1
|
Zhou A, Shi C, Fan Y, Zheng Y, Wang J, Liu Z, Xie H, Liu J, Jiao Q. Involvement of CD40-CD40L and ICOS-ICOSL in the development of chronic rhinosinusitis by targeting eosinophils. Front Immunol 2023; 14:1171308. [PMID: 37325657 PMCID: PMC10267736 DOI: 10.3389/fimmu.2023.1171308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 06/17/2023] Open
Abstract
Background Chronic rhinosinusitis (CRS), whose prevalence and pathogenesis are age-related, is characterized by nasal tissue eosinophil infiltration. CD40-CD40 ligand (CD40L) pathway involves in the eosinophil-mediated inflammation, and inducible co-stimulator (ICOS)-ICOS ligand (ICOSL) signal can strengthen CD40-CD40L interaction. Whether CD40-CD40L and ICOS-ICOSL have a role in the development of CRS remains unknown. Objectives The aim of this study is to investigate the association of CD40-CD40L and ICOS-ICOSL expression with CRS and underlying mechanisms. Methods Immunohistology detected the expression of CD40, CD40L, ICOS, and ICOSL. Immunofluorescence was performed to evaluate the co-localizations of CD40 or ICOSL with eosinophils. Correlations between CD40-CD40L and ICOS-ICOSL as well as clinical parameters were analyzed. Flow cytometry was used to explore the activation of eosinophils by CD69 expression and the CD40 and ICOSL expression on eosinophils. Results Compared with the non-eCRS subset, ECRS (eosinophilic CRS) subset showed significantly increased CD40, ICOS, and ICOSL expression. The CD40, CD40L, ICOS, and ICOSL expressions were all positively correlated with eosinophil infiltration in nasal tissues. CD40 and ICOSL were mainly expressed on eosinophils. ICOS expression was significantly correlated with the expression of CD40-CD40L, whereas ICOSL expression was correlated with CD40 expression. ICOS-ICOSL expression positively correlated with blood eosinophils count and disease severity. rhCD40L and rhICOS significantly enhanced the activation of eosinophils from patients with ECRS. Tumor necrosis factor-α (TNF-α) and interleukin-5 (IL-5) obviously upregulated CD40 expression on eosinophils, which was significantly inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor. Conclusions Increased CD40-CD40L and ICOS-ICOSL expressions in nasal tissues are linked to eosinophils infiltration and disease severity of CRS. CD40-CD40L and ICOS-ICOSL signals enhance eosinophils activation of ECRS. TNF-α and IL-5 regulate eosinophils function by increasing CD40 expression partly via p38 MAPK activation in patients with CRS.
Collapse
Affiliation(s)
- Aina Zhou
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenxi Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhui Fan
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yushuang Zheng
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jue Wang
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichen Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huanxia Xie
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jisheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Sánchez-Díez S, Cruz MJ, de Homdedeu M, Ojanguren I, Romero-Mesones C, Sansano I, Muñoz X. Immunopathological Mechanisms of Bird-Related Hypersensitivity Pneumonitis. Int J Mol Sci 2023; 24:ijms24032884. [PMID: 36769205 PMCID: PMC9917634 DOI: 10.3390/ijms24032884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Bird-related hypersensitivity pneumonitis (BRHP) is an interstitial lung disease induced by avian proteins. The immunopathological pathways involved in the disease are still unknown. This study assesses the cellular immune response and the cytokine pattern in a mouse model of BRHP. On days -3 and -1, mice were intraperitoneally sensitized with commercial pigeon serum (PS) or saline. Intranasal instillations with PS or saline were carried out on three consecutive days/week over either 3 weeks (Group 1) or 12 weeks (Group 2). Leukocyte and cytokine patterns in lung tissue and pulmonary inflammation in bronchoalveolar lavage (BAL) were analysed. Both groups presented increases in resident monocytes, interstitial macrophages and type 2 dendritic cells (DCs), but also reductions in inflammatory monocytes, alveolar macrophages and tolerogenic DCs compared with their control groups. Group 1 had increased levels of eosinophils and T cells with reductions in neutrophils and B cells, while Group 2 showed high levels of B cells. Both groups exhibited increases in Th1 and Th2 cytokines. Group 2 also showed increased levels of IL-23, a Th17 cytokine. Increased levels of neutrophils, eosinophils and lymphocytes were observed in BAL samples of both groups compared with controls. In the first stages of BRHP, there is a mixed Th1/Th2 immune response, while during the progression of the disease, although there is a Th1 response, the cytokine levels seem to indicate a switch towards a Th2/Th17 mixed response.
Collapse
Affiliation(s)
- Silvia Sánchez-Díez
- Pulmonology Service, Department of Medicine, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - María Jesús Cruz
- Pulmonology Service, Department of Medicine, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Correspondence:
| | - Miquel de Homdedeu
- Pulmonology Service, Department of Medicine, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Iñigo Ojanguren
- Pulmonology Service, Department of Medicine, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Christian Romero-Mesones
- Pulmonology Service, Department of Medicine, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Irene Sansano
- Pathological Anatomy Service, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Xavier Muñoz
- Pulmonology Service, Department of Medicine, Vall d’Hebron University Hospital, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Cell Biology and Physiology and Immunology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
4
|
Tower H, Dall G, Davey A, Stewart M, Lanteri P, Ruppert M, Lambouras M, Nasir I, Yeow S, Darcy PK, Ingman WV, Parker B, Haynes NM, Britt KL. Estrogen-induced immune changes within the normal mammary gland. Sci Rep 2022; 12:18986. [PMID: 36347875 PMCID: PMC9643548 DOI: 10.1038/s41598-022-21871-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17β estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.
Collapse
Affiliation(s)
- Helen Tower
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Genevieve Dall
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Ashleigh Davey
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 5052 Australia
| | - Melanie Stewart
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Patrick Lanteri
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Meagan Ruppert
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Maria Lambouras
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia
| | - Ibraheem Nasir
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Serene Yeow
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Phillip K. Darcy
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Wendy V. Ingman
- grid.1010.00000 0004 1936 7304Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011 Australia ,grid.1010.00000 0004 1936 7304Robinson Research Institute, University of Adelaide, Adelaide, SA 5005 Australia
| | - Belinda Parker
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Nicole M. Haynes
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Kara L. Britt
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia
| |
Collapse
|
5
|
Ma Q, Tong H, Jing J. High throughput virtual screening strategy to develop a potential treatment for bronchial asthma by targeting interleukin 13 cytokine signaling. Allergol Immunopathol (Madr) 2022; 50:22-31. [PMID: 36335442 DOI: 10.15586/aei.v50i6.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Chronic inflammation in the airway passage leads to the clinical syndrome of pediatric asthma. Allergic reactions caused by bacterial, viral, and fungal infection lead to the immune dis-balance which primes T helper cells (Th2), a specific cluster of differentiation 4 (CD4) T cell differentiation. This favors the Th2-specific response by activating the inter-leukin 4/interleukin 13 (IL-4/IL-13) cytokine signaling and further activates the secretion of immunoglobulin E (IgE). IL-13 develops bronchial asthma by elevating bronchial hyperresponsiveness and enables production of immunoglobulin M (IgM) and IgE. The present study aims to target IL-13 signaling using molecular docking and understanding molecular dynamic simulation (MDS) to propose a compelling candidate to treat asthma. We developed a library of available allergic drugs (n=20) and checked the binding affinity against IL-13 protein (3BPN.pdb) through molecular docking and confirmed the best pose binding energy of -3.84 and -3.71 for epinephrine and guaifenesin, respectively. Studying the interaction of hydrogen bonds and Van der Walls, it is estimated that electrostatic energy is sufficient to interact with the active site of the IL-13 and has shown to inhibit inflammatory signaling. These computational results confirm epinephrine and guaifenesin as potential ligands showing potential inhibitory activity for IL-13 signaling. This study also suggests the designing of a new ligand and screening of a large cohort of drugs, in the future, to predict the exact mechanism to control the critical feature of asthma.
Collapse
Affiliation(s)
- Qin Ma
- Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China
| | - Huimin Tong
- Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China
| | - Junhu Jing
- Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China;
| |
Collapse
|
6
|
Filippone RT, Dargahi N, Eri R, Uranga JA, Bornstein JC, Apostolopoulos V, Nurgali K. Potent CCR3 Receptor Antagonist, SB328437, Suppresses Colonic Eosinophil Chemotaxis and Inflammation in the Winnie Murine Model of Spontaneous Chronic Colitis. Int J Mol Sci 2022; 23:ijms23147780. [PMID: 35887133 PMCID: PMC9317166 DOI: 10.3390/ijms23147780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Eosinophils and their regulatory molecules have been associated with chronic intestinal inflammation and gastrointestinal dysfunctions; eosinophil accumulation in the gut is prominent in inflammatory bowel disease (IBD). The chemokine receptor CCR3 plays a pivotal role in local and systemic recruitment and activation of eosinophils. In this study, we targeted CCR3-ligand interactions with a potent CCR3 receptor antagonist, SB328437, to alleviate eosinophil-associated immunological responses in the Winnie model of spontaneous chronic colitis. Winnie and C57BL/6 mice were treated with SB328437 or vehicle. Clinical and histopathological parameters of chronic colitis were assessed. Flow cytometry was performed to discern changes in colonic, splenic, circulatory, and bone marrow-derived leukocytes. Changes to the serum levels of eosinophil-associated chemokines and cytokines were measured using BioPlex. Inhibition of CCR3 receptors with SB328437 attenuated disease activity and gross morphological damage to the inflamed intestines and reduced eosinophils and their regulatory molecules in the inflamed colon and circulation. SB328437 had no effect on eosinophils and their progenitor cells in the spleen and bone marrow. This study demonstrates that targeting eosinophils via the CCR3 axis has anti-inflammatory effects in the inflamed intestine, and also contributes to understanding the role of eosinophils as potential end-point targets for IBD treatment.
