1
|
Erickson P, Jetley G, Amin P, Mejevdiwala A, Patel A, Cheng K, Parekkadan B. A cell culture system to model pharmacokinetics using adjustable-volume perfused mixing chambers. Toxicol In Vitro 2023; 91:105623. [PMID: 37236431 PMCID: PMC10526707 DOI: 10.1016/j.tiv.2023.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The pharmacokinetic (PK) profile of a drug is an essential factor in determining its efficacy, yet it is often neglected during in vitro cell culture experiments. Here, we present a system in which standard well plate cultures may be "plugged in" and perfused with PK drug profiles. Timed drug boluses or infusions are passed through a mixing chamber that simulates the PK volume of distribution specific to the desired drug. The user-specified PK drug profile generated by the mixing chamber passes through the incubated well plate culture, exposing cells to in vivo-like PK drug dynamics. The effluent stream from the culture may then optionally be fractionated and collected by a fraction collector. This low-cost system requires no custom parts and perfuses up to six cultures in parallel. This paper demonstrates a range of PK profiles the system can produce using a tracer dye, describes how to find the correct mixing chamber volumes to mimic PK profiles of drugs of interest, and presents a study exploring the effects of differing PK exposure on a model of lymphoma treatment with chemotherapy.
Collapse
Affiliation(s)
- Patrick Erickson
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Gunjan Jetley
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Param Amin
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Aamena Mejevdiwala
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Ashna Patel
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelli Cheng
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; Department of Medicine, Rutgers Biomedical Health Sciences, New Brunswick, NJ 08852, USA.
| |
Collapse
|
2
|
Grint I, Crea F, Vasiliadou R. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies. ChemistryOpen 2022; 11:e202200100. [PMID: 36166688 PMCID: PMC9716038 DOI: 10.1002/open.202200100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
Drugs are metabolized within the liver (pH 7.4) by phase I and phase II metabolism. During the process, reactive metabolites can be formed that react covalently with biomolecules and induce toxicity. Identifying and detecting reactive metabolites is an important part of drug development. Preclinical and clinical investigations are conducted to assess the toxicity and safety of a new drug candidate. Electrochemistry coupled to mass spectrometry is an ideal complementary technique to the current preclinical studies, a pure instrumental approach without any purification steps and tedious protocols. The combination of microfluidics with electrochemistry towards the mimicry of drug metabolism offers portability, low volume of reagents and faster reaction times. This review explores the development of microfluidic electrochemical cells for mimicking drug metabolism.
Collapse
Affiliation(s)
- Isobel Grint
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Francesco Crea
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Rafaela Vasiliadou
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| |
Collapse
|
3
|
Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in Organ-on-a-Chip Materials and Devices. ACS APPLIED BIO MATERIALS 2022; 5:3576-3607. [PMID: 35839513 DOI: 10.1021/acsabm.2c00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.
Collapse
Affiliation(s)
- Bishal Kumar Nahak
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| |
Collapse
|
4
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Khizar S, Ben Halima H, Ahmad NM, Zine N, Errachid A, Elaissari A. Magnetic nanoparticles in microfluidic and sensing: From transport to detection. Electrophoresis 2020; 41:1206-1224. [DOI: 10.1002/elps.201900377] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sumera Khizar
- Université de Lyon LAGEP, UMR‐5007, CNRS, Université Lyon 1, 5007 43 Bd 11 Novembre 1918 Villeurbanne F‐69622 France
- Polymer Research Lab School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) H‐12 Sector Islamabad 44000 Pakistan
| | - Hamdi Ben Halima
- Université de Lyon Institut des Science Analytiques UMR 5280, CNRS Université Lyon 1 ENS Lyon-5, rue de la Doua Villeurbanne F‐69100 France
| | - Nasir M. Ahmad
- Polymer Research Lab School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) H‐12 Sector Islamabad 44000 Pakistan
| | - Nadia Zine
- Université de Lyon Institut des Science Analytiques UMR 5280, CNRS Université Lyon 1 ENS Lyon-5, rue de la Doua Villeurbanne F‐69100 France
| | - Abdelhamid Errachid
- Université de Lyon Institut des Science Analytiques UMR 5280, CNRS Université Lyon 1 ENS Lyon-5, rue de la Doua Villeurbanne F‐69100 France
| | - Abdelhamid Elaissari
- Université de Lyon LAGEP, UMR‐5007, CNRS, Université Lyon 1, 5007 43 Bd 11 Novembre 1918 Villeurbanne F‐69622 France
| |
Collapse
|
6
|
