1
|
Jiang Q, Jiang WJ, Yang CX, Zhang RX, Sun W, Guo DD, Wu JF, Guo B, Wang XR, Bi HS. Inhibitory Effect of Jinkui Shenqi Pills on Glucocorticoid-Enhanced Axial Length Elongation in Experimentally Myopic Guinea Pigs. Chin J Integr Med 2023; 29:989-997. [PMID: 37171548 DOI: 10.1007/s11655-023-3738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To explore the underlying mechanism of inhibition by Jinkui Shenqi Pills (JKSQP) on glucocorticoid-enhanced axial length elongation in experimental lens-induced myopia (LIM) guinea pigs. METHODS Sixty 2-week old male guinea pigs were randomly divided into 4 groups with 15 guinea pigs in each group, according to the random numbers generated by SPSS software: control, LIM, saline and JKSQP groups. The control group includes animals with no treatment, while the guinea pigs in the other 3 groups received lens-induced myopization on the right eyes throughout the experiment (for 8 weeks). The saline and JKSQP groups were given daily intraperitoneal injections of 10 mg/kg hydrocortisone for 2 consecutive weeks at the same time, and then orally administered either saline or JKSQP [13.5 g/(kg•d) for 6 consecutive weeks. Body weight, anal temperature and animal appearance were observed and recorded to evaluate the GC-associated symptoms. The ocular parameters, including refraction and axial length, were measured by streak retinoscopy and A-scan ultrasonography, respectively. The levels of plasma hormones associated with the hypothalamic-pituitary-adrenal axis (HPAA), including free triiodothyronine, free thyroxine, estradiol and testosterone, were measured by radioimmunoassay, and cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate were measured by enzyme-linked immunosorbent assay. In addition, the mRNA and protein expressions of retinal amphiregulin (AREG) was measured by quantitative real-time polymerase chain reaction and Western blotting, respectively. RESULTS JKSQP effectively increased body weight and anal temperature, improved animal appearance and suppressed axial length elongation in glucocorticoid-enhanced myopic guinea pigs with normalization of 4 HPAA-associated plasma hormones (all P<0.05). The plasma level of cAMP was significantly increased, whereas the plasma level of cGMP and the mRNA and protein expressions of retinal AREG were decreased after treatment with JKSQP (all P<0.05). CONCLUSION JKSQP exhibited a significant inhibitory effect on axial length elongation with decreased expression of AREG in the retina, and normalized 4 HPAA-associated plasma hormones and the expression of cAMP and cGMP in GC-enhanced myopic guinea pigs.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Wen-Jun Jiang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Cheng-Xiu Yang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Rui-Xue Zhang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Sun
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Da-Dong Guo
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
| | - Jiang-Feng Wu
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Bin Guo
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xing-Rong Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hong-Sheng Bi
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China.
| |
Collapse
|
2
|
Igual Gil C, Coull BM, Jonas W, Lippert RN, Klaus S, Ost M. Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior. Life Sci Alliance 2022; 5:5/11/e202201495. [PMID: 36271504 PMCID: PMC9449705 DOI: 10.26508/lsa.202201495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle–brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Department of Molecular Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
DHA reduces hypothalamic inflammation and improves central leptin signaling in mice. Life Sci 2020; 257:118036. [PMID: 32622949 DOI: 10.1016/j.lfs.2020.118036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
AIMS Anti-obesity effects and improved leptin sensitivity from n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported in diet-induced obese animals. This study sought to determine the beneficial central effects and mechanism of docosahexaenoic acid (DHA, 22:6 n-3) in high-fat (HF) diet fed mice. MAIN METHODS Male C57BL/6J mice were given HF diet with or without intracerebroventricular (icv) injection of docosahexaenoic acid (DHA, 22:6 n-3) for two days. Central leptin sensitivity, hypothalamic inflammation, leptin signaling molecules and tyrosine hydroxylase (TH) were examined by central leptin sensitivity test and Western blot. Furthermore, the expression of hepatic genes involved in lipid metabolism was examined by RT-PCR. KEY FINDINGS We found that icv administration of DHA not only reduced energy intake and body weight gain but also corrected the HF diet-induced hypothalamic inflammation. DHA decreased leptin signaling inhibitor SOCS3 and improved the leptin JAK2-Akt signaling pathways in the hypothalamus. Furthermore, icv administration of DHA improved the effects of leptin in the regulation of mRNA expression of enzymes related to lipogenesis, fatty acid β-oxidation, and cholesterol synthesis in the liver. DHA increased leptin-induced activation of TH in the hypothalamus. SIGNIFICANCE Therefore, increasing central DHA concentration may prevent the deficit of hypothalamic regulation, which is associated with disorders of energy homeostasis in the liver as a result of a high-fat diet.
