1
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Moles E, Howard CB, Huda P, Karsa M, McCalmont H, Kimpton K, Duly A, Chen Y, Huang Y, Tursky ML, Ma D, Bustamante S, Pickford R, Connerty P, Omari S, Jolly CJ, Joshi S, Shen S, Pimanda JE, Dolnikov A, Cheung LC, Kotecha RS, Norris MD, Haber M, de Bock CE, Somers K, Lock RB, Thurecht KJ, Kavallaris M. Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia. Sci Transl Med 2023; 15:eabm1262. [PMID: 37196067 DOI: 10.1126/scitranslmed.abm1262] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.
Collapse
Affiliation(s)
- Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4072, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4072, Australia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Kathleen Kimpton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Alastair Duly
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Yongjuan Chen
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Melinda L Tursky
- Department of Haematology and Bone Marrow Transplant, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, Australia
- St Vincent Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - David Ma
- Department of Haematology and Bone Marrow Transplant, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, Australia
- St Vincent Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney 2052, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney 2052, Australia
| | - Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Sofia Omari
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Christopher J Jolly
- School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
| | - Swapna Joshi
- School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
| | - Sylvie Shen
- School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
| | - John E Pimanda
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
- School of Biomedical Sciences, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney 2031, Australia
| | - Alla Dolnikov
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia 6009, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4072, Australia
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia 4072, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2052, Australia
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney 2052, Australia
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| |
Collapse
|
3
|
Malise TTA, Nweke EE, Takundwa MM, Fru PF, Thimiri Govinda Raj DB. Treatment Strategies for Multiple Myeloma Treatment and the Role of High-Throughput Screening for Precision Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:167-185. [PMID: 37243923 DOI: 10.1007/5584_2023_775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the past few years, development of approved drug candidates has improved the disease management of multiple myeloma (MM). However, due to drug resistance, some of the patients do not respond positively, while some of the patients acquire drug resistance, thereby these patients eventually relapse. Hence, there are no other therapeutic options for multiple myeloma patients. Therefore, this necessitates a precision-based approach to multiple myeloma therapy. The use of patient's samples to test drug sensitivity to increase efficacy and reduce treatment-related toxicities is the goal of functional precision medicine. Platforms such as high-throughput-based drug repurposing technology can be used to select effective single drug and drug combinations based on the efficacy and toxicity studies within a time frame of couple of weeks. In this article, we describe the clinical and cytogenetic features of MM. We highlight the various treatment strategies and elaborate on the role of high-throughput screening platforms in a precision-based approach towards clinical treatment.
Collapse
Affiliation(s)
| | - Ekene Emmanuel Nweke
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Mutsa M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Pascaline Fonteh Fru
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak B Thimiri Govinda Raj
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa.
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
- Faculty of Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Yang J, Wang X, Wang B, Park K, Wooley K, Zhang S. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Adv Drug Deliv Rev 2022; 190:114525. [PMID: 36100142 DOI: 10.1016/j.addr.2022.114525] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines for cancer treatment have been studied extensively over the last few decades. Yet, only five anticancer nanomedicines have received approvals from the United States Food and Drug Administration (FDA) for treating solid tumors. This drastic mismatch between effort and return calls into question the basic understanding of this field. Various viewpoints on nanomedicines have been presented regarding their potentials and inefficiencies. However, the underlying logics of nanomedicine research and its inadequate translation to the successful use in the clinic have not been thoroughly examined. Tumor-targeted drug delivery was used to understand the shortfalls of the nanomedicine field in general. The concept of tumor-targeted drug delivery by nanomedicine has been based on two conjectures: (i) increased drug delivery to tumors provides better efficacy, and (ii) decreased drug delivery to healthy organs results in fewer side effects. The clinical evidence gathered from the literature indicates that nanomedicines bearing classic chemotherapeutic drugs, such as Dox, cis-Pt, CPT and PTX, have already reached the maximum drug delivery limit to solid tumors in humans. Still, the anticancer efficacy and safety remain unchanged despite the increased tumor accumulation. Thus, it is understandable to see few nanomedicine-based formulations approved by the FDA. The examination of FDA-approved nanomedicine formulations indicates that their approvals were not based on the improved delivery to tumors but mostly on changes in dose-limiting toxicity unique to each drug. This comprehensive analysis of the fundamentals of anticancer nanomedicines is designed to provide an accurate picture of the field's underlying false conjectures, hopefully, thereby accelerating the future clinical translations of many formulations under research.
