1
|
Pešić D, Đukić MM, Stanojević I, Živkovć V, Bolevich S, Bolevich S, Jakovljević V. Cardiorespiratory fitness mediates cortisol and lactate responses to winter and summer marches. J Med Biochem 2024; 43:72-85. [PMID: 38496029 PMCID: PMC10943469 DOI: 10.5937/jomb0-44369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 03/19/2024] Open
Abstract
Background The influence of homeostatically regulated physiological processes, including cardiorespiratory fitness (VO2max), on the response to physical stressors such as acclimatisation and marching, remains understudied. We aimed to investigate the effects of summer and winter acclimatisation and marching on cortisol levels and blood lactate, to gain insight into the role of these physiological processes in the stress response. Methods Two groups of young Europeans, classified as poor (PCF; n=9) and good physical condition (GCF; n=21), based on a VO2MAX threshold of 40 mL O2/ kg/min, underwent 2-h March (6-7 km/h) in winter (5˚C) and summer (32˚C). Commercial tests, UniCel DxI Access Cortisol assay and EKF Biosen Clinic/GP assay were used for cortisol and lactate blood measurements (morning samples and those taken immediately after marches), respectively.
Collapse
Affiliation(s)
- Deniel Pešić
- Military Medical Academy, Institute of Hygiene, Department of Exercise Physiology, Belgrade
| | - Mirjana M. Đukić
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology, Belgrade
| | - Ivan Stanojević
- Military Medical Academy, Institute of Medical Research, Belgrade
| | - Vladimir Živkovć
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Kragujevac
| | - Sergey Bolevich
- First Moscow State Medical University I. M. Sechenov, Department of Pharmacology, Moscow, Russia
| | - Stefani Bolevich
- First Moscow State Medical University I. M. Sechenov, Department of Pharmacology, Moscow, Russia
| | - Vladimir Jakovljević
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Kragujevac
| |
Collapse
|
2
|
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023; 15:4977. [PMID: 38068833 PMCID: PMC10708571 DOI: 10.3390/nu15234977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Equestrian sport is under-researched within the sport science literature, creating a possible knowledge vacuum for athletes and support personnel wishing to train and perform in an evidence-based manner. This review aims to synthesise available evidence from equitation, sport, and veterinary sciences to describe the pertinent rider physiology of equestrian disciplines. Estimates of energy expenditure and the contribution of underpinning energy systems to equestrian performance are used to provide nutrition and hydration recommendations for competition and training in equestrian disciplines. Relative energy deficiency and disordered eating are also considered. The practical challenges of the equestrian environment, including competitive, personal, and professional factors, injury and concussion, and female participation, are discussed to better highlight novelty within equestrian disciplines compared to more commonly studied sports. The evidence and recommendations are supported by example scenarios, and future research directions are outlined.
Collapse
Affiliation(s)
- Russ Best
- Centre for Sport Science & Human Performance, Waikato Institute of Technology, Te Pūkenga, Hamilton 3200, New Zealand
| | - Jane M. Williams
- Department of Animal Science, Hartpury University, Hartpury Gl19 3BE, UK;
| | - Jeni Pearce
- High Performance Sport New Zealand, Auckland 0632, New Zealand;
| |
Collapse
|
3
|
Carbohydrate mouth rinse is no more effective than placebo on running endurance of dehydrated and heat acclimated athletes. Eur J Appl Physiol 2023:10.1007/s00421-023-05170-y. [PMID: 36920510 DOI: 10.1007/s00421-023-05170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE To determine whether carbohydrate mouth rinsing would improve endurance running performance of tropical natives in a warm-humid (30 °C and 70% relative humidity) environment. METHOD Twelve endurance male runners [age 25 ± 3 years; peak aerobic capacity ([Formula: see text]O2peak) 57.6 ± 3.6 mL.kg-1.min-1] completed three time-to-exhaustion (TTE) trials at ~ 70% [Formula: see text]O2peak while swilling 25 ml of a 6% carbohydrate (CHO) or taste-matched placebo (PLA) as well as no mouth rinse performed in the control (CON) trial. RESULTS TTE performance was significantly longer in both CHO and PLA trials when compared with the CON trial (54.7 ± 5.4 and 53.6 ± 5.1 vs. 48.4 ± 3.6 min, respectively; p < 0.001 and p = 0.012, respectively), but was not significantly different between CHO and PLA trials (p = 1.000). The rating of perceived exertion was not different between the CHO and PLA trials, however, was significantly affected when compared to the CON trial (p < 0.001). A similar effect was observed for perceived arousal level between the CHO and PLA trials to the CON trial. Core temperature, mean skin temperature and skin blood flow were not significantly different between the three trials (all p > 0.05). Similarly, plasma lactate and glucose as well as exercise heart rate were not influenced by the trials. CONCLUSIONS The present study demonstrates that mouth rinsing, whether carbohydrate or placebo, provides an ergogenic benefit to running endurance when compared to CON in a heat stress environment. Nevertheless, the results do not support the notion that rinsing a carbohydrate solution provides a greater advantage as previously described among non-heat acclimated individuals within a temperate condition.
Collapse
|
4
|
Toro-Román V, Prieto-González I, Siquier-Coll J, Bartolomé I, Grijota FJ, Maynar-Mariño M. Effects of High Temperature Exposure on the Wingate Test Performance in Male University Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4782. [PMID: 36981697 PMCID: PMC10049338 DOI: 10.3390/ijerph20064782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
It has been suggested that heat exposure prior to exercise could induce changes in anaerobic exercise. Therefore, the purpose of this study was to observe the effects of high temperature heat exposure prior to an anaerobic test. Twenty-one men (age: 19.76 ± 1.22 years; height: 1.69 ± 0.12 m; weight: 67.89 ± 11.78 kg) voluntarily participated in this investigation. All of them performed two Wingate tests, vertical jump and macronutrient intake control. On the first day, the test was performed under normal environmental conditions. On the second day, it was performed in a similar way, but with previous exposure to heat at high sauna temperatures (15 min; 100 ± 2 °C). There were no differences in the vertical jump and macronutrient intake. However, the results showed an improvement in power (W) (p < 0.05), relative power (W/kg) (p < 0.01) and revolutions per minute (p < 0.05) 10 s after the start of the test. There was also an increase in thigh (p < 0.01) and skin temperature (p < 0.01) with pre-heat exposure. The results obtained suggest that this pre-exercise protocol could improve power in short and intensive actions.