Sharifi F, Firoozabadi B, Firoozbakhsh K. Numerical Investigations of Hepatic Spheroids Metabolic Reactions in a Perfusion Bioreactor. Front Bioeng Biotechnol 2019; 7:221. [PMID: 31572719 PMCID: PMC6751279 DOI: 10.3389/fbioe.2019.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Miniaturized culture systems of hepatic cells are emerging as a strong tool facilitating studies related to liver diseases and drug discovery. However, the experimental optimization of various parameters involved in the operation of these systems is time-consuming and expensive. Hence, developing numerical tools predicting the function of such systems can significantly reduce the associated cost. In this paper, a perfusion-based three dimensional (3D) bioreactor comprising encapsulated human liver hepatocellular carcinoma (HepG2) spheroids are analyzed. The flow and mass transfer equations for oxygen as well as different metabolites such as albumin, glucose, glutamine, ammonia, and urea were solved in three different domains, i.e., free flow, hydrogel, and spheroid porous media sections. Since the spheroids were encapsulated inside the hydrogel, shear stress imposed on them were found to be less than tolerable thresholds. The predicted cumulative albumin concentration over the 7 days of culture period showed a good agreement with the experimental data. Based on the critical role of oxygen supply to the hepatocytes, a parametric study was performed and the effect of various parameters was investigated. Results illustrated that convection mechanism was the dominant transport mechanism in the main-stream section contrary to the intra spheroids parts where the diffusion was the prevailing transport mechanism. In the hydrogel parts, the rate of diffusion and convection mechanisms were almost identical. As expected, higher perfusion rate would provide high oxygen level for the cells and, smaller spheroids with a diameter of 100 μm were at the low risk of hypoxic conditions due to short diffusive oxygen penetration depth. Numerical results evidenced that spheroids with diameter size >200 μm at low porosities (ε = 0.2-0.3) were at risk of oxygen depletion, especially at locations near the core center. Therefore, these results could be beneficial in preventing hypoxic conditions during in vitro experiments. The presented numerical model provides a numerical platform which can help researchers to design and optimize complex bioreactors and obtain numerical indexes of the main metabolites in a very short time prior to any fabrications. Such numerical indexes can be helpful in certifying the outcomes of forensic investigations.
Collapse
Affiliation(s)
| | - Bahar Firoozabadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
7
|
Permeability of Epithelial/Endothelial Barriers in Transwells and Microfluidic Bilayer Devices. MICROMACHINES 2019; 10:mi10080533. [PMID: 31412604 PMCID: PMC6722679 DOI: 10.3390/mi10080533] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
Lung-on-a-chip (LoC) models hold the potential to rapidly change the landscape for pulmonary drug screening and therapy, giving patients more advanced and less invasive treatment options. Understanding the drug absorption in these microphysiological systems, modeling the lung-blood barrier is essential for increasing the role of the organ-on-a-chip technology in drug development. In this work, epithelial/endothelial barrier tissue interfaces were established in microfluidic bilayer devices and transwells, with porous membranes, for permeability characterization. The effect of shear stress on the molecular transport was assessed using known paracellular and transcellular biomarkers. The permeability of porous membranes without cells, in both models, is inversely proportional to the molecular size due to its diffusivity. Paracellular transport, between epithelial/endothelial cell junctions, of large molecules such as transferrin, as well as transcellular transport, through cell lacking required active transporters, of molecules such as dextrans, is negligible. When subjected to shear stress, paracellular transport of intermediate-size molecules such as dextran was enhanced in microfluidic devices when compared to transwells. Similarly, shear stress enhances paracellular transport of small molecules such as Lucifer yellow, but its effect on transcellular transport is not clear. The results highlight the important role that LoC can play in drug absorption studies to accelerate pulmonary drug development.
Collapse
|
8
|
Prantil-Baun R, Novak R, Das D, Somayaji MR, Przekwas A, Ingber DE. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. Annu Rev Pharmacol Toxicol 2019; 58:37-64. [PMID: 29309256 DOI: 10.1146/annurev-pharmtox-010716-104748] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches are beginning to be integrated into drug development and approval processes because they enable key pharmacokinetic (PK) parameters to be predicted from in vitro data. However, these approaches are hampered by many limitations, including an inability to incorporate organ-specific differentials in drug clearance, distribution, and absorption that result from differences in cell uptake, transport, and metabolism. Moreover, such approaches are generally unable to provide insight into pharmacodynamic (PD) parameters. Recent development of microfluidic Organ-on-a-Chip (Organ Chip) cell culture devices that recapitulate tissue-tissue interfaces, vascular perfusion, and organ-level functionality offer the ability to overcome these limitations when multiple Organ Chips are linked via their endothelium-lined vascular channels. Here, we discuss successes and challenges in the use of existing culture models and vascularized Organ Chips for PBPK and PD modeling of human drug responses, as well as in vitro to in vivo extrapolation (IVIVE) of these results, and how these approaches might advance drug development and regulatory review processes in the future.
