1
|
Gulam SM, Thomas D, Ahamed F, Baker DE. Prospective Audit and Feedback of Targeted Antimicrobials Use at a Tertiary Care Hospital in the United Arab Emirates. Antibiotics (Basel) 2025; 14:237. [PMID: 40149048 PMCID: PMC11939576 DOI: 10.3390/antibiotics14030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial stewardship programs improve antimicrobial use and help combat antimicrobial resistance. The Infectious Disease Society of America's (IDSA) recommended core interventions include prospective audit and feedback along with formulary restriction and preauthorization. IDSA recommends any one of these interventions be implemented in acute care hospitals to improve antimicrobial stewardship. The objective of this project was to implement a prospective audit and feedback system using selected antimicrobials at a tertiary care hospital in the United Arab Emirates as the foundation to build an antimicrobial stewardship program. Results: A total of 497 patients met the inclusion and exclusion criteria during the study period; the post-intervention group had 260 patients, and the control group had 237 patients. After the implementation of the program, a total of 186 interventions were recommended, and 76% were accepted. The length of stay, length of therapy, and days of therapy were lower in the intervention group compared to the control group (p < 0.05). There was no statistically significant difference in clinical outcome measures (e.g., 30-day readmission, 30-day all-cause mortality, 30-day emergency visit with the same infection, and 60-day readmission). Methods: This single-center quasi-experimental research was conducted from August 2023 to July 2024. A pharmacist-led prospective audit and feedback system was initiated in February 2024 after review and approval of the medical staff, in addition to formulary restrictions. Data from patients receiving the selected antimicrobial before February 2024 were collected from their charts and related medical records without any intervention; this was used by our control group. After implementation, the hospital pharmacy's records were evaluated during the night shift to determine whether they met the inclusion criteria. The records of the eligible patients were then evaluated by the clinical pharmacist. In case of antimicrobial inappropriateness, feedback was provided to the prescriber. If the recommendation was not accepted, succeeding reviews and feedback were provided on subsequent days. The effectiveness of the intervention was measured using clinical and antibiotic use measures. Conclusions: Implementation of a pilot pharmacist-led antimicrobial stewardship program resulted in modification in antimicrobial use measures (i.e., defined daily doses of targeted antimicrobials and days of antimicrobial therapy) without an increase in length of stay or readmissions or mortality.
Collapse
Affiliation(s)
- Shabaz Mohiuddin Gulam
- College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
- Clinical Pharmacy Department, Thumbay University Hospital, Ajman 4184, United Arab Emirates
| | - Dixon Thomas
- College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fiaz Ahamed
- Infection Control Department, Thumbay University Hospital, Ajman 4184, United Arab Emirates;
| | - Danial E. Baker
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
2
|
Paritala ST, Sharma N, Shah RP. In-situ formation and evaluation of N-nitrosamine drug substance related impurities in glycopeptides implying orbitrap mass spectrometry. J Pharm Sci 2025; 114:934-948. [PMID: 39612987 DOI: 10.1016/j.xphs.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Nitrosamines, a class of N-nitroso compounds, have raised significant health concerns due to their established carcinogenicity. ICH M7 enlisted N-nitroso compounds in the so called cohorts of concern due to their carcinogenic effects. Glycopeptides (GPs) are complex molecules composed of peptide and glycan moieties. GPs serve as the last resort for the mitigation of bacterial infections, particularly against gram-positive bacteria. GPs are susceptible to nitrosamine drug substance related impurities (NDSRIs) contamination due to the presence of secondary amine in their core structure. The incidence of formation of NDSRI impurities in GPs could be either during their semi-synthetic route or storage. However, till date, no studies have been reported on the occurrence of NDSRI in GPs which is a pre-requisite. Hence, the current study investigates the plausible mechanisms and detection methods for the NDSRI in GPs. In-situ studies were performed to evaluate the possible formation of NDSRI in GPs. In the current study, GPs of different generations were screened for their potential of forming NDSRI impurities implying nitrosating agent. LC and LCHRMS/MS studies were performed to identify the in-situ generated impurities. Interestingly, the formation of NDSRIs is evident in all the selected GPs. The molecular mechanisms and pathways for individual GPs and respective NDSRIs were elucidated. Interestingly, isomeric NDSRIs were also identified during in-situ generated samples. Using CPCA the potency scores and acceptable intakes for the NDSRIs were evaluated. Thus, this work aims to enhance the safety and efficacy of GPs ensuring compliance with the regulatory standards by advancing the understanding of NDSRIs in GPs.
Collapse
Affiliation(s)
- Sree Teja Paritala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
3
|
Tabuchi F, Mikami K, Miyauchi M, Sekimizu K, Miyashita A. Discovery of new AMR drugs targeting modulators of antimicrobial activity using in vivo silkworm screening systems. J Antibiot (Tokyo) 2025; 78:69-77. [PMID: 39543333 PMCID: PMC11769840 DOI: 10.1038/s41429-024-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Global concerns about drug-resistant bacteria have underscored the need for new antimicrobial drugs. Emerging strategies in drug discovery include considering the third factors that influence drug activity. These factors include host-derived elements, adjuvants, and drug combinations, which are crucial in regulating antimicrobial efficacy. Traditional in vivo assessments have relied on animal models to study drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). Alternative models, such as silkworms, are being explored to overcome the ethical and financial barriers associated with mammalian models. The silkworm has been proven effective in evaluating ADMET and in highlighting the therapeutic potential enhanced by third factors. Host factors (either mammalian or non-mammalian) enhance the antimicrobial activity of antimicrobial agents such as lysocin E. Additionally, using D-cycloserine to potentiate vancomycin has successfully combated vancomycin-resistant infections in silkworms. Leveraging silkworms in drug discovery could establish a novel screening method incorporating interactions with third factors, whether host related or non-host-related, thus promising new pathways for identifying antimicrobial drugs with unique mechanisms of action.
