1
|
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. NANO-MICRO LETTERS 2021; 13:92. [PMID: 34138315 PMCID: PMC8006526 DOI: 10.1007/s40820-021-00622-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 05/02/2023]
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear 'cold' tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
2
|
Harvey JB, Phan LH, Villarreal OE, Bowser JL. CD73's Potential as an Immunotherapy Target in Gastrointestinal Cancers. Front Immunol 2020; 11:508. [PMID: 32351498 PMCID: PMC7174602 DOI: 10.3389/fimmu.2020.00508] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
CD73, a cell surface 5'nucleotidase that generates adenosine, has emerged as an attractive therapeutic target for reprogramming cancer cells and the tumor microenvironment to dampen antitumor immune cell evasion. Decades of studies have paved the way for these findings, starting with the discovery of adenosine signaling, particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of tissue-devastating immune cell responses, and evolving with studies focusing on CD73 in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. Evidence is mounting that shows promise for improving patient outcomes through incorporation of immunomodulatory strategies as single agents or in combination with current treatment options. Recently, several immune checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical benefit is limited. Investigating molecular mechanisms promoting immunosuppression, such as CD73, in GI cancers can aid in current efforts to extend the efficacy of immunotherapy to more patients. In this review, we discuss current clinical and basic research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal cancer, with special focus on the potential of CD73 as an immunotherapy target in these cancers. We also present a summary of current clinical studies targeting CD73 and/or A2AR and combination of these therapies with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jerry B. Harvey
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luan H. Phan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Oscar E. Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica L. Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Endometrial Stromal Sarcomas: A Revision of Their Potential as Targets for Immunotherapy. Vaccines (Basel) 2018; 6:vaccines6030056. [PMID: 30149610 PMCID: PMC6161160 DOI: 10.3390/vaccines6030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Endometrial stromal sarcomas are a subtype of uterine sarcomas that are characterized by recurrent chromosomal translocations, resulting in the expression of tumor-specific fusion proteins that contribute to their tumorigenicity. These characteristics make the translocation breakpoints promising targets for immunotherapeutic approaches. In this review, we first describe the current knowledge about the classification of endometrial stromal sarcomas, and their molecular and genetic characteristics. Next, we summarize the available data on the use of translocation breakpoints as immunotherapeutic targets. Finally, we propose a roadmap to evaluate the feasibility of immunologic targeting of the endometrial stromal sarcoma-specific translocations in patients with recurrent disease.
Collapse
|
4
|
Bae J, Hideshima T, Zhang GL, Zhou J, Keskin DB, Munshi NC, Anderson KC. Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma. Leukemia 2018; 32:752-764. [PMID: 29089645 PMCID: PMC5953209 DOI: 10.1038/leu.2017.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022]
Abstract
X-box binding protein 1 (XBP1), CD138 (Syndecan-1) and CS1 (SLAMF7) are highly expressed antigens in cancers including multiple myeloma (MM). Here, we identify and characterize immunogenic HLA-A24 peptides derived from these antigens for potential vaccination therapy of HLA-A24+ patients with MM. The identified immunogenic HLA-A24-specific XBP1 unspliced (UN)185-193 (I S P W I L A V L), XBP1 spliced (SP)223-231 (V Y P E G P S S L), CD138265-273 (I F A V C L V G F) and CS1240-248 (L F V L G L F L W) peptides induced antigen-specific CTL with anti-MM activity in an HLA-A24 restricted manner. Furthermore, a cocktail containing the four HLA-A24 peptides evoked MM-specific CTL with distinct phenotypic profiles (CD28, CD40L, 41BB, CD38, CD69) and anti-tumor activities, evidenced by perforin upregulation, CD107a degranulation (cytotoxicity) and Th1-type cytokines (IFN-γ/IL-2/TNF-α) production in response to HLA-A24+ MM cells. The multipeptide-specific CTL included antigen-specific memory CD8+ T cells expressing both T-cell activation (CD38, CD69) and immune checkpoints antigens (CTLA, PD-1, LAG-3, TIM-3). These results provide the framework for a multipeptide vaccination therapy to induce tumor-specific CTL in HLA-A24-positive patients with myeloma and other cancers expressing these antigens.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jun Zhou
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Derin B. Keskin
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kenneth C. Anderson
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Ochando J, Braza MS. T follicular helper cells: a potential therapeutic target in follicular lymphoma. Oncotarget 2017; 8:112116-112131. [PMID: 29340116 PMCID: PMC5762384 DOI: 10.18632/oncotarget.22788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Follicular lymphoma (FL), the most common indolent B-cell non-Hodgkin lymphoma (B-NHL), is a germinal center (GC)-derived lymphoma. The mechanisms underlying B-cell differentiation/maturation in GCs could be also involved in their malignant transformation. Moreover, the non-malignant cell composition and architecture of the tumor microenvironment can influence FL development and outcome. Here, we review recent research advances on CD4 helper T cells in FL that highlight the pivotal role of T follicular helper (TFH) cells in a complex multicellular system where they interact with B cells during GC dynamics. After describing the mechanism of FL lymphomagenesis, we discuss the emerging evidence about TFH cell enrichment and involvement in FL tumorigenesis and in B-T cell interaction, TFH regulation by T follicular regulatory cells (TFR) and its potential effect on FL. Then, we provide an overview on the flexible interplay between the different CD4 T-cell subtypes and how this may be predicted in normal and pathologic contexts, according to the cell epigenetic state. Finally, we highlight the importance of targeting TFH cells in the clinic, summarize the main outstanding questions about TFH and TFR cells in FL, and describe strategies to potentiate FL therapy by taking into account TFH cells.