Collapse
Affiliation(s)
- Juanjuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaojin Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Bingshun Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Kinam Park
- Weldon School of Biomedical Engineering, and Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907, USA
| | - Karen Wooley
- Departments of Chemistry, Materials Science & Engineering and Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
5
|
Zabel MD, Mollnow L, Bender H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. Methods Mol Biol 2021; 2282:377-394. [PMID: 33928585 DOI: 10.1007/978-1-0716-1298-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticles have been used to deliver siRNA to tissues and cells to silence specific genes in diverse organisms. Research and clinical application of nanoparticles like liposomes for drug delivery requires targeting them to specific anatomic regions or cell types, while avoiding off-target effects or clearance by the liver, kidney, or the immune system. Delivery to the central nervous system (CNS) presents additional challenges to cross the blood-brain barrier (BBB) to specific cell types like neurons, astrocytes, or glia. Here, we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously or instilled intranasally, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome-encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|
7
|
Wu H, Fan ZP, Jiang AN, Di XS, He B, Wang S, Goldberg SN, Ahmed M, Zhang Q, Yang W. Combination of intratumoural micellar paclitaxel with radiofrequency ablation: efficacy and toxicity in rodents. Eur Radiol 2019; 29:6202-6210. [PMID: 30993436 DOI: 10.1007/s00330-019-06207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To determine whether radiofrequency ablation (RFA) is more effective when combined with intratumoural injection (IT) than with intravenous injection (IV) of micelles. MATERIALS AND METHODS Balb/c mice bearing 4T1 breast cancer were used. The tumour drug accumulation and biodistribution in major organs were evaluated at different time points after IT, IV, IT+RFA and IV+RFA. Periablational drug penetration was evaluated by quantitative analysis and pathologic staining after different treatments. For long-term outcomes, mice bearing tumours were randomised into six groups (n = 7/group): the control, IV, IT, RFA alone, IV+RFA and IT+RFA groups. The end-point survival was estimated for the different treatment groups. RESULTS In vivo, intratumoural drug accumulation was always much higher for IT than for IV within 48 h (p < 0.001). The IT+RFA group (3084.7 ± 985.5 μm) exhibited greater and deeper drug penetration than the IV+RFA group (686.3 ± 83.7 μm, p < 0.001). Quantitatively, the intratumoural drug accumulation in the IT+RFA group increased approximately 4.0-fold compared with that in the IV+RFA group (p < 0.001). In addition, compared with the IT treatment, the IT+RFA treatment further reduced the drug deposition in the main organs. Survival was longer in the IT+RFA group than in the IV+RFA (p = 0.033) and RF alone (p = 0.003) groups. CONCLUSION The use of IT+RFA achieved much deeper and greater intratumoural drug penetration and accumulation, resulting in better efficacy, and decreased the systemic toxicity of nanoparticle-delivered chemotherapy. KEY POINTS • Association of IT+RFA achieved much deeper and greater intratumoural drug penetration than of IV+RFA, leading to better therapeutic efficacy. • Compared with IV or IT chemotherapy alone, the combination with RFA decreased toxicity, especially in the IT+RFA group.
Collapse
Affiliation(s)
- Hao Wu
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, 510317, China
| | - Zhi-Pu Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - An-Na Jiang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xing-Sheng Di
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Song Wang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - S Nahum Goldberg
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei Yang
- Department of Ultrasound, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education /Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
8
|
Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, Banga AK. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm 2018; 129:88-103. [PMID: 29800617 DOI: 10.1016/j.ejpb.2018.05.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023]
Abstract
Poly (vinyl alcohol) microneedles were fabricated, characterized, and applied to enhance in vitro transdermal delivery of doxorubicin. The microneedles were fabricated using the micromolding technique with the drug load in different locations within the needle array. The polymer solution was assessed for rheological properties, drug dissolution, and chemical structurestudies. Microneedles (unloaded) and drug-loaded microneedles were characterized by optical microscopy, fluorescent microscopy, scanning electron microscopy, and drug release kinetics. Successful microporation of dermatomed human cadaver skin was demonstrated by dye binding, pore uniformity, histology, confocal laser microscopy, and skin integrity studies. The microneedles-mediated transdermal delivery of doxorubicin was investigated using vertical Franz diffusion cells. The fabricated microneedles were sharp, strong, and uniform. In vitro permeation studies showed that the microneedle-treated skin (4351.55 ± 560.87 ng/sq.cm) provided a significantly greater drug permeability than the untreated group (0.00 ± 0.00 ng/sq.cm, n = 4, p < 0.01). The drug location within the needle array was found to affect the drug release profile as well as its permeation into and across human skin. Skin microporation achieved by poly (vinyl alcohol) microneedles was found to enhance transdermal delivery of doxorubicin in vitro.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Behnam Dasht Bozorg
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Yujin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Alena Wieber
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Gudrun Birk
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Dieter Lubda
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|
9
|
Phase I/II Trial of Combined Pegylated Liposomal Doxorubicin and Cyclophosphamide in Metastatic Breast Cancer. Clin Breast Cancer 2018; 18:e143-e149. [DOI: 10.1016/j.clbc.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/08/2017] [Accepted: 10/01/2017] [Indexed: 12/29/2022]
|
10
|
Ho L, Bokharaei M, Li SD. Current update of a thermosensitive liposomes composed of DPPC and Brij78. J Drug Target 2018; 26:407-419. [DOI: 10.1080/1061186x.2017.1419361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laurence Ho
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Mehrdad Bokharaei
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Dave VS, Gupta D, Yu M, Nguyen P, Varghese Gupta S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm 2016; 43:177-189. [PMID: 27998192 DOI: 10.1080/03639045.2016.1269122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.