Collapse
Affiliation(s)
- Fumiaki Tabuchi
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Kazuhiro Mikami
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
- Graduate School of Medical Care and Technology, Teikyo University, Itabashi, Tokyo, Japan
| | - Masanobu Miyauchi
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Faculty of Pharma-Science, Teikyo University, Itabashi, Tokyo, Japan
| | - Atsushi Miyashita
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan.
| |
Collapse
|
4
|
Queiroz HA, da Silva LJ, Barroso FDD, Valente Sá LGDA, de Andrade Neto JB, da Costa ÉRM, de Oliveira LC, Barbosa AD, Cabral VPDF, Rodrigues DS, Moreira LEA, Cavalcanti BC, Magalhães IL, de Moraes MO, Nobre Júnior HV, da Silva CR. Evaluation of amlodipine against strains of Candida spp. in planktonic cells, developing biofilms and mature biofilms. Future Microbiol 2024; 19:1365-1375. [PMID: 39235062 PMCID: PMC11552476 DOI: 10.1080/17460913.2024.2390286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To evaluate the antifungal activity of amlodipine against strains of Candida spp. and to its possible mechanism of action.Methods: Broth microdilution tests were used to determine the minimum inhibitory concentration, while the synergistic activity was evaluated by calculating the fractional inhibitory concentration index. The action of amlodipine against biofilms was determined using the MTT assay and its possible mechanism of action was investigated through flow cytometry tests.Results: Amlodipine showed MICs ranging from 62.5 to 250 μg/ml, in addition to action against pre-formed and forming biofilms, with reductions between 50 and 90%. Amlodipine increases the externalization of phosphatidylserine and reduces the cell viability of fungal cells, suggesting apoptosis.Conclusion: Amlodipine had good antifungal activity against planktonic cells and biofilms of Candida spp., by leading the cells to apoptosis.
Collapse
Affiliation(s)
- Helaine Almeida Queiroz
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Érica Rayanne Motta da Costa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Leilson Carvalho de Oliveira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Islay Lima Magalhães
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Vicar EK, Acquah SEK, Wallana W, Kuugbee ED, Osbutey EK, Aidoo A, Acheampong E, Mensah GI. Urinary Tract Infection and Associated Factors among Pregnant Women Receiving Antenatal Care at a Primary Health Care Facility in the Northern Region of Ghana. Int J Microbiol 2023; 2023:3727265. [PMID: 37303774 PMCID: PMC10256441 DOI: 10.1155/2023/3727265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Urinary tract infection (UTI) is frequently encountered during pregnancy and is associated with adverse maternal, fetal, and neonatal effects. However, very little information is available on the prevalence of UTI among pregnant women in the northern part of Ghana, a region with a high birth rate. This study employed a cross-sectional analysis of the prevalence, antimicrobial profile, and risk factors associated with UTI in 560 pregnant women attending primary care for antenatal check-ups. Sociodemographic obstetrical history and personal hygiene information were obtained using a well-structured questionnaire. Afterward, clean catch mid-stream urine samples were collected from all participants and subjected to routine microscopy examination and culture. Of 560 pregnant women, 223 cases (39.8%) were positive for UTI. There was a statistically significant association between sociodemographic, obstetric, and personal hygiene variables and UTI (p < 0.0001). Escherichia coli (27.8%) was the commonest bacterial isolate followed by CoNS (13.5%) and Proteus species (12.6%). These isolates exhibited greater resistance to ampicillin (70.1-97.3%) and cotrimoxazole (48.1-89.7%) but were fairly susceptible to gentamycin and ciprofloxacin. Gram-negative resistance to meropenem was up to 25.0%, and Gram positives resistance to cefoxitin and vancomycin was up to 33.3% and 71.4% respectively. The current findings extend our knowledge of the high frequency of UTIs and associated risk factors in pregnant women with E. Coli being the predominant and usual isolate. Variation existed in the resistance pattern of isolates to various drugs, underscoring the need to perform urine culture and susceptibility before treatment.
Collapse
Affiliation(s)
- Ezekiel K. Vicar
- Department of Clinical Microbiology, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Samuel E. K. Acquah
- Department of Infectious Diseases, School of Allied Health Science, University for Development Studies, Tamale, Northern Region, Ghana
| | - Williams Wallana
- Department of Clinical Microbiology, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Eugene D. Kuugbee
- School of Medical Sciences, C. K. Tedam University of Science and Technology, Navrongo, Upper East. Region, Ghana
| | - Emmanuel K. Osbutey
- Department of Anatomy, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Abigail Aidoo
- Department of Midwifery and Women's Health, School of Nursing and Midwifer, University for Development Studies, Tamale, Northern Region, Ghana
| | - Emmanuel Acheampong
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Health and Medical Sciences, Edith Cowan University, Joondalup, Australia
| | - Gloria Ivy Mensah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon Greater Accra Region, Accra, Ghana
| |
Collapse
|
7
|
Molinelli E, De Simoni E, Candelora M, Sapigni C, Brisigotti V, Rizzetto G, Offidani A, Simonetti O. Systemic Antibiotic Therapy in Hidradenitis Suppurativa: A Review on Treatment Landscape and Current Issues. Antibiotics (Basel) 2023; 12:978. [PMID: 37370297 DOI: 10.3390/antibiotics12060978] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, and inflammatory skin disease characterized by painful, deep-seated, nodules, abscesses, and sinus tracts in sensitive areas of the body, including axillary, inguinal, and anogenital regions. Antibiotics represent the first-line pharmacological treatment of HS because of their anti-inflammatory properties and antimicrobial effects. This narrative review summarizes the most significant current issues on the role of systemic antibiotics in the management of HS, critically analyzing the main limits of their use (antibiotic resistance and toxicity). Although, in the last decades, several cytokines have been implicated in the pathomechanism of HS and the research on the use of novel biologic agents in HS has been intensified, antibiotics remain a valid therapeutic approach. Future challenges regarding antibiotic therapy in HS comprise their use in association with biologics in the management of acute flare or as a bridge therapy to surgery.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Edoardo De Simoni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Matteo Candelora
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| |
Collapse
|
8
|
Jakob B, Schneider N, Gengenbach L, Manolikakes G. Palladium-catalyzed enantioselective three-component synthesis of α-arylglycine derivatives from glyoxylic acid, sulfonamides and aryltrifluoroborates. Beilstein J Org Chem 2023; 19:719-726. [PMID: 37284589 PMCID: PMC10241097 DOI: 10.3762/bjoc.19.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
A palladium-catalyzed enantioselective three-component reaction of glyoxylic acid, sulfonamides and aryltrifluoroborates is described. This process provides modular access to the important α-arylglycine motif in moderate to good yields and enantioselectivies. The formed α-arylglycine products constitute useful building blocks for the synthesis of peptides or arylglycine-containing natural products.