Collapse
Affiliation(s)
- Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mounia S Braza
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Augustin F, Fiegl M, Schmid T, Pomme G, Sterlacci W, Tzankov A. Receptor for hyaluronic acid-mediated motility (RHAMM, CD168) expression is prognostically important in both nodal negative and nodal positive large cell lung cancer. J Clin Pathol 2015; 68:368-73. [DOI: 10.1136/jclinpath-2014-202819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
|
7
|
Dharmasiri U, Isenberg SL, Glish GL, Armistead PM. Differential ion mobility spectrometry coupled to tandem mass spectrometry enables targeted leukemia antigen detection. J Proteome Res 2014; 13:4356-62. [PMID: 25184817 PMCID: PMC4184456 DOI: 10.1021/pr500527c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Differential ion mobility spectrometry (DIMS) can be used as a filter to remove undesired background ions from reaching the mass spectrometer. The ability to use DIMS as a filter for known analytes makes DIMS coupled to tandem mass spectrometry (DIMS-MS/MS) a promising technique for the detection of cancer antigens that can be predicted by computational algorithms. In experiments using DIMS-MS/MS that were performed without the use of high-performance liquid chromatography (HPLC), a predicted model antigen, GLR (FLSSANEHL), was detected at a concentration of 10 pM (20 amol) in a mixture containing 94 competing model peptide antigens, each at a concentration of 1 μM. Without DIMS filtering, the GLR peptide was undetectable in the mixture even at 100 nM. Again, without using HPLC, DIMS-MS/MS was used to detect 2 of 3 previously characterized antigens produced by the leukemia cell line U937.A2. Because of its sensitivity, a targeted DIMS-MS/MS methodology can likely be used to probe for predicted cancer antigens from cancer cell lines as well as human tumor samples.
Collapse
Affiliation(s)
- Udara Dharmasiri
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , 450 West Drive, 21-244, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
8
|
Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res 2014; 38:673-81. [DOI: 10.1016/j.leukres.2014.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
|
9
|
Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, Dranoff G, Anderson KC, Munshi NC. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 2014; 29:218-29. [PMID: 24935722 PMCID: PMC4237716 DOI: 10.1038/leu.2014.159] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
We evaluated a cocktail of HLA-A2-specific peptides including heteroclitic XBP1 US184-192 (YISPWILAV), heteroclitic XBP1 SP367-375 (YLFPQLISV), native CD138260-268 (GLVGLIFAV) and native CS1239-247 (SLFVLGLFL), for their ability to elicit multipeptide-specific cytotoxic T lymphocytes (MP-CTLs) using T cells from smoldering multiple myeloma (SMM) patients. Our results demonstrate that MP-CTLs generated from SMM patients' T cells show effective anti-MM responses including CD137 (4-1BB) upregulation, CTL proliferation, interferon-γ production and degranulation (CD107a) in an HLA-A2-restricted and peptide-specific manner. Phenotypically, we observed increased total CD3(+)CD8(+) T cells (>80%) and cellular activation (CD69(+)) within the memory SMM MP-CTL (CD45RO(+)/CD3(+)CD8(+)) subset after repeated multipeptide stimulation. Importantly, SMM patients could be categorized into distinct groups by their level of MP-CTL expansion and antitumor activity. In high responders, the effector memory (CCR7(-)CD45RO(+)/CD3(+)CD8(+)) T-cell subset was enriched, whereas the remaining responders' CTL contained a higher frequency of the terminal effector (CCR7(-)CD45RO(-)/CD3(+)CD8(+)) subset. These results suggest that this multipeptide cocktail has the potential to induce effective and durable memory MP-CTL in SMM patients. Therefore, our findings provide the rationale for clinical evaluation of a therapeutic vaccine to prevent or delay progression of SMM to active disease.