Collapse
Affiliation(s)
- Rhiannon T. Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
| | - Rajaraman Eri
- School of Health Sciences, The University of Tasmania, Launceston, TAS 7248, Australia;
| | - Jose A. Uranga
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
- Department of Medicine-Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
7
|
Sibille A, Corhay JL, Louis R, Ninane V, Jerusalem G, Duysinx B. Eosinophils and Lung Cancer: From Bench to Bedside. Int J Mol Sci 2022; 23:ijms23095066. [PMID: 35563461 PMCID: PMC9101877 DOI: 10.3390/ijms23095066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are rare, multifunctional granulocytes. Their growth, survival, and tissue migration mainly depend on interleukin (IL)-5 in physiological conditions and on IL-5 and IL-33 in inflammatory conditions. Preclinical evidence supports an immunological role for eosinophils as innate immune cells and as agents of the adaptive immune response. In addition to these data, several reports show a link between the outcomes of patients treated with immune checkpoint inhibitors (ICI) for advanced cancers and blood eosinophilia. In this review, we present, in the context of non-small cell lung cancer (NSCLC), the biological properties of eosinophils and their roles in homeostatic and pathological conditions, with a focus on their pro- and anti-tumorigenic effects. We examine the possible explanations for blood eosinophilia during NSCLC treatment with ICI. In particular, we discuss the value of eosinophils as a potential prognostic and predictive biomarker, highlighting the need for stronger clinical data. Finally, we conclude with perspectives on clinical and translational research topics on this subject.
Collapse
Affiliation(s)
- Anne Sibille
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
- Correspondence: ; Tel.: +32-4-3667881
| | - Jean-Louis Corhay
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
| | - Renaud Louis
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
| | - Vincent Ninane
- Department of Pulmonary Medicine, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium;
| | - Bernard Duysinx
- Department of Pulmonology, University Hospital of Liège, Domaine de l’Université B35, 4000 Liège, Belgium; (J.-L.C.); (R.L.); (B.D.)
| |
Collapse
|
8
|
Chiricozzi A, Gori N, Maurelli M, Gisondi P, Caldarola G, De Simone C, Peris K, Girolomoni G. Biological agents targeting interleukin-13 for atopic dermatitis. Expert Opin Biol Ther 2022; 22:651-659. [PMID: 35081849 DOI: 10.1080/14712598.2022.2035356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disease that is pathogenically driven by type-2 inflammation. Interleukin-13 (IL-13) plays a central role in AD pathogenesis, as confirmed by the clinical efficacy of agents that selectively block IL-13, although their therapeutic value and place-in-therapy are incompletely defined. AREAS COVERED The aim of this review article is to describe preclinical and clinical data regarding selective IL-13 inhibitors investigated in AD. In particular, we discuss the clinical outcomes obtained with lebrikizumab and tralokinumab, which are in a more advanced phase of development. EXPERT OPINION Biological agents that neutralize IL-13 have demonstrated clinical benefits in treating AD with excellent safety profiles. Robust clinical evidence exists in support of tralokinumab, which underwent phase III trials, met the predefined primary endpoints, and is approaching the market. In contrast, clinical trial testing for lebrikizumab needs to be completed to fully assess its therapeutic potential. PLAIN LANGUAGE SUMMARY Atopic dermatitis (AD) is a chronic pathological inflammatory skin disease that results from type-2 inflammation. Selective interleukin-13 (IL-13) inhibitors have shown clinical efficacy against AD, suggesting that IL-13 plays a central in AD pathogenesis. However, the therapeutic value and place-in-therapy of IL-13 inhibitors are incompletely defined. The aim of this review article is to describe preclinical and clinical data for selective IL-13 inhibitors against AD, including lebrikizumab and tralokinumab, which are in a more advanced phase of development. The up-to-date overview of the strengths and limitations of different agents used to treat AD discussed in this article might be useful in driving treatment decision.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Niccolò Gori
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Giacomo Caldarola
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara De Simone
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Valent P, Degenfeld-Schonburg L, Sadovnik I, Horny HP, Arock M, Simon HU, Reiter A, Bochner BS. Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol 2021; 43:423-438. [PMID: 34052871 PMCID: PMC8164832 DOI: 10.1007/s00281-021-00863-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Eosinophils and their mediators play a crucial role in various reactive states such as bacterial and viral infections, chronic inflammatory disorders, and certain hematologic malignancies. Depending on the underlying pathology, molecular defect(s), and the cytokine- and mediator-cascades involved, peripheral blood and tissue hypereosinophilia (HE) may develop and may lead to organ dysfunction or even organ damage which usually leads to the diagnosis of a HE syndrome (HES). In some of these patients, the etiology and impact of HE remain unclear. These patients are diagnosed with idiopathic HE. In other patients, HES is diagnosed but the etiology remains unknown — these patients are classified as idiopathic HES. For patients with HES, early therapeutic application of agents reducing eosinophil counts is usually effective in avoiding irreversible organ damage. Therefore, it is important to systematically explore various diagnostic markers and to correctly identify the disease elicitors and etiology. Depending on the presence and type of underlying disease, HES are classified into primary (clonal) HES, reactive HES, and idiopathic HES. In most of these patients, effective therapies can be administered. The current article provides an overview of the pathogenesis of eosinophil-associated disorders, with special emphasis on the molecular, immunological, and clinical complexity of HE and HES. In addition, diagnostic criteria and the classification of eosinophil disorders are reviewed in light of new developments in the field.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria. .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Bitton A, Avlas S, Reichman H, Itan M, Karo-Atar D, Azouz NP, Rozenberg P, Diesendruck Y, Nahary L, Rothenberg ME, Benhar I, Munitz A. A key role for IL-13 signaling via the type 2 IL-4 receptor in experimental atopic dermatitis. Sci Immunol 2020; 5:5/44/eaaw2938. [PMID: 32060143 DOI: 10.1126/sciimmunol.aaw2938] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 10/06/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
IL-13 and IL-4 are potent mediators of type 2-associated inflammation such as those found in atopic dermatitis (AD). IL-4 shares overlapping biological functions with IL-13, a finding that is mainly explained by their ability to signal via the type 2 IL-4 receptor (R), which is composed of IL-4Rα in association with IL-13Rα1. Nonetheless, the role of the type 2 IL-4R in AD remains to be clearly defined. Induction of two distinct models of experimental AD in Il13ra1 -/- mice, which lack the type 2 IL-4R, revealed that dermatitis, including ear and epidermal thickening, was dependent on type 2 IL-4R signaling. Expression of TNF-α was dependent on the type 2 IL-4R, whereas induction of IL-4, IgE, CCL24, and skin eosinophilia was dependent on the type 1 IL-4R. Neutralization of IL-4, IL-13, and TNF-α as well as studies in bone marrow-chimeric mice revealed that dermatitis, TNF-α, CXCL1, and CCL11 expression were exclusively mediated by IL-13 signaling via the type 2 IL-4R expressed by nonhematopoietic cells. Conversely, induction of IL-4, CCL24, and eosinophilia was dependent on IL-4 signaling via the type 1 IL-4R expressed by hematopoietic cells. Last, we pharmacologically targeted IL-13Rα1 and established a proof of concept for therapeutic targeting of this pathway in AD. Our data provide mechanistic insight into the differential roles of IL-4, IL-13, and their receptor components in allergic skin and highlight type 2 IL-4R as a potential therapeutic target in AD and other allergic diseases such as asthma and eosinophilic esophagitis.
Collapse
Affiliation(s)
- Almog Bitton
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Shmuel Avlas
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Danielle Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Perri Rozenberg
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Yael Diesendruck
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Limor Nahary
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|
11
|
Austin CD, Gonzalez Edick M, Ferrando RE, Solon M, Baca M, Mesh K, Bradding P, Gauvreau GM, Sumino K, FitzGerald JM, Israel E, Bjermer L, Bourdin A, Arron JR, Choy DF, Olsson JK, Abreu F, Howard M, Wong K, Cai F, Peng K, Putnam WS, Holweg CT, Matthews JG, Kraft M, Woodruff PG. A randomized, placebo-controlled trial evaluating effects of lebrikizumab on airway eosinophilic inflammation and remodelling in uncontrolled asthma (CLAVIER). Clin Exp Allergy 2020; 50:1342-1351. [PMID: 32909660 PMCID: PMC7756263 DOI: 10.1111/cea.13731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The anti-interleukin 13 (IL-13) monoclonal antibody lebrikizumab improves lung function in patients with moderate-to-severe uncontrolled asthma, but its effects on airway inflammation and remodelling are unknown. CLAVIER was designed to assess lebrikizumab's effect on eosinophilic inflammation and remodelling. OBJECTIVE To report safety and efficacy results from enrolled participants with available data from CLAVIER. METHODS We performed bronchoscopy on patients with uncontrolled asthma before and after 12 weeks of randomized double-blinded treatment with lebrikizumab (n = 31) or placebo (n = 33). The pre-specified primary end-point was relative change in airway subepithelial eosinophils per mm2 of basement membrane (cells/mm2 ). Pre-specified secondary and exploratory outcomes included change in IL-13-associated biomarkers and measures of airway remodelling. RESULTS There was a baseline imbalance in tissue eosinophils and high variability between treatment groups. There was no discernible change in adjusted mean subepithelial eosinophils/mm2 in response to lebrikizumab (95% CI, -82.5%, 97.5%). As previously observed, FEV1 increased after lebrikizumab treatment. Moreover, subepithelial collagen thickness decreased 21.5% after lebrikizumab treatment (95% CI, -32.9%, -10.2%), and fractional exhaled nitric oxide, CCL26 and SERPINB2 mRNA expression in bronchial tissues also reduced. Lebrikizumab was well tolerated, with a safety profile consistent with other lebrikizumab asthma studies. CONCLUSIONS & CLINICAL RELEVANCE We did not observe reduced tissue eosinophil numbers in association with lebrikizumab treatment. However, in pre-specified exploratory analyses, lebrikizumab treatment was associated with reduced degree of subepithelial fibrosis, a feature of airway remodelling, as well as improved lung function and reduced key pharmacodynamic biomarkers in bronchial tissues. These results reinforce the importance of IL-13 in airway pathobiology and suggest that neutralization of IL-13 may reduce asthmatic airway remodelling. CLINICAL TRIAL REGISTRATION NCT02099656.