Collapse
Affiliation(s)
- Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA;
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA;
| | - Debarun Das
- CFD Research Corporation, Huntsville, Alabama 35806, USA
| | | | | | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA; .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Ma CH, Zhang HB, Yang SM, Yin RX, Yao XJ, Zhang WJ. Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions. BIOMICROFLUIDICS 2018; 12:034106. [PMID: 29861809 PMCID: PMC5959737 DOI: 10.1063/1.5021394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/01/2018] [Indexed: 06/02/2023]
Abstract
Degradation of scaffolds is an important problem in tissue regeneration management. This paper reports a comparative study on degradation of the printed 3D poly (lactic-co-glycolic acid) scaffold under three conditions, namely, micro-channel, incubator static, and incubator shaking in the phosphate buffer saline (PBS) solution. In the case of the micro-channel condition, the solution was circulated. The following attributes of the scaffold and the solution were measured, including the mass or weight loss, water uptake, morphological and structural changes, and porosity change of the scaffold and the pH value of the PBS solution. In addition, shear stress in the scaffold under the micro-channel condition at the initial time was calculated with Computational Fluid Dynamics (CFD) to see how the shear stress factor may affect the morphological change of the scaffold. The results showed that the aforementioned attributes in the condition of the micro-channel were significantly different from the other two conditions. The mechanisms that account for the results were proposed. The reasons behind the results were explored. The main contributions of the study were (1) new observations of the degradation behavior of the scaffold under the micro-channel condition compared with the conditions of incubator static and incubator shaking along with underlying reasons, (2) new understanding of the role of the shear stress in the scaffold under the condition of the micro-channel to the morphological change of the scaffold, and (3) new understanding of interactions among the attributes pertinent to scaffold degradation, such as weight loss, water uptake, pH value, porosity change, and morphological change. This study sheds important light on the scaffold degradation to be controlled more precisely.
Collapse
Affiliation(s)
- C. H. Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - H. B. Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - S. M. Yang
- School of Mechatronics and Automation, Shanghai University, Shanghai, China
| | - R. X. Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - X. J. Yao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - W. J. Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Canada
| |
Collapse
|
10
|
Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017; 11:46. [PMID: 29204185 PMCID: PMC5702480 DOI: 10.1186/s13036-017-0081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Liver disease contributes significantly to global disease burden and is associated with rising incidence and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative medicine, will counter these trends. Main body Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal publications, recent progress within these fields, and commercialization efforts. The areas reviewed include fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells, pluripotent stem cells, hepatic microdevices, and decellularized liver grafts. Conclusion These studies highlight the creative directions of liver regenerative medicine, the collective efforts of scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will impact patients with liver disease.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA
| | - Janet Oluwole
- Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| |
Collapse
|
11
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
12
|
Barnes PJ, Bonini S, Seeger W, Belvisi MG, Ward B, Holmes A. Barriers to new drug development in respiratory disease. Eur Respir J 2016; 45:1197-207. [PMID: 25931481 DOI: 10.1183/09031936.00007915] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sergio Bonini
- Second University of Naples, Caserta, Italy Institute of Translational Pharmacology-CNR, Rome, Italy European Medicines Agency, London, UK
| | - Werner Seeger
- University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Maria G Belvisi
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian Ward
- European Affairs Dept, European Respiratory Society, Brussels, Belgium
| | - Anthony Holmes
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
13
|
Marshall LE, Goliwas KF, Miller LM, Penman AD, Frost AR, Berry JL. Flow-perfusion bioreactor system for engineered breast cancer surrogates to be used in preclinical testing. J Tissue Eng Regen Med 2015; 11:1242-1250. [PMID: 25950420 DOI: 10.1002/term.2026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/28/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
