1
|
Dai W, Diao H, Qu H, Wurm D, Lu Y, Chen QM. DExH-Box Helicase 9 Participates in De Novo Nrf2 Protein Translation Under Oxidative Stress. Mol Cell Proteomics 2025; 24:100977. [PMID: 40280489 DOI: 10.1016/j.mcpro.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Nrf2 transcript factor plays an important role in cellular defense against oxidative stress due to its control for expression of antioxidant and detoxification genes. We have found that Nrf2 gene undergoes de novo protein translation when mammalian cells encounter oxidative stress. Here, we report the discovery of DExH-box helicase-9 (DHX9), also known as RNA helicase A, as a binding protein for Nrf2 mRNA at 5'UTR. DHX9 binding to Nrf2 5'UTR increased with increasing doses (50-300 μM) of H2O2 or treatment time (10-120 min). This incease was in parallel with elevation of Nrf2 protein. Inhibiting DHX9 expression with siRNA or its activity with YK-4-279 inhibitor blocked H2O2 from inducing Nrf2 mRNA recruitment to the ribosomes or Nrf2 protein elevation. As a nuclear protein, DHX9 was found to increase its abundance in the cytosol with oxidative stress. An increase of DHX9 was detected in the ribosomes from cells treated with H2O2, most significantly with 100 μM H2O2, and at 60 min. Ribosomal fractionation revealed an increase of DHX9 protein at 43/48S and 80S fractions in H2O2-treated cells. H2O2 treatment caused an RNA-dependent increase of DHX9 interaction with eIF3η. The binding of DHX9 to Nrf2 5'UTR was enhanced by H2O2-treated cells or by deducting the length of Nrf2 5'UTR. RNase digestion enhanced DHX9 association with the ribosomes. Our data have revealed a novel mechanism of de novo Nrf2 protein translation under oxidative stress involving DHX9 binding to Nrf2 5'UTR, perhaps via removal of a negative RNA element, to recruit 43S preinitiation complex for translation initiation.
Collapse
Affiliation(s)
- Wujing Dai
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Hongting Diao
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Han Qu
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Daniel Wurm
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Yingying Lu
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA
| | - Qin M Chen
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, Arizona, USA.
| |
Collapse
|
2
|
Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: Advances and challenges. J Biol Chem 2025; 301:108015. [PMID: 39608721 PMCID: PMC11728972 DOI: 10.1016/j.jbc.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a powerful tool against communicable diseases and cancers, as demonstrated by their huge success during the coronavirus disease 2019 (COVID-19) pandemic. Despite the outstanding achievements, mRNA vaccines still face challenges such as stringent storage requirements, insufficient antigen expression, and unexpected immune responses. Since the intrinsic properties of mRNA molecules significantly impact vaccine performance, optimizing mRNA design is crucial in preclinical development. In this review, we outline four key principles for optimal mRNA sequence design: enhancing ribosome loading and translation efficiency through untranslated region (UTR) optimization, improving translation efficiency via codon optimization, increasing structural stability by refining global RNA sequence and extending in-cell lifetime and expression fidelity by adjusting local RNA structures. We also explore recent advancements in computational models for designing and optimizing mRNA vaccine sequences following these principles. By integrating current mRNA knowledge, addressing challenges, and examining advanced computational methods, this review aims to promote the application of computational approaches in mRNA vaccine development and inspire novel solutions to existing obstacles.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Sicheng Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA; Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
3
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
4
|
Liu R, Yao J, Zhou S, Yang J, Zhang Y, Yang X, Li L, Zhang Y, Zhuang Y, Yang Y, Chen X. Spatiotemporal control of RNA metabolism and CRISPR-Cas functions using engineered photoswitchable RNA-binding proteins. Nat Protoc 2024; 19:374-405. [PMID: 38036926 DOI: 10.1038/s41596-023-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/19/2023] [Indexed: 12/02/2023]
Abstract
RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Siyu Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyan Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Leshi Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Reshetnikov V, Terenin I, Shepelkova G, Yeremeev V, Kolmykov S, Nagornykh M, Kolosova E, Sokolova T, Zaborova O, Kukushkin I, Kazakova A, Kunyk D, Kirshina A, Vasileva O, Seregina K, Pateev I, Kolpakov F, Ivanov R. Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. Int J Mol Sci 2024; 25:888. [PMID: 38255961 PMCID: PMC10815675 DOI: 10.3390/ijms25020888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