Collapse
|
4
|
Rivera HM, Stincic TL. Estradiol and the control of feeding behavior. Steroids 2018; 133:44-52. [PMID: 29180290 PMCID: PMC5864536 DOI: 10.1016/j.steroids.2017.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
This review lays out the evidence for the role of E2 in homeostatic and hedonic feeding across several species. While significant effort has been expended on homeostatic feeding research, more studies for hedonic feeding need to be conducted (i.e. are there increases in meal size and enhanced motivation to natural food rewards). By identifying the underlying neural circuitry involved, one can better delineate the mechanisms by which E2 influences feeding behavior. By utilizing more selective neural targeting techniques, such as optogenetics, significant progress can be made toward this goal. Together, behavioral and physiological techniques will help us to better understand neural deficits that can increase the risk for obesity in the absence of E2 (menopause) and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- H M Rivera
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - T L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Miller KF, Arbel R, Shapiro LS, Han SC, Margolin G. Does the cortisol awakening response link childhood adversity to adult BMI? Health Psychol 2018; 37:526-529. [PMID: 29698022 DOI: 10.1037/hea0000601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Childhood adversity is a risk factor for the development of obesity in adulthood. Dysregulated hypothalamic-pituitary-adrenal (HPA) activity, which has been associated separately with both adverse childhood experiences and obesity, has been posited as a mechanism by which stressful experiences influence body mass index (BMI); however, this mechanism has not yet been tested longitudinally. The present study uses multireporter, longitudinal data across three time points to test whether the adolescent cortisol awakening response (CAR), an index of diurnal HPA activity, mediates the association between adversity in childhood and BMI in adulthood. METHOD Eighty-two youth, mothers, and fathers reported on adverse childhood experiences from middle childhood to late adolescence. During adolescence, youth provided saliva samples three times each morning across three days, which were assayed for cortisol to calculate CAR. During early adulthood, youth reported height and weight to calculate BMI. RESULTS Greater adversity predicted flatter CAR and higher young adult BMI. Flatter CAR partially mediated the association between childhood adversity and young adult BMI. CONCLUSIONS Stress-related alterations to HPA activity account in part for the childhood adversity-adult obesity link. Findings are consistent with theoretical models implicating HPA alterations as linking childhood adversity to metabolic and behavioral determinants of BMI in adulthood. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Reout Arbel
- Department of Counseling and Human Development, University of Haifa
| | | | | | | |
Collapse
|
6
|
Huang XF, Weston-Green K, Yu Y. Decreased 5-HT2cR and GHSR1a interaction in antipsychotic drug-induced obesity. Obes Rev 2018; 19:396-405. [PMID: 29119689 DOI: 10.1111/obr.12638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 12/19/2022]
Abstract
Second generation antipsychotics (SGAs), notably atypical antipsychotics including olanzapine, clozapine and risperidone, can cause weight gain and obesity side effects. Antagonism of serotonin 2c receptors (5-HT2cR) and activation of ghrelin receptor type 1a (GHSR1a) signalling have been identified as a main cause of SGA induced obesity. Here we review the pivotal regulatory role of the 5-HT2cR in ghrelin-mediated appetite signalling. The 5-HT2cR dimerizes with GHSR1a to inhibit orexigenic signalling, while 5-HT2cR antagonism reduces dimerization and increases GHSR1a-induced food intake. Dimerization is specific to the unedited 5-HT2cR isoform. 5-HT2cR antagonism by SGAs may disrupt the normal inhibitory tone on the GHSR1a, increasing orexigenic signalling. The 5-HT2cR and its interaction with the GHSR1a could serve as the basis for discovering novel approaches to preventing and treating SGA-induced obesity.
