal bacterial infection. Dalton Trans 2024; 53:17893-17901. [PMID: 39431576 DOI: 10.1039/d4dt02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
It is crucial to precisely strike the bacterially infected area and avoid damaging healthy tissue in bacterial infection treatment. Herein, we report an acidity-triggered aggregation antibacterial nanoplatform based on biodegradable mesoporous organic silica nanoparticles (MON NPs). The surface of MON NPs modified with polydopamine (PDA) encapsulated ciprofloxacin (CIP) and methylene blue (MB) and was then further grafted with glycol chitosan to obtain MB/CIP@MON-PDA-GCS NPs (MCMPG NPs). In the bacterial infection environment with acidic characteristics, glycol chitosan (GCS) becomes positively charged. Consequently, the positively charged acidity-triggered GCS enables MCMPG NPs to accumulate on the negatively charged bacterial surfaces in the infected area and not in healthy tissue. The targeted method allows for the precise release of CIP and MB, ensuring the spatial accuracy of photodynamic therapy (PDT) and photothermal therapy (PTT) for effective bacteria-specific treatment.
Collapse
Affiliation(s)
- Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Xinyu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Jingrui Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| |
Collapse
|
12
|
Kuang H, Liu X, Tan H, Zhang Z, Zeng B, Wang L. GLNNMDA: a multimodal prediction model for microbe-drug associations based on global and local features. Sci Rep 2024; 14:20847. [PMID: 39242712 PMCID: PMC11379827 DOI: 10.1038/s41598-024-71837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Microbes have been demonstrated to be closely linked to diseases that pose a major threat to human health. Computing technologies can help researchers find potential microbe-drug associations more quickly and precisely. In this study, we introduced a novel computational prediction model called GLNNMDA based on global and local features of microbes and drugs to infer possible microbe-drug correlations. In GLNNMDA, we first constructed a heterogeneous network based on known microbe-drug relationships by integrating multiple similarity metrics of drugs and microbes. Subsequently, low-dimensional features will be extracted for nodes in the heterogeneous network by adopting the graph attention encoder. Next, based on combining these low-dimensional features with multiple properties of microbes and drugs to form a new comprehensive feature matrix, we would utilize the GLF module to extract the global and local features for microbes and drugs respectively, and then, we would further fuse these global and local features to come up with predictions of possible microbe-drug associations. Moreover, in order to evaluate the prediction performance of GLNNMDA, under the framework of fivefold cross-validation, intensive comparative experiments and case studies were done on different well-known public databases. The results showed that GLNNMDA obtained the highest AUC values as well as AUPR values of 0.9802 ± 0.0011, 0.9773 ± 0.0021 and 0.8586 ± 0.0004, 0.8008 ± 0.0031 in the two databases, MDAD and aBiofilm, respectively, compared to the state-of-the-art competing prediction methods. In addition, case studies of well-known microorganisms and drugs have demonstrated the effectiveness of GLNNMDA in inferring potential microbial drug associations, which implies that GLNNMDA may be a useful tool for microbe-drug association prediction in the future. The source code is available at: " https://github.com/KuangHaiYue/GLNNMDA.git ".
Collapse
Affiliation(s)
- Haiyue Kuang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Xin Liu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Huilin Tan
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Bin Zeng
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| |
Collapse
|
13
|
Dong X, Liu Q, Gan SW, Zhuo H, Li T, Zhao Y, Zhai W. A Hierarchical Hydrogel Impregnation Strategy Enables Brittle-Failure-Free 3D-Printed Bioceramic Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401060. [PMID: 38726765 DOI: 10.1002/smll.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Indexed: 10/01/2024]
Abstract
3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.05 MJ m-3) and three-point bending (3.82 MJ m-3), respectively. The reinforcement mechanisms are further investigated by experimental and simulation analyses, revealing a multi-scale synergy of fracture and fragmentation resistance through macro and micro-scale fiber bridging, and nano and molecular-scale hydrogel reinforcement. Also, the scaffolds acquire additional antibacterial and drug-loading capabilities from the hydrogel phase while maintaining favorable cell biocompatibility. Therefore, this study demonstrates a facile yet effective approach for preparing brittle-failure-free bioceramic scaffolds with enhanced biological functionalities, showcasing immense potential for BTE applications.
Collapse
Affiliation(s)
- Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing, National University of Singapore, Singapore, 117581, Singapore
| | - Hao Zhuo
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
- NUS Centre for Additive Manufacturing, National University of Singapore, Singapore, 117581, Singapore
| |
Collapse
|
14
|
Banoo S, Yadav Y, Tyagi R, Manna A, Sagar R. Recent efforts in the development of glycoconjugate vaccine and available treatment for tuberculosis. Bioorg Chem 2024; 150:107610. [PMID: 38991488 DOI: 10.1016/j.bioorg.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.
Collapse
Affiliation(s)
- Sajida Banoo
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arunava Manna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
15
|
Gaspari S, Akkermans S, Akritidou T, Whelan R, Devine F, Van Impe JFM. Interference of gastrointestinal barriers with antibiotic susceptibility of foodborne pathogens: an in vitro case study of ciprofloxacin and tetracycline against Salmonella enterica and Listeria monocytogenes. Food Res Int 2024; 188:114491. [PMID: 38823842 DOI: 10.1016/j.foodres.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.
Collapse
Affiliation(s)
- Sotiria Gaspari
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Simen Akkermans
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Theodora Akritidou
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Rory Whelan
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium; School of Biological, Health and Sport Sciences, Technological University Dublin, Ireland
| | - Faye Devine
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium; School of Biological, Health and Sport Sciences, Technological University Dublin, Ireland
| | - Jan F M Van Impe
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium.
| |
Collapse
|
16
|
Asmare MM, Krishnaraj C, Radhakrishnan S, Kim BS, Yoon JS, Yun SI. In silico modelling of ciprofloxacin specific aptamer for the development of high-performance biosensor. J Mol Graph Model 2024; 130:108787. [PMID: 38749234 DOI: 10.1016/j.jmgm.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Ciprofloxacin (CFX), a widely used fluoroquinolone antibiotic, is critical in healthcare settings for treating patients. However, improper treatment of wastewater from these facilities can lead to environmental contamination with CFX. This underscores the need for an efficient, straightforward method for early detection. In this study, a DNA aptamer was selected through a hierarchical docking workflow, and the stability and interactions were assessed by Molecular Dynamics (MD) simulation. The aptamer-CFX complex that showed the most promise had a docking score of -8.596 kcal/mol and was further analyzed using MD simulation and MM/PBSA. Based on the overall results, the identified ssDNA sequence length of 60 nt (CAGCGCTAGGGCTTTTAGCGTAATGGGTAGGGTGGTGCGGTGCAGATATCGGAATTGGTG) was immobilized over a gold transducer surface through the self-assembled monolayer (SAM; Au-S-ssDNA) method. The ssDNA-modified surface has demonstrated a high affinity towards CFX, which is confirmed by cyclic voltammogram (CV) and electrochemical impedance spectroscopy measurements (EIS). The DNA-aptamer modified electrode demonstrated a good linear range (10 × 10-9 - 200 × 10-9 M), detection limit (1.0 × 10-9 M), selectivity, reproducibility, and stability. The optimized DNA-aptamer-based CFX sensor was further utilized for the accurate determination of CFX with good recoveries in real samples.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Chandran Krishnaraj
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sivaprakasam Radhakrishnan
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Byoung-Sukh Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - June-Sun Yoon
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Soon-Il Yun
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
17
|
