1
|
Zang L, Yang XL, Xu H, Deng YJ, Yue ZX, Song HL. Alleviating membrane fouling by enhanced bioelectricity generation via internal reflux of sludge mixed liquor in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
2
|
Nam N, Luong M, Yudina N, Ponamoreva ON, Alferov SV, Chi T, Dung N, Duyen P, Nghia V. Distribution of nitrogen-transforming bacteria in an artificial reservoir populated with aquatic higher plants. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2023. [DOI: 10.21285/2227-2925-2022-12-4-589-598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article examines the distribution of nitrogen-transforming bacteria in an artificial reservoir (pond) populated with aquatic higher plants of common reed (Phragmites australis) and cattail (Typha) for treating swine wastewater. In the pond occupied by Phragmites australis, 7 strains of ammonium oxidising and 14 denitrifying bacteria were identified, while, in the pond occupied by Typha, 6 strains of ammonium oxidising and 19 denitrifying bacteria were distinguished. A comparative analysis of bacterial count at various sampling points revealed their decrease along the artificial pond. Most of the bacteria strains oxidising ammonium were identified in the samples collected from the surface layer of the pond, while denitrifying bacteria dominated the bottom layer. The isolated microorganisms identified by 16S rRNA sequencing belonged to the genus Pantoea, Enterobacter and Bacillus. An artificial pond having aquatic higher plants is characterised by a diverse microbiota, whose composition strongly depends on the wastewater source rather than on the cultivated plant species. The ammonia transformation and denitrification capacity of isolated bacterial strains was determined. The highest conversion efficiency of ammonia (up to 56%) was observed for Enterobacter cloacae bacteria isolated from the surface layer of the pond. Denitrifying bacteria sampled from the bottom layer allowed for the reduction in nitrate content from 20 to 10 mg/L in 72 h. The obtained results confirm the role of bacteria in the treatment of wastewater against nitrogen-containing pollutants, with the average efficiency of removal of inorganic nitrogen compounds being 50%.
Collapse
Affiliation(s)
- N.V.T. Nam
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center
| | - M.T. Luong
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center
| | | | | | | | - T.N.L. Chi
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center
| | - N.T. Dung
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center
| | | | | |
Collapse
|
3
|
Zhu Y, Liu Y, Chang H, Yang H, Zhang W, Zhang Y, Sun H. Deciphering the microbial community structures and functions of wastewater treatment at high-altitude area. Front Bioeng Biotechnol 2023; 11:1107633. [PMID: 36923457 PMCID: PMC10009103 DOI: 10.3389/fbioe.2023.1107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction: The proper operation of wastewater treatment plants is a key factor in maintaining a stable river and lake environment. Low purification efficiency in winter is a common problem in high-altitude wastewater treatment plants (WWTPs), and analysis of the microbial community involved in the sewage treatment process at high-altitude can provide valuable references for improving this problem. Methods: In this study, the bacterial communities of high- and low-altitude WWTPs were investigated using Illumina high-throughput sequencing (HTS). The interaction between microbial community and environmental variables were explored by co-occurrence correlation network. Results: At genus level, Thauera (5.2%), unclassified_Rhodocyclaceae (3.0%), Dokdonella (2.5%), and Ferribacterium (2.5%) were the dominant genera in high-altitude group. The abundance of nitrogen and phosphorus removal bacteria were higher in high-altitude group (10.2% and 1.3%, respectively) than in low-altitude group (5.4% and 0.6%, respectively). Redundancy analysis (RDA) and co-occurrence network analysis showed that altitude, ultraviolet index (UVI), pH, dissolved oxygen (DO) and total nitrogen (TN) were the dominated environmental factors (p < 0.05) affecting microbial community assembly, and these five variables explained 21.4%, 20.3%, 16.9%, 11.5%, and 8.2% of the bacterial assembly of AS communities. Discussion: The community diversity of high-altitude group was lower than that of low-altitude group, and WWTPs of high-altitude aeras had a unique microbial community structure. Low temperature and strong UVI are pivotal factors contributing to the reduced diversity of activated sludge microbial communities at high-altitudes.
