1
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2025; 66:594-616. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Kumar N, Du Z, Li Y. pLM4CPPs: Protein Language Model-Based Predictor for Cell Penetrating Peptides. J Chem Inf Model 2025; 65:1128-1139. [PMID: 39878455 DOI: 10.1021/acs.jcim.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification. We evaluated peptide embeddings generated from BEPLER, CPCProt, SeqVec, various ESM variants (ESM, ESM-2 with expanded feature set, ESM-1b, and ESM-1v), ProtT5-XL UniRef50, ProtT5-XL BFD, and ProtBERT. We developed pLM4CCPs, a novel deep learning architecture using convolutional neural networks (CNNs) as the classifier for binary classification of CPPs. pLM4CCPs demonstrated superior performance over existing state-of-the-art CPP prediction models, achieving improvements in accuracy (ACC) by 4.9-5.5%, Matthews correlation coefficient (MCC) by 9.3-10.2%, and sensitivity (Sn) by 14.1-19.6%. Among all the tested models, ESM-1280 and ProtT5-XL BFD demonstrated the highest overall performance on the kelm data set. ESM-1280 achieved an ACC of 0.896, an MCC of 0.796, a Sn of 0.844, and a specificity (Sp) of 0.978. ProtT5-XL BFD exhibited superior performance with an ACC of 0.901, an MCC of 0.802, an Sn of 0.885, and an Sp of 0.917. pLM4CCPs combine predictions from multiple models to provide a consensus on whether a given peptide sequence is classified as a CPP or non-CPP. This approach will enhance prediction reliability by leveraging the strengths of each individual model. A user-friendly web server for bioactivity predictions, along with data sets, is available at https://ry2acnp6ep.us-east-1.awsapprunner.com. The source code and protocol for adapting pLM4CPPs can be accessed on GitHub at https://github.com/drkumarnandan/pLM4CPPs. This platform aims to advance CPP prediction and peptide functionality modeling, aiding researchers in exploring peptide functionality effectively.
Collapse
Affiliation(s)
- Nandan Kumar
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
3
|
Yin H, Wei X. The design of retroviral vectors used in the CAR-T products, risk management, and future perspective. MedComm (Beijing) 2025; 6:e70067. [PMID: 39866836 PMCID: PMC11758153 DOI: 10.1002/mco2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a revolutionary approach in cancer treatment. More than 10 CAR-T products have already approved on market worldly wide, and they use either gamma retroviral vectors or lentiviral vectors to deliver the CAR gene. Both vectors have the ability to effectively and persistently integrate the CAR gene into T cells. Despite the advancements in CAR-T therapy, the potential risks associated with the vectors, particularly the risks of the secondary malignancies, still remain as a concern. This article compares the characteristics of gamma retroviral and lentiviral vectors, discusses the development of vector packaging systems, and examines the design of self-inactivating (SIN) vectors. It also addresses the risks of secondary malignancies that might possibly be associated with the retroviral vectors, and the strategies to decrease the risks and increase the safer clinical use of the vectors. This article also discusses the current regulatory landscape and management approaches aiming to mitigate these risks through stringent safety measures and ongoing monitoring. Future perspectives focus on improving the safety profiles of the vectors and broadening their scope of use. The article provides a thorough overview of the most recent research discoveries and regulatory updates in the field of CAR-T therapy, highlighting the significance of a balanced strategy that strikes a balance between innovation and patient safety in the development and implementation of CAR-T therapy.
Collapse
Affiliation(s)
- Huifang Yin
- Office of Pharmaceutical ScienceYangtze River Delta Center for Drug Evaluation and InspectionNational Medical Products AdministrationShanghaiChina
| | - Xuejing Wei
- Office of Pharmaceutical ScienceYangtze River Delta Center for Drug Evaluation and InspectionNational Medical Products AdministrationShanghaiChina
| |
Collapse
|
4
|
Fernandes F, Talukdar I, Kowshik M. Cysteamine functionalized gold nanoparticles exhibit high efficiency delivery of genetic materials in embryonic stem cells majorly via clathrin mediated endocytosis. Int J Pharm 2024; 667:124928. [PMID: 39521158 DOI: 10.1016/j.ijpharm.2024.124928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Efficient and safe gene delivery is vital for genetic manipulation of stem cells for regenerative medicine. Gold nanoparticles have been used for various biomedical applications in the past, and are currently being researched as transfection agents. In this study, we report a simple one-pot synthesis of positively charged gold nanoparticles functionalized with cysteamine. The nanoparticles exhibit no cytotoxicity and can bind to both plasmid DNA (pDNA) as well as small interference RNA (siRNA). We observed that a five fold lower concentration of pDNA was sufficient for achieving comparable overexpression as that of a commercial transfection agent. We also observed that about 70 % transient silencing of the target gene was achieved with only 25 nM siRNA delivered by our nano-vehicle. To better understand the fate of the nanoparticle, we attempted to identify its uptake mechanism. The results indicate that while all the mechanisms contribute to the uptake, the clathrin-dependent pathway plays a major role. This is the first study on understanding the mechanism of uptake of CA-AuNPs conjugated to pDNA by embryonic stem cells. This is also the first study, where a successful transfection using gold based nanoparticles has been achieved in ESCs at a concentration as low as 0.5 µg/ml for pDNA and 25ƞM siRNA.
Collapse
Affiliation(s)
- Fiona Fernandes
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Indrani Talukdar
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India.
| | - Meenal Kowshik
- Dept. of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India.
| |
Collapse
|
5
|
Mao Z, Shi B, Wu J, Gao X. Mechanically mediated cargo delivery to cells using microfluidic devices. BIOMICROFLUIDICS 2024; 18:061302. [PMID: 39649102 PMCID: PMC11624913 DOI: 10.1063/5.0240667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Drug delivery technologies, which are a crucial area of research in the field of cell biology, aim to actively or passively deliver drugs to target cells to enhance therapeutic efficacy and minimize off-target effects. In recent years, with advances in drug development, particularly, the increasing demand for macromolecular drugs (e.g., proteins and nucleic acids), novel drug delivery technologies and intracellular cargo delivery systems have emerged as promising tools for cell and gene therapy. These systems include various viral- and chemical-mediated methods as well as physical delivery strategies. Physical methods, such as electroporation and microinjection, have shown promise in early studies but have not been widely adopted due to concerns regarding efficiency and cellular viability. Recently, microfluidic technologies have provided new opportunities for cargo delivery by allowing for precise control of fluid dynamic parameters to achieve efficient and safe penetration of cell membranes, as well as for foreign material transport. Microfluidics-based mechanical delivery methods utilize biophysical phenomena, such as cell constriction and fluid shear, and are associated with high throughput and high transfection efficiency. In this review, we summarize the latest advancements in microfluidic mechanical delivery technologies, and we discuss constriction- and fluid shear-induced delivery strategies. Furthermore, we explore the potential application of artificial intelligence in optimizing cargo delivery technologies, aiming to provide theoretical support and practical guidance for the future development of novel cellular drug delivery technologies.