There is a need for preclinical testing systems that predict the efficacy, safety and pharmacokinetics of cancer therapies better than existing in vitro and in vivo animal models. An approach to the development of predictive in vitro systems is to more closely recapitulate the cellular and spatial complexity of human cancers. One limitation of using current in vitro systems to model cancers is the lack of an appropriately large volume to accommodate the development of this complexity over time. To address this limitation, we have designed and constructed a novel flow-perfusion bioreactor system that can support large-volume, engineered tissue comprised of multicellular cancer surrogates by modifying current microfluidic devices. Key features of this technology are a three-dimensional (3D) volume (1.2 cm3 ) that has greater tissue thickness than is utilized in existing microfluidic systems and the ability to perfuse the volume, enabling the development of realistic tumour geometry. The constructs were fabricated by infiltrating porous carbon foams with an extracellular matrix (ECM) hydrogel and engineering through-microchannels. The carbon foam structurally supported the hydrogel and microchannel patency for up to 161 h. The ECM hydrogel was shown to adhere to the carbon foam and polydimethylsiloxane flow chamber, which housed the hydrogel-foam construct, when surfaces were coated with glutaraldehyde (carbon foam) and nitric acid (polydimethylsiloxane). Additionally, the viability of breast cancer cells and fibroblasts was higher in the presence of perfused microchannels in comparison to similar preparations without microchannels or perfusion. Therefore, the flow-perfusion bioreactor system supports cell viability in volume and stromal contexts that are physiologically-relevant. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lauren E Marshall
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| | - Kayla F Goliwas
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Lindsay M Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| | | | - Andra R Frost
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
14
|
Usta OB, McCarty WJ, Bale S, Hegde M, Jindal R, Bhushan A, Golberg I, Yarmush ML. Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of in-vitro liver technologies. TECHNOLOGY 2015; 3:1-26. [PMID: 26167518 PMCID: PMC4494128 DOI: 10.1142/s2339547815300012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.
Collapse
Affiliation(s)
- O B Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - W J McCarty
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - S Bale
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M Hegde
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - R Jindal
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - A Bhushan
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - I Golberg
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA ; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Freitas AA, Limbu K, Ghafourian T. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients. J Cheminform 2015; 7:6. [PMID: 25767566 PMCID: PMC4356883 DOI: 10.1186/s13321-015-0054-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. RESULTS Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. CONCLUSIONS Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Collapse
Affiliation(s)
- Alex A Freitas
- />School of Computing, University of Kent, Canterbury, CT2 7NF UK
| | - Kriti Limbu
- />Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, Kent, ME4 4TB UK
| | - Taravat Ghafourian
- />Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, Kent, ME4 4TB UK
- />Drug Applied Research Centre and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Vivares A, Salle-Lefort S, Arabeyre-Fabre C, Ngo R, Penarier G, Bremond M, Moliner P, Gallas JF, Fabre G, Klieber S. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 2014; 45:29-44. [PMID: 25068923 DOI: 10.3109/00498254.2014.944612] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. The quantitative prediction of the pharmacokinetic parameters of a drug from data obtained using human in vitro systems remains a significant challenge i.e. prediction of metabolic clearance in humans and estimation of the relative contribution of enzymes involved in the clearance. This has become particularly problematic for low turnover compounds. 2. Having human hepatocytes with stable cellular function over several days that adequately mimic the complexity of the physiological environment would be a major advance. Thus, we evaluated human hepatocytes, maintained in culture during 7 days in the microfluidic LiverChip™ system, in terms of morphological appearance, relative mRNA expression of phase I and II enzymes and transporters as a function of time, and metabolic capacity using probe substrates. 3. The results showed that mRNA levels of the major genes for enzymes involved in drug metabolism were well-maintained over a 7-day period of culture. Furthermore, after 4 days of culture, in the Liverchip™ device, human hepatocytes exhibited higher or similar CYPs activities compared to 1 day of culture in 2D-static conditions. 4. The functional data were supported by light/electron microscopies and immunohistochemistry showing viable tissue structure and well-differentiated human hepatocytes: presence of cell junctions, glycogen storage, and bile canaliculi.
