1
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
2
|
Gou Y, Xie X, Yin H, Wu Y, Wen Y, Zhang Y. Association between inflammation-related indicators and vertebral fracture in older adults in the United States: A cross-sectional study based on National Health and Nutrition Examination Survey 2013-2014. Immun Inflamm Dis 2024; 12:e70047. [PMID: 39508685 PMCID: PMC11542303 DOI: 10.1002/iid3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE This study was to examine the association between inflammation-related indexes SII (systemic immune-inflammation index), NLR (neutrophil-to-lymphocyte ratio), PPN (product of platelet count and neutrophil count), and PLR (platelet-to-lymphocyte ratio), and the occurrence of vertebral fractures in older Americans. METHODS Patients ⩾60 years of age from the 2013-2014 NHANES database were selected for this study. Restricted cubic spline models and weighted logistic regression models were used to assess the association between inflammation-related indexes and the occurrence of vertebral fractures in older Americans. The predictive value of the inflammation-related indexes on the occurrence of vertebral fractures was assessed using receiver operating characteristic curves (ROC). To examine the robustness of the main findings, a sensitivity analysis was conducted. RESULTS A total of 1281 patients were included in the analysis, of whole 120 suffered vertebral fractures. Fully adjusted logistic regression showed a significant linear relationship between NLR and the occurrence of vertebral fracture in older Americans (p < .05), but no relationship was found between SII, PLR, and the occurrence of vertebral fracture in older Americans. Meanwhile, NLR was slightly better than other indicators in predicting vertebral fracture. CONCLUSIONS This study found that NLR, as a novel inflammatory marker, can predict the risk of vertebral fracture in older Americans, which is of clinical significance for the prevention and treatment of vertebral fracture in older adults.
Collapse
Affiliation(s)
- Yuwei Gou
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Xiansong Xie
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Heng Yin
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yucheng Wu
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yongjie Wen
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yingbo Zhang
- Department of OrthopedicsAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
3
|
Wang Z, Liang W, Wang G, Wu H, Dang W, Zhen Y, An Y. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:507-521. [PMID: 38569169 DOI: 10.1089/ten.teb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the increasing prevalence of bone tissue diseases, three-dimensional (3D) bioprinting applied to bone tissue engineering for treatment has received a lot of interests in recent years. The research and popularization of 3D bioprinting in bone tissue engineering require bioinks with good performance, which is closely related to ideal material and appropriate construction form. Hydroxyapatite (HAp) is the inorganic component of natural bone and has been widely used in bone tissue engineering and other fields due to its good biological and physicochemical properties. Previous studies have prepared different bioinks containing HAp and evaluated their properties in various aspects. Most bioinks showed significant improvement in terms of rheology and biocompatibility; however, not all of them had sufficiently favorable mechanical properties and antimicrobial activity. The deficiencies in properties of bioink and 3D bioprinting technology limited the applications of bioinks containing HAp in clinical trials. This review article summarizes the construction forms of bioinks containing HAp and its modifications in previous studies, as well as the 3D bioprinting techniques adopted to print bioink containing HAp. In addition, this article summarizes the advantages and underlying mechanisms of bioink containing HAp, as well as its limitations, and suggests possible improvement to facilitate the development of bone tissue engineering bioinks containing HAp in the future.
Collapse
Affiliation(s)
- Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Margulies BS, Loy JC, Thakur N, Sanz-Altamira P. Treating Multilevel Cervical Degenerative Disk Disease in a Patient With Stage IV Lung Cancer With Notable Comorbidities Using a Drug Eluting Biomaterial: A Case Report. J Am Acad Orthop Surg Glob Res Rev 2024; 8:01979360-202409000-00012. [PMID: 39312687 PMCID: PMC11421713 DOI: 10.5435/jaaosglobal-d-24-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/25/2024]
Abstract
A 64-year-old patient with stage IV non-small-cell lung carcinoma and several comorbidities, which include obesity and long-term smoking, was treated with N-allyl noroxymorphone eluting osteoinductive bone graft biomaterial. The patient had multilevel degenerative disk disease (DDD), which has a high rate of failure when osteoinductive bone grafts are not used. Infuse, the most widely administered osteoinductive bone graft, is contraindicated in the spine for patients with active tumor. As such, a novel drug eluting osteoinductive biomaterial was administered to this patient, for whom no other therapeutic options were available, to promote bone fusion in a three-level anterior cervical diskectomy and fusion as part of the Food and Drug Administration Expanded Access program. Despite patient comorbidities that are associated with poor bone physiology, confirmed radiographic fusion was achieved in all three cervical levels at 8 months.
Collapse
Affiliation(s)
- Bryan S Margulies
- From Zetagen Therapeutics, Syracuse, NY (Dr. Margulies, Mr. Loy, and Dr. Thakur); the Department of Pathology, College of Medicine, Upstate Medical University, Syracuse, NY (Dr. Margulies); the Department Biological Sciences, University of Notre Dame, Notre Dame, IN (Dr. Margulies); the Mobility Bone and Joint Institute, Andover, MA (Dr. Thakur); and the Dana-Farber Cancer Institute, Boston, MA (Dr. Sanz-Altamira)
| | | | | | | |
Collapse
|
5
|
Devoy EJ, Jabari E, Kotsanos G, Choe RH, Fisher JP. An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39041616 DOI: 10.1089/ten.teb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.
Collapse
Affiliation(s)
- Eoin J Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - George Kotsanos
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Chen H, Lin H, Dai J. Causal associations of interleukins and osteoporosis: A genetic correlation study. Medicine (Baltimore) 2024; 103:e39036. [PMID: 39121248 PMCID: PMC11315551 DOI: 10.1097/md.0000000000039036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
The association between interleukins and osteoporosis has attracted much attention these days. However, the causal relationship between them is uncertain. Hence, this study performed a Mendelian randomization (MR) analysis to investigate the causal effects of interleukins on osteoporosis. The summary data for interleukins and osteoporosis came from 4 different genome-wide association studies. Significant and independent (P < 5 × 10-6; r2 < 0.001, 10,000 kbp) single-nucleotide polymorphisms were extracted for MR analysis. The inverse-variance weighted and other methods were used for MR analysis, while sensitivity analyses were conducted to test the reliability and stability. The positive causal effects of interleukin-7 on osteoporosis (odds ratio = 1.084; 95% confidence interval: 1.010-1.163; P = .025) were observed. No causal relationship was found between other interleukins and osteoporosis. In the sensitivity analysis, the results did not show the presence of pleiotropy and heterogeneity. Therefore, the results were robust for the MR analysis. This study revealed that interleukin-7 was positively related to osteoporosis and that other interleukins were not related to osteoporosis.
Collapse
Affiliation(s)
- Huihuang Chen
- Emergency Department, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Haibin Lin
- Department of Orthopedics, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Jianhui Dai
- Department of Orthopedics, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| |
Collapse
|
7
|
Zhou P, Lu K, Li C, Xu MZ, Ye YW, Shan HQ, Yin Y. Association between systemic inflammatory response index and bone turnover markers in Chinese patients with osteoporotic fractures: a retrospective cross-sectional study. Front Med (Lausanne) 2024; 11:1404152. [PMID: 39055700 PMCID: PMC11269153 DOI: 10.3389/fmed.2024.1404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Background The systemic inflammatory response index (SIRI) is a novel composite biomarker of inflammation. However, there is limited information on its use in the context of osteoporotic fractures. Hence, this study aimed to investigate the association between baseline SIRI values and bone turnover markers (BTMs) in Chinese patients diagnosed with osteoporotic fractures (OPFs), to offer a more precise method for assessing bone health and inflammation in clinical settings. Methods A retrospective cross-sectional study was conducted on 3,558 hospitalized patients with OPFs who required surgery or hospitalization at the First People's Hospital of Kunshan City from January 2017 to July 2022. Baseline measurements of SIRI, β-CTX (beta-C-terminal telopeptide of type I collagen), and P1NP (procollagen type I N-terminal propeptide) were obtained. The analyses were adjusted for variables, including age, sex, body mass index (BMI), and other initial laboratory and clinical findings. Furthermore, multivariable logistic regression, smooth curve fitting, and threshold analysis were also performed. Results The results revealed a negative correlation between baseline SIRI values and both β-CTX and P1NP levels. After adjusting for covariates in the regression analysis, each unit increase in SIRI was found to be inked to a reduction of 0.04 (β = -0.04; 95% confidence interval [CI], -0.05 to -0.03; with p-value <0.001) in β-CTX levels and a decrease of 3.77 (β = 3.77; 95% CI, 5.07 to 2.47; with p-value <0.001) in P1NP levels. Furthermore, a curvilinear relationship and threshold effect were also identified. Turning points were identified at SIRI values of 1.41 and 1.63 on the adjusted smooth curve. Conclusion The results showed a negative correlation between the baseline SIRI value and β-CTX level, as well as the level of P1NP. This suggests a possible link between the systemic inflammatory response and reduced bone metabolism. If these findings are verified, SIRI has the potential to function as a predictive indicator for BTMs. Nevertheless, additional research is necessary to verify these findings.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Min-zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yao-wei Ye
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Hui-qiang Shan
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yi Yin
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Eckert D, Evic M, Schang J, Isbruch M, Er M, Dörrschuck L, Rapp F, Donaubauer AJ, Gaipl US, Frey B, Fournier C. Osteo-immunological impact of radon spa treatment: due to radon or spa alone? Results from the prospective, thermal bath placebo-controlled RAD-ON02 trial. Front Immunol 2024; 14:1284609. [PMID: 38292488 PMCID: PMC10824901 DOI: 10.3389/fimmu.2023.1284609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Musculoskeletal disorders (MSDs) are associated with pain and lead to reduced mobility and quality of life for patients. Radon therapy is used as alternative or complementary to pharmaceutical treatments. According to previous reports, radon spa leads to analgesic and anti-inflammatory effects, but the cellular and molecular mechanisms are widely unknown. A previous study (RAD-ON01) revealed, that bone erosion markers like collagen fragments (C-terminal telopeptide, CTX) are reduced after radon spa treatment in serum of patients with degenerative MSDs. Within the scope of the prospective, placebo-controlled RAD-ON02 trial presented here, we analyzed the influence of radon and thermal spa treatment on osteoclastogenesis. From patient blood, we isolate monocytes, seeded them on bone slices and differentiated them in the presence of growth factors into mature osteoclasts (mOCs). Subsequent analysis showed a smaller fraction of mOCs after both treatments, which was even smaller after radon spa treatment. A significantly reduced resorbed area on bone slices reflects this result. Only after radon spa treatment, we detected in the serum of patients a significant decrease of receptor activator of NF-κB ligand (RANKL), which indicates reduced differentiation of OCs. However, other markers for bone resorption (CTX) and bone formation (OPG, OCN) were not altered after both treatments. Adipokines, such as visfatin and leptin that play a role in some MSD-types by affecting osteoclastogenesis, were not changed after both treatments. Further, also immune cells have an influence on osteoclastogenesis, by inhibiting and promoting terminal differentiation and activation of OCs, respectively. After radon treatment, the fraction of Treg cells was significantly increased, whereas Th17 cells were not altered. Overall, we observed that both treatments had an influence on osteoclastogenesis and bone resorption. Moreover, radon spa treatment affected the Treg cell population as well as the Th17/Treg ratio were affected, pointing toward a contribution of the immune system after radon spa. These data obtained from patients enrolled in the RAD-ON02 trial indicate that radon is not alone responsible for the effects on bone metabolism, even though they are more pronounced after radon compared to thermal spa treatment.