Collapse
Affiliation(s)
- Zhiyu Mao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Bori Shi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Webber BR, Johnson MJ, Skeate JG, Slipek NJ, Lahr WS, DeFeo AP, Mills LJ, Qiu X, Rathmann B, Diers MD, Wick B, Henley T, Choudhry M, Starr TK, McIvor RS, Moriarity BS. Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair. Nat Biomed Eng 2024; 8:1553-1570. [PMID: 38092857 PMCID: PMC11169092 DOI: 10.1038/s41551-023-01157-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.
Collapse
Affiliation(s)
- Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Anthony P DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Qiu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Blaine Rathmann
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miechaleen D Diers
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Department of Ob-Gyn and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - R Scott McIvor
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
8
|
Liu Y, Lyons CJ, Ayu C, O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects. Front Endocrinol (Lausanne) 2024; 15:1396794. [PMID: 39076517 PMCID: PMC11284052 DOI: 10.3389/fendo.2024.1396794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia, leading to various vascular complications. Accumulating evidence indicates that endothelial colony-forming cells (ECFCs) have attractive prospects for repairing and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for diabetic patients with vascular complications who require revascularization therapy. However, it has been reported that the function of ECFCs is impaired in DM, which poses challenges for the autologous transplantation of ECFCs. In this review, we summarize the molecular mechanisms that may be responsible for ECFC dysfunction and discuss potential strategies for improving the therapeutic efficacy of ECFCs derived from patients with DM. Finally, we discuss barriers to the use of ECFCs in human studies in light of the fact that there are no published reports using these cells in humans.
Collapse
Affiliation(s)
| | | | | | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| |
Collapse
|
9
|
Doshi V, Joshi G, Sharma S, Choudhary D. Gene therapy: an alternative to treat Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3675-3693. [PMID: 38078920 DOI: 10.1007/s00210-023-02873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Alzheimer's disease (AD), a neuro-degenerative disease that primarily affects the elderly, is a worldwide phenomenon. Loss of memory, cognitive decline, behavioural changes, and many other signs are used to classify it. Various hypotheses that may contribute to Alzheimer's disease have been found during decades of survey, including tau theory, the amyloid theory, the cholinergic hypothesis, and the oxidative stress hypothesis. According to some theories, the two leading causes of AD are the accumulation of amyloid beta plaque and development of NFTs in the brain. The hippocampus and cerebral cortex are the primary sites where amyloid beta plaques gather in the body. NFT formation in the brain impairs the brain's neurons' potential of signalling. According to the age at which it manifests in a person, there are two subtypes of AD: 'LOAD (Late Onset Alzheimer's Disease)' and 'EOAD (Early Onset Alzheimer's Disease)'. Long-term research into AD treatment has resulted in the introduction of some medications that provided symptomatic relief to patients but did not alter the disease's pathophysiology, like cholinesterase inhibitors, inhibitors of tau aggregation, and monoclonal antibodies to Aβ aggregation. Even though the medications did not halt the progression of AD, researchers did not discontinue their work, which lead to the introduction of gene therapy - a recently created cutting-edge method of delivering genes to target sites where they can express the intended functionalities. Viral or non-viral vectors could be used to deliver the gene, each with advantages and limitations of their own. Gene therapy is proven to be a potential disease-modifying treatment for AD. This article discusses about gene therapy, its merits and demerits and the various ways of gene delivery. Additionally, it focuses on AD as the target for treatment through gene therapy, the pathophysiology of AD, and the multiple targets for gene therapy in the treatment of AD.
Collapse
Affiliation(s)
- Vanshika Doshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, Maharashtra, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
10
|
Chen Y, Lin X, Liu X, Liu Y, Bui-Le L, Blakney AK, Yeow J, Zhu Y, Stevens MM, Shattock RJ, Chen R, Brogan APS, Hallett JP. Thermally Robust Solvent-Free Liquid Polyplexes for Heat-Shock Protection and Long-Term Room Temperature Storage of Therapeutic Nucleic Acids. Biomacromolecules 2024; 25:2965-2972. [PMID: 38682378 PMCID: PMC11094731 DOI: 10.1021/acs.biomac.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.
Collapse
Affiliation(s)
- Yiyan Chen
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Xiaoyan Lin
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Xuhan Liu
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
- Shenzhen
University General Hospital, Shenzhen University Clinical Medical
Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen 518000, P. R. China
| | - Yifan Liu
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Liem Bui-Le
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Anna K. Blakney
- Department
of Infectious Disease, Imperial College
London, Norfolk Place, London W2 1NY, U.K.
