1
|
Kuorelahti T, Ihalainen JK, Linnamo V, Badenhorst C, Kettunen O, Mikkonen RS. Influence of "live high-train low" on hemoglobin mass and post-exercise hepcidin response in female endurance athletes. Eur J Appl Physiol 2025:10.1007/s00421-025-05762-w. [PMID: 40210726 DOI: 10.1007/s00421-025-05762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/18/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE The aim of this study was to investigate the effects of a 21-day 'live high-train low' (LHTL) intervention on hemoglobin mass (Hbmass) and post-exercise hepcidin response in female endurance athletes. METHODS 15 national to international level female endurance athletes completed either the LHTL intervention in normobaric hypoxia (2500 m, ~ 18 h·day-1, INT, n = 7) or lived and trained in normoxia for the same duration (CON, n = 8). Tests were conducted before (PRE) and within two days after (POST) the intervention including Hbmass measurements via a carbon monoxide rebreathing method and a roller skiing skate test. Venous blood samples were collected at rest, 0, and 3 h after the aerobic exercise to test for changes in serum hepcidin, ferritin, and interleukin-6 (IL-6). RESULTS Normobaric hypoxia increased Hbmass (3.3 ± 1.8%, p < 0.001) in INT, while no changes were observed in CON. There were no changes in performance parameters, resting levels of hepcidin, or IL-6 from PRE to POST, but ferritin decreased in both groups (p = 0.040). Hepcidin increased 0 h post-exercise in PRE for INT (p = 0.029) and both 0 and 3 h post-exercise for CON (p = 0.001, p = 0.019). In POST elevated post-exercise hepcidin was only observed in CON (0 h, p = 0.003; 3 h, p = 0.008). CONCLUSIONS 21-day LHTL increased Hbmass and suppressed post-exercise hepcidin response after intensive aerobic exercise. This suggests that prolonged hypoxia may induce an acute physiological response that supports iron absorption within a few days following hypoxic exposure, which may assist in achieving the aerobic adaptations sought from prolonged hypoxic training camps.
Collapse
Affiliation(s)
- Titta Kuorelahti
- Sports Technology Unit Vuokatti, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland.
| | - Johanna K Ihalainen
- Sports Technology Unit Vuokatti, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Vesa Linnamo
- Sports Technology Unit Vuokatti, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Claire Badenhorst
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Oona Kettunen
- Sports Technology Unit Vuokatti, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Ritva S Mikkonen
- Sports Technology Unit Vuokatti, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| |
Collapse
|
2
|
Mujika I, Mara J, Zelenkova I, Zacca R, Pyne DB. Hematological Adaptations to Altitude Training in Female Water Polo Players: A Case Report of a World Championships Medal-Winning Team. Sports (Basel) 2025; 13:86. [PMID: 40137810 PMCID: PMC11945830 DOI: 10.3390/sports13030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The effective monitoring of athletes' adaptation is crucial to optimize the outcomes of altitude camps and minimize the risk of maladaptation to the hypoxic stress and intensive training. This case report assessed the hematological adaptations in 22 world-class female water polo players during a 16-day 'live high-train high' (LHTH) altitude camp (2320 m) and evaluated the differences between selected (n = 13) and non-selected (n = 9) players and between playing positions. METHODS Hematological parameters, including total hemoglobin mass (tHBmass) and blood volume, were measured before and after the camp. Resting heart rate, peripheral oxygen saturation, body mass, fatigue, and sleep were monitored daily. RESULTS Relative tHbmass increased PRE to POST (5.4 ± 5.1%, range -3.9-20.2), but blood volume did not change (p = 0.797). Erythrocyte count, hemoglobin concentration, hematocrit, and red cell distribution width increased PRE-POST (p < 0.001, ES = 1.21-2.69), while mean corpuscular volume and hemoglobin decreased (p < 0.001, ES = 0.51 and 0.72, respectively). No substantial differences were observed in the hematological parameters between selected and non-selected players. There was a large difference in the change in relative blood volume between centers (n = 4, PRE 74.1 ± 5.4, POST 69.7 ± 5.9 mL/kg; mean ± SD) and field players (n = 15, PRE 80.8 ± 10.6, POST 82.8 ± 6.8 mL/kg; adj p = 0.046, ES = 1.15) and between centers and goalkeepers (n = 3, PRE 89.7 ± 9.6, POST 82.0 ± 7.1 mL/kg; adj p = 0.046, ES = 1.62). CONCLUSIONS A 16-day LHTH camp can induce favorable hematological adaptations in world-class women's water polo players, without substantial differences between selected and non-selected players, and larger increases in field players.
Collapse
Affiliation(s)
- Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501014, Chile
| | - Jocelyn Mara
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia; (J.M.); (D.B.P.)
| | - Irina Zelenkova
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Rodrigo Zacca
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia; (J.M.); (D.B.P.)
| |
Collapse
|
3
|
Li M, Chen Z, He Z, Zhang X, Liu Y, Zhou H, Yang H, Liu T, Wang X, Zhang R, Zhang J. A preliminary exploration of establishing a mice model of hypoxic training. Sci Rep 2025; 15:816. [PMID: 39755749 PMCID: PMC11700093 DOI: 10.1038/s41598-024-84371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls. All hypoxic mice were placed in a chamber filled with 16% O2 and N2, and hypoxic training mice were trained for two weeks. Then mice were removed from the chamber and tested at normoxic conditions weekly at the beginning of the experiment and the second, third, fourth, and sixth weeks. The tests for endurance ability include maximal aerobic speed (MAS), Rota-rod, and grip strength. In addition, the open field, visual cliff, and Y maze were used to test cognitive abilities. Body composition and lactic acid tolerance level were also measured. For BALB/c but not C57BL/6 mice were evaluated for effectively training. Based on the average MAS of all mice, mice successfully passed the training according to the procedure: the first week (32%MAS/10min, 48%MAS/10min, and 64%MAS/10min) and second week (40%MAS/10min, 56%MAS/10min, and 72%MAS/10min). Hypoxic training mice reached peak rotarod performance on the 7th day post-training (Test 3), with significant improvements compared to Test 1, 2, 4, and 5. At Test 3, their rotarod scores significantly differed from both H and N groups, and showing a trend towards difference from NT group. Meanwhile, hypoxic mice showed significant cognitive impairment, anxiety, depression, muscle loss, and fat gain compared with hypoxic training mice after hypoxia intervation. Two consecutive weeks of 16% O2 training followed by one week of reoxygenation may be the best for endurance competition. Thus, we think a mouse model for hypoxic training was built, with Rota-rod testing as a detection indicator. Moreover, hypoxic training may alleviate the damage of hypoxia to the body.
Collapse
Affiliation(s)
- Minglu Li
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhijie Chen
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ziyang He
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Institute of Applied Psychology, Minnan Normal University, Zhangzhou, Fujian, China
- Fujian Province Key Laboratory of Applied Cognition and Personality, Zhangzhou, Fujian, China
- School of Education and Psychology, Minnan Normal University, Zhangzhou, China
| | - Yanqiu Liu
- Physical Education Institute, Jimei University, Xiamen, 361021, Fujian, China
| | - Hui Zhou
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hang Yang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tao Liu
- Physical Education Institute, Jimei University, Xiamen, 361021, Fujian, China
| | - Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
4
|
Rønnestad BR, Odden I, Urianstad T, Hansen J, Mølmen KS, Cardinale DA. Heat Suit Training Preserves the Increased Hemoglobin Mass after Altitude Camp in Elite Cyclists. Med Sci Sports Exerc 2025; 57:81-87. [PMID: 39160765 DOI: 10.1249/mss.0000000000003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
PURPOSE Altitude training is a common strategy used with the intent to increase hemoglobin mass (Hb mass ) in athletes. However, if the Hb mass is increased during altitude camps, it seems to decline rapidly upon returning to sea level. This study aimed to examine the efficacy of three weekly heat training sessions over a 3.5-wk period after a 3-wk altitude camp on the maintenance of Hb mass in elite cyclists. METHODS Eighteen male cyclists (maximal oxygen consumption: 76 ± 5 mL·min -1 ·kg -1 ) underwent a 3-wk altitude training camp at ~2100 m above sea level. After the camp, participants were divided into one group performing three weekly heat sessions that were subtracted from their usual training (HEAT) while the other continuing usual training (CON). Training characteristics were recorded during the intervention, whereas hematological measurements were recorded before the camp as well as 2 d and 3.5 wk after the altitude camp. RESULTS The 3-wk altitude camp led to an overall increase in total Hb mass of 4.1%. Afterward, HEAT maintained Hb mass (0.2%, P = 0.738), whereas CON group experienced a significant reduction (-3.3%, P < 0.001) (ΔHEAT vs ΔCON, P < 0.001). Moreover, HEAT increased plasma volume (PV) by 11.6% ( P = 0.007) and blood volume (BV) by 5.8% ( P = 0.007), whereas CON only showed an increase in PV (5.5%, P = 0.041). Exercise intensity and training load were not different between groups during the maintenance period. CONCLUSIONS This study suggests that incorporating three weekly heat training sessions into the usual training routine preserves a moderately increased Hb mass in elite cyclists after an altitude camp.
Collapse
Affiliation(s)
- Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| | - Ingvill Odden
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| | - Tomas Urianstad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| | - Joar Hansen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| | - Knut S Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, NORWAY
| | | |
Collapse
|
5
|
Urianstad T, Villanova S, Odden I, Hansen J, Mølmen KS, Porcelli S, Rønnestad BR, Cardinale DA. Carbon monoxide supplementation: evaluating its potential to enhance altitude training effects and cycling performance in elite athletes. J Appl Physiol (1985) 2024; 137:1092-1105. [PMID: 39236115 DOI: 10.1152/japplphysiol.00469.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Altitude training is a cornerstone for endurance athletes for improving blood variables and performance, with optimal effects observed at ∼2,300-2,500 meters above sea level (m.a.s.l.). However, elite cyclists face challenges such as limited access to such altitudes, inadequate training facilities, and high expenses. To address these issues, a novel method involving daily exposure to carbon monoxide (CO) has been proposed to amplify altitude training adaptations at suboptimal altitudes. Thirty-one male cyclists were assigned to three groups: Live-High Train-High with CO inhalation (LHTHCO), Live-High Train-High (LHTH), and Live-Low Train-Low (LLTL). The LHTHCO group underwent CO inhalation twice daily in the afternoon/evening to elevate carboxyhemoglobin concentration to ∼10%. Hematological variables, in vivo muscle oxidative capacity, and physiological indicators of cycling performance were assessed before and after a 3-week altitude training camp at 2,100 m.a.s.l. LHTHCO demonstrated a larger increase in hemoglobin mass (Hbmass) compared to both LHTH and LLTL. Although there were no statistical differences between LHTHCO and LHTH in submaximal and maximal performance measures, LHTHCO displayed greater improvements in 1-min maximal power output during incremental testing (Wmax), power output at lactate threshold, and maximal oxygen consumption (V̇o2max) compared to LLTL. LHTH demonstrated a larger improvement than LLTL in Wmax and V̇o2max, with no group differences in Hbmass or submaximal measures. Muscle oxidative capacity did not differ between groups. These findings suggest that combining moderate-altitude training with daily CO inhalation promotes hematological adaptations more effectively than moderate altitude alone and enhances cycling performance metrics in cyclists more than sea-level training.NEW & NOTEWORTHY Three weeks of training at moderate altitude with exposure to low doses of CO can significantly enhance hematological adaptations in elite cyclists compared to moderate-altitude training alone. Cycling performance determinants improved more with CO inhalation at moderate altitude compared to sea-level training, whereas there were no differences in submaximal and maximal performance measures compared to moderate-altitude training alone. This study highlights the potential of CO supplementation as an effective adjunct to altitude training regimens.