Collapse
Affiliation(s)
- Denise Eckert
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Megi Evic
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Jasmin Schang
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Maike Isbruch
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Melissa Er
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Lea Dörrschuck
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
9
|
Han Y, Xing X, Zhou L, Huang S, Lin Z, Hong G, Chen J. GL13K-modified titanium regulates osteogenic differentiation via the NF-κB pathway. Int Immunopharmacol 2024; 126:111279. [PMID: 38056197 DOI: 10.1016/j.intimp.2023.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
The osteoimmune response plays a crucial regulatory role in the osseointegration of dental implants. Previous studies found the antimicrobial peptide coating (GL13K) could activate the immunomodulatory potential of macrophages (Raw 264.7) and promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). To further investigate the mechanism of interaction between immunomodulation and differentiation, a co-culture model of the representative cells (Raw 264.7 and BMSCs) was constructed to mimic the immune microenvironment. In this system, GL13K coating of titanium implant effectively inhibited the polarization of the inflammatory M1 type and promoted the polarization of the anti-inflammatory M2 type. Furthermore, the inhibited NF-κB signaling pathway and Mip-2 gene expression were found and validated by bioinformatics analysis and virus-induced gene silencing, which significantly affected the tissue repair process. It can be concluded that the GL13K coating had the potential to establish a localized immune microenvironment conducive to osteogenic differentiation through cellular interactions. Subsequent investigations would be dedicated to a thorough examination of the osseointegration effects of GL13K coating.
Collapse
Affiliation(s)
- Yu Han
- Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Xiaojie Xing
- Stomatological Key Lab of Fujian College and University, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Lin Zhou
- Department of Oral Mucosa Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Shiying Huang
- Institute of Stomatology, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Zhaonan Lin
- Institute of Stomatology, Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Miyagi, Japan.
| | - Jiang Chen
- Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou 350001, People's Republic of China.
| |
Collapse
|
10
|
Zhao J, Dou Y, Liang G, Huang H, Hong K, Yang W, Zhou G, Sha B, Liu J, Zeng L. Global Publication Trends and Research Hotspots of the Immune System and Osteoporosis: A Bibliometric and Visualization Analysis from 2012 to 2022. Endocr Metab Immune Disord Drug Targets 2024; 24:455-467. [PMID: 37881072 DOI: 10.2174/0118715303257269231011073100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone metabolism disorder in which the immune system and bone metabolism interact. OBJECTIVE The purpose of this study was to explore the research status, hot spots and trends regarding the influence of the immune system on OP and to provide a basis for research directions and applications in this field. METHODS We searched and collected literature about the immune system and OP published from 2012 to 2022 in the Web of Science Core Collection database. All the included studies were subjected to bibliometrics analysis using Hiplot Pro, VOSviewer and CiteSpace software to produce statistics and visual analyses of the literature output, countries, institutions, authors, keywords and journals. RESULTS A total of 1201 papers were included, and the number of citations of these articles reached 31,776. The number of publications and citations on the immune system and OP has increased year by year. The top three countries with the greatest number of papers published were China, the United States of America (USA) and Italy. The two institutions with the largest number of papers published were Sichuan University and Soochow University, both located in China. De Martinis Massimo (Italy) and Ginaldi Lia (Italy) are prolific authors in this field. The representative academic journals are Osteoporosis International, Frontiers in Immunology, Journal of Bone and Mineral Research, PloS One and Bone. The results of the keyword cooccurrence analysis showed that the research topics in this field mainly focused on T cells, cytokines, signaling pathways, vitamin D, postmenopausal OP and immune diseases. The keyword burst results showed that zoledronic acid, chain fatty acids and gut microbiota are the frontiers and trends of future research on this topic. CONCLUSION The influence of the immune system on OP has been widely studied, and the current research in this field focuses on the effect or mechanism of immune-related cytokines, signaling pathways and vitamin D on OP. Future research trends in this field should focus on the immune regulation mechanism and clinical transformation of zoledronic acid, chain fatty acids and the gut microbiota in OP.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yaoxing Dou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Hetao Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Guanghui Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bangxin Sha
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Lingfeng Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| |
Collapse
|
11
|
Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, Zhang S, Sun D, Luo F, Song L. Roles of the Siglec family in bone and bone homeostasis. Biomed Pharmacother 2023; 165:115064. [PMID: 37413904 DOI: 10.1016/j.biopha.2023.115064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.
Collapse
Affiliation(s)
- Zi Ye
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400037, China
| | - Binqing Xiang
- Department of Surgical Anesthesia, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Heng Wang
- Army Border Defense 331st Brigade, Dandong 118000, China
| | - Haiyan Tao
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Shuai Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Tan Y, Qiu Z, Zeng H, Luo J, Wang L, Wang J, Cui K, Zhang G, Zeng Y, Jin H, Chen X, Huang Y, Shu W. Microcystin-leucine-arginine impairs bone microstructure and biomechanics by activating osteoimmune response and inhibiting osteoblasts maturation in developing rats. Toxicology 2023; 494:153595. [PMID: 37467923 DOI: 10.1016/j.tox.2023.153595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Microcystin-LR (MC-LR) affects bone health in adult mice via osteo-immunomodulation. However, its effect on osteoblasts and bone development is unclear. This study investigated the effect of MC-LR on bone osteoimmune and osteoblasts in the developing period. 18 Four-week-old male Sprague Dawley rats were divided into two groups (n = 9 per group) and exposed to 0 (control) and 1 μg/kg b.w. MC-LR (exposure) by intraperitoneal injection for four weeks. The heart blood was collected for serological examination, and the femur for morphological, histopathological, and biomechanical analysis. MC-LR exposure significantly weakened bone microstructures (bone volume, bone volume/total volume, bone trabecular number, connectivity density) and biomechanics (maximum loads and maximum deflection) (P < 0.05). Besides, MC-LR decreased serum procollagen type І car-boxy-terminal propeptide, osteocalcin, bone morphogenetic protein-2, osteoprotegerin, and receptor activator of nuclear factor κB ligand, while elevating osteoclasts number, matrix metalloproteinase-9, β-catenin, Runt-related transcription factor 2, and osterix in bone, and bone alkaline phosphate, C-terminal cross-linked telopeptide of type-I collagen, tartrate-resistant acid phosphatase-5b in serum (P < 0.05). Moreover, MC-LR increased CD4+ T-cells, CD4+/CD8+, M1 and M2 macrophages, and cells apoptosis in the bone marrow, interleukin-6, interleukin-17, and tumor necrosis factor-α in serum, decreased serum interleukin-10 (P < 0.05). Overall, MC-LR can promote bone resorption by activating osteoclasts via osteoimmunology, which may involve macrophages besides lymphocytes. MC-LR may inhibit bone formation by stopping the osteoblasts at an immature stage. Thus, MC-LR weakened bone microstructure and biomechanics in developing period. Its risk on bone development needs further study.