Yilmaz H, Bedir T, Gursoy S, Kaya E, Senel I, Tinaz GB, Gunduz O, Ustundag CB. Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies. Biomed Mater 2024; 19:045029. [PMID: 38838701 DOI: 10.1088/1748-605x/ad5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Although different fabrication methods and biomaterials are used in scaffold development, hydrogels and electrospun materials that provide the closest environment to the extracellular matrix have recently attracted considerable interest in tissue engineering applications. However, some of the limitations encountered in the application of these methods alone in scaffold fabrication have increased the tendency to use these methods together. In this study, a bilayer scaffold was developed using 3D-printed gelatin methacryloyl (GelMA) hydrogel containing ciprofloxacin (CIP) and electrospun polycaprolactone (PCL)-collagen (COL) patches. The bilayer scaffolds were characterized in terms of chemical, morphological, mechanical, swelling, and degradation properties; drug release, antibacterial properties, and cytocompatibility of the scaffolds were also studied. In conclusion, bilayer GelMA-CIP/PCL-COL scaffolds, which exhibit sufficient porosity, mechanical strength, and antibacterial properties and also support cell growth, are promising potential substitutes in tissue engineering applications.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Tuba Bedir
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Sevda Gursoy
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Elif Kaya
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ilkay Senel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gulgun Bosgelmez Tinaz
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
18
|
Masud MAA, Shin WS, Septian A, Samaraweera H, Khan IJ, Mohamed MM, Billah MM, López-Maldonado EA, Rahman MM, Islam ARMT, Rahman S. Exploring the environmental pathways and challenges of fluoroquinolone antibiotics: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171944. [PMID: 38527542 DOI: 10.1016/j.scitotenv.2024.171944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Badan Riset dan Inovasi Nasional, BRIN, Serpong 15314, Indonesia
| | - Hasara Samaraweera
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates; National Water and Energy Center, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, Mexico
| | | | | | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia; School of Engineering, Lancaster University, Lancaster LA1 4YW, UK
| |
Collapse
|
19
|
Ochoa-Sánchez LE, Martínez JL, Gil-Gil T. Evolution of Resistance against Ciprofloxacin, Tobramycin, and Trimethoprim/Sulfamethoxazole in the Environmental Opportunistic Pathogen Stenotrophomonas maltophilia. Antibiotics (Basel) 2024; 13:330. [PMID: 38667006 PMCID: PMC11047544 DOI: 10.3390/antibiotics13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that produces respiratory infections in immunosuppressed and cystic fibrosis patients. The therapeutic options to treat S. maltophilia infections are limited since it exhibits resistance to a wide variety of antibiotics such as β-lactams, aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, or carbapenems. The antibiotic combination trimethoprim/sulfamethoxazole (SXT) is the treatment of choice to combat infections caused by S. maltophilia, while ceftazidime, ciprofloxacin, or tobramycin are used in most SXT-resistant infections. In the current study, experimental evolution and whole-genome sequencing (WGS) were used to examine the evolutionary trajectories of S. maltophilia towards resistance against tobramycin, ciprofloxacin, and SXT. The genetic changes underlying antibiotic resistance, as well as the evolutionary trajectories toward that resistance, were determined. Our results determine that genomic changes in the efflux pump regulatory genes smeT and soxR are essential to confer resistance to ciprofloxacin, and the mutation in the rplA gene is significant in the resistance to tobramycin. We identified mutations in folP and the efflux pump regulator smeRV as the basis of SXT resistance. Detailed and reliable knowledge of ciprofloxacin, tobramycin, and SXT resistance is essential for safe and effective use in clinical settings. Herein, we were able to prove once again the extraordinary ability that S. maltophilia has to acquire resistance and the importance of looking for alternatives to combat this resistance.
Collapse
Affiliation(s)
- Luz Edith Ochoa-Sánchez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Eberhardt N, Santamarina BG, Enghardt ML, Rohland O, Hussain I, Tannert A, Thieme L, Rubio I, Jürgen Rödel, Bettina Löffler, Arndt HD, Bauer M, Busch A. The effects of photoactivated ciprofloxacin and bile acids on biofilms on bile duct catheters. Int J Antimicrob Agents 2024; 63:107086. [PMID: 38218325 DOI: 10.1016/j.ijantimicag.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVES This study examined the potential of a novel photoactivatable ciprofloxacin to act against bacterial infections and microbiomes related to biliary diseases. It also evaluated treatment by combining the impact of bile acids and antibiotics on biofilms. Innovative strategies were evaluated to address the elusive bile duct microbiome resulting in biofilm-related infections linked to biliary catheters. The healthy biliary system is considered sterile, but bile microbiomes can occur in disease, and these correlate with hepatobiliary diseases. Causes include biofilms that form on internal-external biliary drainage catheters. These biliary catheters were used to noninvasively study the otherwise elusive bile microbiome for a pilot study. METHODS A new photoactivatable antibiotic was tested for efficacy against human-derived pathogenic bacterial isolates - Salmonella enterica and Escherichia coli - and catheter-derived bile duct microbiomes. In addition, the effect of bile acids on the antibiotic treatment of biofilms was quantified using crystal violet staining, confocal laser scanning microscopy, and biofilm image analysis. Two novel approaches for targeting biliary biofilms were tested. RESULTS A photoactivated antibiotic based on ciprofloxacin showed efficacy in preventing biofilm formation and reducing bacterial viability without harming eukaryotic cells. Furthermore, combination treatment of antibiotics with bile acids, such as ursodesoxycholic acid, mildly influenced biofilm biomass but reduced bacterial survival within biofilms. CONCLUSION Bile acids, in addition to their endocrine and paracrine functions, may enhance antibiotic killing of bacterial biofilms compared with antibiotics alone. These approaches hold promise for treating biliary infections such as cholangitis.
Collapse
Affiliation(s)
- Nino Eberhardt
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Belen Gonzalez Santamarina
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany
| | - Marie-Luise Enghardt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University, Jena, Germany
| | - Oliver Rohland
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Iqra Hussain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany
| | - Astrid Tannert
- Leibniz Institute of Photonic Technology, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Lara Thieme
- Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany; Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Jürgen Rödel
- Department of Medical Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bettina Löffler
- Department of Medical Microbiology, Friedrich Schiller University, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Michael Bauer
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany; Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.
| |
Collapse
|
21
|
Ramos JGVDS, Richter CP, Silva MA, Singolano GL, Hauagge G, Lorençon E, Junior ILC, Edwiges T, de Arruda PV, Vidal CMDS. Effects of ciprofloxacin on biogas production and microbial community composition in anaerobic digestion of swine wastewater in ASBR type reactor. ENVIRONMENTAL TECHNOLOGY 2024; 45:2076-2088. [PMID: 36621001 DOI: 10.1080/09593330.2022.2164744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In swine farming, antibiotics are often used to reduce disease and promote animal growth. Part of these compounds is not absorbed by the swine body, being excreted and later reaching the treatment systems, soil, and nearby waterbodies. This research sought to investigate the influence of adding ciprofloxacin (CIP) on the anaerobic digestion of swine wastewater. For that, a bench-scale anaerobic sequential batch reactor (ASBR) was used, with 5 L of working volume in six different phases, with volumetric organic loading rate (VOLR) and CIP dosage variation. According to the results, the optimal VOLR for the reactor was 0.60 ± 0.11 gSV L-1 d-1, resulting in biogas productivity of 0.51 ± 0.03 Lbiogas L-1 d-1. After initial stability, adding substrate with 0.5 mgCIP L-1 resulted in an abrupt drop of 82% in the productivity from the 7th to 11th day of addition, coinciding with volatile acids accumulation. Afterward, the reactor recovered and reached apparent stability, with productivity similar to the previous step without the drug. For 2.5 mgCIP L-1 in the substrate, the biogas productivity at equilibrium was 11.8% lower than in the phases with the same VOLR and 0.0 and 0.5 mgCIP L-1. Organic matter removals near 80% were achieved for both dosages. The 16S rRNA metagenomic analyses showed an increase in the relative abundance of most of the phyla found, indicating that the dosages used allowed the acclimatization of microorganisms and possibly the compound biodegradation.