mRNA vaccines have been shown to be effective in combating the COVID-19 pandemic. The amount of research on the use of mRNAs as preventive and therapeutic modalities has undergone explosive growth in the last few years. Nonetheless, the issue of the stability of mRNA molecules and their translation efficiency remains incompletely resolved. These characteristics of mRNA directly affect the expression level of a desired protein. Regulatory elements of RNA-5' and 3' untranslated regions (UTRs)-are responsible for translation efficiency. An optimal combination of the regulatory sequences allows mRNA to significantly increase the target protein's expression. We assessed the translation efficiency of mRNA encoding of firefly luciferase with various 5' and 3'UTRs in vitro on cell lines DC2.4 and THP1. We found that mRNAs containing 5'UTR sequences from eukaryotic genes HBB, HSPA1A, Rabb, or H4C2, or from the adenoviral leader sequence TPL, resulted in higher levels of luciferase bioluminescence 4 h after transfection of DC2.4 cells as compared with 5'UTR sequences used in vaccines mRNA-1273 and BNT162b2 from Moderna and BioNTech. mRNA containing TPL as the 5'UTR also showed higher efficiency (as compared with the 5'UTR from Moderna) at generating a T-cell response in mice immunized with mRNA vaccines encoding a multiepitope antigen. By contrast, no effects of various 5'UTRs and 3'UTRs were detectable in THP1 cells, suggesting that the observed effects are cell type specific. Further analyses enabled us to identify potential cell type-specific RNA-binding proteins that differ in landing sites within mRNAs with various 5'UTRs and 3'UTRs. Taken together, our data indicate high translation efficiency of TPL as a 5'UTR, according to experiments on DC2.4 cells and C57BL/6 mice.
Collapse
Affiliation(s)
- Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ilya Terenin
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | - Semyon Kolmykov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maxim Nagornykh
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Elena Kolosova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Tatiana Sokolova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Zaborova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ivan Kukushkin
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alisa Kazakova
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry Kunyk
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Kristina Seregina
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ildus Pateev
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Fedor Kolpakov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
6
|
Choi GH, Cho SH, An HJ, Park HS, Lee JY, Ko EJ, Oh SH, Kim OJ, Kim NK. Association between PAI-1 Polymorphisms and Ischemic Stroke in a South Korean Case-Control Cohort. Int J Mol Sci 2023; 24:8041. [PMID: 37175749 PMCID: PMC10178745 DOI: 10.3390/ijms24098041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Stroke is the second leading cause of death in the world. Approximately 80% of strokes are ischemic in origin. Many risk factors have been linked to stroke, including an increased level of plasminogen activator inhibitor-1 (PAI-1). PAI-1 levels increase and remain elevated in blood during the acute phase of ischemic stroke, which can impair fibrinolytic activity, leading to coronary artery disease and arterial thrombotic disorders. Here, we present a case-control study of 574 stroke patients and 425 controls seen for routine health examination or treatment for nonspecific dizziness, nonorganic headache, or anxiety for positive family history of stroke at the Bundang Medical Center in South Korea. Polymorphisms in PAI-1 were identified by polymerase chain reaction/restriction fragment length polymorphism analysis using genomic DNA. Specifically, three variations (-675 4G>5G, 10692T>C, and 12068G>A) were linked to a higher overall prevalence of stroke as well as a higher prevalence of certain stroke subtypes. Haplotype analyses also revealed combinations of these variations (-844G>A, -675 4G>5G, 43G>A, 9785A>G, 10692T>C, 11053T>G, and 12068G>A) that were significantly associated with a higher prevalence of ischemic stroke. To the best of our knowledge, this is the first strong evidence that polymorphic sites in PAI-1 promoter and 3'-UTR regions are associated with higher ischemic stroke risk. Furthermore, the PAI-1 genotypes and haplotypes identified here have potential as clinical biomarkers of ischemic stroke and could improve the prognosis and future management of stroke patients.
Collapse
Affiliation(s)
- Gun Ho Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- College of Medicine, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Seung Hun Oh
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
7
|
von der Haar T, Mulroney TE, Hedayioglu F, Kurusamy S, Rust M, Lilley KS, Thaventhiran JE, Willis AE, Smales CM. Translation of in vitro-transcribed RNA therapeutics. Front Mol Biosci 2023; 10:1128067. [PMID: 36845540 PMCID: PMC9943971 DOI: 10.3389/fmolb.2023.1128067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.
