1
|
Depressed HCN4 function in the type 2 diabetic sinoatrial node. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
3
|
Chen HC, Liu WH, Tseng CH, Chen YL, Lee WC, Fang YN, Chong SZ, Chen MC. Diabetes Increases Risk of Cardiovascular Events in Patients Receiving Permanent Pacemaker: A Propensity Score-Matched Cohort Study. J Diabetes Res 2022; 2022:6758297. [PMID: 35386265 PMCID: PMC8979692 DOI: 10.1155/2022/6758297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Type 2 diabetes was associated with a higher risk for permanent pacemaker (PPM) treatment. The difference in cardiovascular outcomes between patients with and without diabetes receiving PPM treatment remains unexplored. METHOD Between January 2003 and December 2017, 1742 patients receiving naïve PPM treatment comprised this retrospective cohort study and were categorized into two groups by the diagnosis of diabetes: group with diabetes (n = 632, 36.3%) and group without diabetes (n = 1110, 63.7%). The primary outcome was cardiovascular events including heart failure (HF) hospitalization and acute myocardial infarction (AMI). The secondary outcomes of this study included pacemaker infection, pacing-induced cardiomyopathy, cerebrovascular accident, cardiovascular mortality, and all-cause mortality. Propensity score matching (PSM) was applied to reduce selection bias between the study groups. RESULT During a mean follow-up period of 7.8 ± 4.8 years, 264 patients had a cardiovascular event. Before PSM, the incidence of cardiovascular events was higher in patients with diabetes compared to patients without diabetes (19.8% vs. 12.5%, P < 0.001), and the incidences of pacing-induced cardiomyopathy, cardiovascular mortality, and all-cause mortality were all higher in patients with diabetes compared to patients without diabetes. After PSM, the incidence of cardiovascular events was higher in patients with diabetes compared to patients without diabetes (18.8% vs. 12.3%, P = 0.015). The incidence of HF hospitalization was higher in patients with diabetes compared to patients without diabetes (15.3% vs. 10.2%, P = 0.037), whereas the incidence of AMI did not differ between the two groups. Moreover, after PSM, patients with diabetes had higher cumulative incidences of pacing-induced cardiomyopathy and all-cause mortality compared to patients without diabetes. CONCLUSIONS The prevalence of diabetes was over one-third of naïve PPM recipients of this cohort, and diabetes increased the risk of cardiovascular events in PPM recipients, especially for HF hospitalization.
Collapse
Affiliation(s)
- Huang-Chung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Wen-Hao Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Chien-Hao Tseng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Wei-Chieh Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Yen-Nan Fang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Shaur-Zheng Chong
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| |
Collapse
|
4
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
5
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Rautio E, Gadler F, Gudbjörnsdottir S, Franzén S, Rydén L, Svensson AM, Mellbin LG. Patients With Type 2 Diabetes Have an Increased Demand for Pacemaker Treatment: A Comparison With Age- and Sex-Matched Control Subjects From the General Population. Diabetes Care 2020; 43:2853-2858. [PMID: 32887704 DOI: 10.2337/dc20-0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 2 diabetes have an increased risk for cardiovascular disease, including arrhythmias. The prevalence of bradyarrhythmia and the subsequent need for treatment with pacemakers (PMs) is less well explored in a contemporary patient population. The current study explores 1) whether patients with type 2 diabetes have an increased demand for PM implantation compared with an age- and sex-matched control population without diabetes and 2) patient characteristics associated with an increased demand for receiving a PM. RESEARCH DESIGN AND METHODS In this population-matched registry study, a total of 416,247 patients with type 2 diabetes from the Swedish National Diabetes Registry and 2,081,235 age- and sex-matched control subjects selected from the general population were included between 1 January 1998 and 31 December 2012 and followed until 31 December 2013. Mean follow-up time was 7 years. Cox proportional hazards regression analyses were performed to estimate the demand of PM treatment and the factors identifying patients with such demand. RESULTS Type 2 diabetes was associated with an increased need of PM treatment (hazard ratio 1.65 [95% CI 1.60-1.69]; P < 0.0001), which remained (1.56 [1.51-1.60]; P < 0.0001) after adjustments for age, sex, educational level, marital status, country of birth, and coronary heart disease. Risk factors for receiving a PM included increasing age, HbA1c, BMI, diabetes duration, and lipid- and blood pressure-lowering medication. CONCLUSIONS The need for PM treatment is higher in patients with type 2 diabetes than in matched population-based control subjects. Age, diabetes duration, and HbA1c seem to be risk factors for PM treatment.