Collapse
Affiliation(s)
- José Gustavo Venâncio da Silva Ramos
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
- Technical Residency in Environmental Engineering and Management, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Camila Palacio Richter
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Maria Alice Silva
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Giordana Longo Singolano
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Gabriel Hauagge
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Eduarda Lorençon
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | | - Thiago Edwiges
- Biological and Environmental Sciences, The Federal University of Technology - Paraná (UTFPR), Medianeira, Brazil
| | - Priscila Vaz de Arruda
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | |
Collapse
|
22
|
Aslam M, Rahman J, Iqbal A, Mujtaba S, Ashok AK, Kaouche FC, Hayat MM, Nisa MU, Ashraf M. Antiurease Activity of Antibiotics: In Vitro, In Silico, Structure Activity Relationship, and MD Simulations of Cephalosporins and Fluoroquinolones. ACS OMEGA 2024; 9:14005-14016. [PMID: 38559955 PMCID: PMC10975586 DOI: 10.1021/acsomega.3c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Helicobacter pylori infection is widespread in 50% of the world's population and is associated with gastric ulcers and related disorders that ultimately culminate in gastric cancer. Levofloxacin-based, or clarithromycin-based, triple therapy is frequently used to inhibit the bacterial urease enzyme for the eradication of H. pylori. A comprehensive investigation based on the urease inhibitory profiles of antibiotics and their computational implications is lacking in the scientific literature. The present study was aimed specifically to determine the antiurease activities within the realms of cephalosporins and fluoroquinolones by in vitro methods supported with in silico investigations. The results demonstrate the jack bean urease inhibitory activity of cephalosporins, wherein cefadroxil, cefpodoxime, cefotaxime, and cefaclor displayed inhibitions (IC50 21.35 ± 0.64 to 62.86 ± 0.78 μM) compared with the standard thiourea (IC50 21.25 ± 0.15 μM). Among fluoroquinolones, levofloxacin, ofloxacin, and gemifloxacin (IC50 7.24 ± 0.29 to 16.53 ± 0.85 μM) unveiled remarkable inhibitory profiles. Levofloxacin and ofloxacin exhibited competitive inhibition against the said enzyme. Ciprofloxacin and moxifloxacin displayed weak urease inhibitions. During molecular docking studies, Asp362, Gly279, Arg338, Asn168, Asp223, Gln364, and Met366 were involved in hydrogen bonding in fluoroquinolones, and hydrogen bonding was established with Arg338, His248, Asn168 residues, and metal Ni601 and Ni602 of the enzyme. MD simulations and MMPBSA results demonstrated the existence of significant protein-ligand binding. Overall, these results warrant further investigations into the significance of these active molecules in relation to their inhibitory potential against the targeted urease enzyme.
Collapse
Affiliation(s)
- Misbah Aslam
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Jameel Rahman
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Ambar Iqbal
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
- Department
of Biochemistry and Molecular Biology, Institute of Biochemistry,
Biotechnology, Bioinformatics (IBBB), B.J. Campus, The Islamia University of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Sara Mujtaba
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Avinash Karkada Ashok
- Department
of Biotechnology, Siddaganga Institute of
Technology, Tumakuru 572103, Karnataka, India
| | - Farah Chafika Kaouche
- Department
of Chemistry, Faculty of Sciences of Mater, Ibn Khaldoun University, BP 78 zaaoura, 14000 Tiaret, Algeria
| | - Muhammad Munawar Hayat
- P
& SH Department, Punjab Drug Testing
Laboratory, 1-Bird Wood
Road, Lahore 631000, Pakistan
| | - Mouqadus-Un Nisa
- Multan Drug
Testing Laboratory, near Multan Institute
of Kidney Disease, Muzaffargarh
Road, Multan 261000, Pakistan
| | - Muhammad Ashraf
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| |
Collapse
|
23
|
Kuang H, Zhang Z, Zeng B, Liu X, Zuo H, Xu X, Wang L. A novel microbe-drug association prediction model based on graph attention networks and bilayer random forest. BMC Bioinformatics 2024; 25:78. [PMID: 38378437 PMCID: PMC10877932 DOI: 10.1186/s12859-024-05687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND In recent years, the extensive use of drugs and antibiotics has led to increasing microbial resistance. Therefore, it becomes crucial to explore deep connections between drugs and microbes. However, traditional biological experiments are very expensive and time-consuming. Therefore, it is meaningful to develop efficient computational models to forecast potential microbe-drug associations. RESULTS In this manuscript, we proposed a novel prediction model called GARFMDA by combining graph attention networks and bilayer random forest to infer probable microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-disease correlation indices, we constructed two different microbe-drug networks first. And then, based on multiple measures of similarity, we constructed a unique feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained microbe-drug networks together with feature matrices into the graph attention network to extract the low-dimensional feature representations for drugs and microbes separately. Thereafter, these low-dimensional feature representations, along with the feature matrices, would be further inputted into the first layer of the Bilayer random forest model to obtain the contribution values of all features. And then, after removing features with low contribution values, these contribution values would be fed into the second layer of the Bilayer random forest to detect potential links between microbes and drugs. CONCLUSIONS Experimental results and case studies show that GARFMDA can achieve better prediction performance than state-of-the-art approaches, which means that GARFMDA may be a useful tool in the field of microbe-drug association prediction in the future. Besides, the source code of GARFMDA is available at https://github.com/KuangHaiYue/GARFMDA.git.
Collapse
Affiliation(s)
- Haiyue Kuang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Bin Zeng
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Xin Liu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Hao Zuo
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Xingye Xu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| |
Collapse
|
24
|
Dogheim GM, Werida RH. Drug Utilization Evaluation Study of Ciprofloxacin Use and Adverse Events Occurrence: Role of Community Pharmacists. J Pharm Technol 2024; 40:15-22. [PMID: 38318258 PMCID: PMC10838536 DOI: 10.1177/87551225231216328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Background: Antimicrobial resistance is a global health crisis threatening optimal management of infectious diseases. Ciprofloxacin is a widely used fluoroquinolone in various disease conditions. Resistance against ciprofloxacin is increasing, leading to nonoptimal management of patients. Thus, the aim of this study was to assess ciprofloxacin use in the community setting in terms of appropriate prescribing, dosing, frequency, and duration of use. Methods: A cross-sectional, retrospective study was conducted by community pharmacists in 5 community pharmacies in Egypt from September 2021 to February 2022. Patients prescribed oral ciprofloxacin during the period of the study were included. Data on demographics, indications for ciprofloxacin, dosing regimen, adverse events, and drug interactions were collected. Results: A total of 151 patients' record indicated for ciprofloxacin were included in the study, of whom 44.4% were men and 55.6% were women who were neither pregnant nor lactating. Based on international guidelines, 96.69% ciprofloxacin prescriptions were appropriate; 96.03% contained correct ciprofloxacin dosing whereas 3.97% were overdose. A total of 90. 73% had correct frequency of administration and 96.03% records had correct durations. Only 1.99% of patients were ≤18 years of age, which is an absolute contraindication. Interacting drugs with ciprofloxacin were 28.5% with acetaminophen, 31.1% with ibuprofen, 16.6% with antacids, 21.2% with chlorpheniramine, and 7.9% with prednisolone. Adverse events included 1.32% hypoglycemia, 0.66% hyperglycemia, 3.97% tendinitis, and 2.65% QTc (heart rate-corrected QT interval) prolongation. Conclusion and relevance: Ciprofloxacin use in community pharmacies is appropriate according to international guidelines. Ongoing drug utilization evaluation is necessary to ensure rational drug use, which in turn can decrease resistance rates.
Collapse
Affiliation(s)
- Gaidaa M. Dogheim
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rehab H. Werida
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
25
|
Liang M, Liu X, Chen Q, Zeng B, Wang L. NMGMDA: a computational model for predicting potential microbe-drug associations based on minimize matrix nuclear norm and graph attention network. Sci Rep 2024; 14:650. [PMID: 38182635 PMCID: PMC10770326 DOI: 10.1038/s41598-023-50793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
The prediction of potential microbe-drug associations is of great value for drug research and development, especially, methods, based on deep learning, have been achieved significant improvement in bio-medicine. In this manuscript, we proposed a novel computational model named NMGMDA based on the nuclear norm minimization and graph attention network to infer latent microbe-drug associations. Firstly, we created a heterogeneous microbe-drug network in NMGMDA by fusing the drug and microbe similarities with the established drug-microbe associations. After this, by using GAT and NNM to calculate the predict scores. Lastly, we created a fivefold cross validation framework to assess the new model NMGMDA's progressiveness. According to the simulation results, NMGMDA outperforms some of the most advanced methods, with a reliable AUC of 0.9946 on both MDAD and aBioflm databases. Furthermore, case studies on Ciprofloxacin, Moxifoxacin, HIV-1 and Mycobacterium tuberculosis were carried out in order to assess the effectiveness of NMGMDA even more. The experimental results demonstrated that, following the removal of known correlations from the database, 16 and 14 medications as well as 19 and 17 microbes in the top 20 predictions were validated by pertinent literature. This demonstrates the potential of our new model, NMGMDA, to reach acceptable prediction performance.
Collapse
Affiliation(s)
- Mingmin Liang
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China
| | - Xianzhi Liu
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China
| | - Qijia Chen
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China.
| | - Bin Zeng
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China.
| | - Lei Wang
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China.