Collapse
Affiliation(s)
- Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Cui
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guowei Zhang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huidong Jin
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoling Chen
- Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
13
|
Ma KSK, Chin NC, Tu TY, Wu YC, Yip HT, Wei JCC, Chang RI. Human Papillomavirus Infections and Increased Risk of Incident Osteoporosis: A Nationwide Population-Based Cohort Study. Viruses 2023; 15:v15041021. [PMID: 37113002 PMCID: PMC10143035 DOI: 10.3390/v15041021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Patients with viral infections are susceptible to osteoporosis. This cohort study investigated the correlation between human papillomavirus (HPV) infections and the risk of osteoporosis via 12,936 patients with new-onset HPV infections and propensity score-matched non-HPV controls enrolled in Taiwan. The primary endpoint was incident osteoporosis following HPV infections. Cox proportional hazards regression analysis and the Kaplan-Meier method was used to determine the effect of HPV infections on the risk of osteoporosis. Patients with HPV infections presented with a significantly high risk of osteoporosis (adjusted hazard ratio, aHR = 1.32, 95% CI = 1.06-1.65) after adjusting for sex, age, comorbidities and co-medications. Subgroup analysis provided that populations at risk of HPV-associated osteoporosis were females (aHR = 1.33; 95% CI = 1.04-1.71), those aged between 60 and 80 years (aHR = 1.45, 95% CI = 1.01-2.08 for patients aged 60-70; aHR = 1.51; 95% CI = 1.07-2.12 for patients aged 70-80), and patients with long-term use of glucocorticoids (aHR = 2.17; 95% CI = 1.11-4.22). HPV-infected patients who did not receive treatments for HPV infections were at a greater risk (aHR = 1.40; 95% CI = 1.09-1.80) of osteoporosis, while the risk of osteoporosis in those who received treatments for HPV infections did not reach statistical significance (aHR = 1.14; 95% CI = 0.78-1.66). Patients with HPV infections presented with a high risk of subsequent osteoporosis. Treatments for HPV infections attenuated the risk of HPV-associated osteoporosis.
Collapse
Affiliation(s)
- Kevin Sheng-Kai Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthodontics and Dentofacial Orthopedics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ning-Chien Chin
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ting-Yu Tu
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yao-Cheng Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ren-In Chang
- Department of Recreation Sports Management, Tajen University, Pingtung 907, Taiwan
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
14
|
Sun X, Gao Y, Li Z, He J, Wu Y. Magnetic responsive hydroxyapatite scaffold modulated macrophage polarization through PPAR/JAK-STAT signaling and enhanced fatty acid metabolism. Biomaterials 2023; 295:122051. [PMID: 36812842 DOI: 10.1016/j.biomaterials.2023.122051] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Despite the general observations of bone repair with magnetic cues, the mechanisms of magnetic cues in macrophage response during bone healing have not been systematically investigated. Herein, by introducing magnetic nanoparticles into hydroxyapatite scaffolds, an appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) macrophages during bone healing is achieved. The combined use of proteomics and genomics analysis reveals the underlying mechanism of magnetic cue-mediated macrophage polarization form the perspective of protein corona and intracellular signal transduction. Our results suggest that intrinsically-present magnetic cues in scaffold contribute to the upregulated peroxisome proliferator-activated receptor (PPAR) signals, and the activation of PPAR signal transduction in macrophages results in the downregulation of the Janus Kinase-Signal transducer and activator of transcription (JAK-STAT) signals and the enhancement of fatty acid metabolism, thus facilitating M2 polarization of macrophages. Magnetic cue-dependent changes in macrophage benefit from the upregulation of adsorbed proteins associated with "hormone" and "response to hormone", as well as the downregulation of adsorbed proteins related to "enzyme-linked receptor signaling" in the protein corona. In addition, magnetic scaffolds may also act cooperatively with the exterior magnetic field, showing further inhibition of M1-type polarization. This study demonstrates that magnetic cues play critical roles on M2 polarization, coupling protein corona, intracellular PPAR signals and metabolism.
Collapse
Affiliation(s)
- Xiaoqing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yichun Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
15
|
Abstract
Bone marrow contains resident cellular components that are not only involved in bone maintenance but also regulate hematopoiesis and immune responses. The immune system and bone interact with each other, coined osteoimmunology. Hashimoto's thyroiditis (HT) is one of the most common chronic autoimmune diseases which is accompanied by lymphocytic infiltration. It shows elevating thyroid autoantibody levels at an early stage and progresses to thyroid dysfunction ultimately. Different effects exert on bone metabolism during different phases of HT. In this review, we summarized the mechanisms of the long-term effects of HT on bone and the relationship between thyroid autoimmunity and osteoimmunology. For patients with HT, the bone is affected not only by thyroid function and the value of TSH, but also by the setting of the autoimmune background. The autoimmune background implies a breakdown of the mechanisms that control self-reactive system, featuring abnormal immune activation and presence of autoantibodies. The etiology of thyroid autoimmunity and osteoimmunology is complex and involves a number of immune cells, cytokines and chemokines, which regulate the pathogenesis of HT and osteoporosis at the same time, and have potential to affect each other. In addition, vitamin D works as a potent immunomodulator to influence both thyroid immunity and osteoimmunology. We conclude that HT affects bone metabolism at least through endocrine and immune pathways.
Collapse
Affiliation(s)
- Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Hui Huang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China.
| |
Collapse
|
16
|
Liu L, Huang T, Xie Z, Ye Z, Zhang J, Liao H, Yang S, Yang K, Tu M. Liquid crystalline matrix-induced viscoelastic mechanical stimulation modulates activation and phenotypes of macrophage. J Biomater Appl 2023; 37:1568-1581. [PMID: 36917676 DOI: 10.1177/08853282221136580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Accumulating evidence indicates that the mechanical microenvironment exerts profound influences on inflammation and immune modulation, which are likely to be key factors in successful tissue regeneration. The elastic modulus (Em) of the matrix may be a useful adjustable property to control macrophage activation and the overall inflammatory response. This study constituted a series of Em-tunable liquid crystalline cell model (HpCEs) resembling the viscoelastic characteristic of ECM and explored how mechanical microenvironment induced by liquid crystalline soft matter matrix affected macrophage activation and phenotypes. We have shown that HpCEs prepared in this work exhibited typical cholesteric liquid crystal phase and distinct viscoelastic rheological characteristics. All liquid crystalline HpCE matrices facilitated macrophages growth and maintained cell activity. Macrophages in lower-Em HpCE matrices were more likely to polarize toward the pro-inflammatory M1 phenotype. Conversely, the higher-Em HpCEs induced macrophages into an elongated shape and upregulated M2-related markers. Furthermore, the higher-Em HpCEs (HpCE-O1, HpCE-H2, HpCE-H1) could coax sequential polarization states of RAW264.7 from a classically activated "M1" state toward alternatively activated "M2" state in middle and later stage of cell culture (within 3-7 days in this work), suggesting that the HpCE-based strategies could manipulate the local immune microenvironment and promote the dominance of the pro-inflammatory signals in early stages, while M2 macrophages in later stages. The liquid crystalline soft mode fabricated in this work maybe offer a new design guideline for in vitro cell models and applications.
Collapse
Affiliation(s)
- Lichu Liu
- Institute of Orthopedics and Traumatology, 593063Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Tao Huang
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Zheng Xie
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Zhangyao Ye
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Jiaqing Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, 47885Jinan University, Guangzhou, China
| | - Honghong Liao
- Institute of Orthopedics and Traumatology, 593063Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Shenyu Yang
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Kuangyang Yang
- Institute of Orthopedics and Traumatology, 593063Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Mei Tu
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| |
Collapse
|
17
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
18
|
α-Linolenic Acid Inhibits RANKL-Induced Osteoclastogenesis In Vitro and Prevents Inflammation In Vivo. Foods 2023; 12:foods12030682. [PMID: 36766210 PMCID: PMC9914290 DOI: 10.3390/foods12030682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation is an important risk factor for bone-destroying diseases. Our preliminary research found that Zanthoxylum bungeanum seed oil (ZBSO) is abundant in unsaturated fatty acids and could inhibit osteoclastogenesis in receptor activator of nuclear factor κB ligand (RANKL)-induced RAW264.7 cells. However, the key constituents in ZBSO in the prevention of osteoclastogenesis and its possible mechanism related to inflammation are still unclear. Therefore, in this study, oleic acid (OA), linoleic acid (LA), palmitoleic acid (PLA), and alpha-linolenic acid (ALA) in ZBSO, havingthe strongest effect on RANKL-induced osteoclastogenesis, were selected by a tartrate-resistant acid phosphatase (TRAP) staining method. Furthermore, the effects of the selected fatty acids on anti-inflammation and anti-osteoclastogenesis in vitro and in vivo were assessed using RT-qPCR. Among the four major unsaturated fatty acids we tested, ALA displayed the strongest inhibitory effect on osteoclastogenesis. The increased expression of free fatty acid receptor 4 (FFAR4) and β-arrestin2 (βarr2), as well as the decreased expression of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), nuclear factor of activated T-cells c1 (NFATc1), and tartrate-resistant acid phosphatase (TRAP) in RAW264.7 cells after ALA treatment were observed. Moreover, in ovariectomized osteoporotic rats with ALA preventive intervention, we found that the expression of TNF-α, interleukin-6 (IL-6), interleukin-1β (IL-1β), NFATc1, and TRAP were decreased, while with the ALA therapeutic intervention, downregulated expression of NF-κB, NFATc1, TRAP, and transforming growth factor beta-activated kinase 1 (TAK1) were noticed. These results indicate that ALA, as the major unsaturated fatty acid in ZBSO, could inhibit RANKL-induced osteoclastogenesis via the FFAR4/βarr2 signaling pathway and could prevent inflammation, suggesting that ZBSO may be a promising potential natural product of unsaturated fatty acids and a dietary supplement for the prevention of osteoclastogenesis and inflammatory diseases.