Collapse
Affiliation(s)
- Tomas Urianstad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Simone Villanova
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Ingvill Odden
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Joar Hansen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Knut S Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Daniele A Cardinale
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences GIH, Stockholm, Sweden
- The Swedish Sports Confederation (Riksidrottsförbundet), Stockholm, Sweden
| |
Collapse
|
6
|
Janssen Daalen JM, Meinders MJ, Mathur S, van Hees HWH, Ainslie PN, Thijssen DHJ, Bloem BR. Randomized controlled trial of intermittent hypoxia in Parkinson's disease: study rationale and protocol. BMC Neurol 2024; 24:212. [PMID: 38909201 PMCID: PMC11193237 DOI: 10.1186/s12883-024-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. METHODS/DESIGN This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. DISCUSSION This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05948761 (registered June 20th, 2023).
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | | | - Hieronymus W H van Hees
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Dick H J Thijssen
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Yi L, Wu J, Yan B, Wang Y, Zou M, Zhang Y, Li F, Qiu J, Girard O. Effects of three weeks base training at moderate simulated altitude with or without hypoxic residence on exercise capacity and physiological adaptations in well-trained male runners. PeerJ 2024; 12:e17166. [PMID: 38563004 PMCID: PMC10984165 DOI: 10.7717/peerj.17166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Objectives To test the hypothesis that 'live high-base train high-interval train low' (HiHiLo) altitude training, compared to 'live low-train high' (LoHi), yields greater benefits on performance and physiological adaptations. Methods Sixteen young male middle-distance runners (age, 17.0 ± 1.5 y; body mass, 58.8 ± 4.9 kg; body height, 176.3 ± 4.3 cm; training years, 3-5 y; training distance per week, 30-60 km.wk-1) with a peak oxygen uptake averaging ~65 ml.min-1.kg-1 trained in a normobaric hypoxia chamber (simulated altitude of ~2,500 m, monitored by heart rate ~170 bpm; thrice weekly) for 3 weeks. During this period, the HiHiLo group (n = 8) stayed in normobaric hypoxia (at ~2,800 m; 10 h.day-1), while the LoHi group (n = 8) resided near sea level. Before and immediately after the intervention, peak oxygen uptake and exercise-induced arterial hypoxemia responses (incremental cycle test) as well as running performance and time-domain heart rate variability (5-km time trial) were assessed. Hematological variables were monitored at baseline and on days 1, 7, 14 and 21 during the intervention. Results Peak oxygen uptake and running performance did not differ before and after the intervention in either group (all P > 0.05). Exercise-induced arterial hypoxemia responses, measured both at submaximal (240 W) and maximal loads during the incremental test, and log-transformed root mean square of successive R-R intervals during the 4-min post-run recovery period, did not change (all P > 0.05). Hematocrit, mean reticulocyte absolute count and reticulocyte percentage increased above baseline levels on day 21 of the intervention (all P < 0.001), irrespective of group. Conclusions Well-trained runners undertaking base training at moderate simulated altitude for 3 weeks, with or without hypoxic residence, showed no performance improvement, also with unchanged time-domain heart rate variability and exercise-induced arterial hypoxemia responses.
Collapse
Affiliation(s)
- Longyan Yi
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Jian Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Bing Yan
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Yang Wang
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Menghui Zou
- China Athletics School, Beijing Sport University, Beijing, China
| | - Yimin Zhang
- China Institute of Sport and Health Sciences, Beijing Sport University, Beijing, China
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education, Beijing, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Beijing, China
| | - Junqiang Qiu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia.
| |
Collapse
|
9
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Brown LA, Griffiths JA, Santer P, Jakeman PM, Smith TG. Potential for using simulated altitude as a means of prehabilitation: a physiology study. Anaesthesia 2023; 78:1472-1480. [PMID: 37877784 PMCID: PMC10953332 DOI: 10.1111/anae.16158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
The current pandemic of surgical complications necessitates urgent and pragmatic innovation to reduce postoperative morbidity and mortality, which are associated with poor pre-operative fitness and anaemia. Exercise prehabilitation is a compelling strategy, but it has proven difficult to establish that it improves outcomes either in isolation or as part of a multimodal approach. Simulated altitude exposure improves performance in athletes and offers a novel potential means of improving cardiorespiratory and metabolic fitness and alleviating anaemia within the prehabilitation window. We aimed to provide an initial physiological foundation for 'altitude prehabilitation' by determining the physiological effects of one week of simulated altitude (FI O2 15%, equivalent to approximately 2438 m (8000 ft)) in older sedentary volunteers. The study used a randomised, double-blind, sham-controlled crossover design. Eight participants spent counterbalanced normoxic and hypoxic weeks in a residential hypoxia facility and underwent repeated cardiopulmonary exercise tests. Mean (SD) age of participants was 64 (7) y and they were unfit, with mean (SD) baseline anaerobic threshold 12 (2) ml.kg-1 .min-1 and mean (SD) peak V̇O2 15 (3) ml.kg-1 .min-1 . Hypoxia was mild (mean (SD) Sp O2 93 (2) %, p < 0.001) and well-tolerated. Despite some indication of greater peak exercise capacity following hypoxia, overall there was no effect of simulated altitude on anaerobic threshold or peak V̇O2 . However, hypoxia induced a substantial increase in mean (SD) haemoglobin of 1.5 (2.7) g.dl-1 (13% increase, p = 0.028). This study has established the concept and feasibility of 'altitude prehabilitation' and demonstrated specific potential for improving haematological fitness. Physiologically, there is value in exploring a possible role for simulated altitude in pre-operative optimisation.
Collapse
Affiliation(s)
| | - J. A. Griffiths
- Nuffield Department of AnaesthesiaOxford University Hospitals NHS Foundation TrustOxfordUK
| | - P. Santer
- Department of Anesthesia, Critical Care and Pain MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - P. M. Jakeman
- Health Research Institute and Department of Physical Education and Sport SciencesUniversity of LimerickLimerickIreland
| | - T. G. Smith
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
- Department of AnaesthesiaGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
11
|
Bonato G, Goodman S, Tjh L. Physiological and performance effects of live high train low altitude training for elite endurance athletes: A narrative review. Curr Res Physiol 2023; 6:100113. [PMID: 38107789 PMCID: PMC10724230 DOI: 10.1016/j.crphys.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Altitude training has become an important training application for athletes due its potential for altering physiology and enhancing performance. This practice is commonly used by athletes, with a popular choice being the live high - train low approach. This model recommends that athletes live at high altitude (1250-3000 m), but train at low altitude or sea-level (0-1200 m). Exposure to altitude often leads to hypoxic stress and in turn stimulates changes in total haemoglobin mass, erythropoietin, and soluble transferrin receptors, which alter further underlying physiology. Through enhanced physiology, improved exercise performance may arise through enhancement of the oxygen transport system which is important for endurance events. Previous investigations into the effects of altitude training on exercise performance have been completed in a range of contexts, including running, cycling, swimming, and triathlon. Often following a LHTL altitude intervention, athletes realise improvements in maximal oxygen consumption capacity, time trial performance and peak power outputs. Although heterogeneity exists among LHTL methodologies, i.e., exposure durations and altitude ranges, we synthesised this data into kilometre hours, and found that the most common hypoxic doses used in LHTL interventions ranged from ∼578-687 km h. As this narrative review demonstrates, there are potential advantages to using altitude training to enhance physiology and improve performance for endurance athletes.
Collapse
Affiliation(s)
- G. Bonato
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- College of Arts, Society and Education, James Cook University, Townsville, 4811, Australia
| | - S.P.J Goodman
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
| | - Lathlean Tjh
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- The Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5000, Australia
| |
Collapse
|
12
|
Yu Q, Kong Z, Zou L, Chapman R, Shi Q, Nie J. Comparative efficacy of various hypoxic training paradigms on maximal oxygen consumption: A systematic review and network meta-analysis. J Exerc Sci Fit 2023; 21:366-375. [PMID: 37854170 PMCID: PMC10580050 DOI: 10.1016/j.jesf.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Background Enhancement in maximal oxygen consumption (VO2max) induced by hypoxic training is important for both athletes and non-athletes. However, the lack of comparison of multiple paradigms and the exploration of related modulating factors leads to the inability to recommend the optimal regimen in different situations. This study aimed to investigate the efficacy of seven common hypoxic training paradigms on VO2max and associated moderators. Methods Electronic (i.e., five databases) and manual searches were performed, and 42 studies involving 1246 healthy adults were included. Pairwise meta-analyses were conducted to compare different hypoxic training paradigms and hypoxic training and control conditions. The Bayesian network meta-analysis model was applied to calculate the standardised mean differences (SMDs) of pre-post VO2max alteration among hypoxic training paradigms in overall, athlete, and non-athlete populations, while meta-regression analyses were employed to explore the relationships between covariates and SMDs. Results All seven hypoxic training paradigms were effective to varying degrees, with SMDs ranging from 1.45 to 7.10. Intermittent hypoxia interval training (IHIT) had the highest probability of being the most efficient hypoxic training paradigm in the overall population and athlete subgroup (42%, 44%), whereas intermittent hypoxic training (IHT) was the most promising hypoxic training paradigm among non-athletes (66%). Meta-regression analysis revealed that saturation hours (coefficient, 0.004; P = 0.038; 95% CI [0.0002, 0.0085]) accounted for variations of VO2max improvement induced by IHT. Conclusion Efficient hypoxic training paradigms for VO2max gains differed between athletes and non-athletes, with IHIT ranking best for athletes and IHT for non-athletes. The practicability of saturation hours is confirmed with respect to dose-response issues in the future hypoxic training and associated scientific research. Registration This study was registered in the PROSPERO international prospective register of systematic reviews (CRD42022333548).