Collapse
Affiliation(s)
- Elina Rautio
- Department of Medicine, Solna Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Gadler
- Department of Medicine, Huddinge, Karolinska University Hospital, Stockholm, Sweden
| | - Soffia Gudbjörnsdottir
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Franzén
- Centre of Registers in Region Västra Götaland, Gothenburg, Sweden.,Health Metrics Unit, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Rydén
- Department of Medicine, Solna Karolinska Institutet, Stockholm, Sweden.,Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | | | - Linda G Mellbin
- Department of Medicine, Solna Karolinska Institutet, Stockholm, Sweden.,Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Lubberding AF, Pereira L, Xue J, Gottlieb LA, Matchkov VV, Gomez AM, Thomsen MB. Aberrant sinus node firing during β-adrenergic stimulation leads to cardiac arrhythmias in diabetic mice. Acta Physiol (Oxf) 2020; 229:e13444. [PMID: 31953990 DOI: 10.1111/apha.13444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Cardiovascular complications, including cardiac arrhythmias, result in high morbidity and mortality in patients with type-2 diabetes mellitus (T2DM). Clinical and experimental data suggest electrophysiological impairment of the natural pacemaker of the diabetic heart. The present study examined sinoatrial node (SAN) arrhythmias in a mouse model of T2DM and physiologically probed their underlying cause. METHODS Electrocardiograms were obtained from conscious diabetic db/db and lean control db/+ mice. In vivo SAN function was probed through pharmacological autonomic modulation with isoprenaline, atropine and carbachol. Blood pressure stability and heart rate variability (HRV) were evaluated. Intrinsic SAN function was evaluated through ex vivo imaging of spontaneous Ca2+ transients in isolated SAN preparations. RESULTS While lean control mice showed constant RR intervals during isoprenaline challenge, the diabetic mice experienced SAN arrhythmias with large RR fluctuations in a dose-dependent manner. These arrhythmias were completely abolished by atropine pre-treatment, while carbachol pretreatment significantly increased SAN arrhythmia frequency in the diabetic mice. Blood pressure and HRV were comparable in db/db and db/+ mice, suggesting that neither augmented baroreceptor feedback nor autonomic neuropathy is a likely arrhythmia mechanism. Cycle length response to isoprenaline was comparable in isolated SAN preparations from db/db and db/+ mice; however, Ca2+ spark frequency was significantly increased in db/db mice compared to db/+ at baseline and after isoprenaline. CONCLUSION Our results demonstrate a dysfunction of cardiac pacemaking in an animal model of T2DM upon challenge with a β-adrenergic agonist. Ex vivo, higher Ca2+ spark frequency is present in diabetic mice, which may be directly linked to in vivo arrhythmias.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Laetitia Pereira
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Jianbin Xue
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Lisa A. Gottlieb
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Ana M. Gomez
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Morten B. Thomsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
8
|
Howarth FC, Qureshi MA, Jayaprakash P, Parekh K, Oz M, Dobrzynski H, Adrian TE. The Pattern of mRNA Expression Is Changed in Sinoatrial Node from Goto-Kakizaki Type 2 Diabetic Rat Heart. J Diabetes Res 2018; 2018:8454078. [PMID: 30246030 PMCID: PMC6139199 DOI: 10.1155/2018/8454078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/16/2018] [Accepted: 08/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In vivo experiments in Goto-Kakizaki (GK) type 2 diabetic rats have demonstrated reductions in heart rate from a young age. The expression of genes encoding more than 70 proteins that are associated with the generation and conduction of electrical activity in the GK sinoatrial