Collapse
|
19
|
Chen Y, Yu J, Shi L, Han S, Chen J, Sheng Z, Deng M, Jin X, Zhang Z. Systemic Inflammation Markers Associated with Bone Mineral Density in perimenopausal and Postmenopausal Women. J Inflamm Res 2023; 16:297-309. [PMID: 36713047 PMCID: PMC9879040 DOI: 10.2147/jir.s385220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/24/2022] [Indexed: 01/23/2023] Open
Abstract
Objective The aim of this research was to determine whether systemic inflammatory indicators, including aggregate index of systemic inflammation (AISI), neutrophils lymphocyte to platelet ratio (NLPR), systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI), are related to bone mineral density (BMD) in perimenopausal and postmenopausal women. Methods One hundred and eighty-one perimenopausal and 390 postmenopausal women were enrolled in this cross-sectional study. Continuous variables by analysis of variance and Kruskal Wallis test for comparing the clinical characteristics. Linear regression analysis was conducted to investigate the associations between inflammatory indicators with BMD. The comparison between the subgroups was performed using the nonparametric test and the T-test. Results AISI, NLPR, SII, and SIRI quartile values were inversely associated with BMD in menopausal women (P = 0.021; P = 0.047; P < 0.001; P < 0.001, respectively). After adjusting for confounding factors, four inflammatory indicators remained significantly associated with BMD (all P for trend <0.001). Analysis according to menopausal status demonstrated that AISI, SII, and SIRI were significantly correlated with mean femoral neck BMD in postmenopausal women (P for trend = 0.015, 0.004, and 0.001), but not significantly associated with BMD in perimenopausal women (P for trend = 0.248, 0.054, and 0.352) after adjustment for covariates. Conclusion The quartile values of AISI, SII, and SIRI were inversely associated with BMD in postmenopausal women, following adjustment for individual variables, hormone profiles and glucolipid metabolism profiles. AISI, SII, and SIRI have potential to be important tools for screening and prevention of bone loss in menopausal women in future clinical practice.
Collapse
Affiliation(s)
- Yijie Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jingjing Yu
- School of Public Health, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Lan Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Shuyang Han
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jun Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Zhumei Sheng
- Department of the Reproductive Endocrinology Division, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, People’s Republic of China
| | - Miao Deng
- Department of the Reproductive Endocrinology Division, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, People’s Republic of China
| | - Xuejing Jin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Department of the Reproductive Endocrinology Division, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, People’s Republic of China
| | - Zhifen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Department of the Reproductive Endocrinology Division, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, People’s Republic of China,Correspondence: Zhifen Zhang; Xuejing Jin, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, People’s Republic of China, Email ;
| |
Collapse
|
20
|
Wang Q, Xu F, Chen J, Xie YQ, Xu SL, He WM. Serum Leukocyte Cell-Derived Chemotaxin 2 (LECT2) Level Is Associated with Osteoporosis. Lab Med 2023; 54:106-111. [PMID: 35976970 DOI: 10.1093/labmed/lmac080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to examine serum leukocyte cell-derived chemotaxin 2 (LECT2) levels in osteoporosis subjects to confirm its association with osteoporosis. METHODS A total of 204 adult subjects were recruited. Bone mineral densities (BMD) were assessed and blood samples were collected for measurements of biomedical parameters and the bone turnover markers. Serum LECT2 levels were measured by enzyme-linked immunosorbent assay. The relationships between serum LECT2 levels and other parameters were analyzed using the Spearman correlation coefficient. RESULTS Serum LECT2 levels were significantly increased in osteoporosis subjects over controls. We found a significantly negative correlation of serum LECT2 with BMD, 25-hydroxy-vitamin D, and creatinine and a significantly positive correlation with C-terminal telopeptide of type 1 collagen and total cholesterol. CONCLUSION Serum LECT2 levels were significantly upregulated in osteoporosis subjects and correlated with the severity of bone loss. Serum LECT2 could be a potential biomarker to assess the risk of bone loss.
Collapse
Affiliation(s)
- Qiang Wang
- Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Feng Xu
- Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Yan-Qing Xie
- Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Su-Ling Xu
- Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Wen-Ming He
- Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Associations of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio with Osteoporosis: A Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12122968. [PMID: 36552975 PMCID: PMC9776713 DOI: 10.3390/diagnostics12122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is characterized by low bone mass and increased bone fragility. Numerous studies have suggested that inflammation contributes to its pathogenesis. The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are simple, noninvasive biomarkers that can reflect the inflammation status on human body. However, evidence on their associations with osteoporosis remains scant. The PubMed, Embase, and Cochrane Library databases were searched for relevant studies from their inception to April 2022. Observational studies providing complete NLR or PLR data in both the osteoporosis and normal bone mineral density (BMD) groups were included. Studies involving individuals at risk of secondary osteoporosis or restricted to a certain disease population were excluded. The main outcome was the associations of NLR and PLR with osteoporosis. Between-group differences were measured using mean differences (MDs) and 95% confidence intervals (CIs). In our analysis, both NLR and PLR were significantly higher in the osteoporosis group (MD = 0.494, 95% CI: 0.339−0.649, p < 0.0001; MD = 23.33, 95% CI: 4.809−41.850, p = 0.014, respectively) than in the normal BMD group. NLR was significantly higher in postmenopausal women with osteoporosis (MD = 0.432, 95% CI: 0.309−0.544, p < 0.0001). Our findings suggest the associations of NLR and PLR with osteoporosis. NLR and PLR constitute potential targets in osteoporosis screening.
Collapse
|
22
|
Cao RR, Yu XH, Xiong MF, Li XT, Deng FY, Lei SF. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol 2022; 13:959417. [PMID: 36341399 PMCID: PMC9630477 DOI: 10.3389/fimmu.2022.959417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/03/2022] [Indexed: 10/18/2023] Open
Abstract
Recent evidence has gradually recognized that the immune and skeletal systems are two closely correlated systems, but the specific immune factors on bone mineral density (BMD) are largely unknown. Based on the summary-level data of genome-wide association studies (GWASs), we performed a series of analyses including two-sample Mendelian randomization (MR) analysis to test potential causal links between 731 immune traits [including median fluorescence intensities (MFIs), absolute cell (AC) counts, relative cell (RC) counts, and morphological parameters (MP)] and BMD. After false discovery rate (FDR) correction, 9 MFI-BMD, 16 AC-BMD, 22 RC-BMD, and 5 MP-BMD pairs reached the level of significance (FDR-adjusted p< 0.05). For MFI traits, the T- and B-cell panels had the largest number of significant immune trait pairs than other panels. CD40, as a molecule expressed by four subsets of monocytes, was highlighted due to its consistently positive correlation with BMD at four sites. For both AC and RC traits, immune traits from the T-cell panel were also highlighted, with CD39-positive T-cell subsets being the most frequently observed feature. For MP traits, the most significant association immune trait with BMD was SSC-A on CD14+ monocyte. Sensitivity analyses suggested that the identified immune factors were robust to pleiotropy. Multivariable MR analysis confirmed the independent causal effect of several immune traits on BMD. Mediation analyses showed that CD40 on monocytes could mediate multiple immune traits, especially the suggestive associations of CD27 on several memory B cells with BMD mediated by CD40 on CD14+ CD16- monocyte. Our study represents the first comprehensive evaluation of the causal effects of immune traits on the risk of osteoporosis. The findings highlighted the complex and important role of immune-derived factors in the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xing-Hao Yu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Meng-Fei Xiong
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xue-Ting Li
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Eckert D, Rapp F, Tsedeke AT, Kraft D, Wente I, Molendowska J, Basheer S, Langhans M, Meckel T, Friedrich T, Donaubauer AJ, Becker I, Frey B, Fournier C. Modulation of Differentiation and Bone Resorbing Activity of Human (Pre-) Osteoclasts After X-Ray Exposure. Front Immunol 2022; 13:817281. [PMID: 35603191 PMCID: PMC9116137 DOI: 10.3389/fimmu.2022.817281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Low-dose radiotherapy (LD-RT) is a local treatment option for patients with chronic degenerative and inflammatory diseases, in particular musculoskeletal diseases. Despite reported analgesic and anti-inflammatory effects, cellular and molecular mechanisms related to osteoimmunological effects are still elusive. Here we test the hypothesis that X-irradiation inhibits the differentiation of precursor osteoclasts into mature osteoclasts (mOC) and their bone resorbing activity. Circulating monocytes from healthy donors were isolated and irradiated after attachment with single or fractionated X-ray doses, comparable to an LD-RT treatment scheme. Then monocytes underwent ex vivo differentiation into OC during cultivation up to 21 days, under conditions mimicking the physiological microenvironment of OC on bone. After irradiation, apoptotic frequencies were low, but the total number of OC precursors and mOC decreased up to the end of the cultivation period. On top, we observed an impairment of terminal differentiation, i.e. a smaller fraction of mOC, reduced resorbing activity on bone, and release of collagen fragments. We further analyzed the effect of X-irradiation on multinucleation, resulting from the fusion of precursor OC, which occurs late during OC differentiation. At 21 days after exposure, the observation of smaller cellular areas and a reduced number of nuclei per mOC suggest an impaired fusion of OC precursors to form mOC. Before, at 14 days, the nuclear translocation of Nuclear Factor Of Activated T Cells 1 (NFATc1), a master regulator of osteoclast differentiation and fusion, was decreased. In first results, obtained in the frame of a longitudinal LD-RT study, we previously reported a pain-relieving effect in patients. However, in a subgroup of patients suffering from Calcaneodynia or Achillodynia, we did not observe a consistent decrease of established blood markers for resorption and formation of bone, or modified T cell subtypes involved in regulating these processes. To assess the relevance of changes in bone metabolism for other diseases treated with LD-RT will be subject of further studies. Taken together, we observed that in vitro X-irradiation of monocytes results in an inhibition of the differentiation into bone-resorbing OC and a concomitant reduction of resorbing activity. The detected reduced NFATc1 signaling could be one underlying mechanism.