Collapse
Affiliation(s)
- Vivek S Dave
- a Wegmans School of Pharmacy , St. John Fisher College , Rochester , NY , USA
| | - Deepak Gupta
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Monica Yu
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Phuong Nguyen
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Sheeba Varghese Gupta
- c Department of Pharmaceutical Sciences , USF College of Pharmacy , Tampa , FL , USA
| |
Collapse
|
12
|
Zeng Z, Chen J, Lin J, Wang S. Pegylated liposomal doxorubicin for multiple myeloma. Cochrane Database Syst Rev 2016. [DOI: 10.1002/14651858.cd008915.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiyong Zeng
- The First Affiliated Hospital of Fujian Medical University; Department of Hematology and Rheumatology; Chating Fuzhou Fujian Province China 350005
| | - Junmin Chen
- The First Affiliated Hospital of Fujian Medical University; Department of Haematology and Rheumatology; 20 Chazhong Road Fuzhou Fujian Province China 350005
| | - Junfang Lin
- The First Affiliated Hospital of Fujian Medical University; Department of Hematology and Rheumatology; Chating Fuzhou Fujian Province China 350005
| | - Shengnan Wang
- The First Affiliated Hospital of Fujian Medical University; Department of Hematology and Rheumatology; Chating Fuzhou Fujian Province China 350005
| |
Collapse
|
13
|
Kim HR, You DG, Park SJ, Choi KS, Um W, Kim JH, Park JH, Kim YS. MRI Monitoring of Tumor-Selective Anticancer Drug Delivery with Stable Thermosensitive Liposomes Triggered by High-Intensity Focused Ultrasound. Mol Pharm 2016; 13:1528-39. [PMID: 26998616 DOI: 10.1021/acs.molpharmaceut.6b00013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Monitoring of drug release from a heat-activated liposome carrier provides an opportunity for real-time control of drug delivery and allows prediction of the therapeutic effect. We have developed short-chain elastin-like polypeptide-incorporating thermosensitive liposomes (STLs). Here, we report the development of STL encapsulating gadobenate dimeglumine (Gd-BOPTA), a MRI contrast agent, and doxorubicin (Dox) (Gd-Dox-STL). The Dox release profile from Gd-Dox-STL was comparable to Gd-Dox-LTSL; however, the serum stability of Gd-Dox-STL was much higher than Gd-Dox-LTSL. MRI studies showed that the difference in T1 relaxation time between 37 and 42 °C for Gd-Dox-STL was larger than the difference for Gd-Dox-LTSL. Although relaxivity for both liposomes at 42 °C was similar, the relaxivity of Gd-Dox-STL at 37 °C was 2.5-fold lower than that of Gd-Dox-LTSL. This was likely due to Gd-BOPTA leakage from the LTSL because of low stability at 37 °C. Pharmacokinetic studies showed plasma half-lives of 4.85 and 1.95 h for Gd-Dox-STL and Gd-Dox-LTSL, respectively, consistent with in vitro stability data. In vivo MRI experiments demonstrated corelease of Dox and Gd-BOPTA from STL under mild hyperthermia induced by high-intensity focused ultrasound (HIFU), which suggests STL is a promising tumor selective formulation when coupled with MR-guided HIFU.
Collapse
Affiliation(s)
- Hyun Ryoung Kim
- Bio Therapeutics Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd. , #130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | | | - Sang-Jun Park
- Bio Therapeutics Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd. , #130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Wang S, Mei XG, Goldberg SN, Ahmed M, Lee JC, Gong W, Han HB, Yan K, Yang W. Does Thermosensitive Liposomal Vinorelbine Improve End-Point Survival after Percutaneous Radiofrequency Ablation of Liver Tumors in a Mouse Model? Radiology 2016; 279:762-72. [PMID: 26785043 DOI: 10.1148/radiol.2015150787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose To investigate the role of thermosensitive liposome-encapsulated vinorelbine (Thermo-Vin) in combined radiofrequency (RF) ablation of liver tumors. Materials and Methods Approval from the institutional animal care and use committee was obtained before this study. First, the anticancer efficacy of Thermo-Vin was assessed in vitro (H22 cells) for 72 hours at 37°C or 42°C. Next, 203 H22 liver adenocarcinomas were implanted in 191 mice for in vivo study. Tumors were randomized into seven groups: (a) no treatment, (b) treatment with RF ablation alone, (c) treatment with RF ablation followed by free vinorelbine (Free-Vin) at 30 minutes, (d) treatment with RF ablation followed by empty liposomes (Empty-Lip+RF), (e) treatment with RF ablation followed by Thermo-Vin (5 mg/kg), (f) treatment with RF ablation followed by Thermo-Vin (10 mg/kg), and (g) treatment with RF ablation followed by Thermo-Vin (20 mg/kg). Tumor destruction areas and pathologic changes were compared for different groups at 24 and 72 hours after treatment. Kaplan-Meier analysis was used to compare end-point survival (tumor < 30 mm in diameter). Additionally, the effect of initial tumor size on long-term outcome was analyzed. Results In vitro, both Free-Vin and Thermo-Vin dramatically inhibited H22 cell viability at 24 hours. Likewise, in vivo, 10 mg/kg Thermo-Vin+RF ablation increased tumor destruction compared with RF ablation (P = .001). Intratumoral vinorelbine accumulation with Thermo-Vin+RF increased 15-fold compared with Free-Vin alone. Thermo-Vin substantially increased apoptosis at the coagulation margin and suppressed cellular proliferation in the residual tumor (P < .001). The Thermo-Vin+RF study arm also had better survival than the arm treated with RF ablation alone (mean, 37.6 days ± 20.1 vs 23.4 days ± 5.0; P = .001), the arm treated with Free-Vin+RF (23.3 days ± 1.2, P = .002), or the arm treated with Empty-Lip+RF (20.8 days ± 0.4, P < .001) in animals with medium-sized (10-12-mm) tumors. No significant difference in end-point survival was noted in the treatment arms with large or small tumors. Conclusion Thermo-Vin can effectively increase tumor destruction and improve animal survival. End-point survival is most affected in animals with medium-sized tumors, suggesting that combination therapy should be tailored to tumor size and the expected volume of ablation of the device used. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Song Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Xing-Guo Mei