Collapse
Affiliation(s)
- Bastian Jakob
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, D-67663 Kaiserslautern, Germany
| | - Nico Schneider
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, D-67663 Kaiserslautern, Germany
| | - Luca Gengenbach
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, D-67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, D-67663 Kaiserslautern, Germany
| |
Collapse
|
9
|
Zi D, Shimadate Y, Wang JZ, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Design, synthesis and glycosidase inhibition of DAB derivatives with C-4 peptide and dipeptide branches. Org Biomol Chem 2023; 21:2729-2741. [PMID: 36916165 DOI: 10.1039/d3ob00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A series of DAB-peptide and DAB-dipeptide derivatives were synthesized from D-tartrate-derived nitrone 18. The DAB peptides 16 are derivatives of trans,trans-3,4-dihydroxy-L-proline. Glycosidase inhibition assay found four of them to be weak and selective bovine liver β-galactosidase inhibitors, and the C-2' methyl substituted compound 23b showed the most potent β-galactosidase inhibition (IC50 = 0.66 μM). Molecular docking studies revealed different docking modes of compound 23b compared to those of other DAB-peptides, and partial similarity of compound 23b to DGJ.
Collapse
Affiliation(s)
- Dong Zi
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Jun-Zhe Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Jakob B, Diehl AM, Horst K, Kelm H, Manolikakes G. Palladium-catalyzed asymmetric three-component reaction between glyoxylic acid, sulfonamides and arylboronic acids for the synthesis of α-arylglycine derivatives. Front Chem 2023; 11:1165618. [PMID: 36993813 PMCID: PMC10040839 DOI: 10.3389/fchem.2023.1165618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
A palladium-catalyzed asymmetric three-component synthesis of α-arylglycine derivatives starting from glyoxylic acid, sulfonamides and arylboronic acids is reported. This novel, operationally simple method offers access to the α-arylglycine scaffold in good yields and enantioselectivities. The utilization of α tailored catalyst system enables the enantioselective synthesis of the desired α-arylglycines despite a fast racemic background reaction. The obtained products can be directly employed as building blocks in peptide synthesis.
Collapse
|
11
|
Moore MJ, Qin P, Keith DJ, Boger DL. Improved preparative enzymatic glycosylation of vancomycin aglycon and analogues. Tetrahedron 2023; 131:133211. [PMID: 36776940 PMCID: PMC9913888 DOI: 10.1016/j.tet.2022.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modifications to the enzymatic glycosylation of vancomycin and its residue 4 thioamide analogue are detailed that significantly reduce the enzyme loading and amount of glycosyl donor needed for each glycosylation reaction, provide a streamlined synthesis and replacement for the synthetic UDP-vancosamine glycosyl donor to improve both access and storage stability, and permit a single-pot, two-step conversion of the aglycons to the fully glycosylated synthetic glycopeptides now conducted at higher concentrations. The improvements are exemplified with the two-step, one-pot glycosylation of [Ψ[C(=S)NH]Tpg4]vancomycin aglycon (92%) conducted on a 400 mg scale (2 mg to 1 g scales) and vancomycin aglycon itself (5 mg scale, 84%).
Collapse
Affiliation(s)
- Maxwell J. Moore
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Pengjin Qin
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - D. Jamin Keith
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
12
|
Surette MD, Waglechner N, Koteva K, Wright GD. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell 2022; 82:3151-3165.e9. [PMID: 35907401 DOI: 10.1016/j.molcel.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/15/2022] [Accepted: 06/12/2022] [Indexed: 10/16/2022]
Abstract
Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.
Collapse
Affiliation(s)
- Matthew D Surette
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicholas Waglechner
- Toronto Invasive Bacterial Diseases Network, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
13
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Jakaria SM, Budil DE, Murtagh J. Glycopeptide antibiotic drug stability in aqueous solution. AAPS OPEN 2022; 8:20. [PMCID: PMC9742044 DOI: 10.1186/s41120-022-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Glycopeptide antimicrobials are a class of naturally occurring or semi-synthetic glycosylated products that have shown antibacterial activity against gram-positive organisms by inhibiting cell-wall synthesis. In most cases, these drugs are prepared in dry powder (lyophilized) form due to chemical and physical instability in aqueous solution; however, from an economic and practical point of view, liquid formulations are preferred. Researchers have recently found ways to formulate some glycopeptide antibiotic therapeutic drugs in aqueous solution at refrigerated or room temperature. Chemical degradation can be significantly slowed by formulating them at a defined pH with specific buffers, avoiding oxygen reactive species, and minimizing solvent exposure. Sugars, amino acids, polyols, and surfactants can reduce physical degradation by restricting glycopeptide mobility and reducing solvent interaction. This review focuses on recent studies on glycopeptide antibiotic drug stability in aqueous solution. It is organized into three sections: (i) glycopeptide antibiotic instability due to chemical and physical degradation, (ii) strategies to improve glycopeptide antibiotic stability in aqueous solution, and (iii) a survey of glycopeptide antibiotic drugs currently available in the market and their stability based on published literature and patents. Antimicrobial resistance deaths are expected to increase by 2050, making heat-stable glycopeptides in aqueous solution an important treatment option for multidrug-resistant and extensively drug-resistant pathogens. In conclusion, it should be possible to formulate heat stable glycopeptide drugs in aqueous solution by understanding the degradation mechanisms of this class of therapeutic drugs in greater detail, making them easily accessible to developing countries with a lack of cold chains.
Collapse
Affiliation(s)
- Sardar M. Jakaria
- Hikma Pharmaceuticals, Bedford, OH 44146 USA ,grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, MA 02115 Boston, USA
| | - David E. Budil
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, MA 02115 Boston, USA
| | | |
Collapse
|
15
|
Amiss AS, von Pein JB, Webb JR, Condon ND, Harvey PJ, Phan MD, Schembri MA, Currie BJ, Sweet MJ, Craik DJ, Kapetanovic R, Henriques ST, Lawrence N. Modified horseshoe crab peptides target and kill bacteria inside host cells. Cell Mol Life Sci 2021; 79:38. [PMID: 34971427 PMCID: PMC11071844 DOI: 10.1007/s00018-021-04041-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/14/2022]
Abstract
Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.