Collapse
Affiliation(s)
- Denise Eckert
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ayele Taddese Tsedeke
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daniela Kraft
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Isabell Wente
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jessica Molendowska
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Sidra Basheer
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Markus Langhans
- Department of Macromolecular and Paper Chemistry and Membrane Dynamics, Technical University Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Macromolecular and Paper Chemistry and Membrane Dynamics, Technical University Darmstadt, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ina Becker
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Fournier
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
24
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|
25
|
Weissmann T, Rückert M, Zhou JG, Seeling M, Lettmaier S, Donaubauer AJ, Nimmerjahn F, Ott OJ, Hecht M, Putz F, Fietkau R, Frey B, Gaipl US, Deloch L. Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients. Front Immunol 2022; 12:777792. [PMID: 35046940 PMCID: PMC8763318 DOI: 10.3389/fimmu.2021.777792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is the leading degenerative joint disease in the western world and leads, if left untreated, to a progressive deterioration of joint functionality, ultimately reducing quality of life. Recent data has shown, that especially OA of the ankle and foot are among the most frequently affected regions. Current research in OA points towards a complex involvement of various cell and tissue types, often accompanied by inflammation. Low-dose radiotherapy (LDRT) is widely used for the treatment of degenerative and inflammatory diseases. While the reported analgesic effects are well known, the underlying molecular mechanisms are only poorly understood. We therefore correlated a clinical approach, looking at pain reduction in 196 patients treated with LDRT with a pre-clinical approach, utilizing the K/BxN serum transfer mouse model using flow cytometry and multiplex ELISA for analysis. While an improvement of symptoms in the majority of patients was found, patients suffering from symptoms within the tarsi transversa show a significantly lower level of improvement. Further, a significant impact of therapy success was detected depending on whether only one or both feet were affected. Further, patients of younger age showed a significantly better outcome than older ones while needing fewer treatment series. When looking on a cellular level within the mouse model, a systemic alteration of immune cells namely a shift from CD8+ to CD4+ T cells and reduced numbers of DCs was observed. A general reduction of inflammatory cytokines was detected, with significant alterations in IL-4 and IL-17 levels, all of which could potentially be responsible for the highly effective clinical improvement in patients. Taken together our data indicate that LDRT can be regarded as a highly effective treatment option for patients suffering from OA of the foot and ankle, in terms of analgesic effects, especially in younger patients. Furthermore, the observed effects are mediated by an interplay of cellular and soluble immune factors, as observed in the K/BxN serum transfer model. With this interdisciplinary approach we aim to encourage the usage of LDRT as an additive treatment strategy not only as a last resort, but also earlier in the course of disease.
Collapse
Affiliation(s)
- Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Han Y, Yu C, Yu Y. Astragalus polysaccharide alleviates alveolar bone destruction by regulating local osteoclastogenesis during periodontitis. J Appl Biomed 2021; 19:97-104. [PMID: 34907709 DOI: 10.32725/jab.2021.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory imbalance of bone formation/resorption leads to alveolar bone destruction. Astragalus polysaccharide has been confirmed to have anti-inflammatory effects. We sought to disclose the protective effect and its potential mechanisms of astragalus polysaccharide in the periodontitis model. Experimental periodontitis was induced by cotton ligatures for this study. We measured the alveolar bone damage rate, periodontal osteoclasts, proportion of CD4+Foxp3+, CD4+IL-10+, CD4+TGF-β+ subsets in the gingiva, and RANKL, OPG, TGF-β+, and IL-10+ level in the gingiva. We also cultured osteoclast precursor cells in the presence of RANKL and astragalus polysaccharide. Osteoclasto-like cells were identified by TRAP staining, mRNA of RANK, TRAP, and TRAF6 were evaluated by real time PCR. We found that astragalus polysaccharide caused significant protection of the alveolar bone via reducing local osteoclasts. It also decreased the proportion of CD4+Foxp3+ cells and upregulated the level of CD4+IL-10+ cells, reduced RANKL, and remedied IL-10 levels. In cell culture experiments, astragalus polysaccharide prohibited the RANKL mediated osteoclast differentiation. The findings of this study disclose the functions and possible mechanisms of astragalus polysaccharide engaged in local osteoclastogenesis, and reveal the considerable effect of astragalus polysaccharide in alveolar bone homeostasis and its likely contribution to host immuno-regulation in periodontitis.
Collapse
Affiliation(s)
- Yakun Han
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| | - Chengcheng Yu
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| | - Yan Yu
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| |
Collapse
|
27
|
Li N, Fu L, Li Z, Ke Y, Wang Y, Wu J, Yu J. The Role of Immune Microenvironment in Maxillofacial Bone Homeostasis. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.780973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maxillofacial bone defects are common medical problems caused by congenital defects, necrosis, trauma, tumor, inflammation, and fractures non-union. Maxillofacial bone defects often need bone graft, which has many difficulties, such as limited autogenous bone supply and donor site morbidity. Bone tissue engineering is a promising strategy to overcome the above-mentioned problems. Osteoimmunology is the inter-discipline that focuses on the relationship between the skeletal and immune systems. The immune microenvironment plays a crucial role in bone healing, tissue repair and regeneration in maxillofacial region. Recent studies have revealed the vital role of immune microenvironment and bone homeostasis. In this study, we analyzed the complex interaction between immune microenvironment and bone regeneration process in oral and maxillofacial region, which will be important to improve the clinical outcome of the bone injury treatment.
Collapse
|
28
|
Role of Polyphenols in the Metabolism of the Skeletal System in Humans and Animals – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Polyphenols are a group of compounds arousing enormous interest due to their multiple effects on both human and animal health and omnipresence in plants. A number of in vitro and animal model studies have shown that all polyphenols exhibit anti-inflammatory and antioxidant activities, and play a significant role against oxidative stress-related pathologies. They also exert gut promotory effects and prevent chronic degenerative diseases. However, less attention has been paid to the potential influence of polyphenols on bone properties and metabolism. It is well known that proper growth and functioning of the organism depend largely on bone growth and health. Therefore, understanding the action of substances (including polyphenols) that may improve the health and functioning of the skeletal system and bone metabolism is extremely important for the health of the present and future generations of both humans and farm animals. This review provides a comprehensive summary of literature related to causes of bone loss during ageing of the organism (in both humans and animals) and possible effects of dietary polyphenols preventing bone loss and diseases. In particular, the underlying cellular and molecular mechanisms that can modulate skeletal homeostasis and influence the bone modeling and remodeling processes are presented.
Collapse
|
29
|
Lack of 5-lipoxygenase in intramembranous and endochondral 129Sv mice skeleton and intramembranous healing. Arch Oral Biol 2021; 131:105266. [PMID: 34571394 DOI: 10.1016/j.archoralbio.2021.105266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To analyze the lack of 5-lipoxygenase (5LO) on dental socket healing and post-natal phenotype of intramembranous and endochondral bones. DESIGN Wild type (WT) 129/SvEv (n = 20) and 5LO knockout (5LOKO) (n = 20) male mice underwent tooth extraction of the upper right incisor and were euthanized after 7, 14, and 30 day time points for the evaluation of dental socket healing and histological phenotyping of intramembranous (IM) and endochondral (EC) bones. Microscopic analysis of alveolar sockets included histopathological description, histomorphometry, and immunohistochemistry for 5LO, cyclooxygenase 2 (COX2), and tartrate resistant acid phosphatase (TRAP). RESULTS Histological phenotyping revealed thicker cortical bone in EC bones (femur and vertebra) of 5LOKO mice compared to WTs, with no differences in collagenous content. Although dental socket healing was similarly observed in both groups, WT mice revealed increased numbers of COX-2+ and 5LO+ cells during bone maturing stage, with a decrease of TRAP+ cells at day 30. On the other hand, an increased quantity of fibroblasts was observed at day 7 in 5LOKO group, as well as increased inflammatory infiltrate and significantly decreased TRAP+ cells at final stages of alveolar socket healing in comparison to WTs. CONCLUSIONS The lack of 5LO in 5LOKO mice resulted in thicker cortical of EC, but not of IM post natal bones. Furthermore, genetic deletion of 5LO in the 5LOKO mice directly affected the inflammatory response during socket healing, influencing initial and late phases of bone repair in a model of post-tooth extraction in 129Sv WT and 5LOKO mice.