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Liye Zou
- Exercise Psychophysiology Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Robert Chapman
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| |
Collapse
|
13
|
Feng X, Zhao L, Chen Y, Wang Z, Lu H, Wang C. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis. Front Physiol 2023; 14:1223037. [PMID: 37745240 PMCID: PMC10513096 DOI: 10.3389/fphys.2023.1223037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: This study aimed to compare and rank the effect of hypoxic practices on maximum oxygen consumption (VO2max) in athletes and determine the hypoxic dose-response correlation using network meta-analysis. Methods: The Web of Science, PubMed, EMBASE, and EBSCO databases were systematically search for randomized controlled trials on the effect of hypoxc interventions on the VO2max of athletes published from inception until 21 February 2023. Studies that used live-high train-high (LHTH), live-high train-low (LHTL), live-high, train-high/low (HHL), intermittent hypoxic training (IHT), and intermittent hypoxic exposure (IHE) interventions were primarily included. LHTL was further defined according to the type of hypoxic environment (natural and simulated) and the altitude of the training site (low altitude and sea level). A meta-analysis was conducted to determine the standardized mean difference between the effects of various hypoxic interventions on VO2max and dose-response correlation. Furthermore, the hypoxic dosage of the different interventions were coordinated using the "kilometer hour" model. Results: From 2,072 originally identified titles, 59 studies were finally included in this study. After data pooling, LHTL, LHTH, and IHT outperformed normoxic training in improving the VO2max of athletes. According to the P-scores, LHTL combined with low altitude training was the most effective intervention for improving VO2max (natural: 0.92 and simulated: 0.86) and was better than LHTL combined with sea level training (0.56). A reasonable hypoxic dose range for LHTH (470-1,130 kmh) and HL (500-1,415 kmh) was reported with an inverted U-shaped curve relationship. Conclusion: Different types of hypoxic training compared with normoxic training serve as significant approaches for improving aerobic capacity in athletes. Regardless of the type of hypoxic training and the residential condition, LHTL with low altitude training was the most effective intervention. The characteristics of the dose-effect correlation of LHTH and LHTL may be associated with the negative effects of chronic hypoxia.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Linlin Zhao
- Sports Coaching College, Beijing Sports University, Beijing, China
| | | | - Zihao Wang
- Capital Institute of Physical Education and Sports, Beijing, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
14
|
Girard O, Levine BD, Chapman RF, Wilber R. "Living High-Training Low" for Olympic Medal Performance: What Have We Learned 25 Years After Implementation? Int J Sports Physiol Perform 2023; 18:563-572. [PMID: 37116895 DOI: 10.1123/ijspp.2022-0501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Altitude training is often regarded as an indispensable tool for the success of elite endurance athletes. Historically, altitude training emerged as a key strategy to prepare for the 1968 Olympics, held at 2300 m in Mexico City, and was limited to the "Live High-Train High" method for endurance athletes aiming for performance gains through improved oxygen transport. This "classical" intervention was modified in 1997 by the "Live High-Train Low" (LHTL) model wherein athletes supplemented acclimatization to chronic hypoxia with high-intensity training at low altitude. PURPOSE This review discusses important considerations for successful implementation of LHTL camps in elite athletes based on experiences, both published and unpublished, of the authors. APPROACH The originality of our approach is to discuss 10 key "lessons learned," since the seminal work by Levine and Stray-Gundersen was published in 1997, and focusing on (1) optimal dose, (2) individual responses, (3) iron status, (4) training-load monitoring, (5) wellness and well-being monitoring, (6) timing of the intervention, (7) use of natural versus simulated hypoxia, (8) robustness of adaptative mechanisms versus performance benefits, (9) application for a broad range of athletes, and (10) combination of methods. Successful LHTL strategies implemented by Team USA athletes for podium performance at Olympic Games and/or World Championships are presented. CONCLUSIONS The evolution of the LHTL model represents an essential framework for sport science, in which field-driven questions about performance led to critical scientific investigation and subsequent practical implementation of a unique approach to altitude training.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA,Australia
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX,USA
- University of Texas Southwestern Medical Center, Dallas, TX,USA
| | - Robert F Chapman
- Human Performance Laboratory, Department of Kinesiology, Indiana University Bloomington, Bloomington, IN,USA
| | - Randall Wilber
- United States Olympic Committee, Colorado Springs, CO,USA
| |
Collapse
|
15
|
Held S, Rappelt L, Donath L. Acute and Chronic Performance Enhancement in Rowing: A Network Meta-analytical Approach on the Effects of Nutrition and Training. Sports Med 2023; 53:1137-1159. [PMID: 37097415 DOI: 10.1007/s40279-023-01827-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION This systematic review and network meta-analysis assessed via direct and indirect comparison the occurrence and magnitude of effects following different nutritional supplementation strategies and exercise interventions on acute and chronic rowing performance and its surrogates. METHODS PubMed, Web of Science, PsycNET and SPORTDiscus searches were conducted until March 2022 to identify studies that met the following inclusion criteria: (a) controlled trials, (b) rowing performance and its surrogate parameters as outcomes, and (c) peer-reviewed and published in English. Frequentist network meta-analytical approaches were calculated based on standardized mean differences (SMD) using random effects models. RESULTS 71 studies with 1229 healthy rowers (aged 21.5 ± 3.0 years) were included and two main networks (acute and chronic) with each two subnetworks for nutrition and exercise have been created. Both networks revealed low heterogeneity and non-significant inconsistency (I2 ≤ 35.0% and Q statistics: p ≥ 0.12). Based on P-score rankings, while caffeine (P-score 84%; SMD 0.43) revealed relevantly favorable effects in terms of acute rowing performance enhancement, whilst prior weight reduction (P-score 10%; SMD - 0.48) and extensive preload (P-score 18%; SMD - 0.34) impaired acute rowing performance. Chronic blood flow restriction training (P-score 96%; SMD 1.26) and the combination of β-hydroxy-β-methylbutyrate and creatine (P-score 91%; SMD 1.04) induced remarkably large positive effects, while chronic spirulina (P-score 7%; SMD - 1.05) and black currant (P-score 9%; SMD - 0.88) supplementation revealed impairment effects. CONCLUSION Homogeneous and consistent findings from numerous studies indicate that the choice of nutritional supplementation strategy and exercise training regimen are vital for acute and chronic performance enhancement in rowing.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany.
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
- Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
| |
Collapse
|
16
|
Sharma P, Mohanty S, Ahmad Y. A study of survival strategies for improving acclimatization of lowlanders at high-altitude. Heliyon 2023; 9:e14929. [PMID: 37025911 PMCID: PMC10070159 DOI: 10.1016/j.heliyon.2023.e14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Human Acclimatization and therapeutic approaches are the core components for conquering the physiological variations at high altitude (≥2500 m) exposure. The declined atmospheric pressure and reduced partial pressure of oxygen at high altitudes tend to decrease the temperature by several folds. Hypobaric hypoxia is a major threat to humanity at high altitudes, and its potential effects include altitude mountain sickness. On severity, it may lead to the development of conditions like high-altitude cerebral edema (HACE) or high-altitude pulmonary edema (HAPE) and cause unexpected physiological changes in the healthy population of travelers, athletes, soldiers, and low landers while sojourning at high altitude. Previous investigations have been done on long-drawn-out acclimatization strategies such as the staging method to prevent the damage caused by high-altitude hypobaric Hypoxia. Inherent Limitations of this strategy hamper the daily lifestyle and time consuming for people. It is not suitable for the rapid mobilization of people at high altitudes. There is a need to recalibrate acclimatization strategies for improving health protection and adapting to the environmental variations at high altitudes. This narrative review details the geographical changes and physiological changes at high altitudes and presents a framework of acclimatization, pre-acclimatization, and pharmacological aspects of high-altitude survival to enhance the government efficacy and capacity for the strategic planning of acclimatization, use of therapeutics, and safe de-induction from high altitude for minimizing the life loss. It's simply too ambitious for the importance of the present review to reduce life loss, and it can be proved as the most essential aspect of the preparatory phase of high-altitude acclimatization in plateau regions without hampering the daily lifestyle. The application of pre-acclimatization techniques can be a boon for people serving at high altitudes, and it can be a short bridge for the rapid translocation of people at high altitudes by minimizing the acclimatization time.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| |
Collapse
|
17
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
18
|
Yu Y, Wang R, Li D, Lu Y. Monitoring Physiological Performance over 4 Weeks Moderate Altitude Training in Elite Chinese Cross-Country Skiers: An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:266. [PMID: 36612586 PMCID: PMC9820022 DOI: 10.3390/ijerph20010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The current observational study aimed to monitor the physiological performance over 4 weeks of living and training at a moderate altitude in elite Chinese cross-country skiers (8 males, mean age 20.83 ± 1.08 years). Lactate threshold, maximal oxygen uptake, blood, and body composition tests were performed at different time points to investigate the changes in physiological performance. The data were analysed by a one-way repeated measures ANOVA and a paired sample T-test between the test results. During the training camp, systematic load monitoring was carried out. Lactate threshold velocity, lactate threshold heart rate, and upper body muscle mass increased significantly (p < 0.01) after moderate altitude training. Maximum oxygen uptake was reduced compared to pre-tests (p < 0.05). Aerobic capacity parameters (maximal oxygen uptake, haemoglobin, red blood cell count) did not significantly increase after athletes returned to sea level (p > 0.05). These findings suggest that 4 weeks of moderate altitude training can significantly improve athletes’ lactate threshold and upper body muscle mass; no significant improvement in other aerobic capacity was seen. Exposure time, training load, and nutritional strategies should be thoroughly planned for optimal training of skiers at moderate altitudes.
Collapse
Affiliation(s)
- Yichao Yu
- The School of Sports Medicine and Rehabilitation, Beijing Sports University, Beijing 100084, China
- The Graduate School, Beijing Sport University, Beijing 100084, China
| | - Ruolin Wang
- Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC 3053, Australia
| | - Dongye Li
- The School of Sports Medicine and Rehabilitation, Beijing Sports University, Beijing 100084, China
- The Graduate School, Beijing Sport University, Beijing 100084, China
| | - Yifan Lu
- The School of Sports Medicine and Rehabilitation, Beijing Sports University, Beijing 100084, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
19
|
Van Cutsem J, Pattyn N. Primum non nocere; It's time to consider altitude training as the medical intervention it actually is! Front Psychol 2022; 13:1028294. [PMID: 36582343 PMCID: PMC9792969 DOI: 10.3389/fpsyg.2022.1028294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep is one of the most important aspects of recovery, and is known to be severely affected by hypoxia. The present position paper focuses on sleep as a strong moderator of the altitude training-response. Indeed, the response to altitude training is highly variable, it is not a fixed and classifiable trait, rather it is a state that is determined by multiple factors (e.g., iron status, altitude dose, pre-intervention hemoglobin mass, training load, and recovery). We present an overview of evidence showing that sleep, and more specifically the prolonged negative impact of altitude on the nocturnal breathing pattern, affecting mainly deep sleep and thus the core of physiological recovery during sleep, could play an important role in intra- and interindividual variability in the altitude training-associated responses in professional and recreational athletes. We conclude our paper with a set of suggested recommendations to customize the application of altitude training to the specific needs and vulnerabilities of each athlete (i.e., primum non nocere). Several factors have been identified (e.g., sex, polymorphisms in the TASK2/KCNK5, NOTCH4 and CAT genes and pre-term birth) to predict individual vulnerabilities to hypoxia-related sleep-disordered breathing. Currently, polysomnography should be the first choice to evaluate an individual's predisposition to a decrease in deep sleep related to hypoxia. Further interventions, both pharmacological and non-pharmacological, might alleviate the effects of nocturnal hypoxia in those athletes that show most vulnerable.
Collapse
Affiliation(s)
- Jeroen Van Cutsem
- Vital Signs and Performance Monitoring (VIPER) Research Unit, Royal Military Academy, Brussels, Belgium,Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jeroen Van Cutsem,
| | - Nathalie Pattyn
- Vital Signs and Performance Monitoring (VIPER) Research Unit, Royal Military Academy, Brussels, Belgium,Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Cerda-Kohler H, Haichelis D, Reuquén P, Miarka B, Homer M, Zapata-Gómez D, Aedo-Muñoz E. Training at moderate altitude improves submaximal but not maximal performance-related parameters in elite rowers. Front Physiol 2022; 13:931325. [PMID: 36311238 PMCID: PMC9614325 DOI: 10.3389/fphys.2022.931325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Maximal oxygen consumption (V̇O2max), physiological thresholds, and hemoglobin mass are strong predictors of endurance performance. High values of V̇O2max, maximal aerobic power (MAP), and power output at anaerobic thresholds are key variables in elite rowers. Endurance athletes often use altitude training as a strategy to improve performance. However, no clear evidence exists that training at natural altitude enhances sea-level performance in elite rowers. This study aimed to evaluate the effect of altitude training on rowing-performance parameters at sea level. The study was conducted on eleven rowers (Six females, five males) from the Chilean National Team during a 3-week moderate altitude training (∼2,900 m. a.s.l.) under the live high-train high (LHTH) model. It included a rowing ergometer maximal incremental test and blood analysis (pre and post-altitude). Gas exchange analysis was performed to measure V̇O2max, ventilatory thresholds (VTs) and rowing economy/efficiency (ECR/GE%). LHTL training improves performance-related variables at sea level (V̇Emax: 3.3% (95% CI, 1.2–5.5); hemoglobin concentration ([Hb]): 4.3% (95% CI, 1.7–6.9); hematocrit (%): 4.5% (95% CI, 0.9–8.2); RBC (red blood cells) count: 5.3% (95% CI, 2.3–8.2); power at VT2: 6.9% (95% CI, 1.7–12.1), V̇EVT2: 6.4% (95% CI, 0.4–12.4); power at VT1: 7.3% (95% CI, 1.3–13.3), V̇EVT1: 8.7% (95% CI, 1.6–15.8)) and economy/efficiency-related variables (ECRVT2: 5.3% (95% CI, −0.6 to −10.0); GE(%): 5.8% (95% CI, 0.8–10.7)). The LHTH training decreased breathing economy at MAP (−2.8% (95% CI, 0.1–5.6)), pVT2 (−9.3% (95% CI, −5.9 to −12.7)), and pVT1 (−9.3% (95% CI, −4.1 to −14.4)). Non-significant changes were found for V̇O2max and MAP. This study describes the effects of a 3-week moderate altitude (LHTH training) on performance and economy/efficiency-related variables in elite rowers, suggesting that it is an excellent option to induce positive adaptations related to endurance performance.