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| |
Collapse
|
26
|
Yassin AE, Albekairy AM, Omer ME, Almutairi A, Alotaibi Y, Althuwaini S, Alaql OA, Almozaai SS, Almutiri NM, Alluhaim W, Alzahrani RR, Alterawi AM, Halwani MA. Chitosan-Coated Azithromycin/Ciprofloxacin-Loaded Polycaprolactone Nanoparticles: A Characterization and Potency Study. Nanotechnol Sci Appl 2023; 16:59-72. [PMID: 38146545 PMCID: PMC10749578 DOI: 10.2147/nsa.s438484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023] Open
Abstract
Purpose Antimicrobial resistance is a major health hazard worldwide. Combining azithromycin (AZ) and ciprofloxacin (CIP) in one drug delivery system was proposed to boost their antibacterial activity and overcome resistance. This study aims to improve azithromycin and ciprofloxacin activity by co-encapsulating them inside chitosan-coated polymeric nanoparticles and evaluating their antibacterial activity. Methods The double emulsion method was employed to co-encapsulate AZ/CIP inside chitosan-coated polymeric nanoparticles. The formulations were evaluated for their nanoparticle size, size distribution, and zeta potential. Differential scanning calorimetry (DSC) analysis characterized the formula's thermal sustainability. Encapsulation efficiency was measured by HPLC and spectrophotometric analysis. Morphological studies used the Transmission Electron Microscopy (TEM). The in vitro release profiles of both AZ and CIP were monitored utilizing the dialysis membrane bag method. The micro-dilution assay assessed the antimicrobial activity against a clinical isolate of Klebsiella pneumoniae. Results The prepared AZ/CIP-poly-caprolactone nanoparticles were spherical; their size range was 184.0 ± 3.3-190.4 ± 5.6 nm and had high size uniformity (poly-dispersity index below 0.2). The zeta potential ranged from -21.2 ± 2.4 to -27.0 ± 2.5 mV, while chitosan-coated nanoparticles showed a positive zeta potential value ranging from 8 to 11 mV. The thermal study confirmed the amorphous state of both antibiotics inside the nanoparticles. The results of the in vitro release study indicated a slow and uniform rate of release for both drugs extended over 4-days, with a faster rate in the case of AZ. The MIC values reported for both chitosan-coated NP have been tremendously reduced by at least 15 folds of pure CIP and more than 60 folds of pure AZ. Conclusion The co-encapsulation of AZ/CIP into chitosan-coated polymeric nanoparticles has been successfully achieved. The produced particles showed many beneficial attributes of uniform particle sizes below 200 nm and high zeta potential values. Chitosan-coated polymeric nanoparticles extensively enhanced the antibacterial activity of both AZ/CIP against bacteria.
Collapse
Affiliation(s)
- Alaa Eldeen Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulkareem M Albekairy
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mustafa E Omer
- Pharmacy Program, College of Health and Sport Sciences, University of Bahrain, Zallaq, Bahrain
| | - Arwa Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yousef Alotaibi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salem Althuwaini
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Osama Aql Alaql
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shahad S Almozaai
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nouf Mohammed Almutiri
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Wed Alluhaim
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Raghad R Alzahrani
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asma M Alterawi
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Majed A Halwani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Ogese MO, Lister A, Farrell L, Gardner J, Kafu L, Ali SE, Gibson A, Hillegas A, Meng X, Pirmohamed M, Williams GS, Sakatis MZ, Naisbitt DJ. A blinded in vitro analysis of the intrinsic immunogenicity of hepatotoxic drugs: implications for preclinical risk assessment. Toxicol Sci 2023; 197:38-52. [PMID: 37788119 PMCID: PMC10734620 DOI: 10.1093/toxsci/kfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.
Collapse
Affiliation(s)
- Monday O Ogese
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
- Development Science, UCB Biopharma, Slough, Berkshire SL1 3WE, UK
| | - Adam Lister
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Liam Farrell
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Joshua Gardner
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Laila Kafu
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Serat-E Ali
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Aimee Hillegas
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, Collegeville, Pennsylvania, USA
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Geoffrey S Williams
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Melanie Z Sakatis
- Global Investigative Safety, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Dean J Naisbitt
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| |
Collapse
|
28
|
Shi AX, Qu Q, Zhuang HH, Teng XQ, Xu WX, Liu YP, Xiao YW, Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front Pharmacol 2023; 14:1137975. [PMID: 37564179 PMCID: PMC10410082 DOI: 10.3389/fphar.2023.1137975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Objectives: Augmented renal clearance (ARC) is a state of enhanced renal function commonly observed in 30%-65% of critically ill patients despite normal serum creatinine levels. Using unadjusted standard dosing regimens of renally eliminated drugs in ARC patients often leads to subtherapeutic concentrations, poor clinical outcomes, and the emergence of multidrug-resistant bacteria. We summarized pharmaceutical, pharmacokinetic, and pharmacodynamic research on the definition, underlying mechanisms, and risk factors of ARC to guide individualized dosing of antibiotics and various strategies for optimizing outcomes. Methods: We searched for articles between 2010 and 2022 in the MEDLINE database about ARC patients and antibiotics and further provided individualized antibiotic dosage regimens for patients with ARC. Results: 25 antibiotic dosage regimens for patients with ARC and various strategies for optimization of outcomes, such as extended infusion time, continuous infusion, increased dosage, and combination regimens, were summarized according to previous research. Conclusion: ARC patients, especially critically ill patients, need to make individualized adjustments to antibiotics, including dose, frequency, and method of administration. Further comprehensive research is required to determine ARC staging, expand the range of recommended antibiotics, and establish individualized dosing guidelines for ARC patients.
Collapse
Affiliation(s)
- A-Xi Shi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
29
|
Chung CR, Wang HY, Yao CH, Wu LC, Lu JJ, Horng JT, Lee TY. Data-Driven Two-Stage Framework for Identification and Characterization of Different Antibiotic-Resistant Escherichia coli Isolates Based on Mass Spectrometry Data. Microbiol Spectr 2023; 11:e0347922. [PMID: 37042778 PMCID: PMC10269626 DOI: 10.1128/spectrum.03479-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/21/2023] [Indexed: 04/13/2023] Open
Abstract
In clinical microbiology, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is frequently employed for rapid microbial identification. However, rapid identification of antimicrobial resistance (AMR) in Escherichia coli based on a large amount of MALDI-TOF MS data has not yet been reported. This may be because building a prediction model to cover all E. coli isolates would be challenging given the high diversity of the E. coli population. This study aimed to develop a MALDI-TOF MS-based, data-driven, two-stage framework for characterizing different AMRs in E. coli. Specifically, amoxicillin (AMC), ceftazidime (CAZ), ciprofloxacin (CIP), ceftriaxone (CRO), and cefuroxime (CXM) were used. In the first stage, we split the data into two groups based on informative peaks according to the importance of the random forest. In the second stage, prediction models were constructed using four different machine learning algorithms-logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost). The findings demonstrate that XGBoost outperformed the other four machine learning models. The values of the area under the receiver operating characteristic curve were 0.62, 0.72, 0.87, 0.72, and 0.72 for AMC, CAZ, CIP, CRO, and CXM, respectively. This implies that a data-driven, two-stage framework could improve accuracy by approximately 2.8%. As a result, we developed AMR prediction models for E. coli using a data-driven two-stage framework, which is promising for assisting physicians in making decisions. Further, the analysis of informative peaks in future studies could potentially reveal new insights. IMPORTANCE Based on a large amount of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) clinical data, comprising 37,918 Escherichia coli isolates, a data-driven two-stage framework was established to evaluate the antimicrobial resistance of E. coli. Five antibiotics, including amoxicillin (AMC), ceftazidime (CAZ), ciprofloxacin (CIP), ceftriaxone (CRO), and cefuroxime (CXM), were considered for the two-stage model training, and the values of the area under the receiver operating characteristic curve (AUC) were 0.62 for AMC, 0.72 for CAZ, 0.87 for CIP, 0.72 for CRO, and 0.72 for CXM. Further investigations revealed that the informative peak m/z 9714 appeared with some important peaks at m/z 6809, m/z 7650, m/z 10534, and m/z 11783 for CIP and at m/z 6809, m/z 10475, and m/z 8447 for CAZ, CRO, and CXM. This framework has the potential to improve the accuracy by approximately 2.8%, indicating a promising potential for further research.