Collapse
Affiliation(s)
- Víctor Toro-Román
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (V.T.-R.)
| | - Isaac Prieto-González
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (V.T.-R.)
| | - Jesús Siquier-Coll
- SER Research Group, Center of Higher Education Alberta Giménez, Comillas Pontifical University, Costa de Saragossa 16, 07013 Palma Mallorca, Spain
| | - Ignacio Bartolomé
- Department of Sport Science, Faculty of Education, Pontifical University of Salamanca, C/Henry Collet, 52-70, 37007 Salamanca, Spain
| | - Francisco J. Grijota
- Faculty of Life and Nature Sciences, University of Nebrija, Campus La Berzosa, Calle del Hostal, Hoyo de Manzanares, 28248 Madrid, Spain
| | - Marcos Maynar-Mariño
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (V.T.-R.)
| |
Collapse
|
5
|
Esen O, Rozwadowski K, Cepicka L, Gabrys T, Karayigit R. Practical Nutrition Strategies to Support Basketball Performance during International Short-Term Tournaments: A Narrative Review. Nutrients 2022; 14:nu14224909. [PMID: 36432595 PMCID: PMC9694551 DOI: 10.3390/nu14224909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A short-term (e.g., 6 days) basketball tournament is a shorter version of international tournaments, and qualification in it enables participation in international tournaments such as the Olympics and World championships or preparation before major tournaments. Time for recovery between matches is shorter compared with major tournaments, resulting in an accentuated load on players, which can be repeated up to four times within the 6-day competition period. Therefore, nutritional strategies need to focus on faster and adequate recovery after each match as well as optimum fuelling and hydration before and during matches. Travelling can also create additional challenges when preparing and/or applying those nutritional strategies. There are some particular evidence-based sport foods and ergogenic aids that can improve intermittent activity and/or the execution of motor skills, which may facilitate basketball players' recovery and performance. The present review provides practical nutritional strategies to support short-term basketball tournaments based on players' physiological needs and current sport nutrition guidelines.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Correspondence:
| | | | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Tomasz Gabrys
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey
| |
Collapse
|
6
|
Exercise-Associated Hyponatremia in Marathon Runners. J Clin Med 2022; 11:jcm11226775. [PMID: 36431252 PMCID: PMC9699060 DOI: 10.3390/jcm11226775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022] Open
Abstract
Exercise-associated hyponatremia (EAH) was first described as water intoxication by Noakes et al. in 1985 and has become an important topic linked to several pathological conditions. However, despite progressive research, neurological disorders and even deaths due to hyponatremic encephalopathy continue to occur. Therefore, and due to the growing popularity of exercise-associated hyponatremia, this topic is of great importance for marathon runners and all professionals involved in runners' training (e.g., coaches, medical staff, nutritionists, and trainers). The present narrative review sought to evaluate the prevalence of EAH among marathon runners and to identify associated etiological and risk factors. Furthermore, the aim was to derive preventive and therapeutic action plans for marathon runners based on current evidence. The search was conducted on PubMed, Scopus and Google Scholar using a predefined search algorithm by aggregating multiple terms (marathon run; exercise; sport; EAH; electrolyte disorder; fluid balance; dehydration; sodium concentration; hyponatremia). By this criterion, 135 articles were considered for the present study. Our results revealed that a complex interaction of different factors could cause EAH, which can be differentiated into event-related (high temperatures) and person-related (female sex) risk factors. There is variation in the reported prevalence of EAH, and two major studies indicated an incidence ranging from 7 to 15% for symptomatic and asymptomatic EAH. Athletes and coaches must be aware of EAH and its related problems and take appropriate measures for both training and competition. Coaches need to educate their athletes about the early symptoms of EAH to intervene at the earliest possible stage. In addition, individual hydration strategies need to be developed for the daily training routine, ideally in regard to sweat rate and salt losses via sweat. Future studies need to investigate the correlation between the risk factors of EAH and specific subgroups of marathon runners.
Collapse
|
7
|
Knechtle B, Valero D, Villiger E, Alvero Cruz JR, Scheer V, Rosemann T, Nikolaidis PT. Elite Marathoners Run Faster With Increasing Temperatures in Berlin Marathon. Front Physiol 2021; 12:649898. [PMID: 34305629 PMCID: PMC8293098 DOI: 10.3389/fphys.2021.649898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The influence of environmental conditions has been investigated for different marathon races, but not for the Berlin Marathon, the fastest marathon race course in the world. The aim of this study was to investigate the potential influence of environmental conditions such as temperature, precipitation, sunshine, and atmospheric pressure on marathon race times in the Berlin Marathon since its first event in 1974–2019. A total of n = 882,540 valid finisher records were available for analysis, of which 724,135 correspond to male and 158,405 to female runners. We performed analyses regarding performance levels considering all finishers, the top 3, the top 10, and the top 100 women and men. Within the 46 years of Berlin marathons under study, there was some level of precipitation for 18 years, and 28 years without any rain. Sunshine was predominant in 25 of the events, whilst in the other 21, cloud cover was predominant. There was no significant trend with time in any of the weather variables (e.g., no increase in temperature across the years). Overall runners became slower with increasing temperature and sunshine duration, however, elite runners (i.e., top 3 and top 10) seemed to run faster and improved their race times when the temperature increased (with women improving more than men). Top 10 women seemed to benefit more from increasing temperatures than top 10 males, and male top 100 runners seemed to benefit more from increasing temperatures than female top 100 runners. In the top three sub-group, no differences were observed between male and female correlations. In summary, in marathoners competing in the Berlin Marathon between 1974 and 2019, increasing temperatures and sunshine duration showed a different effect on different performance levels where overall runners (i.e., the general mass of runners) became slower with increasing temperature and sunshine duration, but elite runners (i.e., top 3, top 10) became faster with increasing temperatures where sex differences exist.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland.,Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Elias Villiger
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - José Ramón Alvero Cruz
- Deparamento de Fisiología Humana, Histología, Anatomia Patológica y Educación Física y Deportiva, Málaga, Spain
| | - Volker Scheer
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Thomas Rosemann
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - Pantelis T Nikolaidis
- School of Health and Caring Sciences, University of West Attica, Athens, Greece.,Laboratory of Exercise Testing, Hellenic Air Force Academy, Acharnes, Greece
| |
Collapse
|
8
|
Knechtle B, Valero D, Villiger E, Alvero-Cruz JR, Nikolaidis PT, Cuk I, Rosemann T, Scheer V. Trends in Weather Conditions and Performance by Age Groups Over the History of the Berlin Marathon. Front Physiol 2021; 12:654544. [PMID: 34054573 PMCID: PMC8155689 DOI: 10.3389/fphys.2021.654544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
The effect of different environmental conditions such as temperature, wind, barometric pressure, and precipitation has been well investigated in elite marathoners, but not by age categories (i.e., age group marathoners). The aim of the study was to investigate the potential influence of environmental conditions such as temperature, precipitation, and atmospheric pressure on marathon performance in age group marathoners competing in the ‘Berlin Marathon’ from 1974 to 2019. A total of 869,474 valid finisher records were available for analysis, of which 711,136 correspond to males and 158,338 to females. The influence of temperature, atmospheric pressure, and precipitation on marathon race times was investigated in age group marathoners grouped in 5-year-intervals. Within the 46 years of Berlin marathons under investigation, there was some level of precipitation for 18 years, and 28 years without any rain. Sunshine was predominant in 25 of the events, whilst in the other 21 years, cloud cover was predominant. Marathon race times were significantly and positively correlated with age (i.e., older runners were slower than younger runners) where the correlation was higher for males than for females. Marathon race times were significantly and positively correlated with both the hours of sunshine and the daily maximum temperature. The fastest marathon runners (meaning the minimum times) achieved the fastest race times on race days with higher maximum temperatures (i.e., 15–30°C). Daily maximum temperatures showed an influence on age group marathoners from age group 35–40 years and older. Higher precipitation levels impaired performance across most age groups. In summary, higher daily maximum temperatures (i.e., >15°C) and higher precipitation levels impaired performance of master marathoners (i.e., 35–40 years and older) competing in the ‘Berlin Marathon’ in the last 45 years. Master marathoners should start in marathon races with temperatures < 15°C and no precipitation in order to achieve a fast marathon race time.