- School
of Biomedical Engineering, Michael Smith
Laboratories, 2185 East
Mall, Vancouver, British
Columbia V6T 1Z4, Canada
| | - Jonathan Yeow
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering at Imperial College London, Prince Consort Rd, SW7 2AZ London, South Kensington, U.K.
| | - Yunqing Zhu
- School
of
Materials Science and Engineering, Tongji
University, Shanghai 200092, China
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering at Imperial College London, Prince Consort Rd, SW7 2AZ London, South Kensington, U.K.
| | - Robin J. Shattock
- Department
of Infectious Disease, Imperial College
London, Norfolk Place, London W2 1NY, U.K.
| | - Rongjun Chen
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Alex P. S. Brogan
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| |
Collapse
|
11
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
12
|
Singh H. Role of gene therapy in treatment of cancer with craniofacial regeneration-current molecular strategies, future perspectives, and challenges: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:13-21. [PMID: 37218144 PMCID: PMC10834268 DOI: 10.12701/jyms.2023.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/24/2023]
Abstract
Gene therapy involves the introduction of foreign genetic material into host tissue to alter the expression of genetic products. Gene therapy represents an opportunity to alter the course of various diseases. Hence, genetic products utilizing safe and reliable vectors with improved biotechnology will play a critical role in the treatment of various diseases in the future. This review summarizes various important vectors for gene therapy along with modern techniques for potential craniofacial regeneration using gene therapy. This review also explains current molecular approaches for the management and treatment of cancer using gene therapy. The existing literature was searched to find studies related to gene therapy and its role in craniofacial regeneration and cancer treatment. Various databases such as PubMed, Science Direct, Scopus, Web of Science, and Google Scholar were searched for English language articles using the keywords "gene therapy," "gene therapy in present scenario," "gene therapy in cancer," "gene therapy and vector," "gene therapy in diseases," and "gene therapy and molecular strategies."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, India
| |
Collapse
|
13
|
Kapoor D, Chilkapalli SC, Prajapati BG, Rodriques P, Patel R, Singh S, Bhattacharya S. The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review. Curr Pharm Biotechnol 2024; 25:1952-1968. [PMID: 38265380 DOI: 10.2174/0113892010268824231122041237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
Collapse
Affiliation(s)
- Devesh Kapoor
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Shirisha C Chilkapalli
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Paul Rodriques
- Department of Pharmaceutical Technology, Krishna School of Pharmacy and Research, KPGU, Vadodara, Mumbai NH#8, Varnama, Vadodara, Gujarat, India
| | - Ravish Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
14
|
Nafchi NAM, Chilcott EM, Brown S, Fuller HR, Bowerman M, Yáñez-Muñoz RJ. Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo. Gene Ther 2023; 30:812-825. [PMID: 37322133 DOI: 10.1038/s41434-023-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.
Collapse
Affiliation(s)
- Neda A M Nafchi
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Ellie M Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sharon Brown
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
- School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
15
|
Pourali P, Dzmitruk V, Benada O, Svoboda M, Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: evaluation of transfection efficiency. Sci Rep 2023; 13:14669. [PMID: 37674013 PMCID: PMC10482973 DOI: 10.1038/s41598-023-41567-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
In this study, gold nanoparticles produced by eukaryotic cell waste (AuNP), were analyzed as a transfection tool. AuNP were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) were used before and after conjugation with different nucleic acid (NA) types. Graphite furnace atomic absorption spectroscopy (GF-AAS) was used to determine the AuNP concentration. Conjugation was detected by electrophoresis. Confocal microscopy and quantitative real-time PCR (qPCR) were used to assess transfection. TEM, SEM, and EDS showed 25 nm AuNP with round shape. The amount of AuNP was 3.75 ± 0.2 µg/µL and FTIR proved conjugation of all NA types to AuNP. All the samples had a negative charge of - 36 to - 46 mV. Confocal microscopy confirmed internalization of the ssRNA-AuNP into eukaryotic cells and qPCR confirmed release and activity of carried RNA.
Collapse
Affiliation(s)
- P Pourali
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, Vesec, Czech Republic
| | - O Benada
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - M Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - V Benson
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Ahmadi SE, Shabestari RM, kojabad AA, Safa M. A straightforward microfluidic-based approach toward optimizing transduction efficiency of HIV-1-derived lentiviral vectors in BCP-ALL cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00792. [PMID: 36950261 PMCID: PMC10025989 DOI: 10.1016/j.btre.2023.e00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Background HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 μm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2μL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.
Collapse
|
17
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
18
|
Wang H, Tenkumo T, Nemoto E, Kanda Y, Ogawa T, Sasaki K. Introduction of tenomodulin by gene transfection vectors for rat bone tissue regeneration. Regen Ther 2023; 22:99-108. [PMID: 36712960 PMCID: PMC9842804 DOI: 10.1016/j.reth.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Periodontal ligament is regenerated in association with hard tissue regeneration. Tenomodulin (Tnmd) expression has been confirmed in periodontal ligament and it reportedly inhibits angiogenesis or is involved in collagen fibril maturation. The introduction of Tnmd by gene transfection in bone tissue regeneration therapy might inhibit topical hard tissue formation and induce the formation of dense fibrous tissue. Therefore, the effect of Tnmd introduction by gene transfection technique in vitro and in vivo was investigated in this study. Methods Osteogenesis- and chondrogenesis-related gene expression levels in osteoblastic cells (MC3T3E1) and rat bone marrow derived cells were detected using qPCR three days after gene transfection with plasmid DNA (Tnmd) using non-viral gene transfection vectors: a calcium phosphate-based gene transfection vector (CaP(Tnmd)) or a cationic polymer-based reagent (JetPEI (Tnmd)). Next, an atelocollagen scaffold with or without CaP (Tnmd) or JetPEI (Tnmd) was implanted into a rat calvaria bone defect, and the remaining bone defect volume and the tissue reaction at 28 days after surgery were evaluated. Results Runx 2 and SP7 mRNA was reduced by JetPEI (Tnmd) in both cells, but not in CaP(Tnmd). The volume of expressed Tnmd was at 9 ng/mL in both gene transfection vector. The remaining bone defect volume of JetPEI (Tnmd) was significantly bigger than that of the other groups and CaP (EGFP), and that of CaP (Tnmd) was significantly bigger than that of CaP (EGFP). Conclusions Tnmd introduction treatment inhibits bone formation in artificial bone defect, however, the effect of that was dependent on non-viral gene transfection vector.