Collapse
Affiliation(s)
- Tobias von der Haar
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Thomas E. Mulroney
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Hedayioglu
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Sathishkumar Kurusamy
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Maria Rust
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Thaventhiran
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Anne E. Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - C. Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
8
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
9
|
LncRNA-Profile-Based Screening of Extracellular Vesicles Released from Brain Endothelial Cells after Oxygen–Glucose Deprivation. Brain Sci 2022; 12:brainsci12081027. [PMID: 36009090 PMCID: PMC9405926 DOI: 10.3390/brainsci12081027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Brain microvascular endothelial cells (BMECs) linked by tight junctions play important roles in cerebral ischemia. Intercellular signaling via extracellular vesicles (EVs) is an underappreciated mode of cell–cell crosstalk. This study aims to explore the potential function of long noncoding RNAs (lncRNAs) in BMECs’ secreted EVs. We subjected primary human and rat BMECs to oxygen and glucose deprivation (OGD). EVs were enriched for RNA sequencing. A comparison of the sequencing results revealed 146 upregulated lncRNAs and 331 downregulated lncRNAs in human cells and 1215 upregulated lncRNAs and 1200 downregulated lncRNAs in rat cells. Next, we analyzed the genes that were coexpressed with the differentially expressed (DE) lncRNAs on chromosomes and performed Gene Ontology (GO) and signaling pathway enrichment analyses. The results showed that the lncRNAs may play roles in apoptosis, the TNF signaling pathway, and leukocyte transendothelial migration. Next, three conserved lncRNAs between humans and rats were analyzed and confirmed using PCR. The binding proteins of these three lncRNAs in human astrocytes were identified via RNA pulldown and mass spectrometry. These proteins could regulate mRNA stability and translation. Additionally, the lentivirus was used to upregulate them in human microglial HMC3 cells. The results showed NR_002323.2 induced microglial M1 activation. Therefore, these results suggest that BMECs’ EVs carry the lncRNAs, which may regulate gliocyte function after cerebral ischemia.
Collapse
|
10
|
Mishra P, Sankar SHH, Gosavi N, Bharathavikru RS. RNA nucleoprotein complexes in biological systems. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Liu T, Huang T, Shang M, Han G. CircRNA ITCH: Insight Into Its Role and Clinical Application Prospect in Tumor and Non-Tumor Diseases. Front Genet 2022; 13:927541. [PMID: 35910224 PMCID: PMC9335290 DOI: 10.3389/fgene.2022.927541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
CircRNA E3 ubiquitin protein ligase (ITCH) (circRNA ITCH, circ-ITCH), a stable closed-loop RNA derived from the 20q11.22 region of chromosome 20, is a new circRNA discovered in the cytoplasm in recent decades. Studies have shown that it does not encode proteins, but regulates proteins expression at different levels. It is down-regulated in tumor diseases and is involved in a number of biological activities, including inhibiting cell proliferation, migration, invasion, and promoting apoptosis. It can also alter disease progression in non-tumor disease by affecting the cell cycle, inflammatory response, and critical proteins. Circ-ITCH also holds a lot of promise in terms of tumor and non-tumor clinical diagnosis, prognosis, and targeted therapy. As a result, in order to aid clinical research in the hunt for a new strategy for diagnosing and treating human diseases, this study describes the mechanism of circ-ITCH as well as its clinical implications.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tao Huang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mei Shang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gang Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhou Y, Fang W, Pang Z, Chen LY, Cai H, Ain NU, Chang MC, Ming R. AP1G2 Affects Mitotic Cycles of Female and Male Gametophytes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:924417. [PMID: 35873977 PMCID: PMC9301471 DOI: 10.3389/fpls.2022.924417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
During sexual reproduction in flowering plants, haploid spores are formed from meiosis of spore mother cells. The spores then undergo mitosis, develop into female and male gametophytes, and give rise to seeds after fertilization. We identified a female sterile mutant ap1g2-4 from EMS mutagenesis, and analyses of two T-DNA insertion mutants, ap1g2-1 +/- and ap1g2-3 -/-, and detected a partial female and male sterility. The ap1g2 mutant gametophyte development was arrested at one nuclear stage. A complementation test using a genomic sequence of AP1G2 with its native promoter restored the function in the three ap1g2 mutant lines. Transcriptome profiling of ap1g2 ovules revealed that four genes encoding clathrin assembly proteins PICALM5A/B and PICALM9A/B, which were involved in endocytosis, were downregulated, which were confirmed to interact with AP1G2 through yeast two-hybrid assays and BIFC analysis. Our result also demonstrated that RALFL4-8-15-19-26 CML16 and several calcium-dependent protein kinases, including CPK14-16-17, were all downregulated in the ovules of ap1g2-1 +/-. Moreover, Ca2+ concentration was low in impaired gametophytes. Therefore, we proposed that through interaction with PICALM5A/B and PICALM9A/B, AP1G2 may mediate gametogenesis accompanied by Ca2+ signaling in Arabidopsis. Our findings revealed a crucial role of AP1G2 in female and male gametogenesis in Arabidopsis and enhanced our understanding of the molecular mechanisms underpinning sexual reproduction in flowering plants.