Collapse
Affiliation(s)
- Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland.,Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Bénite, France
| | - Elias Villiger
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - José R Alvero-Cruz
- Departamento de Fisiología Humana, Histología, Anatomia Patológica y Educación Física y Deportiva, University of Málaga, Málaga, Spain
| | - Pantelis T Nikolaidis
- School of Health and Caring Sciences, University of West Attica, Athens, Greece.,Laboratory of Exercise Testing, Hellenic Air Force Academy, Acharnes, Greece
| | - Ivan Cuk
- Faculty of Physical Education and Sports Management, Singidunum University, Belgrade, Serbia
| | - Thomas Rosemann
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - Volker Scheer
- Ultra Sports Science Foundation, Pierre-Bénite, France
| |
Collapse
|
9
|
Abstract
People undertaking prolonged vigorous exercise experience substantial bodily fluid losses due to thermoregulatory sweating. If these fluid losses are not replaced, endurance capacity may be impaired in association with a myriad of alterations in physiological function, including hyperthermia, hyperventilation, cardiovascular strain with reductions in brain, skeletal muscle and skin blood perfusion, greater reliance on muscle glycogen and cellular metabolism, alterations in neural activity and, in some conditions, compromised muscle metabolism and aerobic capacity. The physiological strain accompanying progressive exercise-induced dehydration to a level of ~ 4% of body mass loss can be attenuated or even prevented by: (1) ingesting fluids during exercise, (2) exercising in cold environments, and/or (3) working at intensities that require a small fraction of the overall body functional capacity. The impact of dehydration upon physiological function therefore depends on the functional demand evoked by exercise and environmental stress, as cardiac output, limb blood perfusion and muscle metabolism are stable or increase during small muscle mass exercise or resting conditions, but are impaired during whole-body moderate to intense exercise. Progressive dehydration is also associated with an accelerated drop in perfusion and oxygen supply to the human brain during submaximal and maximal endurance exercise. Yet their consequences on aerobic metabolism are greater in the exercising muscles because of the much smaller functional oxygen extraction reserve. This review describes how dehydration differentially impacts physiological function during exercise requiring low compared to high functional demand, with an emphasis on the responses of the human brain, heart and skeletal muscles.
Collapse
|
10
|
Olcina G, Crespo C, Timón R, Mjaanes JM, Calleja-González J. Core Temperature Response During the Marathon Portion of the Ironman World Championship (Kona-Hawaii). Front Physiol 2019; 10:1469. [PMID: 31849714 PMCID: PMC6901617 DOI: 10.3389/fphys.2019.01469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022] Open
Abstract
The Ironman triathlon consists of a 3.8 km swim, 180 km bike, and 42.195 km run. Thermoregulation responses play an important role in performance optimization and injury prevention. Factors such as environmental conditions including heat and humidity, athlete training level, and race duration can affect thermoregulation. Hyperthermia occurs when the core temperature rises above 38.5°C. The present study aims to describe core temperature (Tcore) in top-level and well-trained age group triathletes during the marathon of Ironman World Championship 2014 in Kona-Hawaii under thermal stress conditions. Tcore of 15 triathletes (age: 36.11 ± 7.36 years, body mass: 71.14 ± 7.12 kg, height: 179 ± 0.04 cm, and fat %: 8.48 ± 0.85) who classified for the Ironman World Championship was measured by an ingestible pill telemetry system prior to competition, during the marathon and 60 min after finishing the race. Mean wet bulb globe temperature (WBGT) during the marathon was 24.66°C (range 22.44–28.50°C). Body mass index (BMI) and perceived exertion (Borg Scale and Visual Analog Scale-Pain) were collected before the race and 60 min after the event. Time variables were extracted from their official race time and split times. Finish time was 10: 06:56 ± 0:48:30. Tcore was initially 36.62 ± 0.17°C, increased at the end of the event (38.55 ± 0.64; p < 0.01) and remained elevated 60 min after the event (38.65 ± 0.41°C; p < 0.002). BMI significantly decreased after the event (22.85 ± 1.11 vs. 21.73 ± 1.36; p < 0.05), whereas both exercise perceived exertion [Borg Scale (10.2 ± 1.64 vs. 18.60 ± 1.67; p < 0.003)] and perceived muscle pain [VAS Pain (2.75 ± 1.59 vs. 9.08 ± 1.13; p < 0.001)] increased significantly after the event. Tcore during competition correlated negatively with position in age group (r − 0.949, p = 0.051), but not with race time (r = −0.817; p = 0.183). High-level age group triathletes competing under thermal stress conditions in the Kona Ironman reached a state of hyperthermia during the marathon. After 60 min of recovery the hyperthermia persisted. Strategies to aid post-event cooling and recovery should be considered to avoid the potentially dangerous adverse health effects of hyperthermia.
Collapse
Affiliation(s)
- Guillermo Olcina
- Research Group in Sport Training and Physical Conditioning (GAEDAF), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Carmen Crespo
- Research Group in Sport Training and Physical Conditioning (GAEDAF), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Rafael Timón
- Research Group in Sport Training and Physical Conditioning (GAEDAF), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Jeffrey M Mjaanes
- Department of Orthopaedics, Northwestern University, Chicago, IL, United States
| | - Julio Calleja-González
- Department of Physical Education and Sports, University of the Basque Country (UPV-EHU), Vitoria, Spain
| |
Collapse
|
11
|
Bouscaren N, Millet GY, Racinais S. Heat Stress Challenges in Marathon vs. Ultra-Endurance Running. Front Sports Act Living 2019; 1:59. [PMID: 33344982 PMCID: PMC7739648 DOI: 10.3389/fspor.2019.00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Several studies have investigated the effect of hot and humid ambient conditions on running exercise up to the marathon. However, studies on exercise longer than marathon are sparse. Events exceeding 6 h can be defined as ultra-endurance and have variable characteristics (e.g., distance, elevation profile, technical difficulty, altitude, night running) making hazardous the transposition of the current knowledge obtained in marathon to ultra-endurance running. Thus, the aim of this manuscript was to discuss the potential differences between marathon and ultra-endurance running in terms of heat stress challenges. The high running intensity (especially for the fastest runners), the urban context with high albedo effect materials, and the hot self-generated microclimate in mass-participation events (especially for the average to slow runners) are specific risk factors associated with marathon running in hot environments. Uphill running/walking (sometimes with poles), exotic destination with long-haul travel, desert environment and the necessity to sustain thermoregulatory and sweating responses for several days are risk factors more specific to ultra-endurance running. These differences call for specific research on the effect of hot ambient conditions in ultra-endurance disciplines to create appropriate recommendations.