Collapse
Affiliation(s)
- Han Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Corresponding author. Fax.: (+81)(022)717-8371.
| | - Eiji Nemoto
- Division of Periodontology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshiaki Kanda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
19
|
Chakrabarty P, Illath K, Kar S, Nagai M, Santra TS. Combinatorial physical methods for cellular therapy: Towards the future of cellular analysis? J Control Release 2023; 353:1084-1095. [PMID: 36538949 DOI: 10.1016/j.jconrel.2022.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The physical energy activated techniques for cellular delivery and analysis is one of the most rapidly expanding research areas for a variety of biological and biomedical discoveries. These methods, such as electroporation, optoporation, sonoporation, mechanoporation, magnetoporation, etc., have been widely used in delivering different biomolecules into a range of primary and patient-derived cell types. However, the techniques when used individually have had limitations in delivery and co-delivery of diverse biomolecules in various cell types. In recent years, a number of studies have been performed by combining the different membrane disruption techniques, either sequentially or simultaneously, in a single study. The studies, referred to as combinatorial, or hybrid techniques, have demonstrated enhanced transfection, such as efficient macromolecular and gene delivery and co-delivery, at lower delivery parameters and with high cell viability. Such studies can open up new and exciting avenues for understanding the subcellular structure and consequently facilitate the development of novel therapeutic strategies. This review consequently aims at summarising the different developments in hybrid therapeutic techniques. The different methods discussed include mechano-electroporation, electro-sonoporation, magneto-mechanoporation, magnetic nanoparticles enhanced electroporation, and magnetic hyperthermia studies. We discuss the clinical status of the different methods and conclude with a discussion on the future prospects of the combinatorial techniques for cellular therapy and diagnostics.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
20
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
21
|
Cascallar M, Hurtado P, Lores S, Pensado-López A, Quelle-Regaldie A, Sánchez L, Piñeiro R, de la Fuente M. Zebrafish as a platform to evaluate the potential of lipidic nanoemulsions for gene therapy in cancer. Front Pharmacol 2022; 13:1007018. [PMID: 36386231 PMCID: PMC9659613 DOI: 10.3389/fphar.2022.1007018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
Gene therapy is a promising therapeutic approach that has experienced significant groth in recent decades, with gene nanomedicines reaching the clinics. However, it is still necessary to continue developing novel vectors able to carry, protect, and release the nucleic acids into the target cells, to respond to the widespread demand for new gene therapies to address current unmet clinical needs. We propose here the use of zebrafish embryos as an in vivo platform to evaluate the potential of newly developed nanosystems for gene therapy applications in cancer treatment. Zebrafish embryos have several advantages such as low maintenance costs, transparency, robustness, and a high homology with the human genome. In this work, a new type of putrescine-sphingomyelin nanosystems (PSN), specifically designed for cancer gene therapy applications, was successfully characterized and demonstrated its potential for delivery of plasmid DNA (pDNA) and miRNA (miR). On one hand, we were able to validate a regulatory effect of the PSN/miR on gene expression after injection in embryos of 0 hpf. Additionally, experiments proved the potential of the model to study the transport of the associated nucleic acids (pDNA and miR) upon incubation in zebrafish water. The biodistribution of PSN/pDNA and PSN/miR in vivo was also assessed after microinjection into the zebrafish vasculature, demonstrating that the nucleic acids remained associated with the PSN in an in vivo environment, and could successfully reach disseminated cancer cells in zebrafish xenografts. Altogether, these results demonstrate the potential of zebrafish as an in vivo model to evaluate nanotechnology-based gene therapies for cancer treatment, as well as the capacity of the developed versatile PSN formulation for gene therapy applications.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Pablo Hurtado
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- DIVERSA Technologies S.L, Santiago de Compostela, Spain
| |
Collapse
|
22
|
Abpeikar Z, Alizadeh AA, Ahmadyousefi Y, Najafi AA, Safaei M. Engineered cells along with smart scaffolds: critical factors for improving tissue engineering approaches. Regen Med 2022; 17:855-876. [PMID: 36065834 DOI: 10.2217/rme-2022-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, gene delivery and its applications are discussed in tissue engineering (TE); also, new techniques such as the CRISPR-Cas9 system, synthetics biology and molecular dynamics simulation to improve the efficiency of the scaffolds have been studied. CRISPR-Cas9 is expected to make significant advances in TE in the future. The fundamentals of synthetic biology have developed powerful and flexible methods for programming cells via artificial genetic circuits. The combination of regenerative medicine and artificial biology allows the engineering of cells and organisms for use in TE, biomaterials, bioprocessing and scaffold development. The dynamics of protein adsorption at the scaffold surface at the atomic level can provide valuable guidelines for the future design of TE scaffolds /implants.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Yaghoub Ahmadyousefi
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838687, Iran
| | - Ali Akbar Najafi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
23
|
Tsakiri M, Zivko C, Demetzos C, Mahairaki V. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics. Front Pharmacol 2022; 13:900610. [PMID: 36016560 PMCID: PMC9395673 DOI: 10.3389/fphar.2022.900610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-delivery is a promising tool to develop therapies for difficult to treat diseases such as neurological disorders, by silencing pathological genes or expressing therapeutic proteins. However, in many cases RNA delivery requires a vesicle that could effectively protect the molecule from bio-degradation, bypass barriers i.e., the blood brain barrier, transfer it to a targeted tissue and efficiently release the RNA inside the cells. Many vesicles such as viral vectors, and polymeric nanoparticles have been mentioned in literature. In this review, we focus in the discussion of lipid-based advanced RNA-delivery platforms. Liposomes and lipoplexes, solid lipid nanoparticles and lipid nanoparticles are the main categories of lipidic platforms for RNA-delivery to the central nervous systems (CNS). A variety of surface particles' modifications and routes of administration have been studied to target CNS providing encouraging results in vivo. It is concluded that lipid-based nanoplatforms will play a key role in the development of RNA neuro-therapies.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Cristina Zivko