Collapse
Affiliation(s)
- Yongmei Zhou
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqin Fang
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Yu Chen
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Noor-Ul- Ain
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
13
|
Liao TJ, Pan B, Hong H, Hayashi P, Rule JA, Ganger D, Lee WM, Rakela J, Chen M. Whole Exome Sequencing Reveals Genetic Variants in HLA Class II Genes Associated With Transplant-free Survival of Indeterminate Acute Liver Failure. Clin Transl Gastroenterol 2022; 13:e00502. [PMID: 35905417 PMCID: PMC10476814 DOI: 10.14309/ctg.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION Indeterminate acute liver failure (IND-ALF) is a rare clinical syndrome with a high mortality rate. Lacking a known etiology makes rapid evaluation and treatment difficult, with liver transplantation often considered as the only therapeutic option. Our aim was to identify genetic variants from whole exome sequencing data that might be associated with IND-ALF clinical outcomes. METHODS Bioinformatics analysis was performed on whole exome sequencing data for 22 patients with IND-ALF. A 2-tier approach was used to identify significant single-nucleotide polymorphisms (SNPs) associated with IND-ALF clinical outcomes. Tier 1 identified the SNPs with a higher relative risk in the IND-ALF population compared with those identified in control populations. Tier 2 determined the SNPs connected to transplant-free survival and associated with model for end-stage liver disease serum sodium and Acute Liver Failure Study Group prognostic scores. RESULTS Thirty-one SNPs were found associated with a higher relative risk in the IND-ALF population compared with those in controls, of which 11 belong to the human leukocyte antigen (HLA) class II genes but none for the class I. Further analysis showed that 5 SNPs: rs796202376, rs139189937, and rs113473719 of HLA-DRB5; rs9272712 of HLA-DQA1; and rs747397929 of IDO1 were associated with a higher probability of IND-ALF transplant-free survival. Using 3 selected SNPs, a model for the polygenic risk score was developed to predict IND-ALF prognoses, which are comparable with those by model for end-stage liver disease serum sodium and Acute Liver Failure Study Group prognostic scores. DISCUSSION Certain gene variants in HLA-DRB5, HLA-DQA1, and IDO1 were found associated with IND-ALF transplant-free survival. Once validated, these identified SNPs may help elucidate the mechanism of IND-ALF and assist in its diagnosis and management.
Collapse
Affiliation(s)
- Tsung-Jen Liao
- Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration (FDA) National Center for Toxicological Research, Jefferson, Arkansas, USA;
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration (FDA) National Center for Toxicological Research, Jefferson, Arkansas, USA;
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration (FDA) National Center for Toxicological Research, Jefferson, Arkansas, USA;
| | - Paul Hayashi
- Division of Hepatology and Nutrition, Office of New Drugs, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland, USA;
| | - Jody A. Rule
- Division of Gastroenterology and Hepatology, University of Texas Southwestern, Dallas, Texas, USA;
| | - Daniel Ganger
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois, USA;
| | - William M. Lee
- Division of Gastroenterology and Hepatology, University of Texas Southwestern, Dallas, Texas, USA;
| | - Jorge Rakela
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA.
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration (FDA) National Center for Toxicological Research, Jefferson, Arkansas, USA;
| |
Collapse
|
14
|
Rehn M, Wenzel A, Frank AK, Schuster MB, Pundhir S, Jørgensen N, Vitting-Seerup K, Ge Y, Jendholm J, Michaut M, Schoof EM, Jensen TL, Rapin N, Sapio RT, Andersen KL, Lund AH, Solimena M, Holzenberger M, Pestov DG, Porse BT. PTBP1 promotes hematopoietic stem cell maintenance and red blood cell development by ensuring sufficient availability of ribosomal constituents. Cell Rep 2022; 39:110793. [PMID: 35545054 DOI: 10.1016/j.celrep.2022.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
Ribosomopathies constitute a range of disorders associated with defective protein synthesis mainly affecting hematopoietic stem cells (HSCs) and erythroid development. Here, we demonstrate that deletion of poly-pyrimidine-tract-binding protein 1 (PTBP1) in the hematopoietic compartment leads to the development of a ribosomopathy-like condition. Specifically, loss of PTBP1 is associated with decreases in HSC self-renewal, erythroid differentiation, and protein synthesis. Consistent with its function as a splicing regulator, PTBP1 deficiency results in splicing defects in hundreds of genes, and we demonstrate that the up-regulation of a specific isoform of CDC42 partly mimics the protein-synthesis defect associated with loss of PTBP1. Furthermore, PTBP1 deficiency is associated with a marked defect in ribosome biogenesis and a selective reduction in the translation of mRNAs encoding ribosomal proteins. Collectively, this work identifies PTBP1 as a key integrator of ribosomal functions and highlights the broad functional repertoire of RNA-binding proteins.