Collapse
Affiliation(s)
| | - Guillaume Y. Millet
- Univ Lyon, UJM-Saint-Étienne, Inter-University Laboratory of Human Movement Biology, EA 7424, Saint-Étienne, France
| | | |
Collapse
|
12
|
Matsumoto K, Temiz Y, Taghavi H, Cornelius EL, Mori H, Michel B. An earbud-type wearable (A hearable) with vital parameter sensors for early detection and prevention of heat-stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:7049-7055. [PMID: 31947461 DOI: 10.1109/embc.2019.8856821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heat-stroke has become a serious problem in Japan, especially for elderly citizens. For the early detection and prevention of heat-stroke, a wearable health monitor for in-ear use is developed which is subsequently called "Hearable". It aims to measure three vital parameters: Core body temperature, sweat rate and sweat or interstitial sodium ion (Na+) concentration. The eardrum is a good place to measure the core body temperature, because it is close to the carotid artery and the brain. We develop a hearable prototype and it consists of an audio earbud, a sensor earbud and a micro controller. Concerning the sensor earbud, a present prototype includes an eardrum (tympanic) temperature sensor and a sweat rate sensor and we implement two variants. Variant-1 focuses on the sweat rate sensing using a humidity & temperature sensor located close to the eardrum and Variant-2 focuses on the eardrum temperature sensing using an IR temperature sensor. Concerning the sweat rate sensing, unlike conventional sweat sensors, our prototypes do not include an air flow pump, which is typically used to determine the air flow rate. We demonstrate the accuracy of sweat rate sensing based on the air flow rate measured from the evaporation of defined amount of water. We use Variant-2 to demonstrate the monitoring of the eardrum temperature and the sweat rate to differentiate a calm state and jogging.
Collapse
|
13
|
Shibasaki M, Namba M, Kamijo Y, Ito T, Kakigi R, Nakata H. Effects of repetitive exercise and thermal stress on human cognitive processing. Physiol Rep 2019; 7:e14003. [PMID: 30806993 PMCID: PMC6383110 DOI: 10.14814/phy2.14003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/24/2019] [Indexed: 11/24/2022] Open
Abstract
Cognitive performances may improve after acute moderate exercise, but not after prolonged and/or heavy exercise. The present study aimed to investigate the effects of environmental temperature during exercise on human cognitive processing. Fifteen healthy males performed four bouts of a 15-min cycling exercise with a 10-min rest between each bout, and event-related potentials (ERPs) were recorded in five sessions during somatosensory Go/No-go paradigms (i.e., Pre, post-first exercise bout, post-second exercise bout, post-third exercise bout, and post-fourth exercise bout) in an environmental chamber with temperature controlled at 20°C (Temperate) and 35°C (Hot). Increases in external canal temperature and heart rate were greater under the 35°C condition than under the 20°C condition. Regardless of thermal conditions, reaction times (RT) and error rates were not affected by the repetition of moderate exercise, whereas the peak amplitude of the N140 component, which is mainly related to somatosensory processing, was significantly reduced with the repetition of the exercise. However the peak amplitude of P300, which is linked to cognitive processes of context updating, context closure, and event-categorization, was significantly smaller in post-third and post-fourth exercise bouts under the 35°C condition than under the 20°C condition, and this decrease was more prominent in No-go trials under the 35°C condition. These results suggest that executive function, which is based on RTs and error rates, is not affected by prolonged exercise and different thermal conditions, whereas the exercise in a hot environment impairs human cognitive processing, particularly response inhibition.
Collapse
Affiliation(s)
- Manabu Shibasaki
- Faculty of Human Life and EnvironmentDepartment of Health SciencesNara Women's UniversityNaraJapan
| | - Mari Namba
- Graduate School of Humanities and SciencesNara Women's UniversityNaraJapan
| | - Yoshi‐Ichiro Kamijo
- Department of Rehabilitation MedicineWakamaya Medical UniversityWakayamaJapan
| | - Tomoyuki Ito
- Department of Rehabilitation MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Ryusuke Kakigi
- Department of Integrative PhysiologyNational Institute for Physiological SciencesOkazakiJapan
| | - Hiroki Nakata
- Faculty of Human Life and EnvironmentDepartment of Health SciencesNara Women's UniversityNaraJapan
| |
Collapse
|
14
|
Nuccio RP, Barnes KA, Carter JM, Baker LB. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med 2017; 47:1951-1982. [PMID: 28508338 PMCID: PMC5603646 DOI: 10.1007/s40279-017-0738-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sweat losses in team sports can be significant due to repeated bursts of high-intensity activity, as well as the large body size of athletes, equipment and uniform requirements, and environmental heat stress often present during training and competition. In this paper we aimed to: (1) describe sweat losses and fluid balance changes reported in team sport athletes, (2) review the literature assessing the impact of hypohydration on cognitive, technical, and physical performance in sports-specific studies, (3) briefly review the potential mechanisms by which hypohydration may impact team sport performance, and (4) discuss considerations for future directions. Significant hypohydration (mean body mass loss (BML) >2%) has been reported most consistently in soccer. Although American Football, rugby, basketball, tennis, and ice hockey have reported high sweating rates, fluid balance disturbances have generally been mild (mean BML <2%), suggesting that drinking opportunities were sufficient for most athletes to offset significant fluid losses. The effect of hydration status on team sport performance has been studied mostly in soccer, basketball, cricket, and baseball, with mixed results. Hypohydration typically impaired performance at higher levels of BML (3-4%) and when the method of dehydration involved heat stress. Increased subjective ratings of fatigue and perceived exertion consistently accompanied hypohydration and could explain, in part, the performance impairments reported in some studies. More research is needed to develop valid, reliable, and sensitive sport-specific protocols and should be used in future studies to determine the effects of hypohydration and modifying factors (e.g., age, sex, athlete caliber) on team sport performance.
Collapse
Affiliation(s)
- Ryan P Nuccio
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL, 60010, USA.
| | - Kelly A Barnes
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL, 60010, USA
| | - James M Carter
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL, 60010, USA
| | - Lindsay B Baker
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL, 60010, USA
| |
Collapse
|
15
|
Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches. J Int Soc Sports Nutr 2017; 14:35. [PMID: 28919844 PMCID: PMC5596842 DOI: 10.1186/s12970-017-0193-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023] Open
Abstract
Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 g⋅kg−1⋅h−1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 min of recovery. Daily intakes of 6–10 g⋅kg−1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 g⋅kg−1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 × 20–40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery.