Collapse
|
30
|
Wang X, Chen X, Lu L, Yu X. Alcoholism and Osteoimmunology. Curr Med Chem 2021; 28:1815-1828. [PMID: 32334496 DOI: 10.2174/1567201816666190514101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic consumption of alcohol has an adverse effect on the skeletal system, which may lead to osteoporosis, delayed fracture healing and osteonecrosis of the femoral head. Currently, the treatment is limited, therefore, there is an urgent need to determine the underline mechanism and develop a new treatment. It is well-known that normal bone remodeling relies on the balance between osteoclast-mediated bone resorption and - mediated bone formation. Various factors can destroy the balance, including the dysfunction of the immune system. In this review, we summarized the relevant research in the alcoholic osteopenia with a focus on the abnormal osteoimmunology signals. We provided a new theoretical basis for the prevention and treatment of the alcoholic bone. METHODS We searched PubMed for publications from 1 January 1980 to 1 February 2020 to identify relevant and recent literature, summarizing evaluation and the prospect of alcoholic osteopenia. Detailed search terms were 'alcohol', 'alcoholic osteoporosis', 'alcoholic osteopenia' 'immune', 'osteoimmunology', 'bone remodeling', 'osteoporosis treatment' and 'osteoporosis therapy'. RESULTS A total of 135 papers are included in the review. About 60 papers described the mechanisms of alcohol involved in bone remodeling. Some papers were focused on the pathogenesis of alcohol on bone through osteoimmune mechanisms. CONCLUSION There is a complex network of signals between alcohol and bone remodeling and intercellular communication of osteoimmune may be a potential mechanism for alcoholic bone. Studying the osteoimmune mechanism is critical for drug development specific to the alcoholic bone disorder.
Collapse
Affiliation(s)
- Xiuwen Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Hong J, Ye F, Yu B, Gao J, Qi F, Wang W. Identification of the specific microRNAs and competitive endogenous RNA mechanisms in osteoporosis. J Int Med Res 2021; 48:300060520954722. [PMID: 33021861 PMCID: PMC7543140 DOI: 10.1177/0300060520954722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Osteoporosis and osteoarthritis are metabolic skeletal disorders. This study
aimed to identify specific networks of competitive endogenous RNA (ceRNA) in
osteoporosis that differ from those in osteoarthritis. Methods The dataset GSE74209 was downloaded from the Gene Expression Omnibus, and
differentially expressed microRNAs (DEmiRNAs) in osteoporotic samples and
osteoarthritic samples were identified. After predicting target genes and
linked long noncoding (lnc)RNAs, ceRNA networks of DEmiRNAs were
constructed. The nodes that overlapped between ceRNA networks and the
Comparative Toxicogenomics Database were selected as key candidates. Results Fifteen DEmiRNAs (including 2 downregulated and 13 upregulated miRNAs) were
identified in osteoporotic samples versus osteoarthritic samples; these
targeted 161 genes and linked to 60 lncRNAs. The ceRNA network consisted of
6 DEmiRNAs, 63 target genes, and 53 lncRNAs. After searching the Comparative
Toxicogenomics Database and mining the literature, 2 lncRNAs
(MALAT1 and NEAT1), 2 DEmiRNAs
(hsa-miR-32-3p,
downregulated; and hsa-miR-22-3p, upregulated) and 6 genes
(SP1, PTEN, ESR1,
ERBB3, CSF1R, and
CDK6) that relate to cell death, growth, and
differentiation were identified as key candidates separating osteoporosis
from osteoarthritis. Conclusions Two miRNA–ceRNA networks (including
NEAT1/MALAT1-hsa-miR-32-3p-SP1/FZD6
and
NEAT1/MALAT1-hsa-miR-22-3p-PTEN/ESR1/ERBB3/CSF1R/CDK6)
might have crucial and specific roles in osteoporosis.
Collapse
Affiliation(s)
- Junyi Hong
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province, China
| | - Fusheng Ye
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province, China
| | - Binjia Yu
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province, China
| | - Junwei Gao
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province, China
| | - Feicheng Qi
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province, China
| | - Wei Wang
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
32
|
Cui M, Zhang N, Zhang G, Han L, Yu LZ. Investigation of Intravenous Zoledronic Acid Therapy on Circulating Lymphocyte Subpopulation in Patients with Primary Osteoporosis: A Pilot Study. CURRENT THERAPEUTIC RESEARCH 2021; 94:100634. [PMID: 34306272 PMCID: PMC8296081 DOI: 10.1016/j.curtheres.2021.100634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/24/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Several studies have investigated the immunomodulating properties of zoledronic acid on T lymphocytes, but the causal relationship between the function of T cells and the efficacy of zoledronic acid has not been elucidated. OBJECTIVE To investigate the causal relationship between the function of zoledronic acid and T cells. METHODS We conducted an observational perspective study to observe the effect of intravenous zoledronic acid once yearly for 2 years on lymphocyte subsets in patients with primary osteoporosis through observing the blood cells analysis and the level of lymphocyte subpopulations before and on day 1, 2, and 3 after first and second administration of intravenous zoledronic acid and bone mineral destiny 1 year after a single administration of zoledronic acid. RESULTS White blood cell count and neutrophils increased, whereas lymphocytes and eosinophils decreased after the first and second zoledronic acid infusion. The count of CD3+T cells, CD3+CD4+T cells, and CD16+CD56+ natural killer lymphocytes decreased from day 1 to day 3 after the first and second zoledronic acid infusion, but the results of second infusion showed no significance. CONCLUSIONS Further, larger size, more in-depth studies are indicated to examine whether the short-term changes in white blood cells and lymphocyte subtypes noted after 2 once-yearly zoledronic acid injections in this small population of adult patients is associated with the stimulation of immune mechanisms. (Curr Ther Res Clin Exp. 2021; 82:XXX-XXX).
Collapse
Affiliation(s)
- Min Cui
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Na Zhang
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Gang Zhang
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lei Han
- Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Ling Zhi Yu
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Microorganisms in the gut (the 'microbiome') and the metabolites they produce (the 'metabolome') regulate bone mass through interactions between parathyroid hormone (PTH), the immune system, and bone. This review summarizes these data and details how this physiology may relate to CKD-mediated bone disease. RECENT FINDINGS The actions of PTH on bone require microbial metabolite activation of immune cells. Butyrate is necessary for CD4+ T-cell differentiation, T-reg cell expansion and CD8+ T-cell secretion of the bone-forming factor Wnt10b ligand. By contrast, mice colonized with segmented filamentous bacteria exhibit an expansion of gut Th17 cells and continuous PTH infusion increases the migration of Th17 cells to the bone marrow, contributing to bone resorption. In the context of CKD, a modified diet, frequent antibiotic therapy, altered intestinal mobility, and exposure to multiple medications together contribute to dysbiosis; the implications for an altered microbiome and metabolome on the pathogenesis of renal osteodystrophy and its treatment have not been explored. SUMMARY As dysregulated interactions between PTH and bone ('skeletal resistance') characterize CKD, the time is ripe for detailed, mechanistic studies into the role that gut metabolites may play in the pathogenesis of CKD-mediated bone disease.
Collapse
|
34
|
Griffin JS, Dent SC, Berger SM. Pathways linking activity, adiposity, and inflammation to bone mineral density in women and men from NHANES 2007 to 2010. Am J Hum Biol 2021; 33:e23583. [PMID: 33645876 DOI: 10.1002/ajhb.23583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Age, sedentary activity, central adiposity, and inflammation have all been independently associated with bone mineral density (BMD). We assessed how the effects of sedentary activity and central adiposity on BMD of the lumbar spine and femoral neck change across early to late adulthood and whether these relationships are mediated by inflammation. METHODS We analyzed data from 7135 women and men 20 years of age and older from NHANES 2007 to 2010. Anthropometrics, sedentary activity (min/day), serum CRP (mg/dl), and BMD (gm/cm2 measured by DXA scans) at the femoral neck and lumbar spine. Data were compared by age and sex groups and through causal mediation analysis. RESULTS The effect of waist circumference on BMD was significantly mediated by serum CRP at both skeletal sites in men and at the femoral neck in women. Sedentary activity did not have a direct relationship to BMD but was mediated by waist circumference in men. Least square means differed significantly by sex and age groups with a general age-related decline in BMD at both skeletal sites. CONCLUSIONS We found that central adiposity, independent of overall body size and composition as measured through BMI, has an inverse relationship with BMD that is mediated by serum CRP. In addition, the negative impact of increased sedentism acted through changes in central adiposity (waist circumference) but only in men. Although low bone density and osteoporosis are often considered degenerative diseases that primarily impact postmenopausal women, our findings show that sedentary activity and central adiposity impact bone density beginning in early adulthood in both women and men.
Collapse
Affiliation(s)
- Jacob S Griffin
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophia C Dent
- Department of Anthropology, Appalachian State University, Boone, North Carolina, USA
| | - Steph M Berger
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Smac-mimetics reduce numbers and viability of human osteoclasts. Cell Death Discov 2021; 7:36. [PMID: 33608503 PMCID: PMC7895921 DOI: 10.1038/s41420-021-00415-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Elevated activity of bone-degrading osteoclasts (OC) contributes to pathological bone degradation in diseases such as multiple myeloma. Several proinflammatory cytokines, including TNF, contribute to osteoclastogenesis. The receptor-interacting protein kinase 1 (RIPK1) regulates inflammation and cell death. It is recruited to the TNF-receptor complex, where it is ubiquitinated, and activates transcription factor NF-κB and mitogen-activated protein kinases (MAPK). Smac-mimetics (SM) is a group of drugs that block RIPK1 ubiquitination and shifts RIPK1 to activation of apoptosis or necroptosis. In this manuscript, we show that the two SM birinapant and LCL-161 reduced the number and viability of primary human OC, and induced TNF-dependent cell death in OC precursors (pre-OC). Birinapant was more cytotoxic than LCL-161 and induced predominantly apoptosis and to some degree necroptosis. Both inhibitors restrained osteoclastogenesis induced by myeloma patient bone-marrow aspirates. SM has gained attention as novel treatment strategies both for cancer and chronic inflammatory pathologies, but limited information has been available on interactions with primary human immune cells. As LCL-161 is in phase 2 clinical studies for multiple myeloma, we propose that SM might possess additional benefits in reducing bone degradation in myeloma patients. Taken together, we show that SM reduces human osteoclastogenesis, and that these compounds may represent promising drug candidates for pathological bone degradation.