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - S Nahum Goldberg
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Muneeb Ahmed
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Jung-Chieh Lee
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Wei Gong
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Hai-Bo Han
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Kun Yan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| | - Wei Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Ultrasound (S.W., J.C.L., K.Y., W.Y.) and Department of Biobank (H.B.H.), Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.G.M., W.G.); Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Mass (S.N.G., M.A.)
| |
Collapse
|
15
|
Liu C, Luo Q, Tu Y, Wang G, Liu Y, Xie Y. Drug-carrier interaction analysis in the cell penetrating peptide-modified liposomes for doxorubicin loading. J Microencapsul 2015; 32:745-54. [PMID: 26299658 DOI: 10.3109/02652048.2015.1073390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Doxorubicin (DOX) is widely used as an antitumor model drug in liposomes because of its high encapsulation efficiency. The cell-penetrating peptide (CPP) has potential applications in drug delivery systems. However, we discovered that the encapsulation efficiency of DOX decreased with increasing modification density of CPP on liposomes. To explore the interaction mechanisms of CPP-modified liposomes (CPPL) for DOX loading, X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy were utilised, and theoretical calculations based on molecular dynamics simulation were performed. Results showed that the monomeric intermolecular interaction between CPP and DOX, in which the guanidinium group of CPP was parallel to the planar aromatic chromophore of DOX, depending on the cation-pi interaction and hydrogen bonds, weakened the tendency of DOX transporting into the internal medium from the liposomal external medium. Analysis of the interaction between CPP and DOX at the molecular level provided theoretical guidance for the further development of CPPL.
Collapse
Affiliation(s)
- Chang Liu
- a Department of Pharmaceutics, State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , People's Republic of China and
| | - Qi Luo
- b Soft Matter Research Center and Department of Chemistry, Zhejiang University , Hangzhou , Zhejiang , People's Republic of China
| | - YingFeng Tu
- a Department of Pharmaceutics, State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , People's Republic of China and
| | - GuiLing Wang
- a Department of Pharmaceutics, State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , People's Republic of China and
| | - YingChun Liu
- b Soft Matter Research Center and Department of Chemistry, Zhejiang University , Hangzhou , Zhejiang , People's Republic of China
| | - Ying Xie
- a Department of Pharmaceutics, State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences, Peking University , Beijing , People's Republic of China and
| |
Collapse
|
16
|
Liao ZX, Chuang EY, Lin CC, Ho YC, Lin KJ, Cheng PY, Chen KJ, Wei HJ, Sung HW. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Control Release 2015; 208:42-51. [PMID: 25637705 DOI: 10.1016/j.jconrel.2015.01.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
Recent research in chemotherapy has prioritized overcoming the multidrug resistance (MDR) of cancer cells. In this work, liposomes that contain doxorubicin (DOX) and ammonium bicarbonate (ABC, a bubble-generating agent) are prepared and functionalized with an antinucleolin aptamer (AS1411 liposomes) to target DOX-resistant breast cancer cells (MCF-7/ADR), which overexpress nucleolin receptors. Free DOX and liposomes without functionalization with AS1411 (plain liposomes) were used as controls. The results of molecular dynamic simulations suggest that AS1411 functionalization may promote the affinity and specific binding of liposomes to the nucleolin receptors, enhancing their subsequent uptake by tumor cells, whereas plain liposomes enter cells with difficulty. Upon mild heating, the decomposition of ABC that is encapsulated in the liposomes enables the immediate activation of generation of CO2 bubbles, creating permeable defects in their lipid bilayers, and ultimately facilitating the swift intracellular release of DOX. In vivo studies in nude mice that bear tumors demonstrate that the active targeting of AS1411 liposomes can substantially increase the accumulation of DOX in the tumor tissues relative to free DOX or passively targeted plain liposomes, inhibiting tumor growth and reducing systemic side effects, including cardiotoxicity. The above findings indicate that liposomes that are functionalized with AS1411 represent an attractive therapeutic alternative for overcoming the MDR effect, and support a potentially effective strategy for cancer therapy.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Er-Yuan Chuang
- Department of Chemical Engineering, Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Chen Lin
- Department of Chemical Engineering, Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yi-Cheng Ho