Collapse
Affiliation(s)
- Hugo Cerda-Kohler
- Escuela de Ciencias del Deporte y Actividad Física, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
- Departamento de Educación Física, eporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago, Chile
| | - Danni Haichelis
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago, Chile
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
| | - Patricia Reuquén
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ciencias de la Actividad Física, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bianca Miarka
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mark Homer
- School of Human and Social Sciences, Buckinghamshire New University, Buckinghamshire, United Kingdom
| | - Daniel Zapata-Gómez
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
| | - Esteban Aedo-Muñoz
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Esteban Aedo-Muñoz,
| |
Collapse
|
21
|
Konopka MJ, van den Bunder JCML, Rietjens G, Sperlich B, Zeegers MP. Genetics of long-distance runners and road cyclists-A systematic review with meta-analysis. Scand J Med Sci Sports 2022; 32:1414-1429. [PMID: 35839336 PMCID: PMC9544934 DOI: 10.1111/sms.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
The aim of this systematic review and meta-analysis was to identify the genetic variants of (inter)national competing long-distance runners and road cyclists compared with controls. The Medline and Embase databases were searched until 15 November 2021. Eligible articles included genetic epidemiological studies published in English. A homogenous group of endurance athletes competing at (inter)national level and sedentary controls were included. Pooled odds ratios based on the genotype frequency with corresponding 95% confidence intervals (95%CI) were calculated using random effects models. Heterogeneity was addressed by Q-statistics, and I2 . Sources of heterogeneity were examined by meta-regression and risk of bias was assessed with the Clark Baudouin scale. This systematic review comprised of 43 studies including a total of 3938 athletes and 10 752 controls in the pooled analysis. Of the 42 identified genetic variants, 13 were investigated in independent studies. Significant associations were found for five polymorphisms. Pooled odds ratio [95%CI] favoring athletes compared with controls was 1.42 [1.12-1.81] for ACE II (I/D), 1.66 [1.26-2.19] for ACTN3 TT (rs1815739), 1.75 [1.34-2.29] for PPARGC1A GG (rs8192678), 2.23 [1.42-3.51] for AMPD1 CC (rs17602729), and 2.85 [1.27-6.39] for HFE GG + CG (rs1799945). Risk of bias was low in 25 (58%) and unclear in 18 (42%) articles. Heterogeneity of the results was low (0%-20%) except for HFE (71%), GNB3 (80%), and NOS3 (76%). (Inter)national competing runners and cyclists have a higher probability to carry specific genetic variants compared with controls. This study confirms that (inter)national competing endurance athletes constitute a unique genetic make-up, which likely contributes to their performance level.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Gerard Rietjens
- Department of Human Physiology and Sports MedicineVrije Universiteit BrusselBrusselsBelgium
| | - Billy Sperlich
- Integrative & Experimental Exercise Science & Training, Institute of Sport ScienceUniversity of WürzburgWürzburgGermany
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands,School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
22
|
Zhong Z, Dong H, Wu Y, Zhou S, Li H, Huang P, Tian H, Li X, Xiao H, Yang T, Xiong K, Zhang G, Tang Z, Li Y, Fan X, Yuan C, Ning J, Li Y, Xie J, Li P. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol 2022; 13:950086. [PMID: 36160840 PMCID: PMC9500473 DOI: 10.3389/fphys.2022.950086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin β4 (Tβ4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tβ4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoxu Li
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Xiao
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Yang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Xiong
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongwei Tang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xueying Fan
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Yuan
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Li
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| |
Collapse
|
23
|
Janssen Daalen JM, Meinders MJ, Giardina F, Roes KCB, Stunnenberg BC, Mathur S, Ainslie PN, Thijssen DHJ, Bloem BR. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol 2022; 22:262. [PMID: 35836147 PMCID: PMC9281145 DOI: 10.1186/s12883-022-02770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of hypoxia-based therapy in individuals with PD. Methods/Design In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed primarily by a Bayesian analysis. Discussion This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized outcomes in PD research, as a basis for personalized treatment approaches. Trial registration ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02770-7.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Federica Giardina
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | | | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Koerich ACC, Borszcz FK, Thives Mello A, de Lucas RD, Hansen F. Effects of the ketogenic diet on performance and body composition in athletes and trained adults: a systematic review and Bayesian multivariate multilevel meta-analysis and meta-regression. Crit Rev Food Sci Nutr 2022; 63:11399-11424. [PMID: 35757868 DOI: 10.1080/10408398.2022.2090894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This systematic review with meta-analysis aimed to determine the effects of the ketogenic diet (KD) against carbohydrate (CHO)-rich diets on physical performance and body composition in trained individuals. The MEDLINE, EMBASE, CINAHL, SPORTDiscus, and The Cochrane Library were searched. Randomized and non-randomized controlled trials in athletes/trained adults were included. Meta-analytic models were carried out using Bayesian multilevel models. Eighteen studies were included providing estimates on cyclic exercise modes and strength one-maximum repetition (1-RM) performances and for total, fat, and free-fat masses. There were more favorable effects for CHO-rich than KD on time-trial performance (mode [95% credible interval]; -3.3% [-8.5%, 1.7%]), 1-RM (-5.7% [-14.9%, 2.6%]), and free-fat mass (-0.8 [-3.4, 1.9] kg); effects were more favorable to KD on total (-2.4 [-6.2, 1.8] kg) and fat mass losses (-2.4 [-5.4, 0.2] kg). Likely modifying effects on cyclic performance were the subject's sex and VO2max, intervention and performance durations, and mode of exercise. The intervention duration and subjects' sex were likely to modify effects on total body mass. KD can be a useful strategy for total and fat body losses, but a small negative effect on free-fat mass was observed. KD was not suitable for enhancing strength 1-RM or high-intensity cyclic performances.
Collapse
Affiliation(s)
- Ana Clara C Koerich
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Fernando Klitzke Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal, Florianópolis, Santa Catarina, Brazil
| | - Arthur Thives Mello
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Brian MS, Carmichael RD, Berube FR, Blake DT, Stuercke HR, Matthews EL. The effects of a respiratory training mask on steady-state oxygen consumption at rest and during exercise. Physiol Int 2022; 109:278-292. [PMID: 35575988 DOI: 10.1556/2060.2022.00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 02/18/2024]
Abstract
No studies have directly measured ventilatory and metabolic responses while wearing a respiratory training mask (RTM) at rest and during exercise. Eleven aerobically fit adults (age: 21 ± 1 years) completed a randomized cross-over study while wearing an RTM or control mask during cycling at 50% Wmax. An RTM was retrofitted with a gas collection tube and set to the manufacturer's "altitude resistance" setting of 6,000 ft (1,800 m). Metabolic gas analysis, ratings of perceived exertion, and oxygen saturation (SpO2) were measured during rest and cycling exercise. The RTM did not affect metabolic, ventilation, and SpO2 at rest compared to the control mask (all, effect of condition: P > 0.05). During exercise, the RTM blunted respiratory rate and minute ventilation (effect of condition: P < 0.05) compared to control. Similar increases in VO2 and VCO2 were observed in both conditions (both, effect of condition: P > 0.05). However, the RTM led to decreased fractional expired O2 and increased fractional expired CO2 (effect of condition: P < 0.05) compared to the control mask. In addition, the RTM decreased SpO2 and increased RPE (both, effect of condition: P < 0.05) during exercise. Despite limited influence on ventilation and metabolism at rest, the RTM reduces ventilation and disrupts gas concentrations during exercise leading to modest hypoxemia.
Collapse
Affiliation(s)
- Michael S Brian
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
- 2 Department of Kinesiology, University of New Hampshire, Durham, NH, USA
| | - Ryanne D Carmichael
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Felicia R Berube
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Daniel T Blake
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Hunter R Stuercke
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Evan L Matthews
- 3 Department of Exercise Science and Physical Education, Montclair State University, Montclair, NJ, USA
| |
Collapse
|
26
|
Albertus-Cámara I, Ferrer-López V, Martínez-González-Moro I. The Effect of Normobaric Hypoxia in Middle- and/or Long-Distance Runners: Systematic Review. BIOLOGY 2022; 11:689. [PMID: 35625417 PMCID: PMC9138601 DOI: 10.3390/biology11050689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The use of normobaric hypoxia can bring benefits to sports performance because it improves haematological parameters and/or physical activity tests. Our objective was to conduct a systematic review so as to analyse the methods used in hypoxia and to detect its effects on middle- and/or long-distance runners. METHODS Research was conducted using five electronic databases (PubMed, SportDiscus, Cochrane Library, Scopus and PEDro) until December 2021. The methodological quality of the included studies was assessed using the PEDro scale. RESULTS Having analysed 158 studies, 12 were chosen for the qualitative and quantitative synthesis. A significant improvement on time until exhaustion was detected, and oxygen saturation decreased after the intervention. There were no significant changes in the 3000-metre time trial or in the haematocrit percentage. The changes in percentage of reticulocytes, heart rate, maximal heart rate, lactate concentration and erythropoietin were heterogeneous between the different research studies. CONCLUSION short exposure (less than 3 h to normobaric hypoxia significantly increases the time to exhaustion). However, longer exposure times are necessary to increase haemoglobin. Altitude and exposure time are highly heterogeneous in the included studies.
Collapse
Affiliation(s)
| | | | - Ignacio Martínez-González-Moro
- Research Group of Physical Exercise and Human Performance, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain; (I.A.-C.); (V.F.-L.)
| |
Collapse
|
27
|
Tomazin K, Strojnik V, Feriche B, Garcia Ramos A, Štrumbelj B, Stirn I. Neuromuscular Adaptations in Elite Swimmers During Concurrent Strength and Endurance Training at Low and Moderate Altitudes. J Strength Cond Res 2022; 36:1111-1119. [PMID: 32235239 DOI: 10.1519/jsc.0000000000003566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Tomazin, K, Strojnik, V, Feriche, B, Garcia Ramos, A, Štrumbelj, B, and Stirn, I. Neuromuscular adaptations in elite swimmers during concurrent strength and endurance training at low and moderate altitudes. J Strength Cond Res 36(4): 1111-1119, 2022-This study evaluated neuromuscular adaptations in elite swimmers during concurrent strength and endurance training (SET) at low (295 m) and moderate (2,320 m) altitudes. Sixteen elite swimmers took part in a 3-week SET during a general preparation phase. All neuromuscular tests were performed a week before and after a SET. In posttraining, maximal knee isometric torque (TMVC) and soleus H-reflex remained statistically unchanged for sea-level (SL) and for altitude (AL) training. Rate of torque development (RTD) decreased post-SL (-14.5%; p < 0.01) but not post-AL (-4.7%; p > 0.05) training. Vastus lateralis electromyographic (EMG) activity during RTD decreased post-SL (-17.0%; P = 0.05) but not post-AL (4.8%; p > 0.05) training. Quadriceps twitch torque (TTW) significantly increased post-AL (12.1%; p < 0.01) but not post-SL (-1.0%; p > 0.05; training × altitude: F1,15 = 12.4; p < 0.01) training. Quadriceps twitch contraction time and M-wave amplitude remained statistically unchanged post-SL and post-AL training. After SL training, increment in TMVC was accompanied with increment in vastus lateralis EMG (R = 0.76; p < 0.01) and TTW (R = 0.48; p < 0.06). Posttraining in AL, increment in TMVC was accompanied with increment in TTW (R = 0.54; p < 0.05). Strength and endurance training at altitude seems to prompt adaptations in twitch contractile properties. In contrast, SET performed at SL may hamper the magnitude of neural adaptations to strength training, particularly during rapid voluntary contractions. In conclusion, SET at AL might benefit muscular adaptations in swimmers compared with training at SL.