Collapse
|
16
|
Neck Cooling Improves Table Tennis Performance amongst Young National Level Players. Sports (Basel) 2017; 5:sports5010019. [PMID: 29910379 PMCID: PMC5969003 DOI: 10.3390/sports5010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 11/17/2022] Open
Abstract
This study aimed to examine the effects of neck cooling on table tennis performance. Eight young, National level, male table tennis players (age 16 ± 2 years, height 1.77 ± 0.08 m, body mass 67.54 ± 10.66 kg) were recruited. Participants attended four testing sessions separated by a week. Session one determined fitness levels, and session two was a familiarisation trial. The final two sessions involved completing the table tennis-specific protocol either with (ICE) or without (CON) neck cooling for 1 min before each exercise period (bout: 80⁻90 shots), which represented an individual game. The exercise protocol required completing three bouts to represent a match, each simulating a different skill (forehand, backhand, alternate forehand and backhand), against a mechanical ball thrower. Performance was measured by the number of balls hitting two pre-determined targets. Heart rate, ratings of perceived exertion (RPE), and thermal sensation (TS) were measured. Total performance scores (shots on target) were significantly greater during ICE (136 ± 26), compared to CON (120 ± 25; p = 0.006) with a 15 (±12)% improvement. Effects for time (p < 0.05) but not condition (p > 0.05) were found for RPE and all other physiological variables. TS significantly decreased with cooling throughout the protocol (p = 0.03). Neck cooling appears to be beneficial for table tennis performance by lowering thermal sensation.
Collapse
|
17
|
Geng Y, Zhu L, Liu F, Zhu X, Niu J, Li G. Effect of dehydration heat exposure on thoracic aorta reactivity in rats. Biomed Rep 2016; 5:613-617. [PMID: 27882226 DOI: 10.3892/br.2016.760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of one week dehydration heat exposure on thoracic aorta reactivity in rats. Eighteen Male Sprague-Dawley rats were randomly divided into 3 groups (n=6 each group): Control group (CN), heat exposure group (HE), dehydration heat exposure group (DHE). The CN group was exposed to a room temperature of 24°C, while the HE and DHE groups were exposed to a heat temperature of 32°C. After 7 days of heat exposure, the heart rate and blood pressure of the rats were measured, and the noradrenaline (NA)-induced contraction on the aorta rings was measured by tension recording. The average contents of malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were detected using ELISA. The expression of apoptotic genes in the thoracic aorta was measured using RT-PCR. Compared with CN, the heart rate in the HE and DHE groups had a tendency to become retarded, but there was no significant difference (P>0.05). In the HE group, the systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) of the rats were significantly higher than that of the CN (P<0.05). In the DHE group, the SBP of rats was significantly higher than that of the CN (P<0.05), while the SBP, DBP, and MAP of the rats were decreased compared to the rats in the HE group, although there was no statistical significance (P>0.05). In the HE and DHE groups, the NA-induced contraction on the rats thoracic aorta ring was larger than that of the CN (P<0.05), albeit there was no significant difference between the HE and DHE groups (P>0.05). The serum SOD content decreased in the HE and DHE groups, however, the reduction was significant only in the DHE group (P<0.05). The content of MDA in serum was significantly increased in the DHE group (P<0.05). The expression of BAX was significantly upregulated whereas Bcl2 expression was decreased in the DHE group (P<0.05). The results showed that a high temperature was harmful to the body, especially in the case of lack of food and water. Additionally, the heat exposure elevated blood pressure, and increased arterial reactivity, which were related to the elevated production of MDA, led to the impaired production of SOD, and an increase of cell apoptosis. These findings are useful to understand the influence of dehydrated heat exposure on the vascular function, and they provide certain theoretical and experimental guidance for protection under high temperature.
Collapse
Affiliation(s)
- Yao Geng
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lingqin Zhu
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fadong Liu
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaodan Zhu
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cranial Cerebral Diseases, Yinchuan, Ningxia 750004, P.R. China
| | - Guanghua Li
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China; Ningxia Key Laboratory of Cranial Cerebral Diseases, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
18
|
No M, Kwak HB. Effects of environmental temperature on physiological responses during submaximal and maximal exercises in soccer players. Integr Med Res 2016; 5:216-222. [PMID: 28462121 PMCID: PMC5390419 DOI: 10.1016/j.imr.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/29/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Background Although thermoregulation is effective in regulating body temperature under normal conditions, exercise or physical activity in extreme cold or heat exerts heavy stress on the mechanisms that regulate body temperature. The purpose of this study was to investigate the effects of environmental temperature on physiological responses and endurance exercise capacity during submaximal and maximal exercises in healthy adults. Methods Nine male soccer players participated in this study. In this study, three environmental temperatures were set at 10 ± 1°C, 22 ± 1°C, and 35 ± 1°C with the same humidity (60 ± 10%). The participants cycled for 20 minutes at 60% maximum oxygen uptake (60% VO2max), and then exercise intensity was increased at a rate of 0.5 kp/2 min until exhaustion at three different environmental conditions. Results Oxygen uptake and heart rate were lower in a moderate environment (22 ± 1°C) than in a cool (10 ± 1°C) or hot (35 ± 1°C) environment at rest and during submaximal exercise, and were higher during maximal exercise (p < 0.05). Minute ventilation was lower at 22 ± 1°C than at 10 ± 1°C or 35 ± 1°C at rest and during submaximal exercise, and no significant differences were observed in minute ventilation during maximal exercise (p < 0.05). Blood lactate concentrations were lower at 22 ± 1 °C than at 10 ± 1°C or 35 ± 1°C at rest and during submaximal exercise, and were higher during maximal exercise (p < 0.05). Time to exhaustion during exercise was longer at 22 ± 1°C than at 10 ± 1°C or 35 ± 1°C (p < 0.05). Conclusion It is concluded that physiological responses and endurance exercise capacity are impaired under cool or hot conditions compared with moderate conditions, suggesting that environmental temperature conditions play an important role for exercise performance.