- Department of Bioagriculture, National Chiayi University, Chiayi, Taiwan, ROC
| | - Kun-Ju Lin
- Healthy Aging Research Center, Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Department of Nuclear Medicine, Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Po-Yuan Cheng
- Department of Chemical Engineering, Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ko-Jie Chen
- Department of Chemical Engineering, Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hao-Ji Wei
- Division of Cardiovascular Surgery, Veterans General Hospital-Taichung, College of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Division of Cardiovascular Surgery, Chiayi Branch, Veterans General Hospital-Taichung, Chiayi, Taiwan, ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering, Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
17
|
Bonnet V, Gervaise C, Djedaïni-Pilard F, Furlan A, Sarazin C. Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov Today 2015; 20:1120-6. [PMID: 26037681 DOI: 10.1016/j.drudis.2015.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
Abstract
Among the biodegradable and nontoxic compounds that can form nanoparticles for drug delivery, amphiphilic cyclodextrins are very promising. Apart from ionic cyclodextrins, which have been extensively studied and reviewed because of their application in gene delivery, our purpose is to provide a clear description of the supramolecular assemblies of nonionic amphiphilic cyclodextrins, which can form nanoassemblies for controlled drug release. Moreover, we focus on the relationship between their structure and physicochemical characteristics, which is crucial for self assembly and drug delivery. We also highlight the importance of the nanoparticle technology preparation for the stability and application of this nanodevice.
Collapse
Affiliation(s)
- Véronique Bonnet
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A), FRE 3517 CNRS Université de Picardie Jules Verne, ICP FR3085 CNRS, 80039 Amiens, France.
| | - Cédric Gervaise
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A), FRE 3517 CNRS Université de Picardie Jules Verne, ICP FR3085 CNRS, 80039 Amiens, France; Génie Enzymatique et Cellulaire, FRE3580 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Florence Djedaïni-Pilard
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A), FRE 3517 CNRS Université de Picardie Jules Verne, ICP FR3085 CNRS, 80039 Amiens, France
| | - Aurélien Furlan
- Génie Enzymatique et Cellulaire, FRE3580 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Catherine Sarazin
- Génie Enzymatique et Cellulaire, FRE3580 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
18
|
Visani G, Loscocco F, Isidori A. Nanomedicine strategies for hematological malignancies: what is next? Nanomedicine (Lond) 2014; 9:2415-28. [DOI: 10.2217/nnm.14.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major obstacle in treating cancer depends on the low therapeutic index of most anticancer drugs. The lack of specificity, coupled with the large volumes of distribution, translates into a nonpreferential distribution of anticancer drugs to the tumor. Accordingly, the dose of the anticancer drug that is achievable within tumor is limited, resulting in suboptimal treatment and unwanted toxicity. Nanoparticles applied as drug-delivery systems are submicron-sized (3–200 nm) particles, that can enhance the selectivity of the active drug to cancer cells through a change of its pharmacokinetic profile, while avoiding toxicity in normal cells. This review will discuss the current uses of nanodrugs in hematology, with a focus on the most promising nanoparticles in development for the treatment of hematologic tumors.
Collapse
Affiliation(s)
- Giuseppe Visani
- Hematology & Hematopoietic Stem Cell Transplant Center, AORMN Marche Nord, Via Lombroso, 1-61100 Pesaro, Italy
| | - Federica Loscocco
- Hematology & Hematopoietic Stem Cell Transplant Center, AORMN Marche Nord, Via Lombroso, 1-61100 Pesaro, Italy
| | - Alessandro Isidori
- Hematology & Hematopoietic Stem Cell Transplant Center, AORMN Marche Nord, Via Lombroso, 1-61100 Pesaro, Italy
| |
Collapse
|
19
|
Krasnopol’skii YM, Balaban’yan VY, Shobolov DL, Shvets VI. Prospective clinical applications of nanosized drugs. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363213120517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
|
21
|
Abstract
Current first-line treatments for most cancers feature a short-list of highly potent and often target-blind interventions, including chemotherapy, radiation, and surgical excision. These treatments wreak considerable havoc upon non-cancerous tissue and organs, resulting in deleterious and sometimes fatal side effects for the patient. In response, this past decade has witnessed the robust emergence of nanoparticles and, more relevantly, nanoparticle drug delivery systems (DDS), widely touted as the panacea of cancer therapeutics. While not a cure, nanoparticle DDS can successfully negotiate the clinical payoff between drug dosage and side effects by encompassing target-specific drug delivery strategies. The expanding library of nanoparticles includes lipoproteins, liposomes, dendrimers, polymers, metal and metal oxide nano-spheres and -rods, and carbon nanotubes, so do the modes of delivery. Importantly, however, the pharmaco-dynamics and –kinetics of these nano-complexes remain an urgent issue and a serious bottleneck in the transition from bench to bedside. This review addresses the rise of nanoparticle DDS platforms for cancer and explores concepts of gene/drug delivery and cytotoxicity in pre-clinical and clinical contexts.