Collapse
Affiliation(s)
- Katja Tomazin
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| | - Vojko Strojnik
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| | - Belen Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Amador Garcia Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Boro Štrumbelj
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| | - Igor Stirn
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| |
Collapse
|
28
|
Baranauskas MN, Fulton TJ, Fly AD, Martin BJ, Mickleborough TD, Chapman RF. High Intraindividual Variability in the Response of Serum Erythropoietin to Multiple Simulated Altitude Exposures. High Alt Med Biol 2022; 23:85-89. [PMID: 35290748 DOI: 10.1089/ham.2021.0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Baranauskas, Marissa N., Timothy J. Fulton, Alyce D. Fly, Bruce J. Martin, Timothy D. Mickleborough, and Robert F. Chapman. High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. High Alt Med Biol. 23:85-89, 2022. Purpose: To evaluate within-subject variability in the serum erythropoietin (EPO) response to multiple simulated altitude exposures. Methods: Seven physically active men and women (age 27 ± 3 years, body mass index = 24.6 ± 4.0 kg/m2) were exposed to normobaric hypoxia (fraction of inspired oxygen [FiO2] = 0.14) for 12 hours on three separate occasions. Serum EPO concentrations were measured before exposure (0 hour), after 6 hours, and after 12 hours in hypoxia. The EPO response to hypoxia was calculated as percent change from 0 to 12 hours (ΔEPO0-12). Results: Exposure time had a significant effect on EPO (p < 0.001) with concentrations increasing 3.2 ± 1.3 mIU/ml from 0 to 6 hours (p = 0.034) and 4.7 ± 1.2 mIU/ml from 0 to 12 hours (p = 0.001). Group mean ΔEPO0-12 remained unchanged (p = 0.688) between the three exposures; however, there was considerable intraindividual variability in EPO responses. The intrasubject coefficient of variation for ΔEPO0-12 was 61% ± 28% (range: 17%-103%) with intrasubject associations ranging r = 0.052 to r = 0.651 between repeated exposures. Conclusions: Athletes who routinely supplement training with simulated altitude methods (e.g., hypoxic tents) should expect inconsistent EPO responses to intermittent exposures lasting ≤12 hours.
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Timothy J Fulton
- Department of Physical Therapy, College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, Indiana, USA
| | - Bruce J Martin
- Department of Anatomy, Cell Biology, and Physiology, School of Medicine, Indiana University, Bloomington, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
29
|
Breda FL, Manchado-Gobatto FB, de Barros Sousa FA, Beck WR, Pinto A, Papoti M, Scariot PPM, Gobatto CA. Complex networks analysis reinforces centrality hematological role on aerobic-anaerobic performances of the Brazilian Paralympic endurance team after altitude training. Sci Rep 2022; 12:1148. [PMID: 35064131 PMCID: PMC8782909 DOI: 10.1038/s41598-022-04823-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigated the 30-days altitude training (2500 m, LHTH-live and training high) on hematological responses and aerobic–anaerobic performances parameters of high-level Paralympic athletes. Aerobic capacity was assessed by 3000 m run, and anaerobic variables (velocity, force and mechanical power) by a maximal 30-s semi-tethered running test (AO30). These assessments were carried out at low altitude before (PRE) and after LHTH (5–6 and 15–16 days, POST1 and POST2, respectively). During LHTH, hematological analyzes were performed on days 1, 12, 20 and 30. After LHTH, aerobic performance decreased 1.7% in POST1, but showed an amazing increase in POST2 (15.4 s reduction in the 3000 m test, 2.8%). Regarding anaerobic parameters, athletes showed a reduction in velocity, force and power in POST1, but velocity and power returned to their initial conditions in POST2. In addition, all participants had higher hemoglobin (Hb) values at the end of LHTH (30 days), but at POST2 these results were close to those of PRE. The centrality metrics obtained by complex networks (pondered degree, pagerank and betweenness) in the PRE and POST2 scenarios highlighted hemoglobin, hematocrit (Hct) and minimum force, velocity and power, suggesting these variables on the way to increasing endurance performance. The Jaccard’s distance metrics showed dissimilarity between the PRE and POST2 graphs, and Hb and Hct as more prominent nodes for all centrality metrics. These results indicate that adaptive process from LHTH was highlighted by the complex networks, which can help understanding the better aerobic performance at low altitude after 16 days in Paralympic athletes.
Collapse
Affiliation(s)
- Fabio Leandro Breda
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1.300, Jardim Santa Luíza, Limeira, São Paulo, 13484-350, Brazil
| | - Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1.300, Jardim Santa Luíza, Limeira, São Paulo, 13484-350, Brazil
| | - Filipe Antônio de Barros Sousa
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1.300, Jardim Santa Luíza, Limeira, São Paulo, 13484-350, Brazil
| | - Wladimir Rafael Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Allan Pinto
- School of Physical Education, University of Campinas, Campinas, SP, Brazil.,Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1.300, Jardim Santa Luíza, Limeira, São Paulo, 13484-350, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Rua Pedro Zaccaria, 1.300, Jardim Santa Luíza, Limeira, São Paulo, 13484-350, Brazil.
| |
Collapse
|
30
|
Gee CM, Lacroix MA, Stellingwerff T, Gavel EH, Logan-Sprenger HM, West CR. Physiological Considerations to Support Podium Performance in Para-Athletes. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:732342. [PMID: 36188768 PMCID: PMC9397986 DOI: 10.3389/fresc.2021.732342] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022]
Abstract
The twenty-first century has seen an increase in para-sport participation and the number of research publications on para-sport and the para-athlete. Unfortunately, the majority of publications are case reports/case series or study single impairment types in isolation. Indeed, an overview of how each International Paralympic Committee classifiable impairment type impact athlete physiology, health, and performance has not been forthcoming in the literature. This can make it challenging for practitioners to appropriately support para-athletes and implement evidence-based research in their daily practice. Moreover, the lack of a cohesive publication that reviews all classifiable impairment types through a physiological lens can make it challenging for researchers new to the field to gain an understanding of unique physiological challenges facing para-athletes and to appreciate the nuances of how various impairment types differentially impact para-athlete physiology. As such, the purpose of this review is to (1) summarize how International Paralympic Committee classifiable impairments alter the normal physiological responses to exercise; (2) provide an overview of "quick win" physiological interventions targeted toward specific para-athlete populations; (3) discuss unique practical considerations for the para-sport practitioner; (4) discuss research gaps and highlight areas for future research and innovation, and (5) provide suggestions for knowledge translation and knowledge sharing strategies to advance the field of para-sport research and its application by para-sport practitioners.
Collapse
Affiliation(s)
| | | | - Trent Stellingwerff
- Athletics Canada, Ottawa, ON, Canada
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
| | - Erica H. Gavel
- Canadian Sport Institute-Ontario, Toronto, ON, Canada
- Faculty of Health Science, Ontario Tech University, Oshawa, ON, Canada
| | - Heather M. Logan-Sprenger
- Canadian Sport Institute-Ontario, Toronto, ON, Canada
- Faculty of Health Science, Ontario Tech University, Oshawa, ON, Canada
| | - Christopher R. West
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Faculty of Medicine, International Collaboration on Repair Discoveries, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Kelowna, BC, Canada
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
31
|
The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189486. [PMID: 34574408 PMCID: PMC8466982 DOI: 10.3390/ijerph18189486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022]
Abstract
Altitude training increases haemoglobin, erythropoietin values among athletes, but may have negative physiological consequences. An alternative, although less explored, that has the potential to positively influence performance while avoiding some of the negative physiological consequences of hypoxia is sand training. Ten endurance-trained athletes (age: 20.8 ± 1.4, body mass: 57.7 ± 8.2 kg, stature: 176 ± 6 cm; 5000 m 14:55.00 ± 0:30 min) performed three 21-day training camps at different locations: at a high altitude (HIGH), at the sea-level (CTRL), at the sea-level on the sand (SAND). Differences in erythropoietin (EPO) and haemoglobin (Hb) concentration, body weight, VO2max and maximal aerobic velocity (VMA) before and after each training cycle were compared. Data analysis has indicated that training during HIGH elicited a greater increase in VO2max (2.4 ± 0.2%; p = 0.005 and 1.0 ± 0.2%; p < 0.001) and VMA (2.4 ± 0.2%, p < 0.001 and 1.2 ± 0.2%; p = 0.001) compared with CTRL and SAND. While increases in VO2max and VMA following SAND were greater (1.3 ± 0.1%; p < 0.001 and 1.2 ± 0.1%; p < 0.001) than those observed after CTRL. Moreover, EPO increased to a greater extent following HIGH (25.3 ± 2.7%) compared with SAND (11.7 ± 1.6%, p = 0.008) and CTRL (0.1 ± 0.3%, p < 0.001) with a greater increase (p < 0.01) following SAND compared with CTRL. Furthermore, HIGH and SAND elicited a greater increase (4.9 ± 0.9%; p = 0.001 and 3.3 ± 1.1%; p = 0.035) in Hb compared with CTRL. There was no difference in Hb changes observed between HIGH and SAND (p = 1.0). Finally, athletes lost 2.1 ± 0.4% (p = 0.001) more weight following HIGH vs. CTRL, while there were no differences in weight changes between HIGH vs. SAND (p = 0.742) and SAND vs. CTRL (p = 0.719). High-altitude training and sea-level training on sand resulted in significant improvements in EPO, Hb, VMA, and VO2max that exceeded changes in such parameters following traditional sea-level training. While high-altitude training elicited greater relative increases in EPO, VMA, and VO2max, sand training resulted in comparable increases in Hb and may prevent hypoxia-induced weight loss.
Collapse
|
32
|
Baart AM, Klein Gunnewiek JMT, Balvers MGJ, Zwerver J, Vergouwen PCJ. Pitfalls in interpreting red blood cell parameters in elite high-altitude and sea-level athletes: A unique case series. Physiol Rep 2021; 9:e14891. [PMID: 34197694 PMCID: PMC8248916 DOI: 10.14814/phy2.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Standard routine hematological measurements are commonly used to investigate differences in blood parameters between high-altitude athletes (HAA) and sea-level athletes (SLA), and to monitor the effect of high-altitude training. In this way, red blood cell (RBC) parameters are usually expressed as relative parameters (concentration) rather than absolute parameters (total amount). In this unique case series of elite HAA and SLA, we describe how different ways of parameter expression can affect the interpretation of blood tests. In a group of 42 elite athletes, relative and absolute RBC parameters were compared between HAA and SLA. Absolute parameters were calculated by multiplying relative values with formula-based estimated blood volume (BV-e). Additionally, in two individual athletes, one HAA and one SLA, absolute parameters were also calculated with blood volume (BV) obtained by measurement with a dilution method (BV-m). In men, HAA had a significantly higher hemoglobin (Hb) concentration (+7.8%; p = 0.001) and total Hb mass per kg body weight (BW) (+12.0%; p = 0.002). When not corrected for BW, HAA had a lower, non-significant, total Hb mass (-7.8%; p = 0.055). In women, no significant differences between HLA and SLA were observed. The two individual athletes showed that, based on BV-m, in the HAA, total Hb mass and total Hb mass per kg BW were respectively 14.1% and 31.0% higher than in the SLA, whereas based on BV-e, in the HAA, total Hb mass was 20.8% lower and total Hb mass per kg BW was only 2.4% higher. Similar inconsistencies were observed for total RBC count. Thus, different ways of parameter expression, and different methods of BV assessment for the calculation of absolute parameter values, influence the interpretation of blood tests in athletes, which may lead to misinterpretation and incorrect conclusions.