Collapse
Affiliation(s)
- Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Han Yao
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
30
|
Liang YK, Cheng WT, Chen LC, Sheu MT, Lin HL. Development of a Swellable and Floating Gastroretentive Drug Delivery System ( sfGRDDS) of Ciprofloxacin Hydrochloride. Pharmaceutics 2023; 15:pharmaceutics15051428. [PMID: 37242670 DOI: 10.3390/pharmaceutics15051428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sangelose® (SGL) is a novel hydroxypropyl methylcellulose (HPMC) derivative that has been hydrophobically modified. Due to its high viscosity, SGL has the potential as a gel-forming and release-rate-controlled material for application in swellable and floating gastroretentive drug delivery systems (sfGRDDS). The aim of this study was to develop ciprofloxacin (CIP)-loaded sfGRDDS tablets comprised of SGL and HPMC in order to extend CIP exposure in the body and achieve optimal antibiotic treatment regimes. Results illustrated that SGL-HPMC-based sfGRDDS could swell to a diameter above 11 mm and showed a short floating lag time (<4 s) and long total floating time (>24 h) to prevent gastric emptying. In dissolution studies, CIP-loaded SGL-HPMC sfGRDDS demonstrated a specific biphasic release effect. Among the formulations, the SGL/type-K HPMC 15,000 cps (HPMC 15K) (50:50) group exhibited typical biphasic release profiles, with F4-CIP and F10-CIP individually releasing 72.36% and 64.14% CIP within 2 h dissolution, and sustaining release to 12 h. In pharmacokinetic studies, the SGL-HPMC-based sfGRDDS demonstrated higher Cmax (1.56-1.73 fold) and shorter Tmax (0.67 fold) than HPMC-based sfGRDDS. Furthermore, SGL 90L in GRDDS indicated an excellent biphasic release effect and a maximum elevation of relative bioavailability (3.87 fold). This study successfully combined SGL and HPMC to manufacture sfGRDDS that retain CIP in the stomach for an optimal duration while improving its pharmacokinetic characteristics. It was concluded that the SGL-HPMC-based sfGRDDS is a promising biphasic antibiotic delivery system that can both rapidly achieve the therapeutic antibiotic concentration and maintain the plasma antibiotic concentration for an extended period to maximize antibiotic exposure in the body.
Collapse
Affiliation(s)
- Yu-Kai Liang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Ting Cheng
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
31
|
Fan L, Wang L, Zhu X. A novel microbe-drug association prediction model based on stacked autoencoder with multi-head attention mechanism. Sci Rep 2023; 13:7396. [PMID: 37149692 PMCID: PMC10164153 DOI: 10.1038/s41598-023-34438-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023] Open
Abstract
Microbes are intimately tied to the occurrence of various diseases that cause serious hazards to human health, and play an essential role in drug discovery, clinical application, and drug quality control. In this manuscript, we put forward a novel prediction model named MDASAE based on a stacked autoencoder (SAE) with multi-head attention mechanism to infer potential microbe-drug associations. In MDASAE, we first constructed three kinds of microbe-related and drug-related similarity matrices based on known microbe-disease-drug associations respectively. And then, we fed two kinds of microbe-related and drug-related similarity matrices respectively into the SAE to learn node attribute features, and introduced a multi-head attention mechanism into the output layer of the SAE to enhance feature extraction. Thereafter, we further adopted the remaining microbe and drug similarity matrices to derive inter-node features by using the Restart Random Walk algorithm. After that, the node attribute features and inter-node features of microbes and drugs would be fused together to predict scores of possible associations between microbes and drugs. Finally, intensive comparison experiments and case studies based on different well-known public databases under 5-fold cross-validation and 10-fold cross-validation respectively, proved that MDASAE can effectively predict the potential microbe-drug associations.
Collapse
Affiliation(s)
- Liu Fan
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421010, China
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China
| | - Lei Wang
- Institute of Bioinformatics Complex Network Big Data, Changsha University, Changsha, 410022, China.
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| | - Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, 421010, China.
| |
Collapse
|
32
|
Brenner T, Wang S. Heightened variability observed in resistance and virulence genes across salmonella Kentucky isolates from poultry environments in British Columbia, Canada. Food Microbiol 2023; 111:104192. [PMID: 36681391 DOI: 10.1016/j.fm.2022.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Many niche-dependent barriers along the poultry production continuum favour the survival of certain Salmonella serovars over others. Historically, the presence of particular serovars has been determined by niche-specific genes which encode resistance to selective pressures such as host defenses and industrial antimicrobial practices. Over the past decade, Canada has witnessed unexplained shifts in the Salmonella landscape in the poultry sector. Several formerly minor Salmonella serovars, including S. Kentucky and S. Reading, have recently increased in prevalence in live chickens and turkeys, respectively, in British Columbia (BC). The purpose of this research was to investigate the genomic features of the top poultry-associated Salmonella spp. in BC, to probe for serovar-specific characteristics that could address the recently shifting balance of serovars along the poultry continuum. By examining the quantity and diversity of antimicrobial resistance (AMR) genes, virulence factors (VFs), Salmonella Pathogenicity Islands (SPIs), and plasmids across 50 poultry-associated S. enterica isolates using whole genome sequencing and antimicrobial resistance profiling, we have identified serovar-specific differences that likely influence niche survival. Specifically, isolates in our collection from predominantly human pathogenic serovars (S. I 4, [5], 12:i: , S. Typhimurium, and S. Enteritidis) were found to share the IncFIB(S) and IncFII(S) plasmids which carry important VFs known to aid in human host infection. Additionally, these strains held the lowest number of AMR genes, and the highest number of unique SPIs which also facilitate virulence. However, other serovars containing a greater diversity and abundance of resistance genes have been increasing across the poultry sector. S. Kentucky was found to carry unique AMR genes, VFs, SPIs, and plasmids that could bolster persistence in farm and processing environments. Overall, S. Kentucky also had comparatively high levels of intra-serovar genetic variability when compared to other prominent serovars from our collection. In addition, one of our two S. Reading isolates had high carriage of both AMR genes and VFs relative to other isolates in our collection. As the poultry-associated Salmonella landscape continues to evolve in Canada, future studies should monitor the genetic composition of prominent serovars across poultry production to maintain up-to-date risk assessments of these foodborne pathogens to consumers.
Collapse
Affiliation(s)
- Thomas Brenner
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Alsughayer A, Elassar AA, Hasan AA, AlSagheer F. Novel synthesis of
N
‐acrylamidociprofloxacin and related polymers: Bioactivity, drug resistance, and drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Abdulhakeem Alsughayer
- Pharmaceutical Science Department, College of Health Science The Public Authority for Applied Education and Training Shuwaikh Kuwait
| | - Abdel‐Zaher A. Elassar
- Chemistry Department, Faculty of Science Kuwait University Kuwait City Kuwait
- Chemistry Department, Faculty of Science Helwan University Cairo Egypt
| | - Abdulaziz A. Hasan
- Pharmaceutical Science Department, College of Health Science The Public Authority for Applied Education and Training Shuwaikh Kuwait
| | - Fakhreia AlSagheer
- Chemistry Department, Faculty of Science Kuwait University Kuwait City Kuwait
| |
Collapse
|
34
|
Enhanced NSAIDs Solubility in Drug-Drug Formulations with Ciprofloxacin. Int J Mol Sci 2023; 24:ijms24043305. [PMID: 36834716 PMCID: PMC9964002 DOI: 10.3390/ijms24043305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Drug-drug salts are a kind of pharmaceutical multicomponent solid in which the two co-existing components are active pharmaceutical ingredients (APIs) in their ionized forms. This novel approach has attracted great interest in the pharmaceutical industry since it not only allows concomitant formulations but also has proved potential to improve the pharmacokinetics of the involved APIs. This is especially interesting for those APIs that have relevant dose-dependent secondary effects, such as non-steroidal anti-inflammatory drugs (NSAIDs). In this work, six multidrug salts involving six different NSAIDs and the antibiotic ciprofloxacin are reported. The novel solids were synthesized using mechanochemical methods and comprehensively characterized in the solid state. Moreover, solubility and stability studies, as well as bacterial inhibition assays, were performed. Our results suggest that our drug-drug formulations enhanced the solubility of NSAIDs without affecting the antibiotic efficacy.