Collapse
Affiliation(s)
- MiHyun No
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| |
Collapse
|
19
|
Cleary MA, Toy MG, Lopez RM. Thermoregulatory, cardiovascular, and perceptual responses to intermittent cooling during exercise in a hot, humid outdoor environment. J Strength Cond Res 2014; 28:792-806. [PMID: 23897015 DOI: 10.1519/jsc.0b013e3182a20f57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Decreasing core body temperature during exercise may improve exercise tolerance, facilitate acclimatization, and prevent heat illness during summer training. We sought to evaluate the effectiveness of intermittent superficial cooling on thermoregulatory, cardiovascular, and perceptual responses during exercise in a hot humid environment. We used a randomized, counterbalanced, repeated measures investigation with 2 conditions (control and cooling) during exercise and recovery outdoors on artificial turf in a hot, humid tropical climate in the sun (wet bulb globe temperature outdoors [WBGTo], 27.0 ± 0.8° C; range, 25.8-28.1° C) and in the shade (WBGTo, 25.4 ± 0.9° C; range, 24.3-26.8° C). Participants were 10 healthy males (age, 22.6 ± 1.6 years; height, 176.0 ± 6.9 cm; mass, 76.5 ± 7.8 kg; body fat, 15.6 ± 5.4%) who wore shorts and T-shirt (control) or "phase change cooling" vest (cooling) during 5-minute rest breaks during 60 minutes of intense American football training and conditioning exercises in the heat and 30 minutes of recovery in the shade. Throughout, we measured core (Tgi) and skin (Tchest) temperature, heart rate (HR), thermal and thirst sensations, and rating of perceived exertion. We found significant (p ≤ 0.001) hypohydration (-2.1%); for Tgi, we found no significant differences between conditions (p = 0.674) during exercise and progressive decreases during recovery (p < 0.001). For [INCREMENT]Tg,i we found no significant (p = 0.090) differences. For Tchest, we found significantly (p < 0.001) decreased skin temperature in the cooling condition (Tchest, 31.85 ± 0.43° C) compared with the control condition (Tchest, 34.38 ± 0.43° C) during exercise and significantly (p < 0.001) lower skin temperature in the cooling condition (Tchest, 31.24 ± 0.47° C) compared with the control condition (Tchest, 33.48 ± 0.47° C) during recovery. For HR, we found no significant difference (p = 0.586) between the conditions during exercise; however, we did find significantly (p < 0.001) lower HR during recovery. Thermal sensations were significantly (p = 0.026) decreased in the cooling (4.4 ± 0.2 points) compared with the control (5.0 ± 0.2 points) condition but not for other perceptual responses. The cooling effects of "phase change cooling" material were effective in reducing skin temperature but did not sufficiently reduce core body temperature or cardiovascular strain.
Collapse
Affiliation(s)
- Michelle A Cleary
- 1Athletic Training Education Program, College of Educational Studies, Chapman University, Orange, California; 2Dellarmine College Preparatory, San Jose, California; and 3Department of Orthopedics and Sports Medicine, University of South Florida, Tampa, Florida
| | | | | |
Collapse
|
20
|
Abstract
Running well and safely in the heat is challenging for all runners, from recreational to elite. As environmental heat stress (heat stress modulated or augmented by air temperature, humidity, wind speed, and solar radiation) and the intensity and duration of a training run or race increase, so are metabolic heat production, the parallel need for heat transfer from the body to maintain thermal equilibrium, the consequent increase in blood flow to the skin, and the concomitant sweating response progressively and proportionally amplified. An accumulating total body-water deficit from extensive sweating and escalating level of cardiovascular and thermal strain will, in due course, considerably challenge a runner's physiology, perception of effort, and on-course well-being and performance. However, with the appropriate preparation and modifications to planned running intensity and distance, runners can safely tolerate and effectively train and compete in a wide range of challenging environmental conditions. Clinicians play a key role in this regard as an effective resource for providing the most effective guidelines and making the best overall individual recommendations regarding training and competing in the heat.
Collapse
|
21
|
Riera F, Trong TT, Sinnapah S, Hue O. Physical and perceptual cooling with beverages to increase cycle performance in a tropical climate. PLoS One 2014; 9:e103718. [PMID: 25084009 PMCID: PMC4118924 DOI: 10.1371/journal.pone.0103718] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/06/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose This study compares the effects of neutral temperature, cold and ice-slush beverages, with and without 0.5% menthol on cycling performance, core temperature (Tco) and stress responses in a tropical climate (hot and humid conditions). Methods Twelve trained male cyclists/triathletes completed six 20-km exercise trials against the clock in 30.7°C±0.8°C and 78%±0.03% relative humidity. Before and after warm-up, and before exercise and every 5 km during exercise, athletes drank 190 mL of either aromatized (i.e., with 0.5 mL of menthol (5 gr/L)) or a non-aromatized beverage (neutral temperature: 23°C±0.1°C, cold: 3°C±0.1°C, or ice-slush: −1°C±0.7°C). During the trials, heart rate (HR) was continuously monitored, whereas core temperature (Tco), thermal comfort (TC), thermal sensation (TS) and rate of perceived exertion (RPE) were measured before and after warm-up, every 5 km of exercise, and at the end of exercise and after recovery. Results Both the beverage aroma (P<0.02) and beverage temperature (P<0.02) had significant and positive effects on performance, which was considerably better with ice-slush than with a neutral temperature beverage, whatever the aroma (P<0.002), and with menthol vs non-menthol (P<0.02). The best performances were obtained with ice-slush/menthol and cold/menthol, as opposed to neutral/menthol. No differences were noted in HR and Tco between trials. Conclusion Cold water or ice-slush with menthol aroma seems to be the most effective beverage for endurance exercise in a tropical climate. Further studies are needed to explore its effects in field competition.
Collapse
Affiliation(s)
- Florence Riera
- Laboratoire ACTES - EA 3596, Université des Antilles et de la Guyane Campus de Fouillole, Point à Pitre, France
- * E-mail:
| | - Than Tran Trong
- Laboratoire ACTES - EA 3596, Université des Antilles et de la Guyane Campus de Fouillole, Point à Pitre, France
| | - Stéphane Sinnapah
- Laboratoire ACTES - EA 3596, Université des Antilles et de la Guyane Campus de Fouillole, Point à Pitre, France
| | - Olivier Hue
- Laboratoire ACTES - EA 3596, Université des Antilles et de la Guyane Campus de Fouillole, Point à Pitre, France
| |
Collapse
|
22
|
Del Coso J, González C, Abian-Vicen J, Salinero Martín JJ, Soriano L, Areces F, Ruiz D, Gallo C, Lara B, Calleja-González J. Relationship between physiological parameters and performance during a half-ironman triathlon in the heat. J Sports Sci 2014; 32:1680-7. [PMID: 24825571 DOI: 10.1080/02640414.2014.915425] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Triathlon is a popular outdoor endurance sport performed under a variety of environmental conditions. The aim of this study was to assess physiological variables before and after a half-ironman triathlon in the heat and to analyse their relationship with performance. Thirty-four well-trained triathletes completed a half-ironman triathlon in a mean dry temperature of 29 ± 3ºC. Before and within 1 min after the end of the race, body mass, core temperature, maximal jump height and venous blood samples were obtained. Mean race time was 315 ± 40 min, with swimming (11 ± 1%), cycling (49 ± 2%) and running (40 ± 3%) representing different amounts of the total race time. At the end of the competition, body mass changed by -3.8 ± 1.6% and the change in body mass correlated positively with race time (r = 0.64; P < 0.001). Core temperature increased from 37.5 ± 0.6ºC to 38.8 ± 0.7ºC (P < 0.001) and post-race core temperature correlated negatively with race time (r = -0.47; P = 0.007). Race time correlated positively with the decrease in jump height (r = 0.38; P = 0.043), post-race serum creatine kinase (r = 0.55; P = 0.001) and myoglobin concentrations (r = 0.39; P = 0.022). In a half-ironman triathlon in the heat, greater reductions in body mass and higher post-competition core temperatures were present in faster triathletes. In contrast, slower triathletes presented higher levels of muscle damage and decreased muscle performance.