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Mahairaki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Baghery Saghchy Khorasani A, Yousefi AM, Bashash D. CAR NK cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 2022; 110:109041. [PMID: 35839565 DOI: 10.1016/j.intimp.2022.109041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Adoptive cell treatment (ACT) utilizing chimeric antigen receptors (CAR) diverts the specificity of safe cells against a target-specific antigen and portrays exceptional potential for cancer treatment. While CAR T cell treatment has risen as a breakthrough with unprecedented results within the therapeutic procedures of human malignancies, different deficiencies including challenging and costly generation processes, strict patient qualification criteria, and undesirable toxicity have ruined its application. Unlike T cells, the application of natural killer (NK) cells has attracted consideration as a reasonable alternative owing to the major histocompatibility complex (MHC)-independency, shorter life expectancy, the potential to create an off-the-shelf immune product, and potent antitumor properties. In this article, we provide an updated review of the differences between CAR T and CAR NK cells, current enhancements in CAR NK design, the available sources for collecting NK cells, and strategies for the transduction step of the CARs to NK cells. Furthermore, we focus on the published and ongoing preclinical and clinical studies of CAR NK treatment strategies both in hematologic malignancies and solid tumors. We also discuss limitations and plausible solutions to improve the perseverance, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
Affiliation(s)
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
26
|
Maiorano G, Guido C, Russo A, Giglio A, Rizzello L, Testini M, Cortese B, D’Amone S, Gigli G, Palamà IE. Hybrid Polyelectrolyte Nanocomplexes for Non-Viral Gene Delivery with Favorable Efficacy and Safety Profile. Pharmaceutics 2022; 14:pharmaceutics14071310. [PMID: 35890206 PMCID: PMC9323431 DOI: 10.3390/pharmaceutics14071310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
The development of nanovectors for precise gene therapy is increasingly focusing on avoiding uncontrolled inflammation while still being able to effectively act on the target sites. Herein, we explore the use of non-viral hybrid polyelectrolyte nanocomplexes (hPECs) for gene delivery, which display good transfection efficacy coupled with non-inflammatory properties. Monodisperse hPECs were produced through a layer-by-layer self-assembling of biocompatible and biodegradable polymers. The resulting nanocomplexes had an inner core characterized by an EGFP-encoding plasmid DNA (pDNA) complexed with linear polyethyleneimine or protamine (PEI or PRM) stabilized with lecithin and poly(vinyl alcohol) (PVA) and an outer layer consisting of medium-molecular-weight chitosan (CH) combined with tripolyphosphate (TPP). PEI- and PRM-hPECs were able to efficiently protect the genetic cargo from nucleases and to perform a stimuli-responsive release of pDNA overtime, thus guaranteeing optimal transfection efficiency. Importantly, hPECs revealed a highly cytocompatible and a non-inflammatory profile in vitro. These results were further supported by evidence of the weak and unspecific interactions of serum proteins with both hPECs, thus confirming the antifouling properties of their outer shell. Therefore, these hPECs represent promising candidates for the development of effective, safe nanotools for gene delivery.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
| | - Clara Guido
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy
| | - Annamaria Russo
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
| | - Andrea Giglio
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
| | - Loris Rizzello
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, G. Balzaretti 9 Street, 20133 Milan, Italy;
- National Institute of Molecular Genetics (INGM), Francesco Sforza 35 Street, 20122 Milan, Italy
| | - Mariangela Testini
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
| | - Barbara Cortese
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, c/o La Sapienza University, Piazzale Aldo Moro, 00185 Rome, Italy;
| | - Stefania D’Amone
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
| | - Giuseppe Gigli
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Nanotechnology Institute of National Research Council, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy; (G.M.); (C.G.); (A.R.); (A.G.); (M.T.); (S.D.); (G.G.)
- Correspondence:
| |
Collapse
|
27
|
Zhou H, Liu H, Zhang Y, Xin Y, Huang C, Li M, Zhao X, Ding P, Liu Z. "PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibody": Novel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. Drug Des Devel Ther 2022; 16:1515-1530. [PMID: 35611358 PMCID: PMC9124479 DOI: 10.2147/dddt.s351623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Gastric cancer is one of the most lethal malignancies in the world. However, the current research on the diagnosis and treatment of nano-ultrasound contrast agents in the field of tumor is mostly focused on breast cancer, ovarian cancer, prostate cancer, liver cancer, etc. Due to the interference of gas in the stomach, there is no report on the treatment of gastric cancer. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) therapy system is the most mature tumor suicide gene in cancer treatment. At the same time, in order to improve its safety and efficiency, we designed a gastric tumor targeted ultrasound-triggered phase-transition nano ultrasound contrast agent PFH/AGM-CBA/HSV-TK/Liposome (PAHL)-Affibody complex. Methods In our study, guanidinylated SS-PAAs polymer poly(agmatine/N, N′-cystamine-bis-acrylamide) (AGM-CBA) was used as a nuclear localization vector of suicide gene to form a polyplex, perfluorohexane (PFH) was used as ultrasound contrast agent, liposomes were used to encapsulate perfluorohexane droplets and the polyplexes of AGM-CBA/HSV-TK, and affibody molecules were conjugated to the prepared PAHL in order to obtain a specific targeting affinity to human epidermal growth factor receptor type 2 (ErbB2) at gastric cancer cells. With the aid of ultrasound targeted microbubble destruction technology and the nuclear localization effect of AGM-CBA vector, the transfection efficiency of the suicide gene in gastric cancer cells was significantly increased, leading to significant apoptosis of gastric cancer cells. Results It was shown that PAHL-Affibody complex was nearly spherical with an average diameter of 560 ± 28.9 nm, having higher and specific affinity to ErbB2 (+) gastric cells. In vitro experiments further confirmed that PAHL could target gastric cancer cells expressing ErbB2. In a contrast-enhanced ultrasound scanning study, the prepared ultrasound-triggered phase-change nano-ultrasound contrast agent, PAHL, showed improved ultrasound enhancement effects. With the application of the low-frequency ultrasound, the gene transfection efficiency of PAHL was significantly improved, thereby inducing significant apoptosis in gastric cancer cells. Conclusion This study constructs PFH/AGM-CBA/HSV-TK/Liposome-Affibody nano ultrasound contrast agent, which provides new ideas for the treatment strategy of ErbB2-positive gastric cancer and provides some preliminary experimental basis for its inhibitory effect.