Collapse
|
35
|
GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier. BMC Bioinformatics 2023; 24:35. [PMID: 36732704 PMCID: PMC9893988 DOI: 10.1186/s12859-023-05158-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
As new drug targets, human microbes are proven to be closely related to human health. Effective computational methods for inferring potential microbe-drug associations can provide a useful complement to conventional experimental methods and will facilitate drug research and development. However, it is still a challenging work to predict potential interactions for new microbes or new drugs, since the number of known microbe-drug associations is very limited at present. In this manuscript, we first constructed two heterogeneous microbe-drug networks based on multiple measures of similarity of microbes and drugs, and known microbe-drug associations or known microbe-disease-drug associations, respectively. And then, we established two feature matrices for microbes and drugs through concatenating various attributes of microbes and drugs. Thereafter, after taking these two feature matrices and two heterogeneous microbe-drug networks as inputs of a two-layer graph attention network, we obtained low dimensional feature representations for microbes and drugs separately. Finally, through integrating low dimensional feature representations with two feature matrices to form the inputs of a convolutional neural network respectively, a novel computational model named GACNNMDA was designed to predict possible scores of microbe-drug pairs. Experimental results show that the predictive performance of GACNNMDA is superior to existing advanced methods. Furthermore, case studies on well-known microbes and drugs demonstrate the effectiveness of GACNNMDA as well. Source codes and supplementary materials are available at: https://github.com/tyqGitHub/TYQ/tree/master/GACNNMDA.
Collapse
|
36
|
Rayshan AM, Al-Rawi ZH, A. Odhar H. Introducing Larger plate and Optimum Distribution Pattern in Microbiological assay. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:294-300. [DOI: 10.52711/0974-360x.2023.00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
First, clinical sample antibiotic assay process. 1966, Appl. Microbiol. 14:2:170–177. This modified agar-disks diffusion experiment employs big glass plates to enable 81 replications per plate. With an agar punch, more than agar disks may be made fast. The savings in zone of inhibition (zoi) from high repeated concentrations of diverse antibiotics with big plates and agar-disks makes it economically possible to employ pooled any antibiotic concentrate. Methods for creating disk diffusion agar and inhibiting bacterial susceptibility degradation are provided. Preparing and maintaining assay organisms is described. Instead of diluting antibiotic tablets to a small range at various concentrations to spread the agar well, they are tested immediately to avoid contamination at the tested concentrations. This is conceivable owing to antibiotic mobility (dilution) and curvilinear computations between area and antibiotic concentrations. This approach has been adapted to many antibiotics. With this technology, vast numbers of antibiotic disks may be tested quickly and accurately. Solid media can be used for antimicrobial susceptibility testing. Solids tests are straightforward and affordable, but they aren't quantitative. Antimicrobial agent diffusion may impair the accuracy of plate-based tests. After applying the above, we evaluated this assumption using the "Eight Queens Puzzle Model" of antibiotic dispersion and a disc diffusion test to estimate the connection between agar depth and area of inhibition and to determine the ideal agar depth. Our studies with agar-diffusion in plates and agar thickness demonstrated that this model describes antibiotic zoi sizes accurately. However, linear regression to explain the link between agar thickness and growth inhibition zone for Staphylococcus aureus and Escherichia coli treated with various antibiotic discs, three groups, the first group (erythromycin) emerged-zone equal sizes for both bacteria. Both bacteria were susceptible to gentamicin and ceftriaxone. Ciprofloxacin's three-group model fit best. Streptomycin's residual deviation was the same for both bacteria. The concentration dependency in the streptomycin group was greater than linear, which may imply a range of low susceptibility rather than a single cut-off dose.
Collapse
Affiliation(s)
- Ali M. Rayshan
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Zuhair H. Al-Rawi
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Hasanain A. Odhar
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
37
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
38
|
Shan L, Gao M, Pan X, Li W, Wang J, Li H, Tian H. Association between fluoroquinolone exposure and children's growth and development: A multisite biomonitoring-based study in northern China. ENVIRONMENTAL RESEARCH 2022; 214:113924. [PMID: 35868578 DOI: 10.1016/j.envres.2022.113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although animal experiments found that antibiotic exposure during early life increased adiposity, limited human epidemiological evidence is available for the effects of veterinary antibiotic exposure on children's growth and development. OBJECTIVE This study was conducted to examine the body burden of fluoroquinolones in northern Chinese children and assess its association with growth and development. METHODS After recruiting 233 children aged 0-15 years from 12 different sites in northern China in 2020, we measured urinary concentrations of 5 respective fluoroquinolones (fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) by high performance liquid chromatography. Categories of children's growth and development were identified based on the Z score of body mass index. The health risks of individual and combined antibiotic exposure were estimated by the hazard quotient (HQ) and hazard index (HI), respectively. The association between children's growth and development with antibiotic concentrations was evaluated via multiple logistic regression analysis. RESULTS In total, 4 antibiotics, fleroxacin, ofloxacin, ciprofloxacin, and enrofloxacin, were found in urine samples of northern Chinese children at an overall frequency of 57.08%. Due to diet and economic differences, antibiotic concentrations in urine samples differed by study area, and the highest concentrations were found in Tianjin, Henan, and Beijing. The percentage of the participants with HQ > 1 caused by ciprofloxacin exposure was 20.61%, and the HI values in 23.18% of samples exceeded 1, suggesting potential health risks. The odds ratio (95% confidence interval) of overweight or obesity risk of tertile 2 of enrofloxacin was 3.01 (1.12, 8.11), indicating an increase in overweight or obesity risk for children with middle-concentration enrofloxacin exposure. CONCLUSION This is the first study to show a positive association of enrofloxacin internal exposure with overweight or obesity risk in children, demonstrating that more attention should be given to the usage and disposal of fluoroquinolones to safeguard children's health.
Collapse
Affiliation(s)
- Lixin Shan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xiaohua Pan
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Wenjie Li
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Jingjie Wang
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
39
|
Silva RMS, Santos AM, Wong A, Fatibello-Filho O, Moraes FC, Farias MAS. Determination of ofloxacin in the presence of dopamine, paracetamol, and caffeine using a glassy carbon electrode based on carbon nanomaterials and gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3859-3866. [PMID: 36129055 DOI: 10.1039/d2ay01177h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new electrode was prepared based on functionalized graphene and gold nanoparticles dispersed in a chitosan film. Such an electrochemical sensor determines ofloxacin in the presence of dopamine, paracetamol, and caffeine. Characterization (morphological and electrochemical) was done using scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The sensor design improved the analytical signal, the electrochemical activity, and the electron transfer rate. Ofloxacin was determined by square-wave voltammetry, with a linear concentration range of 0.10-4.9 μmol L-1 (r = 0.999, LOD = 12 nmol L-1). The proposed sensor showed good repeatability and selectivity and was applied successfully to the determination of ofloxacin in pharmaceutical formulations, synthetic urine, and water river samples. The proposed method proved to be excellent; therefore, it is an alternative method for the determination of ofloxacin.
Collapse
Affiliation(s)
- Rebeca M S Silva
- Department of Chemistry, Federal University of Amazonas, 69080-900, Manaus, AM, Brazil
| | - Anderson M Santos
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil
| | - Fernando C Moraes
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil
| | - Marco A S Farias
- Department of Agroindustrial Technology and Rural Socioeconomics, Federal University of São Carlos, 13600-970, Araras, SP, Brazil.