Collapse
Affiliation(s)
- Anna S Amiss
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, 0811, Australia
| | - Nicholas D Condon
- Australian Cancer Research Foundation/Institute for Molecular Bioscience Cancer Biology Imaging Facility, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, 0811, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, NT, 0811, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, BS, Switzerland.
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland University of Technology, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, 4102, Australia.
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
16
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
17
|
Li D, Chen H, Liu H, Schlenk D, Mu J, Lacorte S, Ying GG, Xie L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106543. [PMID: 33813231 DOI: 10.1016/j.envint.2021.106543] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Anticancer drugs are a group of therapeutic agents used to enhance cell death in targeted cell types of neoplasia. Because of frequent use and eventual discharge, they have been often detected in wastewater from pharmaceutical factories and hospitals, domestic wastewater, and surface waters. The occurrence of these drugs in aquatic ecosystems and their effects on aquatic organisms have been poorly characterized. This review focuses on the global occurrence of major classes of anticancer drugs in water and sediments of freshwater ecosystems and their ecotoxicological effects at different biological levels. While the availability of data is fairly limited, concentrations of most anticancer drugs range from < 2 ng/L to 762 µg/L in receiving water, while levels in sediments and sludge vary from 0.25 to 42.5 µg/kg. Their detection frequencies were 58%, 52% (78%) and 59% in hospital wastewater, wastewater treatment plant effluents (influents) and surface water, respectively. Predicted log Kow values of vincristine, imatinib mesylate and tamoxifen are higher than 3 and have estimated half-lives>60 d in waters using quantitative structure-activity relationship models, indicating high potential for persistence and bioaccumulation. Based on a species sensitivity distribution evaluation of 9 compounds, crustaceans are most sensitive to anticancer drugs. The most hazardous compound is cisplatin which has a hazard concentration at the 5th percentile. For Daphnia magna, the acute toxicities of major classes of anticancer drugs are ranked as platinum complexes > endocrine therapy agents > antibiotics > antimetabolite agents > alkylating agents. Using hazard quotient analysis based primarily on the lowest observed effect concentrations (LOECs), cyclophosphamide, cisplatin, 5-fluorouracil, imatinib mesylate, bicalutamide, etoposide and paclitaxel have the highest hazard for aquatic organisms. Further research is needed to identify appropriate chronic endpoints for risk assessment thresholds as well as to better understand the mechanisms of action and the potential multigenerational toxicity, and trophic transfer in ecosystems.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
18
|
Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101389] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Abstract
During the past 85 years of antibiotic use, we have learned a great deal about how these 'miracle' drugs work. We know the molecular structures and interactions of these drugs and their targets and the effects on the structure, physiology and replication of bacteria. Collectively, we know a great deal about these proximate mechanisms of action for virtually all antibiotics in current use. What we do not know is the ultimate mechanism of action; that is, how these drugs irreversibly terminate the 'individuality' of bacterial cells by removing barriers to the external world (cell envelopes) or by destroying their genetic identity (DNA). Antibiotics have many different 'mechanisms of action' that converge to irreversible lethal effects. In this Perspective, we consider what our knowledge of the proximate mechanisms of action of antibiotics and the pharmacodynamics of their interaction with bacteria tell us about the ultimate mechanisms by which these antibiotics kill bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA.
- Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Khamooshi H, Dahrazma B, Ebrahimi A, Davoodi S. A batch study on the adsorption/desorption behavior of vancomycin on bentonite nanoparticles in aqueous solutions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2603-2612. [PMID: 33339812 DOI: 10.2166/wst.2020.499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, adsorption/desorption of vancomycin (VAN) on bentonite nanoparticles was investigated in a batch system. Adsorption experiments were carried out as a function of several influential parameters such as adsorbent dosage, pH, contact time and ionic strength. Bentonite nanoparticles were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, and Fourier transform infrared (FTIR) analyses and the mesoporous structure was revealed. Langmuir, Freundlich, and Temkin isotherm models were applied for the examination of equilibrium data, and Langmuir was found to be the best fit. With the increase in pH and ionic strength, the adsorption capacity decreases, which suggests the adsorption process may be dominated by the cation exchange mechanism. Moreover, VAN desorption from bentonite nanoparticles in two initial VAN loadings was investigated under different concentrations of metallic cations of various valences (Na+, Ca2+, Al3+), and pHs 3-10. Desorption was strongly pH-dependent and the amount of VAN desorbed increased with increasing cations concentrations. The FTIR analysis before and after VAN desorption suggests that the formation of Al-VAN and Ca-VAN complexes on the solid surface and then their detachment from the solid surface may contribute to the higher VAN desorption by Al3+ and Ca2+.