Collapse
Affiliation(s)
| | | | - Ronald E. Ferrando
- Genentech, Inc.South San FranciscoCAUSA
- Present address:
Stemcentrx/AbbVie, Inc.South San FranciscoCAUSA
| | | | | | | | - Peter Bradding
- University of Leicester and Glenfield HospitalLeicesterUK
| | | | - Kaharu Sumino
- Washington University School of Medicine in St. LouisSt LouisMOUSA
| | | | | | | | | | | | | | | | | | | | - Kit Wong
- Genentech, Inc.South San FranciscoCAUSA
| | - Fang Cai
- Genentech, Inc.South San FranciscoCAUSA
| | - Kun Peng
- Genentech, Inc.South San FranciscoCAUSA
| | | | | | - John G. Matthews
- Genentech, Inc.South San FranciscoCAUSA
- Present address:
23andMeMountain ViewCAUSA
| | - Monica Kraft
- University of Arizona College of MedicineTucsonAZUSA
| | | | | |
Collapse
|
12
|
Comparative efficacy of glucocorticoid receptor agonists on Th2 cell function and attenuation by progesterone. BMC Immunol 2020; 21:54. [PMID: 33076829 PMCID: PMC7574173 DOI: 10.1186/s12865-020-00383-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Corticosteroids (CS)s suppress cytokine production and induce apoptosis of inflammatory cells. Prednisone and dexamethasone are oral CSs prescribed for treating asthma exacerbations. While prednisone is more commonly prescribed, dexamethasone is long acting and a more potent glucocorticoid receptor (GR) agonist. It can be administered as a one or two dose regime, unlike the five to seven days required for prednisone, a feature that increases compliance. We compared the relative ability of these two oral CSs to suppress type 2 inflammation. Since progesterone has affinity for the GR and women are more likely to relapse following an asthma exacerbation, we assessed its influence on CS action. RESULTS Dexamethasone suppressed the level of IL-5 and IL-13 mRNA within Th2 cells with ~ 10-fold higher potency than prednisolone (the active form of prednisone). Dexamethasone induced a higher proportion of apoptotic and dying cells than prednisolone, at all concentrations examined. Addition of progesterone reduced the capacity of both CS to drive cell death, though dexamethasone maintained significantly more killing activity. Progesterone blunted dexamethasone-induction of FKBP5 mRNA, indicating that the mechanism of action was by interference of the CS:GR complex. CONCLUSIONS Dexamethasone is both more potent and effective than prednisolone in suppressing type 2 cytokine levels and mediating apoptosis. Progesterone attenuated these anti-inflammatory effects, indicating its potential influence on CS responses in vivo. Collectively, our data suggest that when oral CS is required, dexamethasone may be better able to control type 2 inflammation, eliminate Th2 cells and ultimately lead to improved long-term outcomes. Further research in asthmatics is needed.
Collapse
|
13
|
Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, Scadding GW, Varricchi G. The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Front Pharmacol 2019; 10:1387. [PMID: 31866859 PMCID: PMC6908970 DOI: 10.3389/fphar.2019.01387] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Approximately 5–10% of asthmatic patients worldwide suffer from severe asthma. Experimental and clinical studies have demonstrated that IL-13 is an important cytokine in chronic airways inflammation. IL-13 is involved in Th2 inflammation and has been identified as a possible therapeutic target in the treatment of asthma. Two different human monoclonal antibodies (mAbs) anti-IL-13 (tralokinumab and lebrikizumab) block binding and signaling of IL-13 to its receptors, IL-13Rα1 and IL-13Rα2. Several randomized, double-blind, placebo-controlled multicenter studies have evaluated the safety and efficacy of tralokinumab and lebrikizumab in the treatment of adult patients with severe asthma, but all have failed to meet their primary endpoints. No serious adverse events related to the treatment with these anti-IL-13 mAbs have been reported in these studies. These negative clinical results contrast with positive findings from blocking IL-13 signaling in experimental models of asthma, raising doubts about the transferrable value of some models. Interestingly, dupilumab, a mAb which blocks both IL-4 and IL-13 signaling reduces exacerbation rates and improves lung function in severe asthmatics. These results suggest that IL-4 and IL-13 share some, but not all functional activities in airway inflammation. Tralokinumab might show efficacy in a highly selected cohort of asthmatics characterized by overexpression of IL-13.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Valentina Pucino
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Pecoraro
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Enrico Heffler
- Personalized Medicine, Asthma, and Allergy, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Guy W Scadding
- Allergy and Clinical Immunology, Imperial College, National Heart and Lung Institute, London, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
14
|
Varricchi G, Marone G, Spadaro G, Russo M, Granata F, Genovese A, Marone G. Novel Biological Therapies in Severe Asthma: Targeting the Right Trait. Curr Med Chem 2019; 26:2801-2822. [PMID: 29318959 DOI: 10.2174/0929867325666180110094542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation that results in a wide spectrum of clinical manifestations. Patients with severe asthma represent a substantial share of consumption of healthcare resources and hospitalization. Moreover, these patients are at risk of increased morbidity and mortality. Recently, several phenotypes and endotypes of asthma have been identified. The identification of specific subtypes of asthma is fundamental for optimizing the clinical benefit of novel treatments. Although in most patients the disease can be controlled by some combination of pharmacologic agents, in some 5-10% of patients the disease remains uncontrolled. Several monoclonal antibodies (mAbs) targeting pathogenetic molecules (e.g., IgE, IL-5, IL- 5Rα, IL-4, IL-13, TSLP) are currently available or under development for the treatment of different forms of severe type 2 asthma. The identification of diagnostic and predictive biomarkers (e.g., IgE, blood eosinophil count, FeNO, periostin, etc.) has revolutioned the field of targeted therapy in severe asthma. Monoclonal antibodies targeting Th2-driven inflammation are generally safe in adult patients with moderate-to-severe asthma. The long-term safety of these biologics is a relevant issue that should be addressed. Unfortunately, little is known about non-type 2 asthma. Further studies are needed to identify biomarkers to guide targeted therapies of different forms of non-type 2 asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
15
|
Han X, Bai S, Cui Y, Zhu W, Zhao N, Liu B. Essential role of CD4 + T cells for the activation of group 2 innate lymphoid cells during respiratory syncytial virus infection in mice. Immunotherapy 2019; 11:1303-1313. [PMID: 31478420 DOI: 10.2217/imt-2019-0084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: To investigate whether and how CD4+ T cells contribute to ILC2 activation during respiratory syncytial virus (RSV) infection. Methods: The methods of flow cytometry, quantitative PCR and ELISA were used in the present study. Results: Depletion of CD4+ T cells diminished the numbers of lung ILC2s as well as their ability to produce type 2 cytokines. CD4+ T cell-mediated ILC2 activation is related to IL-2. The main cellular source of IL-2 was CD4+ T cells. Depletion of CD4+ T cells decreased IL-2 levels in the lungs of RSV-infected mice. IL-2 can directly stimulate ILC2 proliferation and promote ILC2s to produce cytokines. Treatment of mice with neutralizing anti-IL-2 monoclonal antibodies diminished ILC2 activation. Conclusion: These results suggest that CD4+ T cells contribute to RSV-induced ILC2 activation partly via producing IL-2.
Collapse
Affiliation(s)
- Xu Han
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China.,Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Song Bai
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Yulin Cui
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Wenwen Zhu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Na Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Beixing Liu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
17
|
Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev 2018; 45:9-23. [PMID: 30581068 DOI: 10.1016/j.cytogfr.2018.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Interleukin-13 (IL-13) was previously thought to be a redundant presence of IL-4, but in recent years its role in immunity, inflammation, fibrosis, and allergic diseases has become increasingly prominent. IL-13 can regulate several subtypes of T helper (Th) cells and affect their transformation, including Th1, Th2, T17, etc., thus it may play an important role in immune system. Previous studies have revealed that IL-13 is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), ulcerative colitis (UC), type 1 diabetes (T1D), sjogren's syndrome (SS), etc. In this review, we will briefly discuss the biological features of IL-13 and summarize recent advances in the role of IL-13 in the development and pathogenesis of autoimmune diseases. This information may provide new perspectives and suggestions for the selection of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jing Leng
- Anhui Academy of Medical Sciences, 15 Yonghong Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
18
|
Hassani M, Koenderman L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: An overview. Allergy 2018; 73:1979-1988. [PMID: 29611207 PMCID: PMC6220846 DOI: 10.1111/all.13451] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
IL‐5 is an important cytokine for priming and survival of mature eosinophils and for proliferation and maturation of their progenitors. Hence, IL‐5(Rα) targeting will be increasingly used in diseases where eosinophils are the key immune effector cells such as eosinophilic asthma (EA), hypereosinophilic syndrome (HES), eosinophilic esophagitis (EE), and eosinophilic granulomatosis with polyangiitis (EGPA). Therefore, several neutralizing monoclonal antibodies directed against IL‐5 (mepolizumab and reslizumab) and its receptor IL‐5Rα (benralizumab) have found or will find their way to the clinic. While the clinical effect of these drugs has been extensively investigated and reviewed, the understanding of the underlying immunological and hematological mechanisms remains less clear. This review will discuss the translational outcomes of treatment with these monoclonal antibodies in humans to shed light on the mechanisms underlying the main immunological and hematological findings from these clinical trials in humans.