Collapse
Affiliation(s)
- A. Mireille Baart
- Clinical Chemistry and Haematology LaboratoryGelderse Vallei HospitalEdethe Netherlands
- Present address:
Division of Human Nutrition and HealthWageningen University & ResearchWageningenthe Netherlands
| | | | - Michiel G. J. Balvers
- Clinical Chemistry and Haematology LaboratoryGelderse Vallei HospitalEdethe Netherlands
- Present address:
Division of Human Nutrition and HealthWageningen University & ResearchWageningenthe Netherlands
| | - Johannes Zwerver
- Department of Elite Sports Medicine and Sports MedicineGelderse Vallei HospitalEdethe Netherlands
- Center for Human Movement SciencesUniversity Medical Center GroningenGroningenthe Netherlands
| | - Peter C. J. Vergouwen
- Department of Elite Sports Medicine and Sports MedicineGelderse Vallei HospitalEdethe Netherlands
| |
Collapse
|
33
|
Kim SW, Jung WS, Kim JW, Nam SS, Park HY. Aerobic Continuous and Interval Training under Hypoxia Enhances Endurance Exercise Performance with Hemodynamic and Autonomic Nervous System Function in Amateur Male Swimmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083944. [PMID: 33918616 PMCID: PMC8068973 DOI: 10.3390/ijerph18083944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022]
Abstract
Hypoxic training is often performed by competitive swimmers to enhance their performance in normoxia. However, the beneficial effects of aerobic continuous and interval training under hypoxia on hemodynamic function, autonomic nervous system (ANS) function, and endurance exercise performance remain controversial. Here we investigated whether six weeks of aerobic continuous and interval training under hypoxia can improve hematological parameters, hemodynamic function, ANS function, and endurance exercise performance versus normoxia in amateur male swimmers. Twenty amateur male swimmers were equally assigned to the hypoxic training group or normoxic training group and evaluated before and after six weeks of training. Aerobic continuous and interval training in the hypoxia showed a more significantly improved hemodynamic function (heart rate, −653.4 vs. −353.7 beats/30 min; oxygen uptake, −62.45 vs. −16.22 mL/kg/30 min; stroke volume index, 197.66 vs. 52.32 mL/30 min) during submaximal exercise, ANS function (root mean square of successive differences, 10.15 vs. 3.32 ms; total power, 0.72 vs. 0.20 ms2; low-frequency/high-frequency ratio, −0.173 vs. 0.054), and endurance exercise performance (maximal oxygen uptake, 5.57 vs. 2.26 mL/kg/min; 400-m time trial record, −20.41 vs. −7.91 s) than in the normoxia. These indicate that hypoxic training composed of aerobic continuous and interval exercise improves the endurance exercise performance of amateur male swimmers with better hemodynamic function and ANS function.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Jeong-Weon Kim
- Graduate School of Professional Therapy, Gachon University, 1332 Seongnam-daero, Sujeong-gu, Seongnam-si 13306, Korea;
| | - Sang-Seok Nam
- Taekwondo Research Institute of Kukkiwon, 32 Teheran7gil, Gangnam-gu, Seoul 06130, Korea;
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6035
| |
Collapse
|
34
|
Roussey G, Bernard T, Fontanari P, Louis J. Heat acclimation training with intermittent and self-regulated intensity may be used as an alternative to traditional steady state and power-regulated intensity in endurance cyclists. J Therm Biol 2021; 98:102935. [PMID: 34016357 DOI: 10.1016/j.jtherbio.2021.102935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The study aimed to determine the effects of self-regulated and variable intensities sustained during short-term heat acclimation training on cycling performance. Seventeen competitive-level male athletes performed a 20-km cycling time trial before (TT-PRE), immediately after (TT-POST1) and one week after (TT-POST2) a 5-day acclimation training program, including either RPE-regulated intermittent (HA-HIT, N = 9) or fixed and low-intensity (HA-LOW, N = 8) training sessions in the heat (39 °C; 40% relative humidity). Total training volume was 23% lower in HA-HIT compared to HA-LOW. Physiological responses were evaluated during a 40-min fixed-RPE cycling exercise performed before (HST-PRE) and immediately after (HST-POST) heat acclimation. All participants in HA-LOW group tended to improve mean power output from TT-PRE to TT-POST1 (+8.1 ± 5.2%; ES = 0.55 ± 0.23), as well as eight of the nine athletes in HA-HIT group (+4.3 ± 2.0%; ES = 0.29 ± 0.31) without difference between groups, but TT-POST2 results showed that improvements were dissipated one week after. Similar improvements in thermal sensation and lower elevations of core temperature in HST-POST following HA-LOW and HA-HIT training protocols suggest that high intensity and RPE regulated bouts could be an efficient strategy for short term heat acclimation protocols, for example prior to the competition. Furthermore, the modest impact of lowered thermal sensation on cycling performance confirms that perceptual responses of acclimated athletes are dissociated from physiological stress when exercising in the heat.
Collapse
Affiliation(s)
- Gilles Roussey
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Thierry Bernard
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Pierre Fontanari
- Laboratoire Motricité Humaine, Education, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, Byrom Street, L3 3AF, United Kingdom.
| |
Collapse
|
35
|
[Into thin air - Altitude training and hypoxic conditioning: From athlete to patient]. Rev Mal Respir 2021; 38:404-417. [PMID: 33722445 DOI: 10.1016/j.rmr.2021.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Hypoxic exposure should be considered as a continuum, the effects of which depend on the dose and individual response to hypoxia. Hypoxic conditioning (HC) represents an innovative and promising strategy, ranging from improved human performance to therapeutic applications. STATE OF THE ART With the aim of improving sports performance, the effectiveness of hypoxic exposure, whether natural or simulated, is difficult to demonstrate because of the large variability of the protocols used. In therapeutics, the benefits of HC are described in many pathological conditions such as obesity or cardiovascular pathologies. If the HC benefits from a strong preclinical rationale, its application to humans remains limited. PERSPECTIVES Advances in training and acclimation will require greater personalization and precise periodization of hypoxic exposures. For patients, the harmonization of HC protocols, the identification of biomarkers and the development and subsequent validation of devices allowing a precise control of the hypoxic stimulus are necessary steps for the development of HC. CONCLUSIONS From the athlete to the patient, HC represents an innovative and promising field of research, ranging from the improvement of human performance to the prevention and treatment of certain pathologies.
Collapse
|
36
|
Mukai K, Ohmura H, Takahashi Y, Kitaoka Y, Takahashi T. Four weeks of high-intensity training in moderate, but not mild hypoxia improves performance and running economy more than normoxic training in horses. Physiol Rep 2021; 9:e14760. [PMID: 33611843 PMCID: PMC7897453 DOI: 10.14814/phy2.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022] Open
Abstract
We investigated whether horses trained in moderate and mild hypoxia demonstrate greater improvement in performance and aerobic capacity compared to horses trained in normoxia and whether the acquired training effects are maintained after 2 weeks of post‐hypoxic training in normoxia. Seven untrained Thoroughbred horses completed 4 weeks (3 sessions/week) of three training protocols, consisting of 2‐min cantering at 95% maximal oxygen consumption V˙O2max under two hypoxic conditions (H16, FIO2 = 16%; H18, FIO2 = 18%) and in normoxia (N21, FIO2 = 21%), followed by 2 weeks of post‐hypoxic training in normoxia, using a randomized crossover study design with a 3‐month washout period. Incremental treadmill tests (IET) were conducted at week 0, 4, and 6. The effects of time and groups were analyzed using mixed models. Run time at IET increased in H16 and H18 compared to N21, while speed at V˙O2max was increased significantly only in H16. V˙O2max in all groups and cardiac output at exhaustion in H16 and H18 increased after 4 weeks of training, but were not significantly different between the three groups. In all groups, run time, V˙O2max, VV˙O2max, Q˙max, and lactate threshold did not decrease after 2 weeks of post‐hypoxic training in normoxia. These results suggest that 4 weeks of training in moderate (H16), but not mild (H18) hypoxia elicits greater improvements in performance and running economy than normoxic training and that these effects are maintained for 2 weeks of post‐hypoxic training in normoxia.
Collapse
Affiliation(s)
- Kazutaka Mukai
- Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Hajime Ohmura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Yuji Takahashi
- Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Yu Kitaoka
- Kanagawa University, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
37
|
Takezawa T, Dobashi S, Koyama K. Cardiorespiratory Response and Power Output During Submaximal Exercise in Normobaric Versus Hypobaric Hypoxia: A Pilot Study Using a Specific Chamber that Controls Environmental Factors. High Alt Med Biol 2021; 22:201-208. [PMID: 33599547 DOI: 10.1089/ham.2020.0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Takezawa, Toshihiro, Shohei Dobashi, and Katsuhiro Koyama. Cardiorespiratory response and power output during submaximal exercise in normobaric versus hypobaric hypoxia: a pilot study using a specific chamber that controls environmental factors. High Alt Med Biol. 22: 201-208, 2021. Background: Many previous studies have examined hypoxia-induced physiological responses using various conditions, e.g., artificially reduced atmospheric oxygen concentration [normobaric hypoxia (NH) condition] or low barometric pressure at a mountain [hypobaric hypoxia (HH) condition]. However, when comparing the results from these previous studies conducted in artificial NH and HH including real high altitude, we must consider the possibility that environmental factors, such as temperature, humidity, and fraction of inspired carbon dioxide, might affect the physiological responses. Therefore, we examined cardiorespiratory responses and exercise performances during low- to high-intensity exercise at a fixed heart rate (HR) in both NH and HH using a specific chamber where atmospheric oxygen concentration and barometric pressure as well as the abovementioned environmental factors were precisely controlled. Methods: Ten well-trained university students (eight males and two females) performed the exercise test consisting of two 20-minute submaximal pedaling at the intensity corresponding to 50% (low) and 70% (high) of their HR reserve, under three conditions [NH (fraction of inspired oxygen, 0.135; barometric pressure, 754 mmHg), HH (fraction of inspired oxygen, 0.209; barometric pressure, 504 mmHg), and normobaric normoxia (NN; fraction of inspired oxygen, 0.209; barometric pressure, 754 mmHg)]. Peripheral oxygen saturation (SpO2) to estimate arterial oxygen saturation and partial pressure of end-tidal carbon dioxide (PETCO2) were monitored throughout the experiment. Results: SpO2, PETCO2, and power output at fixed HRs (i.e., pedaling efficiency) in NH and HH were all significantly lower than those in NN. Moreover, high-intensity exercise in HH induced greater decreases in SpO2 and power output than did high-intensity exercise in NH (NH vs. HH; SpO2, 78.2% ± 5.0% vs. 75.1% ± 7.1%; power output, 120.7 ± 24.9 W vs. 112.4 ± 23.2 W, both p < 0.05). However, high-intensity exercise in HH induced greater increases in PETCO2 than did high-intensity exercise in NH (NH vs. HH; 54.2 ± 5.9 mmHg vs. 57.2 ± 3.4 mmHg, p < 0.01). Conclusions: These results suggest that physiological responses and power output at a fixed HR during hypoxic exposure might depend on the method used to generate the hypoxic condition.