| |
Collapse
|
40
|
Santos AL, van Venrooy A, Reed AK, Wyderka AM, García‐López V, Alemany LB, Oliver A, Tegos GP, Tour JM. Hemithioindigo-Based Visible Light-Activated Molecular Machines Kill Bacteria by Oxidative Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203242. [PMID: 36002317 PMCID: PMC9596824 DOI: 10.1002/advs.202203242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a growing health threat. There is an urgent and critical need to develop new antimicrobial modalities and therapies. Here, a set of hemithioindigo (HTI)-based molecular machines capable of specifically killing Gram-positive bacteria within minutes of activation with visible light (455 nm at 65 mW cm-2 ) that are safe for mammalian cells is described. Importantly, repeated exposure of bacteria to HTI does not result in detectable development of resistance. Visible light-activated HTI kill both exponentially growing bacterial cells and antibiotic-tolerant persister cells of various Gram-positive strains, including methicillin-resistant S. aureus (MRSA). Visible light-activated HTI also eliminate biofilms of S. aureus and B. subtilis in as little as 1 h after light activation. Quantification of reactive oxygen species (ROS) formation and protein carbonyls, as well as assays with various ROS scavengers, identifies oxidative damage as the underlying mechanism for the antibacterial activity of HTI. In addition to their direct antibacterial properties, HTI synergize with conventional antibiotics in vitro and in vivo, reducing the bacterial load and mortality associated with MRSA infection in an invertebrate burn wound model. To the best of the authors' knowledge, this is the first report on the antimicrobial activity of HTI-based molecular machines.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of ChemistryRice UniversityHoustonTX77005USA
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
| | | | - Anna K. Reed
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | | | - Lawrence B. Alemany
- Department of ChemistryRice UniversityHoustonTX77005USA
- Shared Equipment AuthorityRice UniversityHoustonTX77005USA
| | - Antonio Oliver
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
- Servicio de MicrobiologiaHospital Universitari Son EspasesPalma07120Spain
| | - George P. Tegos
- Office of ResearchReading HospitalTower Health420 S. Fifth AvenueWest ReadingPA19611USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
| |
Collapse
|
41
|
Ibrahim UH, Devnarain N, Mohammed M, Omolo CA, Gafar MA, Salih M, Pant A, Shunmugam L, Mocktar C, Khan R, Oh JK, Govender T. Dual acting acid-cleavable self-assembling prodrug from hyaluronic acid and ciprofloxacin: A potential system for simultaneously targeting bacterial infections and cancer. Int J Biol Macromol 2022; 222:546-561. [PMID: 36150574 DOI: 10.1016/j.ijbiomac.2022.09.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
The incidence and of bacterial infections, and resulting mortality, among cancer patients is growing dramatically, worldwide. Several therapeutics have been reported to have dual anticancer and antibacterial activity. However, there is still an urgent need to develop new drug delivery strategies to improve their clinical efficacy. Therefore, this study aimed to develop a novel acid cleavable prodrug (HA-Cip) from ciprofloxacin and hyaluronic acid to simultaneously enhance the anticancer and antibacterial properties of Cip as a superior drug delivery system. HA-Cip was synthesised and characterised (FT-IR, HR-MS, and H1 NMR). HA-Cip generated stable micelles with an average particle size, poly dispersion index (PDI) and zeta potential (ZP) of 237.89 ± 25.74 nm, 0.265 ± 0.013, and -17.82 ± 1.53 mV, respectively. HA-Cip showed ≥80 % cell viability against human embryonic kidney 293 cells (non-cancerous cells), ˂0.3 % haemolysis; and a faster pH-responsive ciprofloxacin release at pH 6.0. HA-Cip showed a 5.4-fold improvement in ciprofloxacin in vitro anticancer activity against hepatocellular cancer (HepG2) cells; and enhanced in vitro antibacterial activity against Escherichia coli and Klebsiella pneumoniae at pH 6.0. Our findings show HA-Cip as a promising prodrug for targeted delivery of ciprofloxacin to efficiently treat bacterial infections associated, and/or co-existing, with cancer.
Collapse
Affiliation(s)
- Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Amit Pant
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Letitia Shunmugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, School of Arts and Sciences, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
42
|
Ikram M, Rasheed F, Haider A, Naz S, Ul-Hamid A, Shahzadi A, Haider J, Shahzadi I, Hayat S, Ali S. Photocatalytic and antibacterial activity of graphene oxide/cellulose-doped TiO 2 quantum dots: in silico molecular docking studies. NANOSCALE ADVANCES 2022; 4:3764-3776. [PMID: 36133332 PMCID: PMC9470022 DOI: 10.1039/d2na00383j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) and cellulose nanocrystal (CNC)-doped TiO2 quantum dots (QDs) were effectively synthesized by employing the co-precipitation method for the degradation of dyes and antimicrobial applications. A series of characterizations, i.e., XRD, FTIR, UV-visible spectroscopy, EDS, FE-SEM, and HR-TEM, was used to characterize the prepared samples. A reduction in PL intensity was observed, while the band gap energy (E g) decreased from 3.22 to 2.96 eV upon the incorporation of GO/CNC in TiO2. In the Raman spectra, the D and G bands were detected, indicating the presence of graphene oxide in the composites. Upon doping, the crystallinity of TiO2 increased. HR-TEM was employed to estimate the interlayer d-spacing of the nanocomposites, which matched well with the XRD data. The photocatalytic potential of the prepared samples was tested against methylene blue, methylene violet, and ciprofloxacin (MB:MV:CF) when exposed to visible light for a certain period. The antibacterial activity of GO/CNC/TiO2 QDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria in vitro was tested to determine their potential for medicinal applications. The molecular docking investigations of CNC-TiO2 and GO/CNC-doped TiO2 against DNA gyrase and FabI from E. coli and S. aureus were found to be consistent with the results of the in vitro bactericidal activity test. We believe that the prepared nanocomposites will be highly efficient for wastewater treatment and antimicrobial activities.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Fahad Rasheed
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 6000 Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab 54000 Pakistan
| | - Shaukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
43
|
Abdel-Aziz SA, Cirnski K, Herrmann J, Abdel-Aal MA, Youssif B, Salem O. Novel fluoroquinolone hybrids as dual DNA gyrase and urease inhibitors with potential antibacterial activity: Design, synthesis, and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Assessment of Bacteriocin-Antibiotic Synergy for the Inhibition and Disruption of Biofilms of Listeria monocytogenes and Vancomycin-Resistant Enterococcus. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we have evaluated the effects of previously characterized bacteriocins produced by E. faecium strains ST651ea, ST7119ea, and ST7319ea, against biofilm formation and biofilms formed by L. monocytogenes ATCC15313 and vancomycin-resistant E. faecium VRE19. The effects of bacteriocins on the biofilms formed by L. monocytogenes ATCC151313 were evaluated by crystal violet assay and further confirmed by quantifying viable cells and cell metabolic activities through flow cytometry and TTC assay, respectively, indicating that bacteriocin activities required to completely eradicate biofilms are at least 1600 AU mL−1, 3200 AU mL−1, and 6400 AU mL−1, respectively for each bacteriocin evaluated. Furthermore, bacteriocins ST651ea and ST7119ea require at least 6400 AU mL−1 to completely eradicate the viability of cells within the biofilms formed by E. faecium VRE19, while bacteriocin ST7319ea requires at least 12800 AU mL−1 to obtain the same observations. Assessment of synergistic activities between selected conventional antibiotics (ciprofloxacin and vancomycin) with these bacteriocins was carried out to evaluate their effects on biofilm formation and pre-formed biofilms of both test microorganisms. Results showed that higher concentrations are needed to completely eradicate metabolic activities of cells within pre-formed biofilms in contrast with the biofilm formation abilities of the strains. Furthermore, synergistic activities of bacteriocins with both ciprofloxacin and vancomycin are more evident against vancomycin-resistant E. faecium VRE19 rather than L. monocytogenes ATCC15313. These observations can be further explored for possible applications of these combinations of antibiotics as a possible treatment of clinically relevant pathogens.
Collapse
|
45
|
Ciprofloxacin-Loaded Zein/Hyaluronic Acid Nanoparticles for Ocular Mucosa Delivery. Pharmaceutics 2022; 14:pharmaceutics14081557. [PMID: 35893813 PMCID: PMC9332751 DOI: 10.3390/pharmaceutics14081557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/03/2023] Open
Abstract
Bacterial conjunctivitis is a worldwide problem that, if untreated, can lead to severe complications, such as visual impairment and blindness. Topical administration of ciprofloxacin is one of the most common treatments for this infection; however, topical therapeutic delivery to the eye is quite challenging. To tackle this, nanomedicine presents several advantages compared to conventional ophthalmic dosage forms. Herein, the flash nanoprecipitation technique was applied to produce zein and hyaluronic acid nanoparticles loaded with ciprofloxacin (ZeinCPX_HA NPs). ZeinCPX_HA NPs exhibited a hydrodynamic diameter of <200 nm and polydispersity index of <0.3, suitable for ocular drug delivery. In addition, the freeze-drying of the nanoparticles was achieved by using mannitol as a cryoprotectant, allowing their resuspension in water without modifying the physicochemical properties. Moreover, the biocompatibility of nanoparticles was confirmed by in vitro assays. Furthermore, a high encapsulation efficiency was achieved, and a release profile with an initial burst was followed by a prolonged release of ciprofloxacin up to 24 h. Overall, the obtained results suggest ZeinCPX_HA NPs as an alternative to the common topical dosage forms available on the market to treat conjunctivitis.