Collapse
|
22
|
Vllasaliu D, Fowler R, Stolnik S. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv 2013; 11:139-54. [DOI: 10.1517/17425247.2014.866651] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Scherzinger-Laude K, Schönherr C, Lewrick F, Süss R, Francese G, Rössler J. Treatment of neuroblastoma and rhabdomyosarcoma using RGD-modified liposomal formulations of patupilone (EPO906). Int J Nanomedicine 2013; 8:2197-211. [PMID: 23818777 PMCID: PMC3693827 DOI: 10.2147/ijn.s44025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Patupilone (EPO906) is a microtubule stabilizer with a potent antitumor effect. Integrin αVβ3-binding (RGD) liposomes were loaded with EPO906, and their antitumor efficacy was evaluated in two pediatric tumor models, ie, neuroblastoma and rhabdomyosarcoma. Methods Integrin αVβ3 gene expression, RGD-liposome cellular association, and the effect of EPO906 and liposomal formulations of EPO906 on cell viability were assessed in vitro in human umbilical vein endothelial cells (HUVEC), in the RH-30 rhabdomyosarcoma cell line, and in the Kelly neuroblastoma cell line. In vivo, mice bearing neuroblastoma or rhabdomyosarcoma tumors were treated with EPO906, EPO906-liposomes, or EPO906-RGD-liposomes. Tumor growth, cumulative survival, and toxicity were monitored. Results Integrin αVβ3 was highly expressed in HUVEC and RH-30, but not in Kelly cells. Accordingly, RGD-liposomes were highly associated with HUVEC and RH-30 cells in vitro, but not with the Kelly cells. EPO906 and its liposomal formulations inhibited HUVEC, RH-30, and Kelly cell viability to the same extent. In vivo, EPO906 1.5 mg/kg and liposomal EPO906 potently inhibited tumor growth in both xenograft models without triggering major toxicity. At this dose, liposomal EPO906 did not enhance the antitumor effect of EPO906 in neuroblastoma, but tended to have an increased antitumor effect in rhabdomyosarcoma. Using a lower dose of EPO906-RGD-liposomes significantly enhanced cumulative survival in rhabdomyosarcoma compared with EPO906 alone. Conclusion EPO906 shows a strong antitumor effect in neuroblastoma and rhabdomyosarcoma, without triggering major side effects. Its liposomal encapsulation does not alter its activity, and enhances cumulative survival when EPO906-RGD-liposomes are used at low dose in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Karine Scherzinger-Laude
- Clinic IV, Pediatric Hematology and Oncology, Center of Pediatrics and Adolescent Medicine, University Medical Hospital Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Kratz F, Warnecke A. Finding the optimal balance: Challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Control Release 2012; 164:221-35. [DOI: 10.1016/j.jconrel.2012.05.045] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/08/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
|
26
|
Vij R, Siegel DS, Jagannath S, Jakubowiak AJ, Stewart AK, McDonagh K, Bahlis N, Belch A, Kunkel LA, Wear S, Wong AF, Wang M. An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol 2012; 158:739-48. [PMID: 22845873 DOI: 10.1111/j.1365-2141.2012.09232.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/06/2012] [Indexed: 01/14/2023]
Abstract
Carfilzomib is a next-generation proteasome inhibitor that selectively and irreversibly binds to its target. In clinical studies, carfilzomib has shown efficacy in patients with relapsed and/or refractory multiple myeloma (MM) and has demonstrated a tolerable safety profile. In this phase 2, open-label, multicentre clinical trial, 35 patients with relapsed and/or refractory MM following 1-3 prior therapies, including at least one bortezomib-based regimen, received carfilzomib 20 mg/m(2) in a twice-weekly, consecutive-day dosing schedule for ≤12 monthly cycles. The best overall response rate (ORR) was 17·1% and the clinical benefit response rate (ORR + minimal response) was 31·4%. The median duration of response was >10·6 months and the median time to progression was 4·6 months. The most common adverse events were fatigue (62·9%), nausea (60·0%), and vomiting (42·9%). No exacerbation of baseline peripheral neuropathy was observed. Single-agent carfilzomib was generally well tolerated for up to 12 treatment cycles and showed activity in patients with relapsed and/or refractory MM who had received prior treatment with bortezomib. These data, combined with an acceptable toxicity profile, support the potential use of carfilzomib in patients with relapsed and/or refractory MM and warrant continued investigation of carfilzomib as single agent or in combination with other agents.