Collapse
Affiliation(s)
- Matilda Rehn
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna Jørgensen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Magali Michaut
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erwin M Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; DTU Bioengineering, Danish Technical University, 2800 Kgs. Lyngby, Denmark
| | - Tanja Lyholm Jensen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Russell T Sapio
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | | | - Anders H Lund
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Holzenberger
- Sorbonne University, INSERM, Research Center Saint-Antoine, CRSA, 75012 Paris, France
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Liu R, Yang J, Yao J, Zhao Z, He W, Su N, Zhang Z, Zhang C, Zhang Z, Cai H, Zhu L, Zhao Y, Quan S, Chen X, Yang Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol 2022; 40:779-786. [PMID: 34980910 DOI: 10.1038/s41587-021-01112-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR-Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhou Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei He
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zeyi Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chenxia Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
16
|
Li D, Yang J, Huang X, Zhou H, Wang J. eIF4A2 targets developmental potency and histone H3.3 transcripts for translational control of stem cell pluripotency. SCIENCE ADVANCES 2022; 8:eabm0478. [PMID: 35353581 PMCID: PMC8967233 DOI: 10.1126/sciadv.abm0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Translational control has emerged as a fundamental regulatory layer of proteome complexity that governs cellular identity and functions. As initiation is the rate-limiting step of translation, we carried out an RNA interference screen for key translation initiation factors required to maintain embryonic stem cell (ESC) identity. We identified eukaryotic translation initiation factor 4A2 (eIF4A2) and defined its mechanistic action through ribosomal protein S26-independent and -dependent ribosomes in translation initiation activation of messenger RNAs (mRNAs) encoding pluripotency factors and the histone variant H3.3 with demonstrated roles in maintaining stem cell pluripotency. eIF4A2 also mediates translation initiation activation of Ddx6, which acts together with eIF4A2 to restrict the totipotent two-cell transcription program in ESCs through Zscan4 mRNA degradation and translation repression. Accordingly, knockdown of eIF4A2 disrupts ESC proteome, causing the loss of ESC identity. Collectively, we establish a translational paradigm of the protein synthesis of pluripotency transcription factors and epigenetic regulators imposed on their established roles in controlling pluripotency.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
17
|
MicroSalmon: A Comprehensive, Searchable Resource of Predicted MicroRNA Targets and 3'UTR Cis-Regulatory Elements in the Full-Length Sequenced Atlantic Salmon Transcriptome. Noncoding RNA 2021; 7:ncrna7040061. [PMID: 34698276 PMCID: PMC8544657 DOI: 10.3390/ncrna7040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Complete 3′UTRs unambiguously assigned to specific mRNA isoforms from the Atlantic salmon full-length (FL) transcriptome were collected into a 3′UTRome. miRNA response elements (MREs) and other cis-regulatory motifs were subsequently predicted and assigned to 3′UTRs of all FL-transcripts. The MicroSalmon GitHub repository provides all results. RNAHybrid and sRNAtoolbox tools predicted the MREs. UTRscan and the Teiresias algorithm predicted other 3′UTR cis-acting motifs, both known vertebrate motifs and putative novel motifs. MicroSalmon provides search programs to retrieve all FL-transcripts targeted by a miRNA (median number 1487), all miRNAs targeting an FL-transcript (median number 27), and other cis-acting motifs. As thousands of FL-transcripts may be targets of each miRNA, additional experimental strategies are necessary to reduce the likely true and relevant targets to a number that may be functionally validated. Low-complexity motifs known to affect mRNA decay in vertebrates were over-represented. Many of these were enriched in the terminal end, while purine- or pyrimidine-rich motifs with unknown functions were enriched immediately downstream of the stop codon. Furthermore, several novel complex motifs were over-represented, indicating conservation and putative function. In conclusion, MicroSalmon is an extensive and useful, searchable resource for study of Atlantic salmon transcript regulation by miRNAs and cis-acting 3′UTR motifs.