node (SAN) have been evaluated to further clarify the molecular basis of the low heart rate. MATERIALS AND METHODS Heart rate and expression of genes were evaluated with an extracellular electrode and real-time RT-PCR, respectively. Rats aged 12-13 months were employed in these experiments. RESULTS Isolated spontaneous heart rate was reduced in GK heart (161 ± 12 bpm) compared to controls (229 ± 11 bpm). There were many differences in expression of mRNA, and some of these differences were of particular interest. Compared to control SAN, expression of some genes were downregulated in GK-SAN: gap junction, Gja1 (Cx43), Gja5 (Cx40), Gjc1 (Cx45), and Gjd3 (Cx31.9); cell membrane transport, Trpc1 (TRPC1) and Trpc6 (TRPC6); hyperpolarization-activated cyclic nucleotide-gated channels, Hcn1 (HCN1) and Hcn4 (HCN4); calcium channels, Cacna1d (Cav1.3), Cacna1g (Cav3.1), Cacna1h (Cav3.2), Cacna2d1 (Cavα2δ1), Cacna2d3 (Cavα2δ3), and Cacng4 (Cav γ 4); and potassium channels, Kcna2 (Kv1.2), Kcna4 (Kv1.4), Kcna5 (Kv1.5), Kcnb1 (Kv2.1), Kcnd3 (Kv4.3), Kcnj2 (Kir2.1), Kcnk1 (TWIK1), Kcnk5 (K2P5.1), Kcnk6 (TWIK2), and Kcnn2 (SK2) whilst others were upregulated in GK-SAN: Ryr2 (RYR2) and Nppb (BNP). CONCLUSIONS This study provides new insight into the changing expression of genes in the sinoatrial node of diabetic heart.
Collapse
MESH Headings
- Action Potentials
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Disease Models, Animal
- Gene Expression Regulation
- Heart Rate/genetics
- Isolated Heart Preparation
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Sinoatrial Node/metabolism
- Sinoatrial Node/physiopathology
Collapse
Affiliation(s)
- F. C. Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. A. Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - P. Jayaprakash
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - K. Parekh
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. Oz
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - H. Dobrzynski
- Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - T. E. Adrian
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, UAE
| |
Collapse
|
9
|
Soltysinska E, Speerschneider T, Winther SV, Thomsen MB. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice. Cardiovasc Diabetol 2014; 13:122. [PMID: 25113792 PMCID: PMC4149194 DOI: 10.1186/s12933-014-0122-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to probe cardiac complications, including heart-rate control, in a mouse model of type-2 diabetes. Heart-rate development in diabetic patients is not straight forward: In general, patients with diabetes have faster heart rates compared to non-diabetic individuals, yet diabetic patients are frequently found among patients treated for slow heart rates. Hence, we hypothesized that sinoatrial node (SAN) dysfunction could contribute to our understanding of the mechanism behind this conundrum and the consequences thereof. METHODS Cardiac hemodynamic and electrophysiological characteristics were investigated in diabetic db/db and control db/+ mice. RESULTS We found improved contractile function and impaired filling dynamics of the heart in db/db mice, relative to db/+ controls. Electrophysiologically, we observed comparable heart rates in the two mouse groups, but SAN recovery time was prolonged in diabetic mice. Adrenoreceptor stimulation increased heart rate in all mice and elicited cardiac arrhythmias in db/db mice only. The arrhythmias emanated from the SAN and were characterized by large RR fluctuations. Moreover, nerve density was reduced in the SAN region. CONCLUSIONS Enhanced systolic function and reduced diastolic function indicates early ventricular remodeling in obese and diabetic mice. They have SAN dysfunction, and adrenoreceptor stimulation triggers cardiac arrhythmia originating in the SAN. Thus, dysfunction of the intrinsic cardiac pacemaker and remodeling of the autonomic nervous system may conspire to increase cardiac mortality in diabetic patients.