Collapse
Affiliation(s)
- Ravi Vij
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Postma TJ, Heimans JJ. Neurological complications of chemotherapy to the peripheral nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2012; 105:917-36. [PMID: 22230542 DOI: 10.1016/b978-0-444-53502-3.00032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- T J Postma
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Duggan ST, Keating GM. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma. Drugs 2012; 71:2531-58. [PMID: 22141391 DOI: 10.2165/11207510-000000000-00000] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pegylated liposomal doxorubicin (Caelyx™, Doxil®) represents an improved formulation of conventional doxorubicin, with reduced cardiotoxicity and an improved pharmacokinetic profile. This article reviews the efficacy and tolerability of pegylated liposomal doxorubicin in metastatic breast cancer, progressive ovarian cancer, relapsed or refractory multiple myeloma and AIDS-related Kaposi's sarcoma, as well as summarizing its pharmacological properties. In three randomized, open-label, multicentre trials, monotherapy with pegylated liposomal doxorubicin was as effective as doxorubicin or capecitabine in the first-line treatment of metastatic breast cancer, and as effective as vinorelbine or combination mitomycin plus vinblastine in taxane-refractory metastatic breast cancer. Pegylated liposomal doxorubicin alone was as effective as topotecan or gemcitabine alone in patients with progressive ovarian cancer resistant or refractory to platinum- or paclitaxel-based therapy, according to the results of three randomized multicentre trials. In addition, in patients with progressive ovarian cancer who had received prior platinum-based therapy, progression-free survival was significantly longer with pegylated liposomal doxorubicin plus carboplatin than with paclitaxel plus carboplatin, according to the results of a randomized, open-label multicentre trial. Combination therapy with pegylated liposomal doxorubicin plus bortezomib was more effective than bortezomib alone in patients with relapsed or refractory multiple myeloma, according to the results of a randomized, open-label, multinational trial. Randomized multinational trials also demonstrated the efficacy of pegylated liposomal doxorubicin in patients with advanced AIDS-related Kaposi's sarcoma. Pegylated liposomal doxorubicin exhibited a relatively favourable safety profile compared with conventional doxorubicin and other available chemotherapy agents. The most common treatment-related adverse events included myelosuppression, palmar-plantar erythrodysesthesia and stomatitis, although these are manageable with appropriate supportive measures. To conclude, pegylated liposomal doxorubicin is a useful option in the treatment of various malignancies, including metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma.
Collapse
Affiliation(s)
- Sean T Duggan
- Adis, a Wolters Kluwer Business, Auckland, New Zealand.
| | | |
Collapse
|
29
|
Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. J Control Release 2011; 154:290-7. [DOI: 10.1016/j.jconrel.2011.05.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/17/2011] [Indexed: 01/18/2023]
|
30
|
Chen T, Zhou G, Zhu Q, Liu X, Ha T, Kelley JL, Kao RL, Williams DL, Li C. Overexpression of vascular endothelial growth factor 165 (VEGF165) protects cardiomyocytes against doxorubicin-induced apoptosis. J Chemother 2011; 22:402-6. [PMID: 21303748 DOI: 10.1179/joc.2010.22.6.402] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Doxorubicin (Dox) has been employed in cancer chemotherapy for a few decades. However its clinical application became restricted because of dose-dependent cardiomyopathy. Recent studies suggest that Dox-induced cardiomyocyte apoptosis is a primary cause of cardiac damage. Vascular endothelial growth factor (VEGF) is a major factor for endothelial cell survival and angiogenesis. We have previously shown that VEGF165 significantly attenuates oxidative stress-induced cardiomyocytes apoptosis. We hypothesized that VEGF165 will protect the cardiomyocytes from Dox-induced apoptosis. to evaluate our hypothesis, we transfected cardiomyocytes H9c2 with adenovirus expressing VEGF165 24 hours before the cells were challenged with Dox at a concentration of 2 µm. Cardiomyocyte apoptosis was evaluated by Annexin V-FITC staining and by Western blot detection of cleaved caspase-3. The hypothesis was confirmed, and the protective mechanisms involve the inhibition of death receptor-mediated apoptosis and up-regulation of the prosurvival Akt/Nf-κb/bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pathology, Shandong University School of Medicine, 44# Wenhuaxi Road, Jinan, Shandong, 250012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 2011; 152:303-9. [DOI: 10.1016/j.jconrel.2011.02.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/15/2010] [Accepted: 02/08/2011] [Indexed: 12/17/2022]
|
32
|
Knežević NŽ, Trewyn BG, Lin VSY. Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier. Chemistry 2011; 17:3338-42. [PMID: 21337435 DOI: 10.1002/chem.201002960] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/16/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Nikola Ž Knežević
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
33
|