Collapse
Affiliation(s)
- X-F Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW, Australia.,Jiangsu Key Laboratory for Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China.,Centre for Medical and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - K Weston-Green
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW, Australia.,Centre for Medical and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Y Yu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW, Australia.,Jiangsu Key Laboratory for Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
7
|
Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 2014; 220:T25-46. [PMID: 24222039 DOI: 10.1530/joe-13-0398] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alterations in adequate energy balance maintenance result in serious metabolic disturbances such as obesity. In mammals, this complex process is orchestrated by multiple and distributed neuronal circuits. Hypothalamic and brainstem neuronal circuits are critically involved in the sensing of circulating and local factors conveying information about the energy status of the organism. The integration of these signals culminates in the generation of specific and coordinated physiological responses aimed at regulating energy balance through the modulation of appetite and energy expenditure. In this article, we review current knowledge on the homeostatic regulation of energy balance, emphasizing recent advances in mouse genetics, electrophysiology, and optogenetic techniques that have greatly contributed to improving our understanding of this central process.
Collapse
Affiliation(s)
- Marc Schneeberger
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain Department of Endocrinology and Nutrition, School of Medicine, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | | | | |
Collapse
|
8
|
Vicennati V, Pasqui F, Cavazza C, Pagotto U, Pasquali R. Stress-related development of obesity and cortisol in women. Obesity (Silver Spring) 2009; 17:1678-83. [PMID: 19300426 DOI: 10.1038/oby.2009.76] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic exposure to environmental stress may play a role in the development of obesity, through hyperactivation of the hypothalamic-pituitary-adrenocortical (HPA) axis. This study investigated the dynamics of weight gain and the activity of the HPA axis in women who developed weight gain after a stressful event. This is a case-control retrospective study. Two groups of age-matched premenopausal women were selected. One (n = 14) included women characterized by a rapid weight gain following a stressful event, defined as the "stress-related obesity " (SRO) group, and the other (n = 21) women with nonstress-related development of obesity, defined as the "nonstress-related obesity " (NSRO) group. Twenty-one healthy premenopausal women served as normal-weight controls. Baseline hormonal and metabolic parameters, and 24-h urinary free cortisol (UFC/24 h) excretion rate (as a measure of HPA-axis activity) were measured in all women. Anthropometry, diet, and physical activity were similar in both obese groups. Both obese groups showed similar metabolic and hormonal profiles, but the SRO group had UFC/24 h values (41.1 +/- 14.3 microg) significantly higher (P < 0.001) with respect to the NSRO (26.6 +/- 17.6 microg) or the normal-weight control groups (21.1 +/- 9.8 microg). Moreover, time (years) to achieve maximum Deltaweight gain (kg) and the Deltaweight gain/time ratio were significantly shorter (P < 0.001) and higher (P < 0.001) in the SRO group with respect to the NSRO group, respectively. In the SRO group, there was a tendency to a significant correlation between UFC/24 h and the Deltaweight gain/time ratio. These findings support the concept that SRO has distinct pathophysiological mechanisms, including hyperactivity of the HPA axis.