Collapse
Affiliation(s)
- M. Hassani
- Laboratory of Translational Immunology Department of Respiratory Medicine University Medical Centre Utrecht Utrecht The Netherlands
| | - L. Koenderman
- Laboratory of Translational Immunology Department of Respiratory Medicine University Medical Centre Utrecht Utrecht The Netherlands
| |
Collapse
|
19
|
Doran E, Cai F, Holweg CTJ, Wong K, Brumm J, Arron JR. Interleukin-13 in Asthma and Other Eosinophilic Disorders. Front Med (Lausanne) 2017; 4:139. [PMID: 29034234 PMCID: PMC5627038 DOI: 10.3389/fmed.2017.00139] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023] Open
Abstract
Asthma is characterized by episodic, reversible airflow obstruction associated with variable levels of inflammation. Over the past several decades, there has been an increasing appreciation that the clinical presentation of asthma comprises a diverse set of underlying pathologies. Rather than being viewed as a single disease entity, asthma is now thought of as a clinical syndrome with the involvement of multiple pathological mechanisms. While it is appreciated that eosinophilia is present in only a subset of patients, it remains a key feature of asthma and other eosinophilic disorders such as atopic dermatitis, eosinophilic esophagitis, and chronic rhinosinusitis with nasal polyps. Eosinophils are bone marrow-derived leukocytes present in low numbers in health; however, during disease the type 2 cytokines [interleukins (IL)-4, -5, and -13] can induce rapid eosinophilopoiesis, prolonged eosinophil survival, and trafficking to the site of injury. In diseases such as allergic asthma there is an aberrant inflammatory response leading to eosinophilia, tissue damage, and airway pathology. IL-13 is a pleiotropic type 2 cytokine that has been shown to be integral in the pathogenesis of asthma and other eosinophilic disorders. IL-13 levels are elevated in animal models of eosinophilic inflammation and in the blood and tissue of patients diagnosed with eosinophilic disorders. IL-13 signaling elicits many pathogenic mechanisms including the promotion of eosinophil survival, activation, and trafficking. Data from preclinical models and clinical trials of IL-13 inhibitors in patients have revealed mechanistic insights into the role of this cytokine in driving eosinophilia. Promising results from clinical trials further support a key mechanistic role of IL-13 in asthma and other eosinophilic disorders. Here, we provide a perspective on the role of IL-13 in asthma and other eosinophilic disorders and describe ongoing clinical trials targeting this pathway in patients with significant unmet medical needs.
Collapse
Affiliation(s)
- Emma Doran
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States
| | - Fang Cai
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, United States
| | - Cécile T J Holweg
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, United States
| | - Kit Wong
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, United States
| | - Jochen Brumm
- Biostatistics, Genentech, Inc., South San Francisco, CA, United States
| | - Joseph R Arron
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
20
|
Soman KV, Stafford SJ, Pazdrak K, Wu Z, Luo X, White WI, Wiktorowicz JE, Calhoun WJ, Kurosky A. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study. J Proteome Res 2017; 16:2663-2679. [PMID: 28679203 DOI: 10.1021/acs.jproteome.6b00367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Collapse
Affiliation(s)
- Kizhake V Soman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Susan J Stafford
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Konrad Pazdrak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Zheng Wu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Xuemei Luo
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Wendy I White
- MedImmune LLC , One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Human Immunity & Infection, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Alexander Kurosky
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
21
|
Tripp CS, Cuff C, Campbell AL, Hendrickson BA, Voss J, Melim T, Wu C, Cherniack AD, Kim K. RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 α1 and α2 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study. Adv Ther 2017; 34:1364-1381. [PMID: 28455782 PMCID: PMC5487860 DOI: 10.1007/s12325-017-0525-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/27/2022]
Abstract
Introduction A unique anti-interleukin (IL)-13 monoclonal antibody, RPC4046, was generated on the basis of differential IL-13 receptor (R) blockade as assessed in a murine asthma model; the safety, tolerability, pharmacokinetics, and pharmacodynamics of RPC4046 were evaluated in a first-in-human study. Methods Anti-IL-13 antibodies with varying receptor blocking specificity were evaluated in the ovalbumin-induced murine asthma model. A randomized, double-blind, placebo-controlled, dose-escalation first-in-human study (NCT00986037) was conducted with RPC4046 in healthy adults and patients with mild to moderate controlled asthma. Results In the ovalbumin model, blocking IL-13 binding to both IL-13Rs (IL-13Rα1 and IL-13Rα2) inhibited more asthma phenotypic features and more fully normalized the distinct IL-13 gene transcription associated with asthma compared with blocking IL-13Rα1 alone. In humans, RPC4046 exposure increased dose-dependently; pharmacokinetics were similar in healthy and asthmatic subjects, and blockade of both IL-13Rs uniquely affected IL-13 gene transcription. A minority of participants (28%) had antidrug antibodies, which were transient and appeared not to affect pharmacokinetics. Adverse event profiles were similar in healthy and asthmatic subjects, without dose-related or administration route differences, systemic infusion-related reactions, or asthma symptom worsening. Adverse events were mild to moderate, with none reported as probably related to RPC4046 or leading to discontinuations. Non-serious upper respiratory tract infections were more frequent with RPC4046 versus placebo. Conclusion RPC4046 is a novel anti-IL-13 antibody that blocks IL-13 binding to both receptors and more fully blocks the asthma phenotype. These results support further investigation of RPC4046 for IL-13-related allergic/inflammatory diseases (e.g., asthma and eosinophilic esophagitis). Funding AbbVie Inc. sponsored the studies and contributed to the design and conduct of the studies, data management, data analysis, interpretation of the data, and in the preparation and approval of the manuscript.
Electronic supplementary material The online version of this article (doi:10.1007/s12325-017-0525-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Carolyn Cuff
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA.
| | | | | | - Jeff Voss
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Terry Melim
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Chengbin Wu
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- EpimAb Biotherapeutics Inc., Shanghai, China
| | - Andrew D Cherniack
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
22
|
Szlezak AM, Szlezak SL, Keane J, Tajouri L, Minahan C. Establishing a dose-response relationship between acute resistance-exercise and the immune system: Protocol for a systematic review. Immunol Lett 2016; 180:54-65. [PMID: 27810335 DOI: 10.1016/j.imlet.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 02/07/2023]
Abstract
Exercise immunology research has traditionally focussed on aerobic-exercise, however it has become apparent in more recent years that resistance-exercise can also considerably affect host immunobiology. To date however, no systematic process has been used to establish a dose-response relationship between resistance-exercise and the immune system. The present systematic review was thus conducted to determine the dose-response effects of a bout of resistance-exercise on acute leukocyte counts. In accordance with the PRISMA guidelines, a systematic literature search was conducted in the electronic databases, PubMed, Web of Science, and Google Scholar, over the date range of 1989-2016. Following the PICO elements, eligibility criteria included: i) participants: healthy humans aged 18-40; ii) intervention: a single bout of resistance-exercise; iii) comparator: at least one comparator group; iv) outcome: acute measures of circulating leukocyte counts. Specific exclusion criteria were also applied. Risk of bias and quality of evidence was assessed using the PEDro scale. Due to the individual designs of the admitted studies, a qualitative analysis (systematic narrative synthesis) was employed in the present review. The results of the present review demonstrate that a single bout of resistance-exercise induces an acute monocytosis, neutrophilia, and lymphocytosis. It became apparent that the reviewed literature either does not consistently specify, or does not describe with sufficient detail, the time-course between the onset of exercise and the collection of blood. We recommend that researchers consider addressing this in future studies, and also collect blood measures during exercise to aid with comparison of temporal effects. Regarding the determination of a dose-response relationship, an acute neutrophilia, monocytosis and lymphocytosis appears to occur more rapidly and to a greater magnitude following a single bout of high-dose vs low-dose resistance-exercise. Mechanistically, exercise-induced cell trafficking changes are associated with mechanical, metabolic and endocrine factors. Physical aptitude of the host may also affect resistance-exercise-induced lymphocyte trafficking responses.
Collapse
Affiliation(s)
- Adam Michael Szlezak
- Griffith Sports Physiology, Griffith University, Parklands Drive, Southport QLD 4215, Australia.
| | | | - James Keane
- Faculty of Health Sciences & Medicine, Bond University, Robina QLD 4226, Australia.
| | - Lotti Tajouri
- Faculty of Health Sciences & Medicine, Bond University, Robina QLD 4226, Australia.
| | - Clare Minahan
- Griffith Sports Physiology, Griffith University, Parklands Drive, Southport QLD 4215, Australia.
| |
Collapse
|
23
|
Ming M, Luo Z, Lv S, Li C. Inhalation of inactivated‑Mycobacterium phlei prevents asthma‑mediated airway hyperresponsiveness and airway eosinophilia in mice by reducing IL‑5 and IL‑13 levels. Mol Med Rep 2016; 14:5343-5349. [PMID: 27779664 DOI: 10.3892/mmr.2016.5865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate whether inhalation of inactivated‑Mycobacterium phlei could prevent airway hyperresponsiveness and airway eosinophilia. A total of 24 male Balb/c mice were randomly divided into three groups: Normal control group (group A), asthma model group (group B) and the intervention group (group C), (8 mice/group). Group A mice were sensitized and with challenged saline and group B with ovalbumin (OVA). Group C mice were administered with aerosol Mycobacterium phlei once daily prior to the allergen challenge. Airway responsiveness in each group was assessed. All the animals were sacrificed and lung tissues, blood samples and bronchoalveolar lavage fluid (BALF) were harvested. Cell fractionation and differential cells were counted in serum and BALF. HE staining and alcian blue/periodic acid Schiff staining were used to measure airway eosinophilic inflammation and mucus production. The levels of the cytokines IL‑5, IL‑13 and IgE were measured in lung and BALF as determined by ELISA and reverse transcription‑quantitative polymerase chain reaction assays. The results indicated that inactivated‑Mycobacterium phlei suppressed the airway hyperresponsiveness and mitigated airway eosinophilia induced by a methacholine challenge, and significantly reduced the levels of cytokines IL‑5 and IL‑13 in lung tissue and IgE level in BALF when compared with the OVA‑sensitized mice. In conclusion, inhalation of inactivated‑Mycobacterium phlei could reduce OVA‑induced airway hyperresponsiveness and may be a potential alternative therapy for allergic airway diseases.