Collapse
Affiliation(s)
- Yuliang Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai, China.,School of Civil Engineering, Yantai University, Yantai, Shandong, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, Shandong, China
| | - Huanhuan Chang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| |
Collapse
|
4
|
Sharma P, Singh SP. Identification and profiling of microbial community from industrial sludge. Arch Microbiol 2022; 204:234. [PMID: 35362813 DOI: 10.1007/s00203-022-02831-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/03/2023]
Abstract
The purpose of this study is to identify microbial communities in pulp and paper industry sludge and their metagenomic profiling on the basis of; phylum, class, order, family, genus and species level. Results revealed that the dominant phyla in 16S rRNA Illumina Miseq analysis inside sludge were Anaerolinea, Pseudomonas, Clostridia, Bacteriodia, Gammaproteobacteria, Spirochetia, Deltaproteobacteria, Spirochaetaceae, Prolixibacteraceae and some unknown microbial strains are also dominant. Metagenomics is a molecular biology-based technology that uses bioinformatics to evaluate huge gene sequences extracted from environmental samples to assess the composition and function of microbiota. The results of metabarcoding of the V3-V4 16S rRNA regions acquired from paired-end Illumina MiSeq sequencing were used to analyze bacterial communities and structure. The present work demonstrates the potential approach to sludge treatment in the open environment via the naturally adapted microorganism, which could be an essential addition to the disposal site. In summary, these investigations indicate that the indigenous microbial community is an acceptable bioresource for remediation or detoxification following secondary treatment. This research aims at understanding the structure of microbial communities and their diversity (%) in highly contaminated sludge to perform in situ bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, 226 025, Uttar Pradesh, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
5
|
González T, Puigagut J, Vidal G. Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142075. [PMID: 33207444 DOI: 10.1016/j.scitotenv.2020.142075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Microbial fuel cells integrated into constructed wetlands have been previously studied. Nevertheless, their application as a suitable treatment for wastewater is still in the developmental stage. In this context, the aim of this study was to evaluate organic matter removal and nitrogen transformation by a microbial fuel cell integrated into a constructed wetland (CWMFC). To accomplish this, three experimental systems were operated under batch-mode conditions over 170 days: i) one was planted with Schoenoplectus californicus (P-CWMFC); ii) another was unplanted (NP-CWMFC); and iii) the third system did not have any electrodes (CW) and was used as a control. Chemical oxygen demand (COD) removal efficiency ranged between 74-87%, 69-81% and 62-72% for the P-CWMFC, NP-CWMFC and CW systems, respectively, with organic loading rates (OLR) ranging from 4.8 to 7.9 g COD/m2 d. NH4+-N removal efficiency exceeded 98%, 90% and 83% for P-CWMFC, NP-CWMFC and CW, respectively. Wastewater treatment performance was improved due to anaerobic oxidation that occurred on the anodes. Organic matter removal was 18% higher in closed-circuit mode than in open-circuit mode in both integrated systems (P-CWMFC and NP-CWMFC), and these differences were significant (p < 0.05). With respect to the performance of microbial fuel cells, the maximum power density (8.6 mW/m2) was achieved at an organic loading rate of 7.9 g COD/m2 d with an internal resistance and coulombic efficiency of 251 Ω and 2.4%, respectively. The results obtained in this work can provide positive impacts on CW development by enhancing anaerobic degradation without forced aeration.
Collapse
Affiliation(s)
- Thaís González
- Environmental Engineering & Biotechnology Group, Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile
| | - Jaume Puigagut
- Group of Environmental Engineering and Microbiology (GEMMA), Universitat Politècnica de Catalunya - BarcelonaTech, Spain
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group, Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
6
|
Spatial Changes in Microbial Communities along Different Functional Zones of a Free-Water Surface Wetland. Microorganisms 2020; 8:microorganisms8101604. [PMID: 33081036 PMCID: PMC7603099 DOI: 10.3390/microorganisms8101604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Constructed wetlands (CWs) are complicated ecosystems that include vegetation, sediments, and the associated microbiome mediating numerous processes in wastewater treatment. CWs have various functional zones where contrasting biochemical processes occur. Since these zones are characterized by different particle-size composition, physicochemical conditions, and vegetation, one can expect the presence of distinct microbiomes across different CW zones. Here, we investigated spatial changes in microbiomes along different functional zones of a free-water surface wetland located in Moscow, Russia. The microbiome structure was analyzed using Illumina MiSeq amplicon sequencing. We also determined particle diameter and surface area of sediments, as well as chemical composition of organic pollutants in different CW zones. Specific organic particle aggregates similar to activated sludge flocs were identified in the sediments. The highest accumulation of hydrocarbons was found in the zones with predominant sedimentation of fine fractions. Phytofilters had the highest rate of organic pollutants decomposition and predominance of Smithella, Ignavibacterium, and Methanothrix. The sedimentation tank had lower microbial diversity, and higher relative abundances of Parcubacteria, Proteiniclasticum, and Macellibacteroides, as well as higher predicted abundances of genes related to methanogenesis and methanotrophy. Thus, spatial changes in microbiomes of constructed wetlands can be associated with different types of wastewater treatment processes.