Collapse
Affiliation(s)
- Aurelie Vivares
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Plateform, SANOFI R&D , Montpellier , France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim D, Wu X, Young AT, Haynes CL. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Acc Chem Res 2014; 47:1165-73. [PMID: 24555566 PMCID: PMC3993883 DOI: 10.1021/ar4002608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The human body is a complex network of molecules,
organelles, cells,
tissues, and organs: an uncountable number of interactions and transformations
interconnect all the system’s components. In addition to these
biochemical components, biophysical components, such as pressure,
flow, and morphology, and the location of all of these interactions
play an important role in the human body. Technical difficulties have
frequently limited researchers from observing cellular biology as
it occurs within the human body, but some state-of-the-art analytical
techniques have revealed distinct cellular behaviors that occur only
in the context of the interactions. These types of findings have inspired
bioanalytical chemists to provide new tools to better understand these
cellular behaviors and interactions. What blocks us from understanding
critical biological interactions
in the human body? Conventional approaches are often too naïve
to provide realistic data and in vivo whole animal studies give complex
results that may or may not be relevant for humans. Microfluidics
offers an opportunity to bridge these two extremes: while these studies
will not model the complexity of the in vivo human system, they can
control the complexity so researchers can examine critical factors
of interest carefully and quantitatively. In addition, the use of
human cells, such as cells isolated from donated blood, captures human-relevant
data and limits the use of animals in research. In addition, researchers
can adapt these systems easily and cost-effectively to a variety of
high-end signal transduction mechanisms, facilitating high-throughput
studies that are also spatially, temporally, or chemically resolved.
These strengths should allow microfluidic platforms to reveal critical
parameters in the human body and provide insights that will help with
the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations
within the last 5 years that focus on modeling both biophysical and
biochemical interactions in cellular communication, such as flow and
cell–cell networks. We also describe more advanced systems
that mimic higher level biological networks, such as organ on-a-chip
and animal on-a-chip models. Since the first papers in the early 1990s,
interest in the bioanalytical use of microfluidics has grown significantly.
Advances in micro-/nanofabrication technology have allowed researchers
to produce miniaturized, biocompatible assay platforms suitable for
microfluidic studies in biochemistry and chemical biology. Well-designed
microfluidic platforms can achieve quick, in vitro analyses on pico-
and femtoliter volume samples that are temporally, spatially, and
chemically resolved. In addition, controlled cell culture techniques
using a microfluidic platform have produced biomimetic systems that
allow researchers to replicate and monitor physiological interactions.
Pioneering work has successfully created cell–fluid, cell–cell,
cell–tissue, tissue–tissue, even organ-like level interfaces.
Researchers have monitored cellular behaviors in these biomimetic
microfluidic environments, producing validated model systems to understand
human pathophysiology and to support the development of new therapeutics.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Xiaojie Wu
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ashlyn T. Young
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Roth A, Singer T. The application of 3D cell models to support drug safety assessment: opportunities & challenges. Adv Drug Deliv Rev 2014; 69-70:179-89. [PMID: 24378580 DOI: 10.1016/j.addr.2013.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022]
Abstract
The selection of drug candidates early in development has become increasingly important to minimize the use of animals and to avoid costly failures of drugs later in development. In vitro systems to predict and assess organ toxicity have so far been of limited value due to difficulties in demonstrating in vivo-relevant toxicity at a cell culture level. To overcome the limitations of single-cell type monolayer cultures and short-lived primary cell preparations, researchers have created novel 3-dimensional culture systems which appear to more closely resemble in vivo biology. These could become a key for the pharmaceutical industry in the evaluation of drug candidates. However, the value and acceptance of those new models in standard drug safety applications have yet to be demonstrated. This review aims to provide an overview of the different approaches undertaken in the field of pre-clinical safety assessment, organ toxicity, in particular, with an emphasis on examples and technical challenges.
Collapse
Affiliation(s)
- Adrian Roth
- F. Hoffmann-La Roche Ltd., Pharma Research, 4070 Basel, Switzerland
| | - Thomas Singer
- F. Hoffmann-La Roche Ltd., Pharma Research, 4070 Basel, Switzerland
| |
Collapse
|
19
|
Extrapolating In Vitro Results to Predict Human Toxicity. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Atienzar FA, Novik EI, Gerets HH, Parekh A, Delatour C, Cardenas A, MacDonald J, Yarmush ML, Dhalluin S. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol Appl Pharmacol 2013; 275:44-61. [PMID: 24333257 DOI: 10.1016/j.taap.2013.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
Abstract
Drug induced liver injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n=40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n=11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n=14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies.