Collapse
|
10
|
Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM. The anatomy and physiology of the sinoatrial node--a contemporary review. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2010; 33:1392-406. [PMID: 20946278 DOI: 10.1111/j.1540-8159.2010.02838.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sinoatrial node is the primary pacemaker of the heart. Nodal dysfunction with aging, heart failure, atrial fibrillation, and even endurance athletic training can lead to a wide variety of pathological clinical syndromes. Recent work utilizing molecular markers to map the extent of the node, along with the delineation of a novel paranodal area intermediate in characteristics between the node and the surrounding atrial muscle, has shown that pacemaker tissue is more widely spread in the right atrium than previously appreciated. This can explain the phenomenon of a "wandering pacemaker" and concomitant changes in the P-wave morphology. Extensive knowledge now exists regarding the molecular architecture of the node (in particular, the expression of ion channels) and how this relates to pacemaking. This review is an up-to-date summary of the current state of our appreciation of the above topics.
Collapse
Affiliation(s)
- Oliver Monfredi
- Cardiovascular Medicine, Faculty of Medical and Human Sciences, University of Manchester, Core Technology Facility, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Atrial fibrillation and diabetes mellitus: the effect of Type 2 diabetes on atrial conduction time using high-resolution ECG of the P wave. COR ET VASA 2007. [DOI: 10.33678/cor.2007.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Ostgren CJ, Merlo J, Råstam L, Lindblad U. Atrial fibrillation and its association with type 2 diabetes and hypertension in a Swedish community. Diabetes Obes Metab 2004; 6:367-74. [PMID: 15287930 DOI: 10.1111/j.1462-8902.2004.00358.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To explore the prevalence of atrial fibrillation in patients with hypertension and type 2 diabetes and to identify possible mechanisms for the development of atrial fibrillation. METHODS A community-based, cross-sectional observational study was conducted in the primary health care in Skara, Sweden, and 1739 subjects (798 men, 941 women) were surveyed. Patients were categorized as those with hypertension only (n = 597); those with both hypertension and type 2 diabetes (n = 171), and those with type 2 diabetes only (n = 147). In the reference population, 824 normotensive subjects without diabetes were identified and used as controls. Participants were examined for cardiovascular risk factors including fasting blood glucose, serum insulin, blood pressure, lipids and anthropometric measures. Resting electrocardiogram (ECG) was recorded and Minnesota-coded. Insulin resistance was measured by the homeostasis model assessment (HOMA). RESULTS Age-adjusted prevalence of atrial fibrillation was 2% in patients with hypertension only, 6% in patients with both hypertension and type 2 diabetes, 4% in patients with type 2 diabetes only and 2% in controls, respectively. Age and sex adjusted odds ratios (OR) (95% CI) were; hypertension 0.7 (0.30-1.5), combined hypertension and type 2 diabetes 3.3 (1.6-6.7), and type 2 diabetes 2.0 (0.9-4.7). The association with combined hypertension and type 2 diabetes remained significant when adjusted for cardiovascular disease (CVD) risk factors and body mass index (BMI), was attenuated with adjustment for ischemic ECG; 2.4 (1.1-5.0) and lost significance with adjustment for insulin resistance; 1.3 (0.5-3.1). CONCLUSIONS Atrial fibrillation is associated with the combined occurrence of type 2 diabetes and hypertension. Insulin resistance may be a common underlying mechanism.
Collapse
Affiliation(s)
- C J Ostgren
- Department of Community Medicine, Malmö University Hospital, Malmö, Sweden
| | | | | | | |
Collapse
|
13
|
Hayashi T, Nozawa M, Sohmiya K, Toko H, Nakao M, Okabe M, Terasaki F, Kitaura Y, Kawamura K. Efficacy of pancreatic transplantation on cardiovascular alterations in diabetic rats: an ultrastructural and immunohistochemical study. Transplant Proc 1998; 30:335-8. [PMID: 9532067 DOI: 10.1016/s0041-1345(97)01295-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T Hayashi
- Department of Medicine, Osaka Medical College, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|