Collapse
|
7
|
Ferro L, Hu YO, Gentili FG, Andersson AF, Funk C. DNA metabarcoding reveals microbial community dynamics in a microalgae-based municipal wastewater treatment open photobioreactor. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Kumar S, Dutta V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11662-11673. [PMID: 30879235 DOI: 10.1007/s11356-019-04816-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetland microcosms (CWMs) are artificially designed ecosystem which utilizes both complex and ordinary interactions between supporting media, macrophytes, and microorganisms to treat almost all types of wastewater. CWMs are considered as green and sustainable techniques which require lower energy input, less operational and maintenance cost and provide critical ecological benefits such as wildlife habitat, aquaculture, groundwater recharge, flood control, recreational uses, and add aesthetic value. They are good alternatives to conventional treatment systems particularly for smaller communities as well as distant and decentralized locations. The pH, dissolved oxygen (DO), and temperature are the key controlling factors while several other parameters such as hydraulic loading rates (HLR), hydraulic retention time (HRT), diversity of macrophytes, supporting media, and water depth are critical to achieving better performance. From the literature survey, it is evaluated that the removal performance of CWMs can be improved significantly through recirculation of effluent and artificial aeration (intermittent). This review paper presents an assessment of CWMs as a sustainable option for treatment of wastewater nutrients, organics, and heavy metals from domestic wastewater. Initially, a concise note on the CWMs and their components are presented, followed by a description of treatment mechanisms, major constituents involved in the treatment process, and overall efficiency. Finally, the effects of ecological factors and challenges for their long-term operations are highlighted.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Environmental Science (SES), Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, UP, 226025, India
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Environmental Science (SES), Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, UP, 226025, India.
| |
Collapse
|
9
|
Fang D, Zhao G, Xu X, Zhang Q, Shen Q, Fang Z, Huang L, Ji F. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. BIORESOURCE TECHNOLOGY 2018; 249:684-693. [PMID: 29091854 DOI: 10.1016/j.biortech.2017.10.063] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Wastewater treatment plants (WWTPs) in plateau regions have unique microbial community structures. In this study, Illumina high-throughput sequencing technology was applied to investigate microbial communities of plateau WWTPs. The research showed that microbial diversities and richness were negatively associated with the altitude and positively to the water temperature to a certain extent. The dominant phyla of plateau and control WWTPs were similar, which mainly included Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. In plateau WWTPs, the LEfSe analysis found 4 biomarkers which can catabolize aromatic compounds, indicating the microorganisms that can degrade refractory organics might survive better in plateau WWTPs. The analysis of functional genera and enzymes showed that there was no significant difference in abundances of organic degrading bacteria, but the nitrogen removal bacteria were less abundant and phosphorus removal bacteria were more abundant in plateau WWTPs.
Collapse
Affiliation(s)
- Dexin Fang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Gen Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Xiaoyi Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Zhuoyao Fang
- Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Liping Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
10
|
Lv T, Carvalho PN, Zhang L, Zhang Y, Button M, Arias CA, Weber KP, Brix H. Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. WATER RESEARCH 2017; 110:241-251. [PMID: 28011364 DOI: 10.1016/j.watres.2016.12.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to compare the microbial community metabolic function from both unsaturated and saturated constructed wetland mesocosms (CWs) when treating the pesticide tebuconazole. The comparison was performed for both interstitial water and substrate biofilm by community level physiological profiling (CLPP) via BIOLOG™ EcoPlates. For each CW design (saturated or unsaturated), six mesocosms were established including one unplanted and five planted individually with either Juncus effusus, Typha latifolia, Berula erecta, Phragmites australis or Iris pseudacorus. Microbial activity and metabolic richness of interstitial water from unsaturated CWs were significantly lower than that from saturated CWs. However, in general, the opposite result was observed for biofilm samples. Wetland plants promoted significantly higher biofilm microbial activity and metabolic richness than unplanted CWs in both CW designs. Differences in the microbial community functional profiles between plant species were only found for saturated CWs. Biofilm microbial metabolic richness was generally statistically higher than that of interstitial water in both unsaturated (1.4-24 times higher) and saturated (1.2-1.7 times higher) CWs. Carbon source (guild) utilization patterns were generally different between interstitial water and biofilm samples. Functionality of the biofilm microbial community was positively correlated to the removal of all pollutants (TN, NH4+-N, TP, TOC and tebuconazole) for both unsaturated and saturated CWs, suggesting the biofilm plays a more important role in pollutant removal than the interstitial water microbial community. Thus, merely observing the interstitial water microbial communities may underestimate the role of the microbial community in CW performance. Interestingly, the ability for the biofilm microbial community to utilize amino acids and amines/amides was positively correlated with tebuconazole removal in all system types.
Collapse
Affiliation(s)
- Tao Lv
- Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark.
| | - Pedro N Carvalho
- Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark
| | - Liang Zhang
- Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark
| | - Yang Zhang
- Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark; College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Mark Button
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Carlos A Arias
- Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark
| | - Kela P Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Hans Brix
- Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark
| |
Collapse
|
11
|
Dynamics of Bacterial Community Abundance and Structure in Horizontal Subsurface Flow Wetland Mesocosms Treating Municipal Wastewater. WATER 2016. [DOI: 10.3390/w8100457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|