Collapse
Affiliation(s)
- Hossein Khamooshi
- Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran E-mail:
| | - Behnaz Dahrazma
- Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran E-mail:
| | - Ali Ebrahimi
- Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran E-mail:
| | - Siavash Davoodi
- Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran E-mail:
| |
Collapse
|
21
|
Wu ZC, Boger DL. Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin. Acc Chem Res 2020; 53:2587-2599. [PMID: 33138354 DOI: 10.1021/acs.accounts.0c00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, vancomycin has been used in the clinic for >60 years. Because of their durability, vancomycin and related glycopeptides serve as the antibiotics of last resort for the treatment of protracted bacterial infections of resistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Streptococcus pneumoniae. After 30 years of use, vancomycin resistance was first observed and is now widespread in enterococci and more recently in S. aureus. The widespread prevalence of vancomycin-resistant enterococci (VRE) and the emergence of vancomycin-resistant S. aureus (VRSA) represent a call to focus on the challenge of resistance, highlight the need for new therapeutics, and provide the inspiration for the design of more durable antibiotics less prone to bacterial resistance than even vancomycin.Herein we summarize progress on efforts to overcome vancomycin resistance, first addressing recovery of its original durable mechanism of action and then introducing additional independent mechanisms of action intended to increase the potency and durability beyond that of vancomycin itself. The knowledge of the origin of vancomycin resistance and an understanding of the molecular basis of the loss of binding affinity between vancomycin and the altered target ligand d-Ala-d-Lac provided the basis for the subtle and rational redesign of the vancomycin binding pocket to remove the destabilizing lone-pair repulsion or reintroduce a lost H-bond while not impeding binding to the unaltered ligand d-Ala-d-Ala. Preparation of the modified glycopeptide core structure was conducted by total synthesis, providing binding pocket-modified vancomycin aglycons with dual d-Ala-d-Ala/d-Lac binding properties that directly address the intrinsic mechanism of resistance to vancomycin. Fully glycosylated pocket-modified vancomycin analogues were generated through a subsequent two-step enzymatic glycosylation, providing a starting point for peripheral modifications used to introduce additional mechanisms of action. A well-established vancosamine N-(4-chlorobiphenyl)methyl (CBP) modification as well as newly discovered C-terminal trimethylammonium cation (C1) or guanidine modifications were introduced, providing two additional synergistic mechanisms of action independent of d-Ala-d-Ala/d-Lac binding. The CBP modification provides an additional stage for inhibition of cell wall synthesis that results from direct competitive inhibition of transglycosylase, whereas the C1/guanidine modification induces bacteria cell permeablization. The synergistic behavior of the three independent mechanisms of action combined in a single molecule provides ultrapotent antibiotics (MIC = 0.01-0.005 μg/mL against VanA VRE). Beyond the remarkable antimicrobial activity, the multiple mechanisms of action suppress the rate at which resistance may be selected, where any single mechanism of action is protected by the action of others. The results detailed herein show that rational targeting of durable vancomycin-derived antibiotics has generated compounds with a "resistance against resistance", provided new candidate antibiotics, and may serve as a generalizable strategy to combat antibacterial resistance.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Wu ZC, Cameron MD, Boger DL. Vancomycin C-Terminus Guanidine Modifications and Further Insights into an Added Mechanism of Action Imparted by a Peripheral Structural Modification. ACS Infect Dis 2020; 6:2169-2180. [PMID: 32598127 DOI: 10.1021/acsinfecdis.0c00258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of vancomycin C-terminus guanidine modifications is disclosed that improves antimicrobial activity, enhances the durability of antimicrobial action against selection or induction of resistance, and introduces a synergistic mechanism of action independent of d-Ala-d-Ala binding and inhibition of cell wall biosynthesis. The added mechanism of action results in induced bacterial cell permeability, which we show may involve interaction with cell envelope teichoic acid. Significantly, the compounds examined that contain two combined peripheral modifications, a (4-chlorobiphenyl)methyl (CBP) and C-terminus guanidinium modification, offer opportunities for new treatments against not only vancomycin-sensitive but especially vancomycin-resistant bacteria where they act by two synergistic and now durable mechanisms of action independent of d-Ala-d-Ala/d-Lac binding and display superb antimicrobial potencies (MIC 0.6-0.15 μg/mL, VanA VRE). For the first time, we demonstrate that the synergistic behavior of the peripheral modifications examined requires the presence of both the CBP and guanidine modifications in a single molecule versus their combined use as an equimolar mixture of singly modified compounds. Finally, we show that a prototypical member of the series, G3-CBP-vancomycin (15), exhibits no hemolytic activity, displays no mammalian cell growth inhibition, possesses improved and especially attractive in vivo pharmacokinetic (PK) properties, and displays excellent in vivo efficacy and potency against an especially challenging multidrug-resistant (MRSA) and VanA vancomycin-resistant (VRSA) Staphylococcus aureus bacterial strain.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D. Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Diehl AM, Manolikakes G. Palladium‐Catalyzed Decarboxylative Three‐Component Synthesis of α‐Arylglycines: Replacing Boronic with Carboxylic Acids in the Petasis Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas M. Diehl
- Department of ChemistryTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. Geb. 54 D-67663 Kaiserslautern Germany
| | - Georg Manolikakes
- Department of ChemistryTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. Geb. 54 D-67663 Kaiserslautern Germany
| |
Collapse
|
24
|
Glycopeptide Hypersensitivity and Adverse Reactions. PHARMACY 2020; 8:pharmacy8020070. [PMID: 32326261 PMCID: PMC7357119 DOI: 10.3390/pharmacy8020070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/23/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022] Open
Abstract
Glycopeptides, such as vancomycin and teicoplanin, are primarily used in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections, such as cellulitis, endocarditis, meningitis, pneumonia, and septicemia, and are some of the most commonly prescribed parenteral antimicrobials. Parenteral glycopeptides are first-line therapy for severe MRSA infections; however, oral vancomycin is used as a first-line treatment of Clostridioides difficile infections. Also, we currently have the longer-acting lipoglycopeptides, such as dalbavancin, oritavancin, and telavancin to our armamentarium for the treatment of MRSA infections. Lastly, vancomycin is often used as an alternative treatment for patients with β-lactam hypersensitivity. Common adverse effects associated with glycopeptide use include nephrotoxicity, ototoxicity, and Redman Syndrome (RMS). The RMS is often mistaken for a true allergy; however, it is a histamine-related infusion reaction rather than a true immunoglobulin E (IgE)-mediated allergic reaction. Although hypersensitivity to glycopeptides is rare, both immune-mediated and delayed reactions have been reported in the literature. We describe the various types of glycopeptide hypersensitivity reactions associated with glycopeptides and lipoglycopeptides, including IgE-mediated reactions, RMS, and linear immunoglobulin A bullous dermatosis, as well as describe cross-reactivity with other glycopeptides.
Collapse
|
25
|
Abstract
While there are numerous medical comorbidities associated with ASD, gastrointestinal (GI) issues have a significant impact on quality of life for these individuals. Recent findings continue to support the relationship between the gut microbiome and both GI symptoms and behavior, but the heterogeneity within the autism spectrum requires in-depth clinical characterization of these clinical cohorts. Large, diverse, well-controlled studies in this area of research are still needed. Although there is still much to discover about the brain-gut-microbiome axis in ASD, microbially mediated therapies, specifically probiotics and fecal microbiota transplantation have shown promise in the treatment of GI symptoms in ASD, with potential benefit to the core behavioral symptoms of ASD as well. Future research and clinical trials must increasingly consider complex phenotypes in ASD in stratification of large datasets as well as in design of inclusion criteria for individual therapeutic interventions.