Collapse
Affiliation(s)
- Moyu Ming
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhixi Luo
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shengqiu Lv
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chaoqian Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
24
|
Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. THE LANCET RESPIRATORY MEDICINE 2016; 4:781-796. [PMID: 27616196 DOI: 10.1016/s2213-2600(16)30265-x] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND In phase 2 trials, lebrikizumab, an anti-interleukin-13 monoclonal antibody, reduced exacerbation rates and improved FEV1 in patients with uncontrolled asthma, particularly in those with high concentrations of type 2 biomarkers (eg, periostin or blood eosinophils). We undertook replicate phase 3 studies to assess the efficacy and safety of lebrikizumab in patients with uncontrolled asthma despite inhaled corticosteroids and at least one second controller medication. METHODS Adult patients with uncontrolled asthma, pre-bronchodilator FEV1 40-80% predicted, and stable background therapy were randomly assigned (1:1:1) with an interactive voice-web-based response system to receive lebrikizumab 37·5 mg or 125 mg, or placebo subcutaneously, once every 4 weeks. Randomisation was stratified by screening serum periostin concentration, history of asthma exacerbations within the last 12 months, baseline asthma medications, and country. The primary efficacy endpoint was the rate of asthma exacerbations over 52 weeks in biomarker-high patients (periostin ≥50 ng/mL or blood eosinophils ≥300 cells per μL), analysed with a Poisson regression model corrected for overdispersion with Pearson χ2 that included terms for treatment group, number of asthma exacerbations within the 12 months before study entry, baseline asthma medications, geographic region, screening periostin concentration, and blood eosinophil counts as covariates. Both trials are registered at ClinicalTrials.gov, LAVOLTA I, number NCT01867125, and LAVOLTA II, number NCT01868061. FINDINGS 1081 patients were treated in LAVOLTA I and 1067 patients in LAVOLTA II. Over 52 weeks, lebrikizumab reduced exacerbation rates in biomarker-high patients in the 37·5 mg dose group (rate ratio [RR] 0·49 [95% CI 0·34-0·69], p<0·0001) and in the 125 mg dose group (RR 0·70 [0·51-0·95], p=0·0232) versus placebo in LAVOLTA I. Exacerbation rates were also reduced in biomarker-high patients in both dose groups versus placebo in LAVOLTA II (37·5 mg: RR 0·74 [95% CI 0·54-1·01], p=0·0609; 125 mg: RR 0·74 [0·54-1·02], p=0·0626). Pooling both studies, the proportion of patients who experienced treatment-emergent adverse events (79% [1125 of 1432 patients] for both lebrikizumab doses vs 80% [576 of 716 patients] for placebo), serious adverse events (8% [115 patients] for both lebrikizumab doses vs 9% [65 patients] for placebo), and adverse events leading to study drug discontinuation (3% [49 patients] for both lebrikizumab doses vs 4% [31 patients] for placebo) were similar between lebrikizumab and placebo. The following serious adverse events were reported in the placebo-controlled period: one event of aplastic anaemia and five serious adverse events related to raised concentrations of eosinophils in patients treated with lebrikizumab and one event of eosinophilic pneumonia in the placebo group. INTERPRETATION Lebrikizumab did not consistently show significant reduction in asthma exacerbations in biomarker-high patients. However, it blocked interleukin-13 as evidenced by the effect on interleukin-13-related pharmacodynamic biomarkers, and clinically relevant changes could not be ruled out. FUNDING F Hoffmann-La Roche.
Collapse
|
25
|
Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8634603. [PMID: 27648452 PMCID: PMC5014929 DOI: 10.1155/2016/8634603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths.
Collapse
|
26
|
Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW. A Critical Evaluation of Anti-IL-13 and Anti-IL-4 Strategies in Severe Asthma. Int Arch Allergy Immunol 2016; 170:122-31. [PMID: 27637004 DOI: 10.1159/000447692] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Asthma is a high-prevalence disease, still accounting for mortality and high direct and indirect costs. It is now recognized that, despite the implementation of guidelines, a large proportion of cases remain not controlled. Certainly, adherence to therapy and the education of patients remain the primary objective, but the increasingly detailed knowledge about the pathogenic mechanisms and new biotechnologies offer the opportunity to better address and treat the disease. Interleukin (IL)-13 and IL-4 appear as the most suitable targets to treat the T helper 2 (TH2)-mediated forms (endotypes) of asthma. IL-13 and IL-4 partly share the same receptor and signaling pathways and both are deeply involved in immunoglobulin E (IgE) synthesis, eosinophil activation, mucus secretion and airways remodeling. Several anti-IL-13 strategies have been proposed (anrukinzumab, lebrikizunab and tralokinumab), with relevant clinical results reported with lebrikizumab. Such studies facilitate better definition of the possible predictive markers of response to a specific treatment (e.g. eosinophils, total IgE, fraction of exhaled nitric oxide and periostin). In parallel, anti-IL-4 strategies have been attempted (pascolizumab, pitakinra and dupilumab). So far, dupilumab was reported capable of reducing the severity of asthma and the rate of exacerbations. IL-13 and IL-4 are crucial in TH2-mediated inflammation in asthma, but it remains clear that only specific endotypes respond to these treatments. Although the use of anti-IL-14 and anti-IL-13 strategies is promising, the search for appropriate predictive biomarkers is urgently needed to better apply biological treatments.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, DIMI Department of Internal Medicine, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | | | | |
Collapse
|
27
|
Maaske A, Devos FC, Niezold T, Lapuente D, Tannapfel A, Vanoirbeek JA, Überla K, Peters M, Tenbusch M. Mucosal expression of DEC-205 targeted allergen alleviates an asthmatic phenotype in mice. J Control Release 2016; 237:14-22. [PMID: 27374625 DOI: 10.1016/j.jconrel.2016.06.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Considering the rising incidence of allergic asthma, the symptomatic treatments that are currently applied in most cases are less than ideal. Specific immunotherapy is currently the only treatment that is able to change the course of the disease, but suffers from a long treatment duration. A gene based immunization that elicits the targeting of allergens towards dendritic cells in a steady-state environment might have the potential to amend these difficulties. Here we used a replication deficient adenovirus to induce the mucosal expression of OVA coupled to a single-chain antibody against DEC-205. A single intranasal vaccination was sufficient to mitigate an OVA-dependent asthmatic phenotype in a murine model. Invasive airway measurements demonstrated improved lung function after Ad-Dec-OVA treatment, which was in line with a marked reduction of goblet cell hyperplasia and lung eosinophilia. Furthermore OVA-specific IgE titers and production of type 2 cytokines were significantly reduced. Together, the here presented data demonstrate the feasibility of mucosal expression of DEC-targeted allergens as a treatment of allergic asthma.
Collapse
Affiliation(s)
- A Maaske
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | - F C Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - T Niezold
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | - D Lapuente
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | - A Tannapfel
- Institute of Pathology, Ruhr University of Bochum, Germany
| | - J A Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - K Überla
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | - M Peters
- Department of Experimental Pneumology, Ruhr University Bochum, Bochum, Germany
| | - M Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
28
|
Heck S, Nguyen J, Le DD, Bals R, Dinh QT. Pharmacological Therapy of Bronchial Asthma: The Role of Biologicals. Int Arch Allergy Immunol 2016; 168:241-52. [PMID: 26895179 DOI: 10.1159/000443930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
Bronchial asthma is a heterogeneous, complex, chronic inflammatory and obstructive pulmonary disease driven by various pathways to present with different phenotypes. A small proportion of asthmatics (5-10%) suffer from severe asthma with symptoms that cannot be controlled by guideline therapy with high doses of inhaled steroids plus a second controller, such as long-acting β2 agonists (LABA) or leukotriene receptor antagonists, or even systemic steroids. The discovery and characterization of the pathways that drive different asthma phenotypes have opened up new therapeutic avenues for asthma treatment. The approval of the humanized anti-IgE antibody omalizumab for the treatment of severe allergic asthma has paved the way for other cytokine-targeting therapies, particularly those targeting interleukin (IL)-4, IL-5, IL-9, IL-13, IL-17, and IL-23 and the epithelium-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Knowledge of the molecular basis of asthma phenotypes has helped, and continues to help, the development of novel biologicals that target a diverse array of phenotype-specific molecular targets in patients suffering from severe asthma. This review summarizes potential therapeutic approaches that are likely to show clinical efficacy in the near future, focusing on biologicals as promising novel therapies for severe asthma.
Collapse
Affiliation(s)
- Sebastian Heck
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
29
|
Shen ZJ, Malter JS. Determinants of eosinophil survival and apoptotic cell death. Apoptosis 2015; 20:224-34. [PMID: 25563855 DOI: 10.1007/s10495-014-1072-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils (Eos) are potent inflammatory cells and abundantly present in the sputum and lung of patients with allergic asthma. During both transit to and residence in the lung, Eos contact prosurvival cytokines, particularly IL-3, IL-5 and GM-CSF, that attenuate cell death. Cytokine signaling modulates the expression and function of a number of intracellular pro- and anti-apoptotic molecules. Both intrinsic mitochondrial and extrinsic receptor-mediated pathways are affected. This article discusses the fundamental role of the extracellular and intracellular molecules that initiate and control survival decisions by human Eos and highlights the role of the cis-trans isomerase, Pin1 in controlling these processes.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9072, USA,
| | | |
Collapse
|
30
|
MESOS: considerations in designing a mechanistic study for a biologic used to treat asthma. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.15.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression. Cell Mol Immunol 2015; 13:669-77. [PMID: 26189367 DOI: 10.1038/cmi.2015.50] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
The etiology and the underlying mechanism of CD4(+) T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4(+) T cells. Here we report that CD4(+) T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4(+) T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4(+) T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4(+) T cells, and enhanced the frequency of CD4(+) T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4(+) T cells.