Collapse
|
18
|
Tchio C, Musani SK, Quarshie A, Tosini G. Association between MTNR1B polymorphisms and obesity in African American: findings from the Jackson Heart Study. BMC Med Genomics 2021; 14:136. [PMID: 34020621 PMCID: PMC8138980 DOI: 10.1186/s12920-021-00983-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Melatonin is a hormone that is secreted at night by the pineal gland. It exerts its function by binding to the MT1 and MT2 receptors, which are encoded by the MTNR1A and MTNR1B genes, respectively. Previous studies reveal that MTNR1B variants are associated with insulin secretion impairments and an increased body mass index (BMI) in individuals of European and Asian ancestries. Obesity is highly prevalent in the US and disproportionately affects African Americans. Here, we hypothesized that common single nucleotide polymorphisms (SNPs) imputed in 1000 Genomes in the MTNR1B gene are associated with adiposity in African American adult men and women and that the association is modified by insomnia. METHODS We used an additive genetic model to describe the association between the adiposity traits (BMI and waist circumference) and selected MTNR1B variants in 3,029 Jackson Heart Study participants, with an average age of 55.13 ± 12.84 years, and 62% were women. We regressed the adiposity measures on the estimated allelic or genotypic dosage at every selected SNP and adjusted for age, sex, population stratification, and insomnia. Thirty common SNPs, spanning the MTNR1B gene, with a minor allele frequency ≥ 5%, a call rate ≥ 90%, a Hardy-Weinberg equilibrium p value > 10-6, were available for the analysis. RESULTS The allele T of rs76371840 was associated with adiposity (OR = 1.47 [1.13-1.82]; PFDR-adjusted = 0.0499), and the allele A of rs8192552 showed a significant association with waist circumference (β = 0.023 ± 0.007; PFDR-adjusted = 0.0077) after correcting for multiple testing. When insomnia was included in the adiposity analysis model, the following four variants became significantly associated with adiposity: rs6483208; rs4388843; rs4601728; and rs12804291. CONCLUSIONS Our data indicate that polymorphisms in the MTNR1B gene are associated with obesity traits in African Americans. To the best of our knowledge, this is the first study to explore the effect of insomnia on the association between the circadian MTNR1B genetic variants and metabolic traits in an African American sample population. We observed that insomnia affected the association between the MTNR1B variants and adiposity.
Collapse
Affiliation(s)
- Cynthia Tchio
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30130, USA
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Solomon K Musani
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexander Quarshie
- Clinical Research Center, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30130, USA.
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Melixetian M, Bossi D, Mihailovich M, Punzi S, Barozzi I, Marocchi F, Cuomo A, Bonaldi T, Testa G, Marine JC, Leucci E, Minucci S, Pelicci PG, Lanfrancone L. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Rep 2021; 22:e50852. [PMID: 33586907 PMCID: PMC7926219 DOI: 10.15252/embr.202050852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Punzi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Federica Marocchi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
20
|
Micalizzi DS, Ebright RY, Haber DA, Maheswaran S. Translational Regulation of Cancer Metastasis. Cancer Res 2021; 81:517-524. [PMID: 33479028 DOI: 10.1158/0008-5472.can-20-2720] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Deregulation of the mRNA translational process has been observed during tumorigenesis. However, recent findings have shown that deregulation of translation also contributes specifically to cancer cell spread. During metastasis, cancer cells undergo changes in cellular state, permitting the acquisition of features necessary for cell survival, dissemination, and outgrowth. In addition, metastatic cells respond to external cues, allowing for their persistence under significant cellular and microenvironmental stresses. Recent work has revealed the importance of mRNA translation to these dynamic changes, including regulation of cell states through epithelial-to-mesenchymal transition and tumor dormancy and as a response to external stresses such as hypoxia and immune surveillance. In this review, we focus on examples of altered translation underlying these phenotypic changes and responses to external cues and explore how they contribute to metastatic progression. We also highlight the therapeutic opportunities presented by aberrant mRNA translation, suggesting novel ways to target metastatic tumor cells.