Collapse
Affiliation(s)
- Virginia Saurman
- Department of Pediatrics, Columbia University Medical Center, 620 West 168th Street, New York, NY 10032, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University Medical Center, 620 West 168th Street, New York, NY 10032, USA
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Texas Children’s Microbiome Center, Baylor College of Medicine, Texas Children’s Hospital, Feigin Tower, 1102 Bates Avenue, Suite 955, Houston, TX 77030, USA
| |
Collapse
|
26
|
Hu X, Hu X. Ir‐catalyzed Asymmetric Hydrogenation of α‐Imino Esters with Chiral Ferrocenylphosphine‐Phosphoramidite Ligands. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin‐Hu Hu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Ping Hu
- Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 People's Republic of China
| |
Collapse
|
27
|
Wu ZC, Boger DL. Exploration of the site-specific nature and generalizability of a trimethylammonium salt modification on vancomycin: A-ring derivatives. Tetrahedron 2019; 75:3160-3165. [PMID: 31327878 PMCID: PMC6640857 DOI: 10.1016/j.tet.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vancomycin analogues bearing an A-ring trimethylammonium salt modification were synthesized and their antimicrobial activity against vancomycin-resistant Enterococci (VRE) was evaluated. The modification increased antimicrobial potency and provided the capability to induce bacteria cell membrane permeabilization, but both properties were weaker than that found with our earlier reported similar C-terminus modification. The results provide further insights on the additive effect and generalizability of the structural and site-specific nature of a peripheral quaternary trimethylammonium salt modification of vancomycin.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
|
29
|
Katsuyama A, Ichikawa S. Synthesis and Medicinal Chemistry of Muraymycins, Nucleoside Antibiotics. Chem Pharm Bull (Tokyo) 2018; 66:123-131. [PMID: 29386462 DOI: 10.1248/cpb.c17-00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muraymycins, isolated from a culture broth of Streptomyces sp., are members of a class of naturally occurring nucleoside antibiotics. They are strong inhibitors of the phospho-MurNAc-pentapeptide translocase (MraY), which is responsible for the peptidoglycan biosynthesis. Since MraY is an essential enzyme among bacteria, muraymycins are expected to be a novel antibacterial agent. In this review, our efforts to synthesize muraymycin D2, simplify the chemical structure, improve antibacterial spectrum, and solve the X-ray crystal structure of the muraymycin D2/MraY complex are described.
Collapse
Affiliation(s)
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Science, Hokkaido University.,Center for Research and Education on Drug Discovery, Hokkaido University
| |
Collapse
|
30
|
Wu ZC, Isley NA, Boger DL. N-Terminus Alkylation of Vancomycin: Ligand Binding Affinity, Antimicrobial Activity, and Site-Specific Nature of Quaternary Trimethylammonium Salt Modification. ACS Infect Dis 2018; 4:1468-1474. [PMID: 30067012 DOI: 10.1021/acsinfecdis.8b00152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of vancomycin derivatives alkylated at the N-terminus amine were synthesized, including those that contain quaternary trimethylammonium salts either directly at the terminal amine site or with an intervening three-carbon spacer. The examination of their properties provides important comparisons with a C-terminus trimethylammonium salt modification that we recently found to improve the antimicrobial potency of vancomycin analogues through an added mechanism of action. The N-terminus modifications disclosed herein were well-tolerated, minimally altering model ligand binding affinities (d-Ala-d-Ala) and antimicrobial activity, but did not induce membrane permeabilization that was observed with a similar C-terminus modification. The results indicate that our earlier observations with the C-terminus modification are sensitive to the site as well as structure of the trimethylammonium salt modification and are not simply the result of nonspecific effects derived from introduction of a cationic charge.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas A. Isley
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Pea F. Pharmacokinetics and drug metabolism of antibiotics in the elderly. Expert Opin Drug Metab Toxicol 2018; 14:1087-1100. [DOI: 10.1080/17425255.2018.1528226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Federico Pea
- Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUIUD, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
32
|
Lipoglycopeptide Antibiotics: Reliable Fighters Against Gram-Positive Pathogens. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.59526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Olsufyeva EN, Shchekotikhin AE, Bychkova EN, Pereverzeva ER, Treshalin ID, Mirchink EP, Isakova EB, Chernobrovkin MG, Kozlov RS, Dekhnich AV, Preobrazhenskaya MN. Eremomycin pyrrolidide: a novel semisynthetic glycopeptide with improved chemotherapeutic properties. Drug Des Devel Ther 2018; 12:2875-2885. [PMID: 30237697 PMCID: PMC6137948 DOI: 10.2147/dddt.s173923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Development of new semisynthetic glycopeptides with improved antibacterial efficacy and reduced pseudoallergic reactions. METHODS Semisynthetic glycopeptides 3-6 were synthesized from vancomycin (1) or eremomycin (2) by the condensation with pyrrolidine or piperidine. The minimum inhibitory concentration (MIC) for the new derivatives was measured by the broth micro-dilution method on a panel of clinical isolates of Staphylococcus and Enterococcus. Acute toxicity (50% lethal dose, maximum tolerated doses), antibacterial efficacy on model of systemic bacterial infection with S. aureus and pseudoallergic inflammatory reaction (on concanavalin A) of eremomycin pyrrolidide (5) were evaluated in mice according to standard procedures. RESULTS The eremomycin pyrrolidide (5) was the most active compound and showed a high activity against Gram-positive bacteria: vancomycin-susceptible staphylococci and enterococci (minimum inhibitory concentrations [MICs] 0.13-0.25 mg/L), as well as vancomycin-intermediate resistant Staphylococcus aureus (MICs 1 mg/L). Antimicrobial susceptibility tested on a panel of 676 isolates showed that 5 had similar activity for the genera Staphylococcus and Enterococcus with MIC90=0.5 mg/L, while vancomycin had MIC90=1-2 mg/L. The number of resistant strains of Enterococcus faecium (vancomycin-resistant enterococci) (MIC =64 mg/L) with this value was 7 (8%) for vancomycin (1) and 0 for the compound 5. In vivo comparative studies in a mouse model of systemic bacterial infection with S. aureus demonstrated that the efficacy of 5 was notably higher than that of the original antibiotics 1 and 2. In contrast to 1, compound 5 did not induce pseudoallergic inflammatory reaction (on concanavalin A). CONCLUSION The new semisynthetic derivative eremomycin pyrrolidide (5) has high activity against staphylococci and enterococci including vancomycin-resistant strains. Compound 5 has a higher efficacy in a model of staphylococcal sepsis than vancomycin (1) or eremomycin (2). In striking contrast to natural antibiotics, the novel derivative 5 does not induce a pseudoallergic inflammatory reaction to concanavalin A and therefore has no histamine release activity. These results indicate the advantages of a new semisynthetic glycopeptide antibiotic eremomycin pyrrolidide (5) which may be a prospective antimicrobial agent for further pre-clinical and clinical evaluations.