Collapse
|
46
|
Bai X, Chen W, Wang B, Sun T, Wu B, Wang Y. Photocatalytic Degradation of Some Typical Antibiotics: Recent Advances and Future Outlooks. Int J Mol Sci 2022; 23:ijms23158130. [PMID: 35897716 PMCID: PMC9331861 DOI: 10.3390/ijms23158130] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
The existence of antibiotics in the environment can trigger a number of issues by fostering the widespread development of antimicrobial resistance. Currently, the most popular techniques for removing antibiotic pollutants from water include physical adsorption, flocculation, and chemical oxidation, however, these processes usually leave a significant quantity of chemical reagents and polymer electrolytes in the water, which can lead to difficulty post-treating unmanageable deposits. Furthermore, though cost-effectiveness, efficiency, reaction conditions, and nontoxicity during the degradation of antibiotics are hurdles to overcome, a variety of photocatalysts can be used to degrade pollutant residuals, allowing for a number of potential solutions to these issues. Thus, the urgent need for effective and rapid processes for photocatalytic degradation leads to an increased interest in finding more sustainable catalysts for antibiotic degradation. In this review, we provide an overview of the removal of pharmaceutical antibiotics through photocatalysis, and detail recent progress using different nanostructure-based photocatalysts. We also review the possible sources of antibiotic pollutants released through the ecological chain and the consequences and damages caused by antibiotics in wastewater on the environment and human health. The fundamental dynamic processes of nanomaterials and the degradation mechanisms of antibiotics are then discussed, and recent studies regarding different photocatalytic materials for the degradation of some typical and commonly used antibiotics are comprehensively summarized. Finally, major challenges and future opportunities for the photocatalytic degradation of commonly used antibiotics are highlighted.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Wanyu Chen
- Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Tianxiao Sun
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany; (T.S.); (B.W.)
| | - Bin Wu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany; (T.S.); (B.W.)
| | - Yuheng Wang
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Correspondence:
| |
Collapse
|
47
|
Allan-Blitz LT, Adamson PC, Klausner JD. Resistance-Guided Therapy for Neisseria gonorrhoeae. Clin Infect Dis 2022; 75:1655-1660. [PMID: 35818315 DOI: 10.1093/cid/ciac371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial-resistant Neisseria gonorrhoeae infections are a threat to public health. Novel strategies for combating such resistance include the development of molecular assays to facilitate real-time prediction of antimicrobial susceptibility. Resistance to ciprofloxacin is determined by the presence of a single mutation at codon 91 of the gyrase A gene; molecular assays to guide therapy are commercially available. Resistance to cefixime is conferred via 1 of 6 critical mutations in either the mosaic penA gene or specific loci in the nonmosaic region. Resistance to ceftriaxone is conferred through mutations in 1 of 4 genes: penA, ponA, penB, and mtr; however, the ability to predict reduced susceptibility based on those genes varies by geographic region. Here, we highlight the work done toward the development of 3 such assays for ciprofloxacin, cefixime, and ceftriaxone, discuss the status of our current understanding and ongoing challenges, and suggest future directions.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Paul C Adamson
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
48
|
Ahmed S, Jayathuna MA, Mahendiran D, Bharathi S, Kalilur Rahiman A. Heteroleptic silver(I), nickel(II), and copper(II) complexes of N
4
‐substituted thiosemicarbazones and ciprofloxacin: Theoretical, in vitro anti‐proliferative, and in silico molecular modeling and pharmacokinetics studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumeer Ahmed
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
| | - Mugamathu Ali Jayathuna
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
| | - Dharmasivam Mahendiran
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
- Centre for Cancer Cell Biology and Drug Discovery Griffith Institute for Drug Discovery, Griffith University, Nathan Brisbane Queensland Australia
| | - Sundaram Bharathi
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
- Department of Chemistry, School of Basic Sciences Vels Institute of Science, Technology and Advanced Studies Chennai India
| | - Aziz Kalilur Rahiman
- Post‐Graduate and Research Department of Chemistry, The New College (Autonomous) University of Madras Chennai India
| |
Collapse
|
49
|
Osei Duah Junior I, Tchiakpe MP, Borquaye LS, Amoah K, Amankwah FKD, Kumah DB, Ofori LA, Danso-Appiah A, Prempeh BO, Gbedema SY, Munyaneza J, Danquah CA, Akuffo KO. Clinical characteristics of external bacterial ocular and periocular infections and their antimicrobial treatment patterns among a Ghanaian ophthalmic population. Sci Rep 2022; 12:10264. [PMID: 35715500 PMCID: PMC9206014 DOI: 10.1038/s41598-022-14461-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Empirical antimicrobial therapy is linked to a surge in antimicrobial resistant infections. However, an insight on the bacteria etiology of ocular infections is essential in the appropriation of choice of antimicrobial among clinicians, yet there remains a dearth of data from Ghana. We investigated the bacteria etiology of external ocular and periocular infections and antimicrobial treatment patterns among a Ghanaian ophthalmic population. A multicenter study design with purposive sampling approach was employed. Patients demographics and clinical data were collated using a pretested structure questionnaire. Cornea specimens and conjunctival swabs were obtained for bacterial isolation following standard protocols. About 95% (98/103) of ocular samples were positive for bacteria culture. The proportion of Gram-negative bacteria was 58.2%, and the predominant bacteria species were Pseudomonas aeruginosa 38.8% and Staphylococcus aureus 27.6%. Conjunctivitis 40.0% and keratitis 75.0% were mostly caused by Pseudomonas aeruginosa. The routinely administered antimicrobial therapy were polymyxin B 41.2%, neomycin 35.1% and ciprofloxacin 31.6%. Participants demographic and clinical characteristics were unrelated with positive bacteria culture (p > 0.05). Our results showed a markedly high burden of ocular bacterial infections and variations in etiology. Bacterial infection-control and antimicrobial agent management programs should be urgently institutionalized to prevent the emergence of resistant infections.
Collapse
Affiliation(s)
- Isaiah Osei Duah Junior
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michel Pascal Tchiakpe
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Amoah
- The Eye Clinic, Kumasi South Hospital, Atonsu-Agogo, Kumasi, Ghana
| | - Francis Kwaku Dzideh Amankwah
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - David Ben Kumah
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anthony Danso-Appiah
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Ghana
- University of Ghana Centre for Evidence Synthesis and Policy, School of Public Health, University of Ghana, Legon, Ghana
| | - Bright Owusu Prempeh
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- The Anglican Eye Hospital, Jachie, Ghana
| | - Stephen Yao Gbedema
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Justin Munyaneza
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cynthia Amaning Danquah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Owusu Akuffo
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
50
|
Cheng V, Abdul-Aziz MH, Burrows F, Buscher H, Corley A, Diehl A, Levkovich BJ, Pellegrino V, Reynolds C, Rudham S, Wallis SC, Welch SA, Roberts JA, Shekar K, Fraser JF. Population pharmacokinetics of ciprofloxacin in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Anaesth Crit Care Pain Med 2022; 41:101080. [PMID: 35472580 DOI: 10.1016/j.accpm.2022.101080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/01/2022]
Abstract
INTRODUCTION This study aimed to describe the pharmacokinetics (PK) of ciprofloxacin in critically ill patients receiving ECMO and recommend a dosing regimen that provides adequate drug exposure. METHODS Serial blood samples were taken from ECMO patients receiving ciprofloxacin. Total ciprofloxacin concentrations were measured by chromatographic assay and analysed using a population PK approach with Pmetrics®. Dosing simulations were performed to ascertain the probability of target attainment (PTA) represented by the area under the curve to minimum inhibitory concentration ratio (AUC0-24/MIC) ≥ 125. RESULTS Eight patients were enrolled, of which three received concurrent continuous venovenous haemodiafiltration (CVVHDF). Ciprofloxacin was best described in a two-compartment model with total body weight and creatinine clearance (CrCL) included as significant predictors of PK. Patients not requiring renal replacement therapy generated a mean clearance of 11.08 L/h while patients receiving CVVHDF had a mean clearance of 1.51 L/h. Central and peripheral volume of distribution was 77.31 L and 90.71 L, respectively. ECMO variables were not found to be significant predictors of ciprofloxacin PK. Dosing simulations reported that a 400 mg 8 -hly regimen achieved > 72% PTA in all simulated patients with CrCL of 30 mL/min, 50 mL/min and 100 mL/min and total body weights of 60 kg and 100 kg at a MIC of 0.5 mg/L. CONCLUSION Our study reports that established dosing recommendations for critically ill patients not on ECMO provides sufficient drug exposure for maximal ciprofloxacin activity for ECMO patients. In line with non-ECMO critically ill adult PK studies, higher doses and therapeutic drug monitoring may be required for critically ill adult patients on ECMO.
Collapse
Affiliation(s)
- Vesa Cheng
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Fay Burrows
- Department of Pharmacy, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia; St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Corley
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bianca J Levkovich
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Claire Reynolds
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Sam Rudham
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Steven C Wallis
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Susan A Welch
- Department of Pharmacy, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| | - Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - John F Fraser
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | | |
Collapse
|