Collapse
|
36
|
Jacobson D, Liu JZ, Lindsey JC, Shiau S, Coull B, Aldrovandi G. Immune Markers and Their Association with Bone Density in Children, Adolescents, and Young Adults with Perinatally Acquired HIV. AIDS Res Hum Retroviruses 2021; 37:122-129. [PMID: 33066711 DOI: 10.1089/aid.2020.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To describe distributions of immune markers in children and young adults by sex and HIV status, and within groups, investigate associations of immune markers with bone density across Tanner stage. Using data and samples from 353 participants in a cross-sectional study in youth with perinatally acquired HIV (PHIV) and matched HIV-negative controls, distributions of inflammation and activation immune markers were described by sex and HIV status. Correlations and structural equation models (SEM) were used to explore marginal and multivariable associations of the immune markers with bone density and to assess whether patterns of association varied by sex and HIV status. Immune marker distributions did not differ by sex, but there were some differences by HIV status. Correlation patterns among bone, body composition, and immune markers were similar across the sex and HIV status groups. Conclusions from SEMs were limited by small sample sizes, but there was some indication that patterns of association between bone density and certain immune markers differed in male PHIV with more advanced Tanner stage compared to the other three groups. In conclusion, distributions of bone density, body composition, and immune markers may vary by sex and HIV status, although associations among these outcomes within sex and HIV status groups appear similar. Bone density of male PHIV appears to be more negatively affected than females, regardless of female HIV status. Larger longitudinal studies across Tanner stages are needed to further explore potential biological relationships between immune markers and bone density in youth living with HIV.
Collapse
Affiliation(s)
- Denise Jacobson
- Center for Biostatistics in AIDS Research; Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Jeremiah Zhe Liu
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Jane C. Lindsey
- Center for Biostatistics in AIDS Research; Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Brent Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Grace Aldrovandi
- Division of Infectious Diseases, Children's Hospital of Los Angeles, Los Angeles, California, USA
| |
Collapse
|
37
|
De Martinis M, Sirufo MM, Polsinelli M, Placidi G, Di Silvestre D, Ginaldi L. Gender Differences in Osteoporosis: A Single-Center Observational Study. World J Mens Health 2021; 39:750-759. [PMID: 33474849 PMCID: PMC8443988 DOI: 10.5534/wjmh.200099] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Osteoporosis affects more than 200 million people worldwide: its prevalence increases with age and is actually growing due to the constant population aging. Women are at greater risk than men, but in recent years it has become increasingly evident that osteoporosis represents a significantly important problem also for men. However, osteoporosis in men is still poorly studied, underdiagnosed and inadequately treated. Materials and Methods We conducted an observational study to identify any gender disparities in osteoporosis screening. For this purpose we observed people consecutively admitted at our Outpatient Service for the Diagnosis of Osteoporosis during the last 3 years. Patients underwent clinical and laboratory assessment and bone mineral density (BMD) measurements by dual-energy X-ray absorptiometry. Bone turnover serum markers have been evaluated and stratified according to gender. Results Out of 3,752 patients, 2,376 subjects who met the inclusion criteria were identified. As expected, the great majority (94.5%) of the screened subjects were women and only 5.4% were men. Women exhibited lower BMD compared to men (T-score values: −2.33±1.14 vs. −1.31±1.55; p<0.001), whereas the prevalence of fractures in osteoporotic men was significantly higher (50% vs. 31%; p<0.001). Women had lower vitamin D and higher bone remodeling markers compared to men. Secondary osteoporosis was more frequent in men (66.67%) than in women (20.83%) and the calculated risk for hip fractures was higher in osteoporotic men compared to women (11.47±10.62 vs. 6.87±7.73; p<0.001). Conclusions Here we highlighted that men are under-screened for osteoporosis and exhibit secondary osteoporosis more frequently than women.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy.
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy
| | - Matteo Polsinelli
- A2VI-Lab, Department of Life, Health and Environmental Sciences, L'Aquila, Italy
| | - Giuseppe Placidi
- A2VI-Lab, Department of Life, Health and Environmental Sciences, L'Aquila, Italy
| | - Daniela Di Silvestre
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy
| |
Collapse
|
38
|
De Martinis M, Sirufo MM, Ginaldi L. Osteoporosis: Current and Emerging Therapies Targeted to Immunological Checkpoints. Curr Med Chem 2021; 27:6356-6372. [PMID: 31362684 PMCID: PMC8206194 DOI: 10.2174/0929867326666190730113123] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a skeletal pathology characterized by compromised bone strength leading to increased risk of fracture, mainly the spine and hip fractures. Osteoporosis affects more than 200 million people worldwide and because of the skeletal fractures it causes, represents a major cause of morbidity, disability and mortality in older people. Recently, the new discoveries of osteoimmunology have clarified many of the pathogenetic mechanisms of osteoporosis, helping to identify new immunological targets for its treatment opening the way for new and effective therapies with biological drugs. Currently, there are basically two monoclonal antibodies for osteoporosis therapy: denosumab and romosozumab. Here, we focus on the modern approach to the osteoporosis management and in particular, on current and developing biologic drugs targeted to new immunological checkpoints, in the landscape of osteoimmunology.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
39
|
De Martinis M, Ginaldi L, Sirufo MM, Bassino EM, De Pietro F, Pioggia G, Gangemi S. IL-33/Vitamin D Crosstalk in Psoriasis-Associated Osteoporosis. Front Immunol 2021; 11:604055. [PMID: 33488605 PMCID: PMC7819870 DOI: 10.3389/fimmu.2020.604055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased risk of developing osteoporosis (OP). It has been shown that OP is among the more common pathologies associated with Pso, mainly due to the well-known osteopenizing conditions coexisting in these patients. Pso and OP share common risk factors, such as vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2 axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor differentiation towards macrophage and dendritic cells and inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the expression of anti-osteoclastic genes. However, while the vitamin D protective functions in OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through hormonal influences and immune-mediated effects, as well as cellular and metabolic functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
40
|
Irelli A, Sirufo MM, Scipioni T, Pietro FD, Pancotti A, Ginaldi L, De Martinis M. Denosumab in breast cancer patients receiving aromatase inhibitors: A single-center observational study of effectiveness in adjuvant setting. Indian J Cancer 2021; 58:136-139. [PMID: 33402577 DOI: 10.4103/ijc.ijc_16_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Azzurra Irelli
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo; Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Teresa Scipioni
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, Italy
| | - Francesca De Pietro
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo; Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Amedeo Pancotti
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo; Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Lia Ginaldi
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo; Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Massimo De Martinis
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo; Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
41
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
42
|
Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation. Int J Mol Sci 2020; 21:ijms21155303. [PMID: 32722636 PMCID: PMC7432814 DOI: 10.3390/ijms21155303] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg−1 d−1) was orally administrated for eight weeks to study its preventive effects on diabetic osteoporosis. The results showed that eight weeks of CS treatment improved the symptoms of diabetes; the CS-treated group has increased body weight, decreased water or food intake, decreased blood glucose, increased bone-mineral density, repaired bone morphology and decreased femoral osteoclasts and tibia adipocytes numbers. After CS treatment, bone histomorphometric parameters returned to normal, the levels of serum inflammatory cytokines (IL-1β, IL-6 and TNF-α) decreased significantly, serum SOD, GPX and CAT activities increased and MDA level increased. In the CS-treated group, the levels of serum ALP, CTX-1, TRACP 5b, osteocalcin and RANKL decreased and the serum RUNX 2 and OPG levels increased. Bone immunohistochemistry results showed that CS can effectively increase the expression of OPG and RUNX2 and reduce the expression of RANKL in diabetic rats. All of these indicate that CS could prevent STZ induced diabetic osteoporosis—mainly through decreasing blood glucose, antioxidative stress, anti-inflammation and regulation of OPG/RANKL expression. CS can therefore effectively prevent bone loss caused by diabetes.