Collapse
Affiliation(s)
- Toshihiro Takezawa
- Faculty of Health and Sports Science, University of Juntendo, Inzai, Japan.,Graduate School Department of Medicine and Engineering Sciences, University of Yamanashi, Kofu, Japan
| | - Shohei Dobashi
- Graduate School Department of Medicine and Engineering Sciences, University of Yamanashi, Kofu, Japan.,Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| |
Collapse
|
38
|
Baranauskas MN, Constantini K, Paris HL, Wiggins CC, Schlader ZJ, Chapman RF. Heat Versus Altitude Training for Endurance Performance at Sea Level. Exerc Sport Sci Rev 2021; 49:50-58. [PMID: 33044330 DOI: 10.1249/jes.0000000000000238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmental stressors, such as heat or altitude, elicit dissimilar physiological adaptations to endurance training programs. Whether these differences (i.e., increased hemoglobin mass vs plasma volume) differentially influence performance is debated. We review data in support of our novel hypothesis, which proposes altitude as the preferred environmental training stimulus for elite endurance athletes preparing to compete in temperate, sea-level climates (5°C-18°C).
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Keren Constantini
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, CA
| | - Chad C Wiggins
- Department of Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
39
|
Slawinski J, Chiron F, Millot B, Taouji A, Brocherie F. Effect of a 16-Day Altitude Training Camp on 3,000-m Steeplechase Running Energetics and Biomechanics: A Case Study. Front Sports Act Living 2020; 1:63. [PMID: 33344986 PMCID: PMC7739581 DOI: 10.3389/fspor.2019.00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to investigate the effect of a 16-day training camp at moderate altitude on running energetics and biomechanics in an elite female 3,000-m steeplechase athlete (personal best: 9 min 36.15 s). The 16-day intervention included living and training at 1,600 m altitude. A maximal incremental test was performed at sea level to determine the maximal oxygen uptake (V∙O2max). Before (pre-) and after (post-) intervention, the participant performed a specific training session consisting of 10 × 400 m with 5 hurdles with oxygen uptake (V∙O2), blood lactate, stride length and stride rate being measured. A video analysis determined take-off distance and landing around the hurdle (DTH and DLH), take-off velocity and landing around the hurdle (VTH and VLH), and the maximal height over the hurdle (MH). The results demonstrated that the mean V∙O2 maintained during the ten 400 m trials represented 84–86% of V∙O2max and did not change from pre- to post-intervention (p = 0.22). Mean blood lactate measured on the 6 last 400-m efforts increased significantly (12.0 ± 2.2 vs. 17.0 ± 1.6 mmol.l−1; p < 0.05). On the other hand, post-intervention maximal lactate decreased from 20.1 to 16.0 mmol.l−1. Biomechanical analysis revealed that running velocity increased from 5.12 ± 0.16 to 5.49 ± 0.19 m.s−1 (p < 0.001), concomitantly with stride length (1.63 ± 0.05 vs. 1.73 ± 0.06 m; p < 0.001). However, stride rate did not change (3.15 ± 0.03 vs. 3.16 ± 0.02 Hz; p = 0.14). While DTH was not significantly different from pre- to post- (1.34 ± 0.08 vs. 1.40 ± 0.07 m; p = 0.09), DLH was significantly longer (1.17 ± 0.07 vs. 1.36 ± 0.05 m; p < 0.01). VTH and VLH significantly improved after intervention (5.00 ± 0.14 vs. 5.33 ± 0.16 m.s−1 and 5.18 ± 0.13 vs. 5.51 ± 0.22 m.s−1, respectively; both p < 0.01). Finally, MH increased from pre- to post- (52.5 ± 3.8 vs. 54.9 ± 2.1 cm; p < 0.05). A 16-day moderate altitude training camp allowed an elite female 3,000-m steeplechase athlete to improve running velocity through a greater glycolytic—but not aerobic—metabolism.
Collapse
Affiliation(s)
- Jean Slawinski
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France.,Centre de Recherche sur le Sport et le Mouvement - EA 2931, Université de Paris Nanterre, Nanterre, France
| | - François Chiron
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
| | - Benjamin Millot
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
| | | | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
40
|
Comment on: "Effects of Carbohydrate Mouth Rinse on Cycling Time Trial Performance: A Systematic Review and Meta-analysis" and Subsequent Comment/Author Reply from Li et al. Sports Med 2020; 50:629-632. [PMID: 31696450 DOI: 10.1007/s40279-019-01216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
McCleave EL, Slattery KM, Duffield R, Crowcroft S, Abbiss CR, Wallace LK, Coutts AJ. Concurrent Heat and Intermittent Hypoxic Training: No Additional Performance Benefit Over Temperate Training. Int J Sports Physiol Perform 2020; 15:1260-1271. [PMID: 32937599 DOI: 10.1123/ijspp.2019-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine whether concurrent heat and intermittent hypoxic training can improve endurance performance and physiological responses relative to independent heat or temperate interval training. METHODS Well-trained male cyclists (N = 29) completed 3 weeks of moderate- to high-intensity interval training (4 × 60 min·wk-1) in 1 of 3 conditions: (1) heat (HOT: 32°C, 50% relative humidity, 20.8% fraction of inspired oxygen, (2) heat + hypoxia (H+H: 32°C, 50% relative humidity, 16.2% fraction of inspired oxygen), or (3) temperate environment (CONT: 22°C, 50% relative humidity, 20.8% fraction of inspired oxygen). Performance 20-km time trials (TTs) were conducted in both temperate (TTtemperate) and assigned condition (TTenvironment) before (base), immediately after (mid), and after a 3-week taper (end). Measures of hemoglobin mass, plasma volume, and blood volume were also assessed. RESULTS There was improved 20-km TT performance to a similar extent across all groups in both TTtemperate (mean ±90% confidence interval HOT, -2.8% ±1.8%; H+H, -2.0% ±1.5%; CONT, -2.0% ±1.8%) and TTenvironment (HOT, -3.3% ±1.7%; H+H, -3.1% ±1.6%; CONT, -3.2% ±1.1%). Plasma volume (HOT, 3.8% ±4.7%; H+H, 3.3% ±4.7%) and blood volume (HOT, 3.0% ±4.1%; H+H, 4.6% ±3.9%) were both increased at mid in HOT and H+H over CONT. Increased hemoglobin mass was observed in H+H only (3.0% ±1.8%). CONCLUSION Three weeks of interval training in heat, concurrent heat and hypoxia, or temperate environments improve 20-km TT performance to the same extent. Despite indications of physiological adaptations, the addition of independent heat or concurrent heat and hypoxia provided no greater performance benefits in a temperate environment than temperate training alone.
Collapse
|
42
|
Nummela A, Eronen T, Koponen A, Tikkanen H, Peltonen JE. Variability in hemoglobin mass response to altitude training camps. Scand J Med Sci Sports 2020; 31:44-51. [PMID: 32783231 DOI: 10.1111/sms.13804] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
The present study investigated whether athletes can be classified as responders or non-responders based on their individual change in total hemoglobin mass (tHb-mass) following altitude training while also identifying the potential factors that may affect responsiveness to altitude exposure. Measurements were completed with 59 elite endurance athletes who participated in national team altitude training camps. Fifteen athletes participated in the altitude training camp at least twice. Total Hb-mass using a CO rebreathing method and other blood markers were measured before and after a total of 82 altitude training camps (1350-2500 m) in 59 athletes. In 46 (56%) altitude training camps, tHb-mass increased. The amount of positive responses increased to 65% when only camps above 2000 m were considered. From the fifteen athletes who participated in altitude training camps at least twice, 27% always had positive tHb-mass responses, 13% only negative responses, and 60% both positive and negative responses. Logistic regression analysis showed that altitude was the most significant factor explaining positive tHb-mass response. Furthermore, male athletes had greater tHb-mass response than female athletes. In endurance athletes, tHb-mass is likely to increase after altitude training given that hypoxic stimulus is appropriate. However, great inter- and intra-individual variability in tHb-mass response does not support classification of an athlete permanently as a responder or non-responder. This variability warrants efforts to control numerous factors affecting an athlete's response to each altitude training camp.
Collapse
Affiliation(s)
- Ari Nummela
- KIHU - Research Institute for Olympic Sports, Jyväskylä, Finland.,University of Eastern Finland, Kuopio, Finland
| | - Timo Eronen
- University of Eastern Finland, Kuopio, Finland.,Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Anne Koponen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Heikki Tikkanen
- University of Eastern Finland, Kuopio, Finland.,Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Juha E Peltonen
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Clinic for Sports and Exercise Medicine, Foundation for Sports and Exercise Medicine, Helsinki, Finland
| |
Collapse
|
43
|
Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, Yan X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel) 2020; 9:E656. [PMID: 32722013 PMCID: PMC7464156 DOI: 10.3390/antiox9080656] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
High-intensity exercise/training, especially interval exercise/training, has gained popularity in recent years. Hypoxic training was introduced to elite athletes half a century ago and has recently been adopted by the general public. In the current review, we have summarised the molecular adaptive responses of skeletal muscle to high-intensity exercise/training, focusing on mitochondrial biogenesis, angiogenesis, and muscle fibre composition. The literature suggests that (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) PGC-1α, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor 1-alpha (HIF1-α) might be the main mediators of skeletal muscle adaptations to high-intensity exercises in hypoxia. Exercise is known to be anti-inflammatory, while the effects of hypoxia on inflammatory signalling are more complex. The anti-inflammatory effects of a single session of exercise might result from the release of anti-inflammatory myokines and other cytokines, as well as the downregulation of Toll-like receptor signalling, while training-induced anti-inflammatory effects may be due to reductions in abdominal and visceral fat (which are main sources of pro-inflammatory cytokines). Hypoxia can lead to inflammation, and inflammation can result in tissue hypoxia. However, the hypoxic factor HIF1-α is essential for preventing excessive inflammation. Disease-induced hypoxia is related to an upregulation of inflammatory signalling, but the effects of exercise-induced hypoxia on inflammation are less conclusive. The effects of high-intensity exercise under hypoxia on skeletal muscle molecular adaptations and inflammatory signalling have not been fully explored and are worth investigating in future studies. Understanding these effects will lead to a more comprehensive scientific basis for maximising the benefits of high-intensity exercise.
Collapse
Affiliation(s)
- Jia Li
- College of Physical Education, Southwest University, Chongqing 400715, China;
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - Muhammed M. Atakan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
44
|
Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med 2020; 49:169-184. [PMID: 31691928 PMCID: PMC6901429 DOI: 10.1007/s40279-019-01159-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Training at low to moderate altitudes (~ 1600-2400 m) is a common approach used by endurance athletes to provide a distinctive environmental stressor to augment training stimulus in the anticipation of increasing subsequent altitude- and sea-level-based performance. Despite some scientific progress being made on the impact of various nutrition-related changes in physiology and associated interventions at mountaineering altitudes (> 3000 m), the impact of nutrition and/or supplements on further optimization of these hypoxic adaptations at low-moderate altitudes is only an emerging topic. Within this narrative review we have highlighted six major themes involving nutrition: altered energy availability, iron, carbohydrate, hydration, antioxidant requirements and various performance supplements. Of these issues, emerging data suggest that particular attention be given to the potential risk for poor energy availability and increased iron requirements at the altitudes typical of elite athlete training (~ 1600-2400 m) to interfere with optimal adaptations. Furthermore, the safest way to address the possible increase in oxidative stress associated with altitude exposure is via the consumption of antioxidant-rich foods rather than high-dose antioxidant supplements. Meanwhile, many other important questions regarding nutrition and altitude training remain to be answered. At the elite level of sport where the differences between winning and losing are incredibly small, the strategic use of nutritional interventions to enhance the adaptations to altitude training provides an important consideration in the search for optimal performance.