Collapse
Affiliation(s)
- Franck A Atienzar
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium.
| | - Eric I Novik
- Hμrel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902, USA
| | - Helga H Gerets
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Amit Parekh
- Hμrel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902, USA
| | - Claude Delatour
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Alvaro Cardenas
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - James MacDonald
- Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Stéphane Dhalluin
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| |
Collapse
|
21
|
Hsu MN, Tan GDS, Tania M, Birgersson E, Leo HL. Computational fluid model incorporating liver metabolic activities in perfusion bioreactor. Biotechnol Bioeng 2013; 111:885-95. [PMID: 24311109 DOI: 10.1002/bit.25157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/30/2013] [Accepted: 11/12/2013] [Indexed: 12/11/2022]
Abstract
The importance of in vitro hepatotoxicity testing during early stages of drug development in the pharmaceutical industry demands effective bioreactor models with optimized conditions. While perfusion bioreactors have been proven to enhance mass transfer and liver specific functions over a long period of culture, the flow-induced shear stress has less desirable effects on the hepatocytes liver-specific functions. In this paper, a two-dimensional human liver hepatocellular carcinoma (HepG2) cell culture flow model, under a specified flow rate of 0.03 mL/min, was investigated. Besides computing the distribution of shear stresses acting on the surface of the cell culture, our numerical model also investigated the cell culture metabolic functions such as the oxygen consumption, glucose consumption, glutamine consumption, and ammonia production to provide a fuller analysis of the interaction among the various metabolites within the cell culture. The computed albumin production of our 2D flow model was verified by the experimental HepG2 culture results obtained over 3 days of culture. The results showed good agreement between our experimental data and numerical predictions with corresponding cumulative albumin production of 2.9 × 10(-5) and 3.0 × 10(-5) mol/m(3) , respectively. The results are of importance in making rational design choices for development of future bioreactors with more complex geometries.
Collapse
Affiliation(s)
- Myat Noe Hsu
- Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | | | | | | | | |
Collapse
|
22
|
Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes. MICROMACHINES 2013. [DOI: 10.3390/mi4010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
|
24
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
25
|
Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2012; 2:403-30. [PMID: 22432625 DOI: 10.1146/annurev-chembioeng-061010-114257] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users.
Collapse
Affiliation(s)
- François Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
26
|
Sharma NS, Jindal R, Mitra B, Lee S, Li L, Maguire TJ, Schloss R, Yarmush ML. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis. Cell Mol Bioeng 2011; 5:52-72. [PMID: 24741377 DOI: 10.1007/s12195-011-0189-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Serom Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Lulu Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Tim J Maguire
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA ; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
27
|
Holmes AM, Solari R, Holgate ST. Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov Today 2011; 16:659-70. [PMID: 21723955 DOI: 10.1016/j.drudis.2011.05.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/15/2011] [Accepted: 05/31/2011] [Indexed: 11/15/2022]
Abstract
Asthma remains an area of considerable unmet medical need. Few new drugs have made it to the clinic during the past 50 years, with many that perform well in preclinical animal models of asthma, failing in humans owing to lack of safety and efficacy. The failure to translate promising drug candidates from animal models to humans has led to questions about the utility of in vivo studies and to demand for more predictive models and tools based on the latest technologies. Following a workshop with experts from academia and the pharmaceutical industry, we suggest here a disease modelling framework designed to better understand human asthma, and accelerate the development of safe and efficacious new asthma drugs that go beyond symptomatic relief.
Collapse
Affiliation(s)
- Anthony M Holmes
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, 20 Park Crescent, London, W1B 1AL, UK.
| | | | | |
Collapse
|
28
|
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011; 51:45-73. [PMID: 20854171 DOI: 10.1146/annurev-pharmtox-010510-100540] [Citation(s) in RCA: 445] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of physiologically-based pharmacokinetic (PBPK) modeling is coming of age in drug development and regulation, reflecting significant advances over the past 10 years in the predictability of key pharmacokinetic (PK) parameters from human in vitro data and in the availability of dedicated software platforms and associated databases. Specific advances and contemporary challenges with respect to predicting the processes of drug clearance, distribution, and absorption are reviewed, together with the ability to anticipate the quantitative extent of PK-based drug-drug interactions and the impact of age, genetics, disease, and formulation. The value of this capability in selecting and designing appropriate clinical studies, its implications for resource-sparing techniques, and a more holistic view of the application of PK across the preclinical/clinical divide are considered. Finally, some attention is given to the positioning of PBPK within the drug development and approval paradigm and its future application in truly personalized medicine.
Collapse
Affiliation(s)
- Malcolm Rowland
- Centre for Pharmacokinetic Research, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
29
|
Wang J, Collis A. Maximizing the outcome of early ADMET models: strategies to win the drug-hunting battles? Expert Opin Drug Metab Toxicol 2011; 7:381-6. [DOI: 10.1517/17425255.2011.562199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays. Biomed Microdevices 2011; 13:415-30. [DOI: 10.1007/s10544-011-9510-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|