Collapse
|
43
|
Abbas H, Perna S, Shah A, Al-Mannai M, Gasparri C, Infantino V, Cereda E, Peroni G, Riva A, Petrangolini G, Rondanelli M. Risk factors for 5-year mortality in a cohort of elderly patients with sarcopenia. Exp Gerontol 2020; 136:110944. [PMID: 32289488 DOI: 10.1016/j.exger.2020.110944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The association between multiple risk factors and the mortality of sarcopenic patients has not been studied. This study's aim is to report the prevalence of sarcopenia among a sample of Italian hospitalized older adults, describe the physical function, body fat composition, cognitive, inflammatory and nutritional status of sarcopenic compared with non-sarcopenic subjects, and determine the risk factors associated with mortality in sarcopenic patients. METHOD A total of 462 patients were enrolled and followed up for a period of 5 years. Sarcopenia was diagnosed according to the EWGSOP2 criteria. Factors associated with sarcopenia were identified with linear regression analysis. Logistic regression was applied to explore the association between the risk factors and mortality in sarcopenic subjects. Survival analyses and predictors of mortality were identified using Kaplan-Meier and Cox regression. RESULTS The prevalence of sarcopenia was 33.5%. Linear regression showed that sarcopenia was associated with Barthel index (B -9.63, p0.004), BMI (B -3.19, p<0.001) and android fat (B 1.85, p0.004). Of these factors, only the number of co-morbidities (OR 1.394 C95% 1.023-1.862 p 0.025) and MMSE scores (OR 0.857 C95% 0.79-0.930 p <0.001) were associated with mortality in sarcopenia. Kaplan-Meier and the log-rank tests showed the negative prognostic effect of low BMI (p0.007), albumin (p<0.001) and Barthel index (p 0.018). The Cox regression showed that mortality hazard is reduced with BMI >24.9 (HR 0.287 C95% 0.095-0.866 p 0.027). CONCLUSION Sarcopenia is associated with low physical function and BMI but higher android fat. Low Barthel, BMI and albumin can significantly decrease the survival rate in sarcopenic patients. Whereas BMI >24.9 is associated with lower mortality hazard.
Collapse
Affiliation(s)
- Hanan Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Kingdom of Bahrain.
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Kingdom of Bahrain.
| | - Afzal Shah
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Kingdom of Bahrain
| | - Mariam Al-Mannai
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Kingdom of Bahrain.
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia 27100, Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy.
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia 27100, Italy.
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20139, Italy.
| | | | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy; IRCCS Mondino Foundation, Pavia 27100, Italy.
| |
Collapse
|
44
|
Ye X, Jiang H, Wang Y, Ji Y, Jiang X. A correlative studies between osteoporosis and blood cell composition: Implications for auxiliary diagnosis of osteoporosis. Medicine (Baltimore) 2020; 99:e20864. [PMID: 32590789 PMCID: PMC7328927 DOI: 10.1097/md.0000000000020864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/02/2020] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Osteoporosis is defined as a metabolic skeletal disease characterized by a decrease of the bone mass per unit volume, caused by a variety of reasons. Increasing evidence indicate that the host inflammatory response was correlated with the occurrence and development of osteoporosis, and it has been recognized that T lymphocytes and B lymphocytes play a critical role in pathogenesis of inflammatory bone disease. Between January 2018 and December 2018, retrospective analysis of 487 patients (exclusion of patients with recent infections and hematologic disorders whose leukocyte counts or classifications are markedly abnormal) who underwent bone mineral density (BMD) examinations in Huzhou Central Hospital. The patients were divided into normal bone density group, osteopenia group, and osteoporosis group according to the T score of BMD in the left femoral neck, respectively. Statistics of the lymphocyte ratio and the monocyte ratio in the blood routine examination results during the same period were performed so as to make a comparison of the differences among the groups. The correlation of the lymphocyte ratio and monocyte ratio with the T score of BMD in the left femoral neck was also analyzed. The difference between neutrocyte ratio lymphocyte ratio and the monocyte ratio was statistically significant in both males and females among the normal bone density group, osteopenia group and osteoporosis group (P < .01 or P < .05). Inflammation plays an important role in the progression of osteoporosis. By monitoring these three indicators in blood routine examination, early intervention for osteoporosis may become possible.
Collapse
Affiliation(s)
| | - Haowei Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Yafeng Ji
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| |
Collapse
|
45
|
De Martinis M, Sirufo MM, Nocelli C, Fontanella L, Ginaldi L. Hyperhomocysteinemia is Associated with Inflammation, Bone Resorption, Vitamin B12 and Folate Deficiency and MTHFR C677T Polymorphism in Postmenopausal Women with Decreased Bone Mineral Density. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4260. [PMID: 32549258 PMCID: PMC7345373 DOI: 10.3390/ijerph17124260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an age-related bone disease, affecting mainly postmenopausal women, characterized by decreased bone mineral density (BMD) and consequent risk of fractures. Homocysteine (Hcy), a sulfur-aminoacid whose serum level is regulated by methylenetrahydrofolate reductase (MTHFR) activity and vitamin B12 and folate as cofactors, is a risk factor for inflammatory diseases. Literature data concerning the link between Hcy and osteoporosis are still debated. The aim of our study was to assess the relationship among Hcy and BMD, inflammation, vitamin status and bone turnover in postmenopausal osteoporosis. In 252 postmenopausal women, BMD was measured by dual-energy X-ray absorptiometry (DXA). In addition to serum Hcy, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and bone turnover markers (bone alkaline phosphatase-BAP, osteocalcin-OC, C-terminal telopeptide of type I collagen (CTX), vitamin deficiencies and MTHFR-C677T polymorphism were evaluated. Hcy, inflammation, bone resorption markers and prevalence of C677T polymorphism were higher, whereas vitamin D, B12, folate, and bone formation markers were lower in women with decreased BMD compared to those with normal BMD. Our results suggest a significant association between Hcy, BMD and inflammation in postmenopausal osteoporosis. The regulation of Hcy overproduction and the modulation of the inflammatory substrate could represent additional therapeutic approaches for osteoporosis prevention.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | | | - Lara Fontanella
- Department of Legal and Social Sciences, University of Chieti-Pescara, 65127 Pescara, Italy;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| |
Collapse
|
46
|
Alahdal M, Duan L, Ouyang H, Wang D. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res 2020; 12:2322-2343. [PMID: 32655775 PMCID: PMC7344072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves articular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target against RA. However, the role IDO1 plays in the OA pathogenesis hasn't been discussed. The new OA experimental analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply discussed. It could be a promising target in the immunotherapy of OA disease.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| |
Collapse
|
47
|
Berger SM, Griffin JS, Dent SC. Phenotypes and pathways: Working toward an integrated skeletal biology in biological anthropology. Am J Hum Biol 2020; 33:e23450. [PMID: 32511865 DOI: 10.1002/ajhb.23450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 05/17/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Steph M Berger
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob S Griffin
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sophia C Dent
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Segan S, Jakobi M, Khokhani P, Klimosch S, Billing F, Schneider M, Martin D, Metzger U, Biesemeier A, Xiong X, Mukherjee A, Steuer H, Keller BM, Joos T, Schmolz M, Rothbauer U, Hartmann H, Burkhardt C, Lorenz G, Schneiderhan-Marra N, Shipp C. Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses in vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3481549. [PMID: 32461979 PMCID: PMC7240656 DOI: 10.1155/2020/3481549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
It has been widely shown that biomaterial surface topography can modulate host immune response, but a fundamental understanding of how different topographies contribute to pro-inflammatory or anti-inflammatory responses is still lacking. To investigate the impact of surface topography on immune response, we undertook a systematic approach by analyzing immune response to eight grades of medical grade polyurethane of increasing surface roughness in three in vitro models of the human immune system. Polyurethane specimens were produced with defined roughness values by injection molding according to the VDI 3400 industrial standard. Specimens ranged from 0.1 μm to 18 μm in average roughness (Ra), which was confirmed by confocal scanning microscopy. Immunological responses were assessed with THP-1-derived macrophages, human peripheral blood mononuclear cells (PBMCs), and whole blood following culture on polyurethane specimens. As shown by the release of pro-inflammatory and anti-inflammatory cytokines in all three models, a mild immune response to polyurethane was observed, however, this was not associated with the degree of surface roughness. Likewise, the cell morphology (cell spreading, circularity, and elongation) in THP-1-derived macrophages and the expression of CD molecules in the PBMC model on T cells (HLA-DR and CD16), NK cells (HLA-DR), and monocytes (HLA-DR, CD16, CD86, and CD163) showed no influence of surface roughness. In summary, this study shows that modifying surface roughness in the micrometer range on polyurethane has no impact on the pro-inflammatory immune response. Therefore, we propose that such modifications do not affect the immunocompatibility of polyurethane, thereby supporting the notion of polyurethane as a biocompatible material.
Collapse
Affiliation(s)
- Sören Segan
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Meike Jakobi
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Paree Khokhani
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Sascha Klimosch
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- HOT Screen GmbH, Aspenhaustraße 25, 72770 Reutlingen, Germany
| | - Florian Billing
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Markus Schneider
- University of Applied Sciences, Reutlingen, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Dagmar Martin
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ute Metzger
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Antje Biesemeier
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Center for Ophthalmology, University Hospital Tübingen, Schleichstr. 12/1, 72076 Tübingen, Germany
| | - Xin Xiong
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ashutosh Mukherjee
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Heiko Steuer
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | - Thomas Joos
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Manfred Schmolz
- HOT Screen GmbH, Aspenhaustraße 25, 72770 Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Hanna Hartmann
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Claus Burkhardt
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Günter Lorenz
- University of Applied Sciences, Reutlingen, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Christopher Shipp
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| |
Collapse
|
49
|
Ignatius A, Sobacchi C. Editorial: Innate Immunity in the Context of Osteoimmunology. Front Immunol 2020; 11:603. [PMID: 32318075 PMCID: PMC7154185 DOI: 10.3389/fimmu.2020.00603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Anita Ignatius
- Medical Center, Institute of Orthopedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Cristina Sobacchi
- Milan Unit, CNR-IRGB, Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| |
Collapse
|
50
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|