Collapse
|
32
|
Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. J Allergy Clin Immunol 2015; 137:268-277.e8. [PMID: 26139511 DOI: 10.1016/j.jaci.2015.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phospholipase A2s mediate the rate-limiting step in the formation of eicosanoids such as cysteinyl leukotrienes (CysLTs). Group IVA cytosolic PLA2α (cPLA2α) is thought to be the dominant PLA2 in eosinophils; however, eosinophils also have secreted PLA2 (sPLA2) activity that has not been fully defined. OBJECTIVES To examine the expression of sPLA2 group X (sPLA2-X) in eosinophils, the participation of sPLA2-X in the formation of CysLTs, and the mechanism by which sPLA2-X initiates the synthesis of CysLTs in eosinophils. METHODS Peripheral blood eosinophils were obtained from volunteers with asthma and/or allergy. A rabbit polyclonal anti-sPLA2-X antibody identified sPLA2-X by Western blot. We used confocal microscopy to colocalize the sPLA2-X to intracellular structures. An inhibitor of sPLA2-X (ROC-0929) that does not inhibit other mammalian sPLA2s, as well as inhibitors of the mitogen-activated kinase cascade (MAPK) and cPLA2α, was used to examine the mechanism of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated formation of CysLT. RESULTS Eosinophils express the mammalian sPLA2-X gene (PLA2G10). The sPLA2-X protein is located in the endoplasmic reticulum, golgi, and granules of eosinophils and moves to the granules and lipid bodies during fMLP-mediated activation. Selective sPLA2-X inhibition attenuated the fMLP-mediated release of arachidonic acid and CysLT formation by eosinophils. Inhibitors of p38, extracellular-signal-regulated kinases 1/2 (p44/42 MAPK), c-Jun N-terminal kinase, and cPLA2α also attenuated the fMLP-mediated formation of CysLT. The sPLA2-X inhibitor reduced the phosphorylation of p38 and extracellular-signal-regulated kinases 1/2 (p44/42 MAPK) as well as cPLA2α during cellular activation, indicating that sPLA2-X is involved in activating the MAPK cascade leading to the formation of CysLT via cPLA2α. We further demonstrate that sPLA2-X is activated before secretion from the cell during activation. Short-term priming with IL-13 and TNF/IL-1β increased the expression of PLA2G10 by eosinophils. CONCLUSIONS These results demonstrate that sPLA2-X plays a significant role in the formation of CysLTs by human eosinophils. The predominant role of the enzyme is the regulation of MAPK activation that leads to the phosphorylation of cPLA2α. The sPLA2-X protein is regulated by proteolytic cleavage, suggesting that an inflammatory environment may promote the formation of CysLTs through this mechanism. These results have important implications for the treatment of eosinophilic disorders such as asthma.
Collapse
|
33
|
Liu J, Wu J, Qi F, Zeng S, Xu L, Hu H, Wang D, Liu B. Natural helper cells contribute to pulmonary eosinophilia by producing IL-13 via IL-33/ST2 pathway in a murine model of respiratory syncytial virus infection. Int Immunopharmacol 2015; 28:337-43. [PMID: 26044350 DOI: 10.1016/j.intimp.2015.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/26/2022]
Abstract
It has been reported that natural helper cells, which are a non-T, non-B innate lymphoid cell type expressing c-Kit and ST2, mediate influenza-induced airway hyper-reactivity by producing substantial IL-13. However, little is known about natural helper cells for the development of RSV-induced airway inflammation, particularly eosinophilic infiltration. By using BALB/c mice that were infected intranasally with RSV, it became clear that infection with RSV can induce an increase in the absolute number of natural helper cells in the lungs of mice. It seems likely that these natural helper cells contribute to the massive eosinophilic infiltration in an IL-13-dependent manner. In fact, the number of IL-13-producing natural helper cells as well as the expression of IL-13 mRNA in natural helper cells was enhanced significantly during RSV infection, suggesting that natural helper cells might be cellular source of the Th2-type cytokine IL-13. Indeed, adoptive transfer of pulmonary natural helper cells augmented not only the production of IL-13 but also the infiltration of eosinophils in the lungs of transferred mice. Pulmonary natural helper cells can produce IL-13 following response to IL-33, which was increased markedly in the lungs of mice after intranasal RSV infection. The expression of IL-13 mRNA in pulmonary natural helper cells was up-regulated by in vitro IL-33 stimulation. Furthermore, blockade of IL-33 receptor subunit, ST2, diminished the frequency of IL-13-producing natural helper cells. Taken together, these results demonstrate that natural helper cells may play an important role in RSV-induced pulmonary eosinophilia by producing IL-13 via the IL-33/ST2 pathway.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Jianqi Wu
- Batch 2011 of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Feifei Qi
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Sheng Zeng
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Lei Xu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Haiyan Hu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Dandan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Beixing Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Zafra MP, Cañas JA, Mazzeo C, Gámez C, Sanz V, Fernández-Nieto M, Quirce S, Barranco P, Ruiz-Hornillos J, Sastre J, del Pozo V. SOCS3 silencing attenuates eosinophil functions in asthma patients. Int J Mol Sci 2015; 16:5434-51. [PMID: 25764157 PMCID: PMC4394485 DOI: 10.3390/ijms16035434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
Eosinophils are one of the key inflammatory cells in asthma. Eosinophils can exert a wide variety of actions through expression and secretion of multiple molecules. Previously, we have demonstrated that eosinophils purified from peripheral blood from asthma patients express high levels of suppressor of cytokine signaling 3 (SOCS3). In this article, SOCS3 gene silencing in eosinophils from asthmatics has been carried out to achieve a better understanding of the suppressor function in eosinophils. SOCS3 siRNA treatment drastically reduced SOCS3 expression in eosinophils, leading to an inhibition of the regulatory transcription factors GATA-3 and FoxP3, also interleukin (IL)-10; in turn, an increased STAT3 phosphorilation was observed. Moreover, SOCS3 abrogation in eosinophils produced impaired migration, adhesion and degranulation. Therefore, SOCS3 might be regarded as an important regulator implicated in eosinophil mobilization from the bone marrow to the lungs during the asthmatic process.
Collapse
Affiliation(s)
- Mª Paz Zafra
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; E-Mails: (M.P.Z.); (J.A.C.); (C.M.); (C.G.); (V.S.)
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
| | - Jose A. Cañas
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; E-Mails: (M.P.Z.); (J.A.C.); (C.M.); (C.G.); (V.S.)
| | - Carla Mazzeo
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; E-Mails: (M.P.Z.); (J.A.C.); (C.M.); (C.G.); (V.S.)
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
| | - Cristina Gámez
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; E-Mails: (M.P.Z.); (J.A.C.); (C.M.); (C.G.); (V.S.)
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
| | - Veronica Sanz
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; E-Mails: (M.P.Z.); (J.A.C.); (C.M.); (C.G.); (V.S.)
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
| | - Mar Fernández-Nieto
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
- Department of Allergy, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Santiago Quirce
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
- Department of Allergy, Hospital La Paz Health Research Institute (IdiPAZ), 28046 Madrid, Spain
| | - Pilar Barranco
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
- Department of Allergy, Hospital La Paz Health Research Institute (IdiPAZ), 28046 Madrid, Spain
| | - Javier Ruiz-Hornillos
- Department of Allergy, Hospital Infanta Elena, Valdemoro, 28342 Madrid, Spain; E-Mail:
| | - Joaquín Sastre
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
- Department of Allergy, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; E-Mails: (M.P.Z.); (J.A.C.); (C.M.); (C.G.); (V.S.)
- Centro de Investigación Biomedica En Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; E-Mails: (M.F.-N.); (S.Q.); (P.B.); (J.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-915-504-891; Fax: +34-915-448-246
| |
Collapse
|
35
|
Johnson RC, George TI. The Differential Diagnosis of Eosinophilia in Neoplastic Hematopathology. Surg Pathol Clin 2013; 6:767-794. [PMID: 26839197 DOI: 10.1016/j.path.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eosinophilia in the peripheral blood is classified as primary (clonal) hematologic neoplasms or secondary (nonclonal) disorders, associated with hematologic or nonhematologic disorders. This review focuses on the categories of hematolymphoid neoplasms recognized by the 2008 World Health Organization Classification of Tumours and Haematopoietic and Lymphoid Tissues that are characteristically associated with eosinophilia. We provide a systematic approach to the diagnosis of these neoplastic proliferations via morphologic, immunophenotypic, and molecular-based methodologies, and provide the clinical settings in which these hematolymphoid neoplasms occur. We discuss recommendations that eosinophilia working groups have published addressing some of the limitations of the current classification scheme.