Collapse
|
45
|
Mujika I, Sharma AP, Stellingwerff T. Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Sports Med 2020; 49:1651-1669. [PMID: 31452130 DOI: 10.1007/s40279-019-01165-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the 1960s there has been an escalation in the purposeful utilization of altitude to enhance endurance athletic performance. This has been mirrored by a parallel intensification in research pursuits to elucidate hypoxia-induced adaptive mechanisms and substantiate optimal altitude protocols (e.g., hypoxic dose, duration, timing, and confounding factors such as training load periodization, health status, individual response, and nutritional considerations). The majority of the research and the field-based rationale for altitude has focused on hematological outcomes, where hypoxia causes an increased erythropoietic response resulting in augmented hemoglobin mass. Hypoxia-induced non-hematological adaptations, such as mitochondrial gene expression and enhanced muscle buffering capacity may also impact athletic performance, but research in elite endurance athletes is limited. However, despite significant scientific progress in our understanding of hypobaric hypoxia (natural altitude) and normobaric hypoxia (simulated altitude), elite endurance athletes and coaches still tend to be trailblazers at the coal face of cutting-edge altitude application to optimize individual performance, and they already implement novel altitude training interventions and progressive periodization and monitoring approaches. Published and field-based data strongly suggest that altitude training in elite endurance athletes should follow a long- and short-term periodized approach, integrating exercise training and recovery manipulation, performance peaking, adaptation monitoring, nutritional approaches, and the use of normobaric hypoxia in conjunction with terrestrial altitude. Future research should focus on the long-term effects of accumulated altitude training through repeated exposures, the interactions between altitude and other components of a periodized approach to elite athletic preparation, and the time course of non-hematological hypoxic adaptation and de-adaptation, and the potential differences in exercise-induced altitude adaptations between different modes of exercise.
Collapse
Affiliation(s)
- Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Odontology, University of the Basque Country, Leioa, Basque Country, Spain. .,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Avish P Sharma
- Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Triathlon Australia, Burleigh Heads, QLD, Australia
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
46
|
Bahenský P, Bunc V, Tlustý P, Grosicki GJ. Effect of an Eleven-Day Altitude Training Program on Aerobic and Anaerobic Performance in Adolescent Runners. ACTA ACUST UNITED AC 2020; 56:medicina56040184. [PMID: 32316168 PMCID: PMC7230399 DOI: 10.3390/medicina56040184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
Abstract
Background and Objectives: We evaluated the effect of an eleven-day altitude training camp on aerobic and anaerobic fitness in trained adolescent runners. Materials and Methods: Twenty adolescent (14–18 yrs) middle- and long-distance runners (11 males and 9 females; 16.7 ± 0.8 yrs), with at least two years of self-reported consistent run training, participated in this study. Eight of the subjects (4 females/4 males) constituted the control group, whereas twelve subjects (5 females/7 males) took part in a structured eleven-day altitude training camp, and training load was matched between groups. Primary variables of interest included changes in aerobic (VO2max) and anaerobic (30 s Wingate test) power. We also explored the relationships between running velocity and blood lactate levels before and after the altitude training camp. Results: Following 11 days of altitude training, desirable changes (p < 0.01) in VO2max (+13.6%), peak relative work rate (+9.6%), and running velocity at various blood lactate concentrations (+5.9%–9.6%) were observed. Meanwhile, changes in Wingate anaerobic power (+5.1%) were statistically insignificant (p > 0.05). Conclusions: Short duration altitude appears to yield meaningful improvements in aerobic but not anaerobic power in trained adolescent endurance runners.
Collapse
Affiliation(s)
- Petr Bahenský
- Department of Sports Studies, Faculty of Education, University of South Bohemia, 371 15 České Budějovice, Czech Republic
- Correspondence: ; Tel.: +42-038-777-3171
| | - Václav Bunc
- Physical Training and Education, Sports Motor Skills Laboratory, Faculty of Sports, Charles University, 165 52 Prague, Czech Republic;
| | - Pavel Tlustý
- Department of Mathematics, Faculty of Education, University of South Bohemia, 371 15 České Budějovice, Czech Republic;
| | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University, Savannah, GA 31419, USA;
| |
Collapse
|
47
|
Girard O, Brocherie F, Goods PSR, Millet GP. An Updated Panorama of "Living Low-Training High" Altitude/Hypoxic Methods. Front Sports Act Living 2020; 2:26. [PMID: 33345020 PMCID: PMC7739748 DOI: 10.3389/fspor.2020.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
With minimal costs and travel constraints for athletes, the “living low-training high” (LLTH) approach is becoming an important intervention for modern sport. The popularity of the LLTH model of altitude training is also associated with the fact that it only causes a slight disturbance to athletes' usual daily routine, allowing them to maintain their regular lifestyle in their home environment. In this perspective article, we discuss the evolving boundaries of the LLTH paradigm and its practical applications for athletes. Passive modalities include intermittent hypoxic exposure at rest (IHE) and Ischemic preconditioning (IPC). Active modalities use either local [blood flow restricted (BFR) exercise] and/or systemic hypoxia [continuous low-intensity training in hypoxia (CHT), interval hypoxic training (IHT), repeated-sprint training in hypoxia (RSH), sprint interval training in hypoxia (SIH) and resistance training in hypoxia (RTH)]. A combination of hypoxic methods targeting different attributes also represents an attractive solution. In conclusion, a growing number of LLTH altitude training methods exists that include the application of systemic and local hypoxia stimuli, or a combination of both, for performance enhancement in many disciplines.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences, Exercise and Sport Science, University of Western Australia, Perth, WA, Australia
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, EA 7370, French Institute of Sport (INSEP), Paris, France
| | - Paul S R Goods
- School of Human Sciences, Exercise and Sport Science, University of Western Australia, Perth, WA, Australia.,Western Australian Institute of Sport (WAIS), Perth, WA, Australia
| | - Gregoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Raglin J, Szabo A, Lindheimer JB, Beedie C. Understanding placebo and nocebo effects in the context of sport: A psychological perspective. Eur J Sport Sci 2020; 20:293-301. [PMID: 32023170 PMCID: PMC10181913 DOI: 10.1080/17461391.2020.1727021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Research over the past 15 years on the placebo effect has substantiated its contribution to the efficacy of established treatments for a range of clinical conditions and identified its underlying mechanisms. There is also evidence that placebo effects contribute to the performance benefits of many ergogenic aids, and that performance can worsen when dummy treatments are associated with expectations of a harmful outcome (i.e. nocebo effect). Unfortunately, the bulk of sport research involving placebos and nocebos continues to be hampered by outdated definitions and conceptualizations of placebo effects and their mechanisms. This has implications not only for research but also application, as nearly 50% of athletes report experiencing a beneficial placebo effect, and a similar proportion of coaches report providing placebos to their athletes. The objective of this paper is to attempt to stimulate research by presenting updated definitions of placebo and nocebo effects in the context of sport, describing their major mechanisms and, highlighting the importance of the psychosocial context on placebo effects in the sport setting.
Collapse
Affiliation(s)
- John Raglin
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Attila Szabo
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Jacob B Lindheimer
- William S. Middleton Veterans Memorial Hospital, Madison, WI, USA.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Beedie
- School of Psychology, University of Kent, Canterbury, UK
| |
Collapse
|
49
|
Hematological status and endurance performance predictors after low altitude training supported by normobaric hypoxia: a double-blind, placebo controlled study. Biol Sport 2020; 36:341-349. [PMID: 31938005 PMCID: PMC6945048 DOI: 10.5114/biolsport.2019.88760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/04/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
The benefits of altitude/hypoxic training for sea level performance are still under debate. This study examined the effects of low altitude training supported by normobaric hypoxia on hematological status and endurance performance predictors in elite female cyclists. Twenty-two female cyclists trained for 3 weeks at low altitude (<1100 m) and 2 weeks near sea level. During the first 3 weeks, 15 subjects stayed in hypoxic rooms simulating an altitude of 2200 m (+NH group, n = 8) or 1000 m (placebo group, n = 7), and 7 (control group) stayed in regular rooms. Significant increases in total hemoglobin mass (tHb-mass: p = 0.008, p = 0.025), power at 4 mmol·l-1 lactate (PAT4: p = 0.004, p = 0.005) (in absolute and relative values, respectively) and maximal power (PF: p = 0.034) (in absolute values) were observed. However, these effects were not associated with normobaric hypoxia. Changes in tHb-mass were not associated with initial concentrations of ferritin or transferrin receptor, whereas changes in relative tHb-mass (r = -0.53, p = 0.012), PF (r = -0.53, p = 0.01) and PAT4 (r = -0.65, p = 0.001) were inversely correlated with initial values. Changes in tHb-mass and PAT4 were positively correlated (r = 0.50, p = 0.017; r = 0.47, p = 0.028). Regardless of normobaric hypoxia application, low altitude training followed by sea-level training might improve hematological status in elite female cyclists, especially with relatively low initial values of tHb-mass, which could translate into enhanced endurance performance.
Collapse
|
50
|
Hall R, Peeling P, Nemeth E, Bergland D, McCluskey WTP, Stellingwerff T. Single versus Split Dose of Iron Optimizes Hemoglobin Mass Gains at 2106 m Altitude. Med Sci Sports Exerc 2019; 51:751-759. [PMID: 30882751 DOI: 10.1249/mss.0000000000001847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To determine if a single versus a split equivalent daily dose of elemental iron was superior for hemoglobin mass (Hbmass) gains at altitude while minimizing gastrointestinal (GI) discomfort. METHODS Twenty-four elite runners attended a 3.1 ± 0.3 wk training camp (Flagstaff, AZ; 2106 m). A two-group design, randomized and stratified to baseline Hbmass, sex, and ferritin (>30 μ·L), was implemented daily as: 1) single dose of 1 × 200 mg (PM only, SINGLE) versus 2) split dose of 2 × 100 mg (AM and PM; SPLIT) elemental iron (ferrous fumarate). The Hbmass and venipuncture assessments were completed upon arrival and departure (±2 d) from camp for ferritin, hepcidin, and erythroferrone (ERFE) concentrations. Validated food frequency, GI distress, menstrual blood loss (MBL) and training questionnaires were implemented throughout. Univariate analysis was used to compare Hbmass, with baseline ferritin, dietary iron intake, MBL, and training volume used as covariates. RESULTS Both conditions increased Hbmass from baseline (P < 0.05), with SINGLE (867.3 ± 47.9 g) significantly higher than SPLIT (828.9 ± 48.9 g) (P = 0.048). The GI scores were worse in SINGLE for weeks 1 and 2 combined (SINGLE, 18.0 ± 6.7 points; SPLIT, 11.3 ± 6.9 points; P = 0.025); however, GI scores improved by week 3, resulting in no between-group differences (P = 0.335). Hepcidin significantly decreased over time (P = 0.043) in SINGLE, with a nonsignificant decrease evident in SPLIT (~22%). ERFE significantly decreased in both groups (~28.5%; P < 0.05). No between-group differences existed for ERFE, hepcidin, food frequency, MBL, or daily training outcomes (P > 0.05). CONCLUSIONS A single nightly 200-mg dose of elemental iron was superior to a split dose for optimizing Hbmass changes at altitude in runners over an approximately 3-wk training camp.
Collapse
Affiliation(s)
- Rebecca Hall
- Canadian Sport Institute Pacific, Vancouver & Victoria, British Columbia, CANADA
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, Western Australia, AUSTRALIA.,Western Australian Institute of Sport, Mt Claremont, Western Australia, AUSTRALIA
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Dan Bergland
- Hypo2 High Performance Sport Center, Flagstaff, AZ
| | - Walter T P McCluskey
- Canadian Sport Institute Pacific, Vancouver & Victoria, British Columbia, CANADA
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Vancouver & Victoria, British Columbia, CANADA.,Department of Exercise Science, Physical & Health Education, University of Victoria, British Columbia, CANADA
| |
Collapse
|