Collapse
Affiliation(s)
- Houren Zhou
- Ultrasound Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yue Zhang
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ying Xin
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Chi Huang
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Mingzhong Li
- School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Xiaoyun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhijun Liu
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics. Genes (Basel) 2022; 13:genes13030425. [PMID: 35327979 PMCID: PMC8951370 DOI: 10.3390/genes13030425] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases originate from neuronal loss in the central nervous system (CNS). These debilitating diseases progress with age and have become common due to an increase in longevity. The National Institute of Environmental Health Science’s 2021 annual report suggests around 6.2 million Americans are living with Alzheimer’s disease, and there is a possibility that there will be 1.2 million Parkinson’s disease patients in the USA by 2030. There is no clear-cut universal mechanism for identifying neurodegenerative diseases, and therefore, they pose a challenge for neurobiology scientists. Genetic and environmental factors modulate these diseases leading to familial or sporadic forms. Prior studies have shown that miRNA levels are altered during the course of the disease, thereby suggesting that these noncoding RNAs may be the contributing factor in neurodegeneration. In this review, we highlight the role of miRNAs in the pathogenesis of neurodegenerative diseases. Through this review, we aim to achieve four main objectives: First, we highlight how dysregulation of miRNA biogenesis led to these diseases. Second, we highlight the computational or bioinformatics tools required to identify the putative molecular targets of miRNAs, leading to biological molecular pathways or mechanisms involved in these diseases. Third, we focus on the dysregulation of miRNAs and their target genes leading to several neurodegenerative diseases. In the final section, we highlight the use of miRNAs as potential diagnostic biomarkers in the early asymptomatic preclinical diagnosis of these age-dependent debilitating diseases. Additionally, we discuss the challenges and advances in the development of miRNA therapeutics for brain targeting. We list some of the innovative strategies employed to deliver miRNA into target cells and the relevance of these viral and non-viral carrier systems in RNA therapy for neurodegenerative diseases. In summary, this review highlights the relevance of studying brain-enriched miRNAs, the mechanisms underlying their regulation of target gene expression, their dysregulation leading to progressive neurodegeneration, and their potential for biomarker marker and therapeutic intervention. This review thereby highlights ways for the effective diagnosis and prevention of these neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07012, USA
- Correspondence:
| | - Erica Lee
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Teresa Li
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| | - Maria Rampersaud
- Department of Pathology, Icahn School of Medicine, New York, NY 10029, USA; (E.L.); (T.L.); (M.R.)
| |
Collapse
|
29
|
Seripracharat C, Sinthuvanich C, Karpkird T. Cationic cyclodextrin-adamantane poly(vinyl alcohol)-poly(ethylene glycol) assembly for siRNA delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Chrysostomou V, Forys A, Trzebicka B, Demetzos C, Pispas S. Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 2022; 203:379-388. [PMID: 35104473 DOI: 10.1016/j.ijbiomac.2022.01.162] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Chitosan is a natural alkaline polysaccharide, which widely exists in marine crustaceans such as shrimp and crab, has been shown to have various biological activities. It has attracted considerable attention in biomedicine and nanomaterials fields because of its excellent properties, such as biocompatibility, biodegradability, non-toxicity and easy access. In addition, because of active hydroxyl and amino groups in chitosan molecules, different functional groups can be introduced into chitosan molecules by molecular modification or chemical modification, which extends their applications. Nanoparticles with small size and large surface area can be used as diagnostic and therapeutic tools in the biomedical field, which make it easier to understand, detect and treat human diseases. The nanomaterials based on chitosan have important applications in biomedicine, industry, pharmacy, agriculture, and other fields. This review highlights the recent advances on chitosan-based nanoparticles for antibacterial property, drug and gene delivery, cancer and hyperthermia therapy, cell imaging, restorative dentistry, wound healing, tissue engineering and other biomedical fields. The nanotechnology fields involving biosensors, water treatment, food industry and agriculture are also briefly reviewed.
Collapse
|
32
|
Power RN, Cavanagh BL, Dixon JE, Curtin CM, O’Brien FJ. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. Int J Mol Sci 2022; 23:1460. [PMID: 35163379 PMCID: PMC8835777 DOI: 10.3390/ijms23031460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen-nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen-nanohydroxyapatite (coll-nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll-nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.
Collapse
Affiliation(s)
- Rachael N. Power
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | | | - James E. Dixon
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Caroline M. Curtin
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| |
Collapse
|
33
|
Chakrabarty P, Gupta P, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic mechanoporation for cellular delivery and analysis. Mater Today Bio 2022; 13:100193. [PMID: 35005598 PMCID: PMC8718663 DOI: 10.1016/j.mtbio.2021.100193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, Cambridge, CB30FA, UK
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
34
|
Yun CO, Kasala D, Lee SH, Hong JW, Oh E, Yoon AR. Bioreducible polymer-mediated delivery of oncolytic adenovirus can attenuate antiviral immune response and concurrently enhance induction of antitumor immune response to effectively prevent metastasis. Biomater Sci 2022; 10:4293-4308. [DOI: 10.1039/d2bm00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oncolytic virotherapy is highly promising and novel treatment modality for cancer. Several clinical trials with oncolytic viruses have illustrated that the potent antitumor efficacy of these viruses may rely on...