Collapse
Affiliation(s)
- Ryan C Johnson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235 MC 5324, Stanford, CA 94305, USA.
| | - Tracy I George
- Department of Pathology, University of New Mexico School of Medicine, 1 University of New Mexico, MSC08 4640, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
36
|
Pallis FR, Conran N, Fertrin KY, Olalla Saad ST, Costa FF, Franco-Penteado CF. Hydroxycarbamide reduces eosinophil adhesion and degranulation in sickle cell anaemia patients. Br J Haematol 2013; 164:286-95. [PMID: 24383847 DOI: 10.1111/bjh.12628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/18/2013] [Indexed: 01/21/2023]
Abstract
Inflammation, leucocyte and red cell adhesion to the endothelium contribute to the pathogenesis of sickle cell anaemia. Neutrophils appear to be important for vaso-occlusion, however, eosinophils may also participate in this phenomenon. The role of eosinophils in the pathophysiology of sickle cell anaemia (SCA) and the effect of hydroxycarbamide (HC) therapy on the functional properties of these cells are not understood. Patients with SCA and those on HC therapy (SCAHC) were included in the study. SCAHC individuals presented significantly lower absolute numbers of eosinophils than SCA. Furthermore, SCAHC eosinophils demonstrated significantly lower adhesive properties, compared to SCA eosinophils. SCA and SCAHC eosinophils presented greater spontaneous migration when compared with control eosinophils. Baseline eosinophil peroxidase and reactive oxygen species release was higher for SCA individuals than for control individuals, as were plasma levels of eosinophil derived neurotoxin. SCAHC eosinophil degranulation was lower than that of SCA eosinophil degranulation. Eotaxin-1 and RANTES levels were higher in the plasma of SCA and SCAHC individuals, when compared with controls. These data suggest that eosinophils exist in an activated state in SCA and indicate that these cells play a role in the vaso-occlusive process. The exact mechanism by which HC may alter SCA eosinophil properties is not clear.
Collapse
Affiliation(s)
- Flavia Rubia Pallis
- Haematology and Haemotherapy Centre - Instituto Nacional de Ciência e Tecnologia do Sangue (INCTS), UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Gonem S, Raj V, Wardlaw AJ, Pavord ID, Green R, Siddiqui S. Phenotyping airways disease: an A to E approach. Clin Exp Allergy 2013. [PMID: 23181785 DOI: 10.1111/j.1365-2222.2012.04008.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic.
Collapse
Affiliation(s)
- S Gonem
- Department of Infection, Immunity & Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
39
|
Ingram JL, Kraft M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J Allergy Clin Immunol 2012; 130:829-42; quiz 843-4. [PMID: 22951057 DOI: 10.1016/j.jaci.2012.06.034] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 02/07/2023]
Abstract
Decades of research in animal models have provided abundant evidence to show that IL-13 is a key T(H)2 cytokine that directs many of the important features of airway inflammation and remodeling in patients with allergic asthma. Several promising focused therapies for asthma that target the IL-13/IL-4/signal transducer and activator of transcription 6 pathway are in development, including anti-IL-13 mAbs and IL-4 receptor antagonists. The efficacy of these new potential asthma therapies depends on the responsiveness of patients. However, an understanding of how IL-13-directed therapies might benefit asthmatic patients is confounded by the complex heterogeneity of the disease. Recent efforts to classify subphenotypes of asthma have focused on sputum cellular inflammation profiles, as well as cluster analyses of clinical variables and molecular and genetic signatures. Researchers and clinicians can now evaluate biomarkers of T(H)2-driven airway inflammation in asthmatic patients, such as serum IgE levels, sputum eosinophil counts, fraction of exhaled nitric oxide levels, and serum periostin levels, to aid decision making in clinical trials and drug development and to identify subsets of patients who might benefit from therapies. Although it is unlikely that these therapies will benefit all asthmatic patients with this heterogeneous disease, advances in understanding asthma subphenotypes in relation to clinical variables and T(H)2 cytokine responses offer the opportunity to improve the efficacy and safety of proposed therapies for asthma.
Collapse
Affiliation(s)
- Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
40
|
Heller NM, Gwinn WM, Donnelly RP, Constant SL, Keegan AD. IL-4 engagement of the type I IL-4 receptor complex enhances mouse eosinophil migration to eotaxin-1 in vitro. PLoS One 2012; 7:e39673. [PMID: 22761864 PMCID: PMC3386270 DOI: 10.1371/journal.pone.0039673] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/27/2012] [Indexed: 01/21/2023] Open
Abstract
Background Previous work from our laboratory demonstrated that IL-4Rα expression on a myeloid cell type was responsible for enhancement of Th2-driven eosinophilic inflammation in a mouse model of allergic lung inflammation. Subsequently, we have shown that IL-4 signaling through type I IL-4 receptors on monocytes/macrophages strongly induced activation of the IRS-2 pathway and a subset of genes characteristic of alternatively activated macrophages. The direct effect(s) of IL-4 and IL-13 on mouse eosinophils are not clear. The goal of this study was determine the effect of IL-4 and IL-13 on mouse eosinophil function. Methods Standard Transwell chemotaxis assay was used to assay migration of mouse eosinophils and signal transduction was assessed by Western blotting. Results Here we determined that (i) mouse eosinophils express both type I and type II IL-4 receptors, (ii) in contrast to human eosinophils, mouse eosinophils do not chemotax to IL-4 or IL-13 although (iii) pre-treatment with IL-4 but not IL-13 enhanced migration to eotaxin-1. This IL-4-mediated enhancement was dependent on type I IL-4 receptor expression: γC-deficient eosinophils did not show enhancement of migratory capacity when pre-treated with IL-4. In addition, mouse eosinophils responded to IL-4 with the robust tyrosine phosphorylation of STAT6 and IRS-2, while IL-13-induced responses were considerably weaker. Conclusions The presence of IL-4 in combination with eotaxin-1 in the allergic inflammatory milieu could potentiate infiltration of eosinophils into the lungs. Therapies that block IL-4 and chemokine receptors on eosinophils might be more effective clinically in reducing eosinophilic lung inflammation.
Collapse
Affiliation(s)
- Nicola M. Heller
- Department of Microbiology and Immunology and the Center for Vascular and Inflammatory Diseases, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - William M. Gwinn
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Raymond P. Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Stephanie L. Constant
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Achsah D. Keegan
- Department of Microbiology and Immunology and the Center for Vascular and Inflammatory Diseases, The University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Vaickus LJ, Bouchard J, Kim J, Natarajan S, Remick DG. Cockroach allergens induce biphasic asthma-like pulmonary inflammation in outbred mice. J Asthma 2012; 49:510-21. [PMID: 22540923 DOI: 10.3109/02770903.2012.678958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this study is to define the kinetics of the pulmonary inflammatory response in cockroach allergen (CRA) sensitized and challenged outbred mice. METHODS Asthma-like pulmonary inflammation was induced with three pulmonary exposures to CRA, without the use of adjuvants. Mice were sacrificed at multiple time points and asthma-like pulmonary inflammation quantified. RESULTS Several pulmonary parameters showed a pronounced biphasic inflammatory response with an early stage (1.5 hours post challenge) and late stage (24 hours). The initial phase was characterized by the production of multiple inflammatory mediators, including CXC chemokines, and the recruitment of neutrophils to the lung. The number of pulmonary eosinophils decreased in the early phase but quickly rebounded. Both the early and late phases had increases in TNF production in addition to airways hyperreactivity. The model also demonstrated early production of mucin with clearance by 12 hours followed by new accumulation of mucin in the pulmonary epithelial cells. Eotaxins within the lung peaked at about 12 hours and the numbers of eosinophils in the lung remained constant throughout the 48 hours of the study. CONCLUSIONS The pulmonary inflammatory parameters in response to a clinically relevant allergen define a biphasic response. These data may be used to investigate the pathogenesis of the disease and develop targeted therapies for the distinct phases.
Collapse
Affiliation(s)
- Louis J Vaickus
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
42
|
Chu X, Wei M, Yang X, Cao Q, Xie X, Guan M, Wang D, Deng X. Effects of an anthraquinone derivative from Rheum officinale Baill, emodin, on airway responses in a murine model of asthma. Food Chem Toxicol 2012; 50:2368-75. [PMID: 22484343 DOI: 10.1016/j.fct.2012.03.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/09/2012] [Accepted: 03/27/2012] [Indexed: 01/21/2023]
Abstract
Emodin is a component from traditional Chinese herbal medicines. We focused on investigating whether emodin possesses distinct anti-inflammatory activity on a non-infectious mouse model of asthma, and we aimed to elucidate its involvement with the NF-κB pathway. BALB/c mice that were sensitized and challenged to ovalbumin were treated with emodin (40 mg/kg) 1h before they were challenged with OVA. Our study demonstrated that emodin inhibited OVA-induced increases in eosinophil count; interleukin (IL)-4, IL-5, and IL-13 levels were recovered in bronchoalveolar lavage fluid and reduced serum levels of OVA-specific IgE, IgG, and IgG1. Histological studies demonstrated that emodin substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. Furthermore, pretreatment with emodin resulted in a significant reduction in mRNA expression of acidic mammalian chitinase (AMCase), chitinase 3-like protein 4 (Ym2) and Muc5ac in lung tissues and airway hyperresponsiveness to methacholine. These findings suggest that emodin may effectively delay the progression of airway inflammation and could be used as a therapy for patients with allergic airway inflammation.
Collapse
Affiliation(s)
- Xiao Chu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Roth N, Städler S, Lemann M, Hösli S, Simon HU, Simon D. Distinct eosinophil cytokine expression patterns in skin diseases - the possible existence of functionally different eosinophil subpopulations. Allergy 2011; 66:1477-86. [PMID: 21884530 DOI: 10.1111/j.1398-9995.2011.02694.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The function of eosinophils has been attributed to host defense, immunomodulation, and fibrosis. Although eosinophils are found among infiltrating cells in a broad spectrum of skin diseases, their pathogenic role remains uncertain. This study aimed to analyze the cytokine expression by eosinophils in different skin diseases. METHODS Skin specimens from different skin diseases [allergic/reactive, infectious, autoimmune, and tumors/lymphomas (LY)] were stained by antibodies directed to eosinophil cationic protein, cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-5, IL-6, IL-10, IL-11, IL-13, IL-17, IL-25, IL-33, interferon-γ, transforming growth factor (TGF)-β, and thymic stromal lymphopoietin], eotaxins (CCL11, CCL24, and CCL26), metalloproteinase (MMP)-9 as well as extracellular matrix proteins (tenascin-C and procollagen-3) and then analyzed by laser scanning microscopy. RESULTS The number of eosinophils varied considerably in and between disease groups and did not correlate with the numbers of accompanying inflammatory cells. The expression of IL-5, IL-6, IL-11, TGF-β, CCL24, and MMP-9 by eosinophils significantly differed between disease groups. Eosinophils in tumors/LY predominantly expressed IL-6, TGF-β, and CCL24, but not IL-11. On the other hand, in autoimmune diseases, eosinophils largely contributed to MMP-9 production. IL-5-generating eosinophils were particularly obvious in allergic and infectious diseases. CONCLUSION In skin diseases, eosinophil expresses a broad spectrum of cytokines. The different cytokine expression patterns suggest distinct functional roles of eosinophils in these diseases that might be related to host defense, immunomodulation, fibrosis, and/or tumor development.