Collapse
Affiliation(s)
- Juan Del Coso
- a Sport Sciences Institute, Camilo José Cela University , Madrid , Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sidhu SK, Lauber B, Cresswell AG, Carroll TJ. Sustained cycling exercise increases intracortical inhibition. Med Sci Sports Exerc 2013. [PMID: 23190593 DOI: 10.1249/mss.0b013e31827b119c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE In the current study, we measured EMG suppression induced by subthreshold transcranial magnetic stimulation (TMS) to investigate the effects of sustained cycling exercise on intracortical inhibition. METHODS Sixteen subjects cycled at 75% of their maximum workload (Wmax) for 30 min, during which subthreshold TMS was applied at a defined crank angle where vastus lateralis (VL) EMG amplitude was increasing and approximately 50% of its recorded maximum. Subthreshold TMS was also applied during nonfatiguing control cycling bouts at 75% and 37.5% of Wmaxbefore sustained cycling. RESULTS Although EMG in VL during control cycling at 37.5% Wmax was approximately half that during cycling at 75% Wmax (P ≤ 0.05), the amount of EMG suppression was not different between workloads (P > 0.05). EMG amplitude in VL recorded in the last 5 min of sustained cycling was not different from the first 5 min (P > 0.05), whereas the amount of EMG suppression at the end of the sustained cycling was significantly greater than that at the start (P ≤ 0.05). CONCLUSIONS The increase in TMS-evoked EMG suppression during sustained cycling implies an increase in the excitability of the intracortical inhibitory interneurons during the exercise. The observed increase in intracortical inhibition is similar to that observed during sustained single joint contractions, suggesting that changes in the responsiveness of intracortical inhibitory interneurons are similar during locomotor exercise and static single joint contractions.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
24
|
DISTEFANO LINDSAYJ, CASA DOUGLASJ, VANSUMEREN MEGANM, KARSLO RACHELM, HUGGINS ROBERTA, DEMARTINI JULIEK, STEARNS REBECCAL, ARMSTRONG LAWRENCEE, MARESH CARLM. Hypohydration and Hyperthermia Impair Neuromuscular Control after Exercise. Med Sci Sports Exerc 2013; 45:1166-73. [DOI: 10.1249/mss.0b013e3182805b83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Corticospinal Responses to Sustained Locomotor Exercises: Moving Beyond Single-Joint Studies of Central Fatigue. Sports Med 2013; 43:437-49. [DOI: 10.1007/s40279-013-0020-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Running pace decrease during a marathon is positively related to blood markers of muscle damage. PLoS One 2013; 8:e57602. [PMID: 23460881 PMCID: PMC3583862 DOI: 10.1371/journal.pone.0057602] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Background Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 °C; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results Marathoners reduced their running pace from 3.5 ± 0.4 m/s after 5-km to 2.9 ± 0.6 m/s at the end of the race (P<0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (> 15% pace reduction) had elevated post-race myoglobin (1318 ± 1411 v 623 ± 391 µg L−1; P<0.05), lactate dehydrogenase (687 ± 151 v 583 ± 117 U L−1; P<0.05), and creatine kinase (564 ± 469 v 363 ± 158 U L−1; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (−3.1 ± 1.0 v −3.0 ± 1.0%; P = 0.60) or post-race body temperature (38.7 ± 0.7 v 38.9 ± 0.9 °C; P = 0.35). Conclusions/Significance Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.
Collapse
|
27
|
Sidhu SK, Cresswell AG, Carroll TJ. Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion. J Appl Physiol (1985) 2012; 113:401-9. [DOI: 10.1152/japplphysiol.00486.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The excitability of the motor cortex increases as fatigue develops during sustained single-joint contractions, but there are no previous reports on how corticospinal excitability is affected by sustained locomotor exercise. Here we addressed this issue by measuring spinal and cortical excitability changes during sustained cycling exercise. Vastus lateralis (VL) and rectus femoris (RF) muscle responses to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs) and electrical stimulation of the descending tracts (cervicomedullary evoked potentials, CMEPs) were recorded every 3 min from nine subjects during 30 min of cycling at 75% of maximum workload (Wmax), and every minute during subsequent exercise at 105% of Wmax until subjective task failure. Responses were also measured during nonfatiguing control bouts at 80% and 110% of Wmax prior to sustained exercise. There were no significant changes in MEPs or CMEPs ( P > 0.05) during the sustained cycling exercise. These results suggest that, in contrast to sustained single-joint contractions, sustained cycling exercise does not increase the excitability of motor cortical neurons. The contrasting corticospinal responses to the two modes of exercise may be due to differences in their associated systemic physiological consequences.
Collapse
Affiliation(s)
- Simranjit K. Sidhu
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew G. Cresswell
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy J. Carroll
- School of Human Movement Studies, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
El Helou N, Tafflet M, Berthelot G, Tolaini J, Marc A, Guillaume M, Hausswirth C, Toussaint JF. Impact of environmental parameters on marathon running performance. PLoS One 2012; 7:e37407. [PMID: 22649525 PMCID: PMC3359364 DOI: 10.1371/journal.pone.0037407] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose The objectives of this study were to describe the distribution of all runners' performances in the largest marathons worldwide and to determine which environmental parameters have the maximal impact. Methods We analysed the results of six European (Paris, London, Berlin) and American (Boston, Chicago, New York) marathon races from 2001 to 2010 through 1,791,972 participants' performances (all finishers per year and race). Four environmental factors were gathered for each of the 60 races: temperature (°C), humidity (%), dew point (°C), and the atmospheric pressure at sea level (hPA); as well as the concentrations of four atmospheric pollutants: NO2 – SO2 – O3 and PM10 (μg.m−3). Results All performances per year and race are normally distributed with distribution parameters (mean and standard deviation) that differ according to environmental factors. Air temperature and performance are significantly correlated through a quadratic model. The optimal temperatures for maximal mean speed of all runners vary depending on the performance level. When temperature increases above these optima, running speed decreases and withdrawal rates increase. Ozone also impacts performance but its effect might be linked to temperature. The other environmental parameters do not have any significant impact. Conclusions The large amount of data analyzed and the model developed in this study highlight the major influence of air temperature above all other climatic parameter on human running capacity and adaptation to race conditions.