Collapse
Affiliation(s)
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, Russia,
- Mendeleyev University of Chemical Technology, Moscow, Russia
| | | | | | | | | | | | | | - Roman S Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Andrey V Dekhnich
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | | |
Collapse
|
34
|
Ben Romdhane H, Chadli Z, Ben Fredj N, Chaabane A, Boughattas N, Aouam K. Teicoplanin-induced DRESS syndrome: The importance of skin tests. Med Mal Infect 2018; 48:291-293. [DOI: 10.1016/j.medmal.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 01/03/2018] [Indexed: 01/28/2023]
|
35
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
36
|
Deng F, Yu H, Pan X, Hu G, Wang Q, Peng R, Tan L, Yang Z. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction. J Chromatogr A 2018; 1538:54-59. [DOI: 10.1016/j.chroma.2018.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
37
|
Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5164-5180. [PMID: 28361404 DOI: 10.1007/s11356-017-8855-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
Collapse
Affiliation(s)
- Claira Arul Aruldass
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | | | | | - Wan Azlina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
38
|
Müller A, Klöckner A, Schneider T. Targeting a cell wall biosynthesis hot spot. Nat Prod Rep 2017; 34:909-932. [PMID: 28675405 DOI: 10.1039/c7np00012j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2017History points to the bacterial cell wall biosynthetic network as a very effective target for antibiotic intervention, and numerous natural product inhibitors have been discovered. In addition to the inhibition of enzymes involved in the multistep synthesis of the macromolecular layer, in particular, interference with membrane-bound substrates and intermediates essential for the biosynthetic reactions has proven a valuable antibacterial strategy. A prominent target within the peptidoglycan biosynthetic pathway is lipid II, which represents a particular "Achilles' heel" for antibiotic attack, as it is readily accessible on the outside of the cytoplasmic membrane. Lipid II is a unique non-protein target that is one of the structurally most conserved molecules in bacterial cells. Notably, lipid II is more than just a target molecule, since sequestration of the cell wall precursor may be combined with additional antibiotic activities, such as the disruption of membrane integrity or disintegration of membrane-bound multi-enzyme machineries. Within the membrane bilayer lipid II is likely organized in specific anionic phospholipid patches that form a particular "landing platform" for antibiotics. Nature has invented a variety of different "lipid II binders" of at least 5 chemical classes, and their antibiotic activities can vary substantially depending on the compounds' physicochemical properties, such as amphiphilicity and charge, and thus trigger diverse cellular effects that are decisive for antibiotic activity.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Pharmaceutical Microbiology, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
39
|
Yılmaz Ç, Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 2017; 133:43-62. [DOI: 10.1016/j.bcp.2016.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 02/03/2023]
|
40
|
Synergistic effects of vancomycin and β-lactams against vancomycin highly resistant Staphylococcus aureus. J Antibiot (Tokyo) 2017; 70:771-774. [PMID: 28196977 DOI: 10.1038/ja.2017.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 12/14/2022]
Abstract
We previously reported isolating vancomycin (VAN) highly resistant Staphylococcus aureus (VRSA) strains from clinical methicillin-resistant S. aureus strains by repeating steps of in vitro mutagenesis and VAN selection. Here we describe that the in vitro susceptibility of these VRSA strains to VAN was markedly increased by combined treatment with β-lactams such as ceftriaxone and oxacillin. Furthermore, in an in vivo silkworm infection model with VRSA, a combination of VAN and ceftriaxone exhibited therapeutic effects, whereas a combination of VAN and oxacillin did not. These findings suggest that combining VAN with an appropriate β-lactam, such as ceftriaxone, is therapeutically effective against infectious diseases caused by VRSA.
Collapse
|
41
|
Wei Q, Zhang F, Zhao X, Wang C, Xiao J, Tang W. Ru-Catalyzed highly diastereoselective hydrogenation of N-tert-butylsulfinyl ketimines for the synthesis of aryl glycine derivatives. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01329a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru-Pincer catalyst enables the diastereoselective hydrogenation of N-tert-butylsulfinyl ketimino esters, affording a promising method for the synthesis of aryl glycine derivatives.
Collapse
Affiliation(s)
- Qiaoling Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- and School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Feng Zhang
- College of Science
- Hunan Agricultural University
- Changsha
- China
| | - Xiaofang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- and School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- and School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- and School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- and School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| |
Collapse
|
42
|
|
43
|
Lin SW, Carver PL, DePestel DD. Dalbavancin: A New Option for the Treatment of Gram-Positive Infections. Ann Pharmacother 2016; 40:449-60. [PMID: 16507624 DOI: 10.1345/aph.1g158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To review the pharmacology, microbiology, chemistry, in vitro susceptibility, pharmacokinetics, clinical efficacy, safety, tolerability, dosage, and administration of dalbavancin, a new semisynthetic lipoglycopeptide. Data Sources: A MEDLINE search, restricted to the English language, was conducted from 1966 through January 2006. Supplementary sources included program abstracts from the Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society of Microbiology, and the Infectious Diseases Society of America from 2000 to 2005 and information available from the manufacturer's Web site. Study Selection and Data Extraction: In vitro and preclinical studies, as well as Phase I, II, and III clinical trials, were evaluated to summarize the microbiology, pharmacology, clinical efficacy, and safety of dalbavancin. All published trials and abstracts citing dalbavancin were selected. Data Synthesis: Dalbavancin, a novel lipoglycopeptide, has a mechanism of action similar to that of other glycopeptides. It has in vitro activity against a variety of gram-positive organisms, but no activity against gram-negative or vancomycin-resistant enterococci that possess VanA gene. Due to its prolonged half-life (6–10 days), dalbavancin can be administered intravenously once weekly. In Phase II and III clinical trials, dalbavancin was effective and well tolerated for the treatment of skin and soft-tissue infections, catheter-related bloodstream infections, and skin and skin-structure infections. To date, adverse events are mild and limited; the most common include pyrexia, headache, nausea, oral candidiasis, diarrhea, and constipation. Conclusions: Dalbavancin appears to be a promising antimicrobial agent for the treatment of gram-positive infections. A new drug application was filed with the Food and Drug Administration (FDA) in December 2004. The FDA issued an approvable letter in 2005 for dalbavancin. If approved, dalbavancin is expected to be launched in the first quarter of 2006.