Collapse
Affiliation(s)
- J Bae
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - R Prabhala
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA [3] VA Boston Healthcare System, Boston, MA, USA
| | - A Voskertchian
- Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - A Brown
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - C Maguire
- Tufts University School of Medicine, Boston, MA, USA
| | - P Richardson
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - G Dranoff
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - N C Munshi
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA [3] VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
10
|
Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and perspectives. Immunotherapy 2014; 6:485-96. [PMID: 24815786 DOI: 10.2217/imt.14.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As with many other types of malignancies, sustainable eradication of leukemia has been a challenge. This is related to the inevitable failure of conventional chemotherapeutic agents and radiation therapy to target the relatively quiescent leukemia stem cells, which are believed to have multidrug resistance, antiapoptotic capacity and enhanced DNA repair mechanisms allowing them to evade the immune system. Considering other therapeutic options that are minimally toxic to normal cells and effectively target not only the majority and more differentiated cancer cells, but also the rare residual leukemia cells, is of paramount importance. A number of immunotherapeutic options have been proposed to counter this challenge. One of the remarkable achievements in the field of immunotherapy has been the successful use of antigen presenting cells as vehicles of tumor/pathogenic antigens to the T-cell compartments. This review will focus on advances and perspectives of this arm of immunotherapy against leukemia.
Collapse
|
11
|
Conrad DP, Tsang J, Maclean M, Diallo JS, Le Boeuf F, Lemay CG, Falls TJ, Parato KA, Bell JC, Atkins HL. Leukemia cell-rhabdovirus vaccine: personalized immunotherapy for acute lymphoblastic leukemia. Clin Cancer Res 2013; 19:3832-43. [PMID: 23714728 DOI: 10.1158/1078-0432.ccr-12-3199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. EXPERIMENTAL DESIGN Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. RESULTS Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. CONCLUSION Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.
Collapse
Affiliation(s)
- David P Conrad
- Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Denies S, Sanders NN. Recent progress in canine tumor vaccination: potential applications for human tumor vaccines. Expert Rev Vaccines 2013; 11:1375-86. [PMID: 23249236 DOI: 10.1586/erv.12.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vaccination holds great promise for the treatment of cancer and research concerning tumor vaccination in dogs is of great interest for veterinary as well as human medicine. Indeed, cancer is the leading cause of death in adult dogs and companion animals are acknowledged as excellent preclinical models for human oncology. The license of the veterinary melanoma vaccine (Oncept™) and Provenge® for the treatment of prostate cancer in men established tumor vaccination as a valid treatment modality for cancer. Although the results with this and other vaccines are promising, there are still some hurdles to overcome. In this article, preclinical and clinical trials with tumor vaccines in dogs are discussed, as well as the surplus value of canine cancer patients for human medicine.
Collapse
Affiliation(s)
- Sofie Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | |
Collapse
|
13
|
López-Requena A, Burrone OR, Cesco-Gaspere M. Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins. Front Oncol 2012; 2:159. [PMID: 23162790 PMCID: PMC3493989 DOI: 10.3389/fonc.2012.00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022] Open
Abstract
Idiotype (Id)-based immunotherapy has been exploited as cancer treatment option. Conceived as therapy for malignancies bearing idiotypic antigens, it has been also extended to solid tumors because of the capacity of anti-idiotypic antibodies to mimic Id-unrelated antigens. In both these two settings, efforts are being made to overcome the poor immune responsiveness often experienced when using self immunoglobulins as immunogens. Despite bearing a unique gene combination, and thus particular epitopes, it is normally difficult to stimulate the immune response against antibody variable regions. Different strategies are currently used to strengthen Id immunogenicity, such as concomitant use of immune-stimulating molecules, design of Id-containing immunogenic recombinant proteins, specific targeting of relevant immune cells, and genetic immunization. This review focuses on the role of anti-Id vaccination in cancer management and on the current developments used to foster anti-idiotypic B and T cell responses.
Collapse
Affiliation(s)
- Alejandro López-Requena
- Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy ; Immunobiology Division, Center of Molecular Immunology, Havana, Cuba ; Bioengineering Research Institute, Biotech Pharmaceutical Co., Ltd, Beijing, China
| | | | | |
Collapse
|
14
|
Köchling J, Rott Y, Arndt S, Marschke C, Schmidt M, Wittig B, Kalies K, Westermann J, Henze G. Prevention and synergistic control of Ph+ ALL by a DNA vaccine and 6-mercaptopurine. Vaccine 2012; 30:5949-55. [DOI: 10.1016/j.vaccine.2012.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
|
15
|
Abstract
Many standard and targeted therapies, as well as radiotherapy, have been shown to induce an anti-tumour immune response, and immunotherapies rely on modulating the host immune system to induce an anti-tumour immune response. However, the immune response to such therapies is often reliant on the immunogenicity of a tumour. Tumour immunogenicity varies greatly between cancers of the same type in different individuals and between different types of cancer. So, what do we know about tumour immunogenicity and how might we therapeutically improve tumour immunogenicity? We asked four leading cancer immunologists around the world for their opinions on this important issue.
Collapse
Affiliation(s)
- Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany.
| | | | | | | |
Collapse
|
16
|
Journal Watch. Pharmaceut Med 2011. [DOI: 10.1007/bf03256884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|