Collapse
Affiliation(s)
- Nour El Helou
- IRMES (bioMedical Research Institute of Sports Epidemiology), INSEP, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Existing evidence suggests that exercise-induced alterations of the metabolic milieu of locomotor muscle and associated peripheral muscle fatigue affect the central projection of thin-fiber muscle afferents. These neurons provide inhibitory feedback to the CNS and thereby influence the magnitude of central motor drive during high-intensity whole-body endurance exercise. The purpose of this proposed feedback loop would be to regulate and restrict the development of exercise-induced peripheral muscle fatigue and/or associated sensory feedback to an "individual critical threshold." This centrally mediated restriction in the development of peripheral locomotor muscle fatigue might thereby help to prevent excessive disturbance of muscle homeostasis and potential harm to the organism. It seems that the regulatory mechanism is dominant during exercise under "normal" conditions but might become secondary in the face of extreme environmental influences such as severe hypoxia or heat. Most recent data are used to emphasize how the proposed feedback loop might be a key factor limiting performance during high-intensity whole-body endurance exercise.
Collapse
Affiliation(s)
- Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
30
|
DeMartini JK, Ranalli GF, Casa DJ, Lopez RM, Ganio MS, Stearns RL, McDermott BP, Armstrong LE, Maresh CM. Comparison of Body Cooling Methods on Physiological and Perceptual Measures of Mildly Hyperthermic Athletes. J Strength Cond Res 2011; 25:2065-74. [DOI: 10.1519/jsc.0b013e3182259b1d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Ranalli GF, Demartini JK, Casa DJ, McDermott BP, Armstrong LE, Maresh CM. Effect of body cooling on subsequent aerobic and anaerobic exercise performance: a systematic review. J Strength Cond Res 2011; 24:3488-96. [PMID: 21088554 DOI: 10.1519/jsc.0b013e3181fb3e15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Body cooling has become common in athletics, with numerous studies looking at different cooling modalities and different types of exercise. A search of the literature revealed 14 studies that measured performance following cooling intervention and had acceptable protocols for exercise and performance measures. These studies were objectively analyzed with the Physiotherapy Evidence Database (PEDro) scale, and 13 of the studies were included in this review. These studies revealed that body cooling by various modalities had consistent and greater impact on aerobic exercise performance (mean increase in performance = 4.25%) compared to anaerobic (mean increase in performance = 0.66%). Different cooling modalities, and cooling during different points during an exercise protocol, had extremely varied results. In conclusion, body cooling seems to have a positive effect on aerobic performance, although the impact on anaerobic performance may vary and often does not provide the same positive effect.
Collapse
Affiliation(s)
- Gregory F Ranalli
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Maughan RJ. Distance running in hot environments: a thermal challenge to the elite runner. Scand J Med Sci Sports 2010; 20 Suppl 3:95-102. [DOI: 10.1111/j.1600-0838.2010.01214.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Abstract
Over the past 13 years, Noakes and his colleagues have argued repeatedly for the existence of a 'Central Governor', a specific brain centre that provides a feed-forward regulation of the intensity of vigorous effort in order to conserve homeostasis, protecting vital organs such as the brain, heart and skeletal muscle against damage from hyperthermia, ischaemia and other manifestations of catastrophic failure. This brief article reviews evidence concerning important corollaries of the hypothesis, examining the extent of evolutionary pressures for the development of such a mechanism, the effectiveness of protection against hyperthermia and ischaemia during exhausting exercise, the absence of peripheral factors limiting peak performance (particularly a plateauing of cardiac output and oxygen consumption) and proof that electromyographic activity is limiting exhausting effort. As yet, there is a lack of convincing experimental evidence to support these corollaries of the hypothesis; furthermore, some findings, such as the rather consistent demonstration of an oxygen consumption plateau in young adults, argue strongly against the limiting role of a 'Central Governor'.
Collapse
Affiliation(s)
- Roy J Shephard
- Faculty of Physical Education and Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Abstract
During exercise, fatigue is defined as a reversible reduction in force- or power-generating capacity and can be elicited by “central” and/or “peripheral” mechanisms. During skeletal muscle contractions, both aspects of fatigue may develop independent of alterations in convective O2delivery; however, reductions in O2supply exacerbate and increases attenuate the rate of accumulation. In this regard, peripheral fatigue development is mediated via the O2-dependent rate of accumulation of metabolic by-products (e.g., inorganic phosphate) and their interference with excitation-contraction coupling within the myocyte. In contrast, the development of O2-dependent central fatigue is elicited 1) by interference with the development of central command and/or 2) via inhibitory feedback on central motor drive secondary to the peripheral effects of low convective O2transport. Changes in convective O2delivery in the healthy human can result from modifications in arterial O2content, blood flow, or a combination of both, and they can be induced via heavy exercise even at sea level; these changes are exacerbated during acute and chronic exposure to altitude. This review focuses on the effects of changes in convective O2delivery on the development of central and peripheral fatigue.
Collapse
|
35
|
González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol 2008; 586:45-53. [PMID: 17855754 PMCID: PMC2375553 DOI: 10.1113/jphysiol.2007.142158] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/01/2007] [Accepted: 09/11/2007] [Indexed: 12/20/2022] Open
Abstract
Exercise in the heat can pose a severe challenge to human cardiovascular control, and thus the provision of oxygen to exercising muscles and vital organs, because of enhanced thermoregulatory demand for skin blood flow coupled with dehydration and hyperthermia. Cardiovascular strain, typified by reductions in cardiac output, skin and locomotor muscle blood flow and systemic and muscle oxygen delivery accompanies marked dehydration and hyperthermia during prolonged and intense exercise characteristic of many summer Olympic events. This review focuses on how the cardiovascular system is regulated when exercising in the heat and how restrictions in locomotor skeletal muscle and/or skin perfusion might limit athletic performance in hot environments.
Collapse
Affiliation(s)
- José González-Alonso
- Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, Middlesex, UK.
| | | | | |
Collapse
|
36
|
|
37
|
Abstract
The marathon poses a considerable physical challenge for athletes of all levels. When combined with high heat and humidity, not only is performance potentially compromised, but health and well-being are also at risk. There are well recognised effects of heat and hydration status on the cardiovascular and thermoregulatory systems that can account for the decreased performance and increased sensation of effort that are experienced when competing in the heat. Elevated exercise heart rate and core temperature at the same absolute exercise intensity are commonly reported. Dehydration occurring during exercise in the heat and results in reductions in stroke volume, cardiac output and blood pressure, as well as a marked decline in blood flow to the working muscles. Recent work suggests that hyperthermia may have a direct affect on the CNS and the brain may contribute to fatigue during prolonged exercise in a warm environment. At present, evidence supports a significant role of catecholaminergic neurotransmission, but there are a number of metabolic and circulatory perturbations occurring within the brain that may also be important in the fatigue process.
Collapse
Affiliation(s)
- Ron J Maughan
- School of Sport and Exercise Sciences, Loughborough University, Leicestershire, UK.
| | | | | |
Collapse
|