Collapse
Affiliation(s)
- Valentina Vicennati
- Division of Endocrinology, Department of Internal Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Ivanova IV, Schubert R, Duridanova DB, Bolton TB, Lubomirov LT, Gagov HS. Cocaine- and amphetamine-regulated transcript (CART) peptide as anin vivoregulator of cardiac function inRana ridibundafrog. Exp Physiol 2007; 92:1037-46. [PMID: 17720743 DOI: 10.1113/expphysiol.2007.038935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the effect of CART peptide on cardiac performance and on the physiological signalling pathways involved using Rana ridibunda frog heart preparations in vivo. The CART peptide, when injected into the venous sinus, significantly and reproducibly increased the force of frog heart contractions by up to 33.0 +/- 6.4% during the first 15 min after its application but did not influence the chronotropic activity of the frog heart. The positive inotropic effect was entirely blocked by prazosin, pertussis toxin, R(p)-adenosine 3',5'-cyclic monophosphorothioate, autosauvagine 30 or metyrapone, as well as by extirpation of the pituitary gland, functional elimination of the inter-renal glands and long-lasting starvation, and was not observed on isolated heart preparations. Propranolol and double pithing were without significant effect on this phenomenon. It was concluded that: (i) CART peptide, administered to frogs in vivo, increases the force of heart contractions; (ii) this effect of the peptide is exerted via activation of the hypothalamic-pituitary-inter-renal gland axis through a corticoliberin-sensitive mechanism; (iii) CART augments the pumping function of the heart via a corticosteroid-dependent potentiation of myocardial alpha(1)-adrenoreceptors signalling; and (iv) prolonged food deprivation abolishes the positive inotropic effect of CART, suggesting the participation of endogenous CART in the physiological adaptation of the circulatory system to limitations of energy consumption.
Collapse
Affiliation(s)
- Iliyana V Ivanova
- Faculty of Biology, University of Sofia St Kliment Ohridski, 1164 Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
11
|
Hamed SA. Leptin and insulin homeostasis in epilepsy: relation to weight adverse conditions. Epilepsy Res 2007; 75:1-9. [PMID: 17499974 DOI: 10.1016/j.eplepsyres.2007.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 02/20/2007] [Accepted: 04/03/2007] [Indexed: 12/27/2022]
Abstract
During managing patients with epilepsy, there is a great risk of weight changes, particularly weight gain with some antiepileptic medications. Weight gain is not only a cosmetic problem that leads to non-compliance to medications but also increases the risk for atherosclerosis and its related complications. The mechanisms underlying weight gain in epilepsy are multiple and controversial and have been attributed to the effect of epilepsy and more commonly the effect of antiepileptic medications on the central and peripheral mechanisms regulating weight homeostasis including the two main homeostatic hormones, leptin, a protein product of obesity gene secreted by adipocytes and insulin, a protein product of pancreatic beta-cells. Increased blood levels of leptin and insulin due to leptin and insulin resistance is observed in patients with epilepsy. Leptin forms an important link between weight gain, insulin resistance, epilepsy and atherosclerosis. The knowledge of the novel roles of leptin in patients with epilepsy will help identification of early markers for the related adverse weight changes, thus allowing proper characterization of suitable antiepileptic medication as initial step during management and follow up of patients.
Collapse
Affiliation(s)
- Sherifa A Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt.