Collapse
Affiliation(s)
- Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Y Ebright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
21
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
22
|
Abdullah SW, Han S, Wu J, Zhang Y, Bai M, Jin Y, Zhi X, Guan J, Sun S, Guo H. The DDX23 Negatively Regulates Translation and Replication of Foot-and-Mouth Disease Virus and Is Degraded by 3C Proteinase. Viruses 2020; 12:E1348. [PMID: 33255534 PMCID: PMC7760909 DOI: 10.3390/v12121348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
DEAD-box helicase 23 (DDX23) is a host nuclear helicase, which is a part of the spliceosomal complex and involved in pre-mRNA splicing. To investigate whether DDX23, an internal ribosomal entry sites transacting factor (ITAF) affects foot-and-mouth disease virus (FMDV) replication and translation through internal ribosome entry site (IRES)-dependent manner. For this, we utilized a pull-down assay, Western blotting, quantitative real-time PCR, confocal microscopy, overexpression and small interfering RNA knockdown, as well as the median tissue culture infective dose. Our findings showed that FMDV infection inhibited DDX23 expression and the overexpression of DDX23 reduced viral replication, however, CRISPR Cas9 knockout/small interfering RNA knockdown increased FMDV replication. FMDV IRES domain III and IV interacted with DDX23, whereas DDX23 interacted with FMDV 3C proteinase and significantly degraded. The enzymatic activity of FMDV 3C proteinase degraded DDX23, whereas FMDV degraded DDX23 via the lysosomal pathway. Additionally, IRES-driven translation was suppressed in DDX23-overexpressing cells, and was enhanced in DDX23 knocked down. Collectively, our results demonstrated that DDX23 negatively affects FMDV IRES-dependent translation, which could be a useful target for the design of antiviral drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, O.I.E./China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (S.H.); (J.W.); (Y.Z.); (M.B.); (Y.J.); (X.Z.); (J.G.)
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, O.I.E./China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (S.W.A.); (S.H.); (J.W.); (Y.Z.); (M.B.); (Y.J.); (X.Z.); (J.G.)
| |
Collapse
|
23
|
Nasirshalal M, Tahmasebi-Birgani M, Dadfar M, Nikbakht R, Saberi A, Ghandil P. Identification of the PRM1 gene mutations in oligoasthenoteratozoospermic men. Andrologia 2020; 52:e13872. [PMID: 33118225 DOI: 10.1111/and.13872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/04/2023] Open
Abstract
Mutations or altered expression of PRM1 gene have been associated with male infertility. This study aimed to analyse pathogenic variations of PRM1 gene in Iranian Arab infertile men with oligoasthenoteratozoospermia that was carried out for the first time in this population. Genomic DNA was used to perform PCR sequencing in PRM1 untranslated regions, exons and intron. Also, bioinformatics analysis was recruited to discover the possible effect of detected variations. Two pathogenic variations were seen in two men with oligoasthenoteratozoospermia, which were not found in the control group. The cDNA.384G>C variation is novel and was located in the 3' untranslated region, and cDNA.42G>A variation is reported for the first time related to male infertility and was found in 5' untranslated regions. Bioinformatics analysis showed that the minimum free energy was increased from -19.9kcal/mol to -13.1kcal/mol due to the cDNA.384G>C variation at hsa-miR-4326's seed site. More analysis revealed cDNA.42G>A located in transcription factors binding site, E1 and MYOD, which was detected as a promoter-associated region, and generally have regulatory features for acetylation and methylation. In conclusion, two pathogenic variations were recognised in regulatory areas of PRM1 gene, which might interfere with some critical factors related to PRM1 gene expression, hence cause male infertility.
Collapse
Affiliation(s)
- Mahzad Nasirshalal
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Levin M, Zalts H, Mostov N, Hashimshony T, Yanai I. Gene expression dynamics are a proxy for selective pressures on alternatively polyadenylated isoforms. Nucleic Acids Res 2020; 48:5926-5938. [PMID: 32421815 PMCID: PMC7293032 DOI: 10.1093/nar/gkaa359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Alternative polyadenylation (APA) produces isoforms with distinct 3′-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3′-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3′ UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3′ UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.
Collapse
Affiliation(s)
- Michal Levin
- Quantitative Proteomics, Institute of Molecular Biology, Mainz 55128, Germany
| | - Harel Zalts
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Mostov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York 10016, USA
| |
Collapse
|
25
|
microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene 2020; 39:5768-5781. [PMID: 32719439 DOI: 10.1038/s41388-020-01401-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cumulative evidence suggests that microRNAs (miRNAs) promote gene expression in cancers. However, the pathophysiologic relevance of miRNA-mediated RNA activation in hepatocellular carcinoma (HCC) remains to be established. Our previous miRNA expression profiling in seven-paired HCC specimens revealed miR-93-5p as an HCC-related miRNA. In this study, miR-93-5p expression was assessed in HCC tissues and cell lines by quantitative real-time PCR and fluorescence in situ hybridization. The correlation of miR-93-5p expression with survival and clinicopathological features of HCC was determined by statistical analysis. The function and potential mechanism of miR-93-5p in HCC were further investigated by a series of gain- or loss-of-function experiments in vitro and in vivo. We identified that miR-93-5p, overexpressed in HCC specimens and cell lines, leads to poor outcomes in HCC cases and promotes proliferation, migration, and invasion in HCC cell lines. Mechanistically, rather than decreasing target mRNA levels as expected, miR-93-5p binds to the 3'-untranslated region (UTR) of mitogen-activated protein kinase kinase kinase 2 (MAP3K2) to directly upregulate its expression and downstream p38 and c-Jun N-terminal kinase (JNK) pathway, thereby leading to cell cycle progression in HCC. Notably, we also demonstrated that c-Jun, a downstream effector of the JNK pathway, enhances miR-93-5p transcription by targeting its promoter region. Besides, downregulation of miR-93-5p significantly retarded tumor growth, while overexpression of miR-93-5p accelerated tumor growth in the HCC xenograft mouse model. Altogether, we revealed a miR-93-5p/MAP3K2/c-Jun positive feedback loop to promote HCC progression in vivo and in vitro, representing an RNA-activating role of miR-93-5p in HCC development.