Collapse
Affiliation(s)
- N Roth
- Department of Dermatology, Inselspital, Bern University Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Chu X, Ci X, He J, Wei M, Yang X, Cao Q, Li H, Guan S, Deng Y, Pang D, Deng X. A novel anti-inflammatory role for ginkgolide B in asthma via inhibition of the ERK/MAPK signaling pathway. Molecules 2011; 16:7634-48. [PMID: 21900866 PMCID: PMC6264276 DOI: 10.3390/molecules16097634] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 12/26/2022] Open
Abstract
Ginkgolide B is an anti-inflammatory extract of Ginkgo biloba and has been used therapeutically. It is a known inhibitor of platelet activating factor (PAF), which is important in the pathogenesis of asthma. Here, a non-infectious mouse model of asthma is used to evaluate the anti-inflammatory capacity of ginkgolide B (GKB) and characterize the interaction of GKB with the mitogen activated protein kinase (MAPK) pathway. BALB/c mice that were sensitized and challenged to ovalbumin (OVA) were treated with GKB (40 mg/kg) one hour before they were challenged with OVA. Our study demonstrated that GKB may effectively inhibit the increase of T-helper 2 cytokines, such as interleukin (IL)-5 and IL-13 in bronchoalveolar lavage fluid (BALF). Furthermore, the eosinophil count in BALF significantly decreased after treatment of GKB when compared with the OVA-challenged group. Histological studies demonstrated that GKB substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. These results suggest that ginkgolide B may be useful for the treatment of asthma and its efficacy is related to suppression of extracellular regulating kinase/MAPK pathway.
Collapse
Affiliation(s)
- Xiao Chu
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinxin Ci
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530005, Guangxi, China
| | - Miaomiao Wei
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaofeng Yang
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qingjun Cao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Li
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuang Guan
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanhong Deng
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
- Author to whom correspondence should be addressed; (D.X.P.); (X.M.D.); Tel.: +86-431-87836161; Fax: +86-431-87836160
| | - Xuming Deng
- Key Laboratory of Zoonosis Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
- Author to whom correspondence should be addressed; (D.X.P.); (X.M.D.); Tel.: +86-431-87836161; Fax: +86-431-87836160
| |
Collapse
|
45
|
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73:479-501. [PMID: 21054166 DOI: 10.1146/annurev-physiol-012110-142250] [Citation(s) in RCA: 650] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gründemann C, Papagiannopoulos M, Lamy E, Mersch-Sundermann V, Huber R. Immunomodulatory properties of a lemon-quince preparation (Gencydo®) as an indicator of anti-allergic potency. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:760-768. [PMID: 21256726 DOI: 10.1016/j.phymed.2010.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/08/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Gencydo®, a combination of lemon (Citrus limon) juice and aqueous quince (Cydonia oblonga) extract has been used traditionally in anthroposophical medicine for treating patients with allergic rhinitis or asthma. Because there are no reports about the mode of action, we investigated the anti-allergic effects of this preparation in vitro by using cell lines and primary cells in various biological and immunological endpoints. MATERIALS AND METHODS The release of soluble mediators from basophilic cells, mast cells and lung epithelial cells, which are essential for the initiation of early- and late-phase allergic reactions, was analyzed in relation to the synthetic anti-allergic drugs azelastine and dexamethasone. In addition, the impact of Gencydo® on the viability and activation of GM-CSF-activated eosinophil granulocytes was investigated. RESULTS AND DISCUSSION Gencydo® reduced the degranulation and histamine release of IgE-activated basophilic cells and mast cells and inhibited the IgE- and PMA/A23187-induced increases in IL-8, TNF-α and GM-CSF production in mast cells. The effects were comparable to that of the used concentration of azelastine and dexamethasone. Furthermore, Gencydo® partially blocked eotaxin release from human bronchial epithelial cells, but has no impact on the viability and activation of GM-CSF-activated eosinophil granulocytes. In conclusion, these results give a rational base for the topical use of Gencydo® in treatment of allergic disorders through the down regulation of soluble mediators, which are essential for the initiation and maintenance of allergic reactions.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Sugita K, Kabashima K, Sakabe JI, Yoshiki R, Tanizaki H, Tokura Y. FTY720 regulates bone marrow egress of eosinophils and modulates late-phase skin reaction in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1881-7. [PMID: 20802177 DOI: 10.2353/ajpath.2010.100119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophilia in the blood and skin is frequently observed in patients with certain inflammatory skin diseases, such as atopic dermatitis. However, the mechanism underlying eosinophil circulation and the role of eosinophils in cutaneous immune responses remain unclear. In repeated hapten application-induced cutaneous responses in BALB/c mice, the administration of FTY720 before the last challenge decreased the number of skin-infiltrating eosinophils and reduced the late-phase reaction. A similar reduction of the late-phase reaction was observed by a sphingosine-1-phosphate G protein-coupled receptor (S1P1)-selective agonist, SEW2871. We monitored numerous alterations of eosinophils in the blood, spleen, bone marrow, and lymph nodes of interleukin-5 transgenic mice, used as an eosinophilia model, following FTY720 administration. The number of circulating eosinophils was significantly decreased after treatment with FTY720, and eosinophils accumulated in the bone marrow. In addition, eosinophils expressed S1P1, S1P3, and S1P4 mRNAs, and their chemotactic response to S1P was abolished by FTY720 as well as by SEW2871. These findings suggest that FTY720 affects the number of eosinophils in both the blood and skin by inhibiting the egress of eosinophils from the bone marrow and thus downmodulating the late-phase reaction.
Collapse
Affiliation(s)
- Kazunari Sugita
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Seki M, Kimura H, Mori A, Shimada A, Yamada Y, Maruyama K, Hayashi Y, Agematsu K, Morio T, Yachie A, Kato M. Prominent eosinophilia but less eosinophil activation in a patient with Omenn syndrome. Pediatr Int 2010; 52:e196-9. [PMID: 20958863 DOI: 10.1111/j.1442-200x.2010.03135.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitsuru Seki
- Department of Allergy and Immunology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lejeune A, Monahan FJ, Moloney AP, Earley B, Black AD, Campion DP, Englishby T, Reilly P, O'Doherty J, Sweeney T. Peripheral and gastrointestinal immune systems of healthy cattle raised outdoors at pasture or indoors on a concentrate-based ration. BMC Vet Res 2010; 6:19. [PMID: 20356390 PMCID: PMC2864234 DOI: 10.1186/1746-6148-6-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 03/31/2010] [Indexed: 01/21/2023] Open
Abstract
Background Despite an increasing preference of consumers for beef produced from more extensive pasture-based production systems and potential human health benefits from the consumption of such beef, data regarding the health status of animals raised on pasture are limited. The objective of this study was to characterise specific aspects of the bovine peripheral and the gastrointestinal muscosal immune systems of cattle raised on an outdoor pasture system in comparison to animals raised on a conventional intensive indoor concentrate-based system. Results A number of in vitro functional tests of immune cells suggested subtle differences between the animals on the outdoor versus indoor production systems. There was a decrease in the number of neutrophils and monocytes engaged in phagocytosis in outdoor cattle (P < 0.01 and P < 0.05, respectively) in comparison to those indoors. Following mitogen stimulation, a lower level of interferon-γ was produced in leukocytes from the outdoor animals (P < 0.05). There was evidence of a gastrointestinal nematode infection in the outdoor animals with elevated levels of serum pepsinogen (P < 0.001), a higher number of eosinophils (P < 0.05) and a higher level of interleukin-4 and stem cell factor mRNA expression (P < 0.05) in the outdoor animals in comparison to the indoor animals. Lower levels of copper and iodine were measured in the outdoor animals in comparison to indoor animals (P < 0.001). Conclusion Despite distinctly contrasting production systems, only subtle differences were identified in the peripheral immune parameters measured between cattle raised at pasture in comparison to animals raised on a conventional intensive indoor concentrate-based production system.
Collapse
Affiliation(s)
- Alexandre Lejeune
- UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shin MH, Lee YA, Min DY. Eosinophil-mediated tissue inflammatory responses in helminth infection. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 47 Suppl:S125-31. [PMID: 19885328 DOI: 10.3347/kjp.2009.47.s.s125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 01/19/2023]
Abstract
Eosinophilic leukocytes function in host protection against parasitic worms. In turn, helminthic parasites harbor specific molecules to evade or paralyze eosinophil-associated host immune responses; these molecules facilitate the migration and survival of parasitic helminths in vivo. This competition between eosinophil and worm leads to stable equilibria between them. An understanding of such dynamic host-eosinophil interactions will help us to uncover mechanisms of cross talk between host and parasite in helminth infection. In this review, we examine recent findings regarding the innate immune responses of eosinophils to helminthic parasites, and discuss the implications of these findings in terms of eosinophil-mediated tissue inflammation in helminth infection.
Collapse
Affiliation(s)
- Myeong Heon Shin
- Department of Environmental Medical Biology, and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | | | | |
Collapse
|