Collapse
Affiliation(s)
- Shu-Wen Lin
- Department of Pharmacy Services, University of Michigan Health System, Ann Arbor, 48109, USA
| | | | | |
Collapse
|
44
|
Hsiao SH, Chang CM, Tsai JC, Lin CY, Liao LH, Lin WL, Wu TJ. Glycopeptide-Induced Neutropenia: Cross-Reactivity Between Vancomycin and Teicoplanin. Ann Pharmacother 2016; 41:891-4. [PMID: 17426073 DOI: 10.1345/aph.1h633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To report teicoplanin-related neutropenia that developed after an episode of neutropenia induced by vancomycin therapy. Case Summary: A 57-year-old female suffered from osteomyelitis of the left humerus, with a white blood cell (WBC) count of 2.8 × 103/mm3 and absolute neutrophil count (ANC) of 0.28 × 103/mm3, occurring after 24 days of vancomycin therapy. Vancomycin was changed to teicoplanin and the agranulocytosis resolved 4 days later. However, a new episode of neutropenia, with a WBC count of 2.8 × 103/mm3 and ANC of 0.448 × 103/mm3, occurred 11 days after teicoplanin initiation. Agranulocytosis resolved 4 days following withdrawal of teicoplanin. Discussion: Because of the close time relationship between drug administration and the development of symptoms and signs, as well as between drug withdrawal and changes in WBC count and ANC, the episodes of neutropenia were suspected to be drug related. Teicoplanin-induced agranulocytosis that followed vancomycin-induced agranulocytosis suggests a possible cross-reactivity between the 2 drugs. Both reactions were categorized as probable according to the Naranjo probability scale. Conclusions: For all patients with vancomycin-induced neutropenia, possible cross-reactivity of teicoplanin should be monitored.
Collapse
Affiliation(s)
- Shu-Hwa Hsiao
- Department of Pharmacy, National Cheng Kung University Hospital, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Hannaoui I, Barguigua A, Serray B, El Mdaghri N, Timinouni M, Ait Chaoui A, El Azhari M. Intestinal carriage of vancomycin-resistant enterococci in a community setting in Casablanca, Morocco. J Glob Antimicrob Resist 2016; 6:84-87. [DOI: 10.1016/j.jgar.2016.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/15/2022] Open
|
46
|
Yushchuk O, Ostash B, Pham TH, Luzhetskyy A, Fedorenko V, Truman AW, Horbal L. Characterization of the Post-Assembly Line Tailoring Processes in Teicoplanin Biosynthesis. ACS Chem Biol 2016; 11:2254-64. [PMID: 27285718 DOI: 10.1021/acschembio.6b00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinoplanes teichomyceticus produces teicoplanin (Tcp), a "last resort" lipoglycopeptide antibiotic used to treat severe multidrug resistant infections such as methicillin-resistant Staphylococcus aureus (MRSA). A number of studies have addressed various steps of Tcp biosynthesis using in vitro assays, although the exact sequence of Tcp peptide core tailoring reactions remained speculative. Here, we describe the generation and analysis of a set of A. teichomyceticus mutant strains that have been used to elucidate the sequence of reactions from the Tcp aglycone to mature Tcp. By combining these results with previously published data, we propose an updated order of post-assembly line tailoring processes in Tcp biosynthesis. We also demonstrate that the acyl-CoA-synthetase Tei13* and the type II thioesterase Tei30* are dispensable for Tcp production. Five Tcp derivatives featuring hitherto undescribed combinations of glycosylation and acylation patterns are described. The generation of strains that produce novel Tcp analogues now provides a platform for the production of additional Tcp-like molecules via combinatorial biosynthesis or chemical derivatization.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Bohdan Ostash
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Thu H. Pham
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Andriy Luzhetskyy
- Department
of Pharmaceutical Biotechnology, Saarland University, Campus, Saarbrucken, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Center for Infectious Research (HZI), Saarbrucken, Germany
| | - Victor Fedorenko
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrew W. Truman
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Liliya Horbal
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
- Department
of Pharmaceutical Biotechnology, Saarland University, Campus, Saarbrucken, Germany
| |
Collapse
|
47
|
Hong B, Dong T, Lei X. Recent advances in target identification by natural product based chemical probes. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0063-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Pseudomonas aeruginosa: targeting cell-wall metabolism for new antibacterial discovery and development. Future Med Chem 2016; 8:975-92. [PMID: 27228070 DOI: 10.4155/fmc-2016-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to most antibiotics. With therapeutic options against P. aeruginosa dwindling, and the lack of new antibiotics in advanced developmental stages, strategies for preserving the effectiveness of current antibiotics are urgently required. β-Lactam antibiotics are important agents for treating P. aeruginosa infections, thus, adjuvants that potentiate the activity of these compounds are desirable for extending their lifespan while new antibiotics - or antibiotic classes - are discovered and developed. In this review, we discuss recent research that has identified exploitable targets of cell-wall metabolism for the design and development of compounds that hinder resistance and potentiate the activity of antipseudomonal β-lactams.
Collapse
|
49
|
Van Bambeke F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015; 75:2073-95. [DOI: 10.1007/s40265-015-0505-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Assmann C, Kirchhoff J, Beleites C, Hey J, Kostudis S, Pfister W, Schlattmann P, Popp J, Neugebauer U. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal Bioanal Chem 2015; 407:8343-52. [DOI: 10.1007/s00216-015-8912-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022]
|