Collapse
|
35
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Pattnaik S, Chaudhury B, Mohapatra M. Exploration of Inorganic Materials with Antiviral Properties. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:53-74. [DOI: 10.1007/978-981-16-4372-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
37
|
Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021; 13:1391. [PMID: 34575464 PMCID: PMC8470549 DOI: 10.3390/pharmaceutics13091391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse amino acid sequences with the ability to cross cellular membranes. CPPs can deliver several bioactive cargos, including proteins, peptides, nucleic acids and chemotherapeutics, into cells. Ever since their discovery, synthetic and natural CPPs have been utilized in therapeutics delivery, gene editing and cell imaging in fundamental research and clinical experiments. Over the years, CPPs have gained significant attention due to their low cytotoxicity and high transduction efficacy. In the last decade, multiple investigations demonstrated the potential of CPPs as carriers for the delivery of therapeutics to treat various types of cancer. Besides their remarkable efficacy owing to fast and efficient delivery, a crucial benefit of CPP-based cancer treatments is delivering anticancer agents selectively, rather than mediating toxicities toward normal tissues. To obtain a higher therapeutic index and to improve cell and tissue selectivity, CPP-cargo constructions can also be complexed with other agents such as nanocarriers and liposomes to obtain encouraging outcomes. This review summarizes various types of CPPs conjugated to anticancer cargos. Furthermore, we present a brief history of CPP utilization as delivery systems for anticancer agents in the last decade and evaluate several reports on the applications of CPPs in basic research and preclinical studies.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mehdi Tahmasebi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
| | - Dennis W. P. M. Löwik
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
38
|
|
39
|
Khakhar A, Wang C, Swanson R, Stokke S, Rizvi F, Sarup S, Hobbs J, Voytas DF. VipariNama: RNA viral vectors to rapidly elucidate the relationship between gene expression and phenotype. PLANT PHYSIOLOGY 2021; 186:2222-2238. [PMID: 34009393 PMCID: PMC8331131 DOI: 10.1093/plphys/kiab197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Synthetic transcription factors have great promise as tools to help elucidate relationships between gene expression and phenotype by allowing tunable alterations of gene expression without genomic alterations of the loci being studied. However, the years-long timescales, high cost, and technical skill associated with plant transformation have limited their use. In this work, we developed a technology called VipariNama (ViN) in which vectors based on the tobacco rattle virus are used to rapidly deploy Cas9-based synthetic transcription factors and reprogram gene expression in planta. We demonstrate that ViN vectors can implement activation or repression of multiple genes systemically and persistently over several weeks in Nicotiana benthamiana, Arabidopsis (Arabidopsis thaliana), and tomato (Solanum lycopersicum). By exploring strategies including RNA scaffolding, viral vector ensembles, and viral engineering, we describe how the flexibility and efficacy of regulation can be improved. We also show how this transcriptional reprogramming can create predictable changes to metabolic phenotypes, such as gibberellin biosynthesis in N. benthamiana and anthocyanin accumulation in Arabidopsis, as well as developmental phenotypes, such as plant size in N. benthamiana, Arabidopsis, and tomato. These results demonstrate how ViN vector-based reprogramming of different aspects of gibberellin signaling can be used to engineer plant size in a range of plant species in a matter of weeks. In summary, ViN accelerates the timeline for generating phenotypes from over a year to just a few weeks, providing an attractive alternative to transgenesis for synthetic transcription factor-enabled hypothesis testing and crop engineering.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Surbhi Sarup
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - John Hobbs
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St Paul, Minneapolis 55108, USA
| |
Collapse
|
40
|
Mushimiyimana I, Niskanen H, Beter M, Laakkonen JP, Kaikkonen MU, Ylä-Herttuala S, Laham-Karam N. Characterization of a functional endothelial super-enhancer that regulates ADAMTS18 and angiogenesis. Nucleic Acids Res 2021; 49:8078-8096. [PMID: 34320216 PMCID: PMC8373076 DOI: 10.1093/nar/gkab633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Super-enhancers are clusters of enhancers associated with cell lineage. They can be powerful gene-regulators and may be useful in cell-type specific viral-vector development. Here, we have screened for endothelial super-enhancers and identified an enhancer from within a cluster that conferred 5–70-fold increase in transgene expression. Importantly, CRISPR/Cas9 deletion of enhancers demonstrated regulation of ADAMTS18, corresponding to evidence of chromatin contacts between these genomic regions. Cell division-related pathways were primarily affected by the enhancer deletions, which correlated with significant reduction in cell proliferation. Furthermore, we observed changes in angiogenesis-related genes consistent with the endothelial specificity of this SE. Indeed, deletion of the enhancers affected tube formation, resulting in reduced or shortened sprouts. The super-enhancer angiogenic role is at least partly due to its regulation of ADAMTS18, as siRNA knockdown of ADAMTS18 resulted in significantly shortened endothelial sprouts. Hence, functional characterization of a novel endothelial super-enhancer has revealed substantial downstream effects from single enhancer deletions and led to the discovery of the cis-target gene ADAMTS18 and its role in endothelial function.
Collapse
Affiliation(s)
- Isidore Mushimiyimana
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Mustafa Beter
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Johanna P Laakkonen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland.,Heart Center and Gene Therapy Unit; Kuopio University Hospital; Kuopio 70029, Finland
| | - Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| |
Collapse
|
41
|
Marofi F, Saleh MM, Rahman HS, Suksatan W, Al-Gazally ME, Abdelbasset WK, Thangavelu L, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Pathak Y, Naimi A, Baradaran B, Nikoo M, Khiavi FM. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Res Ther 2021; 12:374. [PMID: 34215336 PMCID: PMC8252313 DOI: 10.1186/s13287-021-02462-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Science, University of Anbar, Ramadi, Iraq
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
42
|
Haley RM, Gottardi R, Langer R, Mitchell MJ. Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Deliv Transl Res 2021; 10:661-677. [PMID: 32077052 DOI: 10.1007/s13346-020-00724-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene therapy is a powerful tool against genetic disorders and cancer, targeting the source of the disease rather than just treating the symptoms. While much of the initial success of gene delivery relied on viral vectors, non-viral vectors are emerging as promising gene delivery systems for efficacious treatment with decreased toxicity concerns. However, the delivery of genetic material is still challenging, and there is a need for vectors with enhanced targeting, reduced toxicity, and controlled release. In this article, we highlight current work in gene therapy which utilizes the cyclic oligosaccharide molecule cyclodextrin (CD). With a number of unique abilities, such as hosting small molecule drugs, acting as a linker or modular component, reducing immunogenicity, and disrupting membranes, CD is a valuable constituent in many delivery systems. These carriers also demonstrate great promise in combination therapies, due to the ease of assembling macromolecular structures and wide variety of chemical derivatives, which allow for customizable delivery systems and co-delivery of therapeutics. The use of combination and personalized therapies can result in improved patient health-modular systems, such as those which incorporate CD, are more conducive to these therapy types. Graphical abstract.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Fondazione Ri.MED, Palermo, Italy
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Kaladharan K, Kumar A, Gupta P, Illath K, Santra TS, Tseng FG. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. MICROMACHINES 2021; 12:631. [PMID: 34071732 PMCID: PMC8228766 DOI: 10.3390/mi12060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| |
Collapse
|
44
|
Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. Eur J Med Chem 2021; 221:113572. [PMID: 34087497 DOI: 10.1016/j.ejmech.2021.113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
45
|
Emanuel MD, Cherstvy AG, Metzler R, Gompper G. Buckling transitions and soft-phase invasion of two-component icosahedral shells. Phys Rev E 2021; 102:062104. [PMID: 33465945 DOI: 10.1103/physreve.102.062104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.