| |
Collapse
|
12
|
Pogoda HM, Hammerschmidt M. Molecular genetics of pituitary development in zebrafish. Semin Cell Dev Biol 2007; 18:543-58. [PMID: 17560816 DOI: 10.1016/j.semcdb.2007.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 04/10/2007] [Indexed: 11/21/2022]
Abstract
The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Max-Planck Institute of Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | |
Collapse
|
13
|
Wisse BE, Ogimoto K, Morton GJ, Williams DL, Schwartz MW. Central interleukin-1 (IL1) signaling is required for pharmacological, but not physiological, effects of leptin on energy balance. Brain Res 2007; 1144:101-6. [PMID: 17320056 PMCID: PMC2706018 DOI: 10.1016/j.brainres.2007.01.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Hypothalamic IL1 is suggested to be a critical mediator of the central effects of the adipocyte hormone leptin on energy balance. We hypothesized that IL1 receptor signaling is required for exogenously administered leptin to cause anorexia and weight loss, but not for physiological effects of endogenous leptin signaling on energy balance. To test this hypothesis, we investigated whether chronic hypothalamic over-expression of an IL1 receptor antagonist (AdV-IL1ra) alters food intake and weight gain in normal rats. Our findings demonstrate that impaired IL1 signaling in the CNS did not cause excess weight gain over a period of 11 days (AdV-IL1ra +38.1+/-4.1 g vs. VEH +42.2+/-5.6g; p=0.6) and caused a slightly reduced daily food intake (AdV-IL1ra 29.0+/-1.1 g/day vs. VEH 33.0+/-1.6 g/day; p<0.05). Blocking central IL1 signaling also did not alter the re-feeding response to a prolonged fast, yet was entirely effective in preventing the anorexic effect of exogenously administered leptin (2 mg/kg ip, cumulative food intake at 18 h AdV-IL1ra 30.5+/-1.1 g vs. VEH 26.4+/-1.7 g, p<0.05) and prevented leptin-induced weight loss (AdV-IL1ra -0.1+/-1.3 g vs. VEH -2.7+/-1.9 g, p<0.05). Together these findings suggest that hypothalamic IL1 signaling is required for the pharmacological effects of leptin administration, but that impaired hypothalamic IL1 signaling does not alter the physiological regulation of energy balance.
Collapse
Affiliation(s)
- Brent E Wisse
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Harborview Medical Center, University of Washington, Seattle, WA 98108, USA.
| | | | | | | | | |
Collapse
|
14
|
Manoli DS, Meissner GW, Baker BS. Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci 2006; 29:444-51. [PMID: 16806511 DOI: 10.1016/j.tins.2006.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/10/2006] [Accepted: 06/07/2006] [Indexed: 11/16/2022]
Abstract
Innate behaviors offer a unique opportunity to use genetic analysis to dissect and characterize the neural substrates of complex behavioral programs. Courtship in Drosophila involves a complex series of stereotyped behaviors that include numerous exchanges of multimodal sensory information over time. As we will discuss in this review, recent work has demonstrated that male-specific expression of Fruitless transcription factors (Fru(M) proteins) is necessary and sufficient to confer the potential for male courtship behaviors. Fru(M) factors program neurons of the male central and peripheral nervous systems whose function is dedicated to sexual behaviors. This circuitry seems to integrate sensory information to define behavioral states and regulate conserved neural elements for sex-specific behavioral output. The principles that govern the circuitry specified by Fru(M) expression might also operate in subcortical networks that govern innate behaviors in mammals.
Collapse
Affiliation(s)
- Devanand S Manoli
- Medical Scientist Training Program, Neurosciences Program and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
15
|
Walker CD. Nutritional aspects modulating brain development and the responses to stress in early neonatal life. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1249-63. [PMID: 16253410 DOI: 10.1016/j.pnpbp.2005.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Nutrition is one of the critical factors insuring adequate growth and development in all species. In particular, brain development is sensitive to specific nutrient intake such as proteins and lipids, which are important for cell membrane formation and myelinization. Carbohydrate intake insures adequate short-term energy supply, but has important effects on the activity of the hypothalamic-pituitary-adrenal (HPA) axis to regulate stress responsiveness. This review focuses on the effects of carbohydrates and fat on the activity of the HPA axis as well as other brain-related functions such as pain modulation, neuropeptide and neurotransmitters release, and some aspects related to cognitive functions. The role of leptin, DHA and AA as mediators of the effects of fat on the brain is discussed.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, 6875 Lasalle Blvd, Verdun, QC, Canada H4H 1R3.
| |
Collapse
|