Ma M, Chatterjee S, Zhang M, Bong D. Stabilization of vesicular and supported membranes by glycolipid oxime polymers. Chem Commun (Camb) 2011; 47:2853-5. [DOI: 10.1039/c0cc05137c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Pegylated liposomal doxorubicin in combination with dexamethasone and bortezomib (VMD) or lenalidomide (RMD) in multiple myeloma pretreated patients. Ann Hematol 2010; 90:1115-6. [PMID: 21181162 DOI: 10.1007/s00277-010-1136-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
|
35
|
Herringson TP, Altin JG. Increasing the antitumor efficacy of doxorubicin-loaded liposomes with peptides anchored via a chelator lipid. J Drug Target 2010; 19:681-9. [PMID: 21142652 DOI: 10.3109/1061186x.2010.536984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The therapeutic efficacy of anticancer drugs like doxorubicin can be significantly increased by their incorporation into liposomes, but an ability to actively target the drug-containing liposomes to tumors could well provide an even greater curative effect. In this work, a commercial preparation of doxorubicin-loaded liposomes (Caelyx) was modified by incorporation of the metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) to enable engraftment of histidine-tagged targeting molecules. Our results show that when engrafted with p15-RGR, a His-tagged peptide containing a sequence purported to bind platelet-derived growth factor receptor β (PDGFRβ), NTA(3)-DTDA-containing Caelyx (3NTA-Caelyx) can be targeted to NIH-3T3 cells in vitro, leading to increased cytotoxicity compared with non-targeted 3NTA-Caelyx. PDGFRβ is known to be expressed on pericytes in the tumor vasculature; however, when radiolabeled p15-RGR liposomes were administered to mice bearing subcutaneous B16-F1 tumors, minimal accumulation into tumors was observed. In contrast, an alternative targeting peptide, p46-RGD, was found to actively direct liposomes to tumors (4.7 %ID/g). Importantly, when injected into tumor-bearing mice, p46-RGD-engrafted 3NTA-Caelyx significantly decreased the tumor growth rate compared with controls. These results indicate that the incorporation of NTA(3)-DTDA into liposomal drugs could represent a simple modification to the drug to allow engraftment of targeting molecules and to increase its efficacy.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
36
|
Mohan P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 2010; 7:1959-73. [PMID: 20957997 DOI: 10.1021/mp100269f] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic drugs and is a popular research tool due to the inherent fluorescence of the DOX molecule. After DOX injection, fluorescence imaging of organs or cells can provide information on drug biodistribution. Therapeutic and imaging capabilities combined in a DOX molecule make it an excellent theranostic agent. However, DOX fluorescence depends on a number of factors that should be taken into consideration when interpreting results of DOX fluorescence measurements. Discussing these problems is the main thrust of the current paper. The sensitivity of DOX fluorescence intensity to DOX concentration, local microenvironment, and interaction with model cellular components is illustrated by fluorescence spectra of paired DOX/phospholipid, DOX/histone, DOX/DNA, and triple DOX/histone/DNA and DOX/phospholipid/DNA systems. DOX fluorescence is dramatically quenched upon intercalation into the DNA; DOX fluorescence is also self-quenched at high concentrations of molecularly dissolved DOX; in contrast, DOX fluorescence is increased after binding to the histone or partitioning into the phospholipid phase of PEG-phospholipid micelles or hydrophobic cores of polymeric micelles. While flow cytometry is commonly used for characterization of DOX intracellular uptake, the above aspects of DOX fluorescence may significantly complicate interpretation of flow cytometry results. High cell fluorescence measured by flow cytometry may provide deceptive information on the actual intracellular DOX concentration and may not correlate with the therapeutic efficacy if DOX does not penetrate into the site of action in cell nuclei. These problems are illustrated in the experiments on the intracellular trafficking of DOX encapsulated in poly(ethylene glycol)-co-polycaprolactone (PEG-PCL) micelles or PEG-PCL stabilized perfluorocarbon nanodroplets, with and without the application of ultrasound used as an external trigger. For efficient encapsulation in micelle cores, DOX is usually deprotonated, which removes the positive charge and enhances hydrophobicity of DOX molecule. It was found that the deprotonated DOX accumulated in the cell cytoplasm but did not penetrate into the cell nuclei. The same was true for the DOX encapsulated in micelles or nanodroplets, which may explain their low therapeutic efficacy in the absence of ultrasound. Ultrasound triggers DOX trafficking into the cell nuclei, which is especially pronounced in the presence of nanoemulsions that convert into microbubbles under the ultrasound action. Microbubble cavitation results in the transient permeabilization of both plasma and nuclear membranes, thus allowing DOX penetration into the cell nuclei, which dramatically enhances therapeutic efficacy of DOX-loaded nanodroplet systems.
Collapse
Affiliation(s)
- Praveena Mohan
- Department of Bioengineering, University of Utah, Salt lake City, Utah 84112, United States
| | | |
Collapse
|
37
|
|