Collapse
Affiliation(s)
- Marc D Emanuel
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Kavli Institute for Nanoscience, Technical University Delft, 2628 CJ Delft, Netherlands
| | - Andrey G Cherstvy
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
46
|
Gränicher G, Tapia F, Behrendt I, Jordan I, Genzel Y, Reichl U. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Biotechnol J 2021; 16:e2000024. [PMID: 32762152 PMCID: PMC7435511 DOI: 10.1002/biot.202000024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1-16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Ilona Behrendt
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
- Chair for Bioprocess EngineeringOtto‐von‐Guericke‐University MagdeburgUniversitätsplatz 2Magdeburg39106Germany
| |
Collapse
|
47
|
Chung SH, Sin TN, Ngo T, Yiu G. CRISPR Technology for Ocular Angiogenesis. Front Genome Ed 2020; 2:594984. [PMID: 34713223 PMCID: PMC8525361 DOI: 10.3389/fgeed.2020.594984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Among genome engineering tools, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based approaches have been widely adopted for translational studies due to their robustness, precision, and ease of use. When delivered to diseased tissues with a viral vector such as adeno-associated virus, direct genome editing can be efficiently achieved in vivo to treat different ophthalmic conditions. While CRISPR has been actively explored as a strategy for treating inherited retinal diseases, with the first human trial recently initiated, its applications for complex, multifactorial conditions such as ocular angiogenesis has been relatively limited. Currently, neovascular retinal diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration, which together constitute the majority of blindness in developed countries, are managed with frequent and costly injections of anti-vascular endothelial growth factor (anti-VEGF) agents that are short-lived and burdensome for patients. By contrast, CRISPR technology has the potential to suppress angiogenesis permanently, with the added benefit of targeting intracellular signals or regulatory elements, cell-specific delivery, and multiplexing to disrupt different pro-angiogenic factors simultaneously. However, the prospect of permanently suppressing physiologic pathways, the unpredictability of gene editing efficacy, and concerns for off-target effects have limited enthusiasm for these approaches. Here, we review the evolution of gene therapy and advances in adapting CRISPR platforms to suppress retinal angiogenesis. We discuss different Cas9 orthologs, delivery strategies, and different genomic targets including VEGF, VEGF receptor, and HIF-1α, as well as the advantages and disadvantages of genome editing vs. conventional gene therapies for multifactorial disease processes as compared to inherited monogenic retinal disorders. Lastly, we describe barriers that must be overcome to enable effective adoption of CRISPR-based strategies for the management of ocular angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
48
|
Lasareishvili B, Shi H, Wang X, Hillstead KD, Tediashvili M, Jaiani E, Tarabara VV. Virus recovery by tangential flow filtration: A model to guide the design of a sample concentration process. Biotechnol Prog 2020; 37:e3080. [PMID: 32985140 DOI: 10.1002/btpr.3080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
A simple model is developed to describe the instantaneous (rv ) and cumulative (Rv ) recovery of viruses from water during sample concentration by tangential flow filtration in the regime of constant water recovery, r. A figure of merit, M = rv r, is proposed as an aggregate performance metric that captures both the efficiency of virus recovery and the speed of sample concentration. We derive an expression for virus concentration in the sample as a function of filtration time with the rate-normalized virus loss, η = 1 - r v r , as a parameter. A practically relevant case is considered when the rate of virus loss is proportional to the permeation-driven mass flux of viruses to the membrane: d m ad dt ∼ Q p C f ≫ Q p C p . In this scenario, the instantaneous recovery is constant, the cumulative recovery is decreasing as a power function of time, R v = 1 - Q p V 0 t η , η mediates the trade-off between r and rv , and M is maximized at r = r opt = 1 2 η . The proposed model can guide the design of the sample concentration process and serve as a framework for quantification and interlaboratory comparison of experimental data on virus recovery.
Collapse
Affiliation(s)
- Besarion Lasareishvili
- School of Engineering and Technologies, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia
| | - Hang Shi
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Xunhao Wang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Kyle D Hillstead
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Marina Tediashvili
- Giorgi Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | - Ekaterine Jaiani
- Giorgi Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
49
|
Zhang T, Xu Q, Huang T, Ling D, Gao J. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001588. [PMID: 32725792 DOI: 10.1002/smll.202001588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Gene delivery to stem cells is a critical issue of stem cells-based therapies, still facing ongoing challenges regarding efficiency and safety. Recent advances in the controlled synthesis of biocompatible magnetic iron oxide nanoparticles (IONPs) have provided a powerful nanotool for assisting gene delivery to stem cells. However, this field is still at an early stage, with well-designed and scalable IONPs synthesis highly desired. Furthermore, the potential risks or bioeffects of IONPs on stem cells are not completely figured out. Therefore, in this review, the updated researches focused on the gene delivery to stem cells using various designed IONPs are highlighted. Additionally, the impacts of the physicochemical properties of IONPs, as well as the magnetofection systems on the gene delivery performance and biocompatibility are summarized. Finally, challenges attributed to the potential impacts of IONPs on the biologic behaviors of stem cells and the large-scale productions of uniform IONPs are emphasized. The principles and challenges summarized in this review provide a general guidance for the rational design of IONPs-assisted gene delivery to stem cells.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
50
|
Nazari-Shafti TZ, Neuber S, Garcia Duran A, Xu Z, Beltsios E, Seifert M, Falk V, Stamm C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med 2020; 9:1558-1569. [PMID: 32761804 PMCID: PMC7695640 DOI: 10.1002/sctm.19-0432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) offer great potential for the treatment of cardiovascular diseases (CVDs) such as myocardial infarction and heart failure. Studies have revealed that the efficacy of MSCs is mainly attributed to their capacity to secrete numerous trophic factors that promote angiogenesis, inhibit apoptosis, and modulate the immune response. There is growing evidence that MSC‐derived extracellular vesicles (EVs) containing a cargo of lipids, proteins, metabolites, and RNAs play a key role in this paracrine mechanism. In particular, encapsulated microRNAs have been identified as important positive regulators of angiogenesis in pathological settings of insufficient blood supply to the heart, thus opening a new path for the treatment of CVD. In the present review, we discuss the current knowledge related to the proangiogenic potential of MSCs and MSC‐derived EVs as well as methods to enhance their biological activities for improved cardiac tissue repair. Increasing our understanding of mechanisms supporting angiogenesis will help optimize future approaches to CVD intervention.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Garcia Duran
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhiyi Xu
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleftherios Beltsios
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Division of Cardiovascular Surgery, University of Zurich, Zurich, Switzerland
| | - Christof Stamm
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|