Collapse
|
26
|
Arefeen A, Xiao X, Jiang T. DeepPASTA: deep neural network based polyadenylation site analysis. Bioinformatics 2020; 35:4577-4585. [PMID: 31081512 DOI: 10.1093/bioinformatics/btz283] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Alternative polyadenylation (polyA) sites near the 3' end of a pre-mRNA create multiple mRNA transcripts with different 3' untranslated regions (3' UTRs). The sequence elements of a 3' UTR are essential for many biological activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and translation efficiency. Moreover, numerous studies in the literature have reported the correlation between diseases and the shortening (or lengthening) of 3' UTRs. As alternative polyA sites are common in mammalian genes, several machine learning tools have been published for predicting polyA sites from sequence data. These tools either consider limited sequence features or use relatively old algorithms for polyA site prediction. Moreover, none of the previous tools consider RNA secondary structures as a feature to predict polyA sites. RESULTS In this paper, we propose a new deep learning model, called DeepPASTA, for predicting polyA sites from both sequence and RNA secondary structure data. The model is then extended to predict tissue-specific polyA sites. Moreover, the tool can predict the most dominant (i.e. frequently used) polyA site of a gene in a specific tissue and relative dominance when two polyA sites of the same gene are given. Our extensive experiments demonstrate that DeepPASTA signisficantly outperforms the existing tools for polyA site prediction and tissue-specific relative and absolute dominant polyA site prediction. AVAILABILITY AND IMPLEMENTATION https://github.com/arefeen/DeepPASTA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ashraful Arefeen
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA.,Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.,Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Liu S, Li B, Liang Q, Liu A, Qu L, Yang J. Classification and function of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1601. [PMID: 32488992 DOI: 10.1002/wrna.1601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Almost all RNAs need to interact with proteins to fully exert their functions, and proteins also bind to RNAs to act as regulators. It has now become clear that RNA-protein interactions play important roles in many biological processes among organisms. Despite the great progress that has been made in the field, there is still no precise classification system for RNA-protein interactions, which makes it challenging to further decipher the functions and mechanisms of these interactions. In this review, we propose four different categories of RNA-protein interactions according to their basic characteristics: RNA motif-dependent RNA-protein interactions, RNA structure-dependent RNA-protein interactions, RNA modification-dependent RNA-protein interactions, and RNA guide-based RNA-protein interactions. Moreover, the integration of different types of RNA-protein interactions and the regulatory factors implicated in these interactions are discussed. Furthermore, we emphasize the functional diversity of these four types of interactions in biological processes and disease development and assess emerging trends in this exciting research field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxia Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
28
|
Zhou X, Hao R, Chen C, Su Z, Zhao L, Luo Z, Xie W. Rapid Delivery of Nanobodies/V HHs into Living Cells via Expressing In Vitro-Transcribed mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:401-408. [PMID: 32128345 PMCID: PMC7044678 DOI: 10.1016/j.omtm.2020.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022]
Abstract
Intracellular antigen labeling and manipulation by antibodies have been long-thought goals in the field of cell research and therapy. However, a central limitation for this application is that antibodies are not able to penetrate into the cytosol of living cells. Taking advantages of small sizes and unique structures of the single-domain antibodies, here, we presented a novel approach to rapidly deliver the nanobody/variable domain of heavy chain of heavy-chain antibody (VHH) into living cells via introducing its coding mRNA, which was generated by in vitro transcription. We demonstrated that actin-green fluorescent proteins (GFP) and Golgi-GFP can be recognized by the anti-GFP nanobody/VHH, vimentin can be recognized by the anti-vimentin nanobody/VHH, and histone deacetylase 6 (HDAC6) can be recognized by the anti-HDAC6 nanobody/VHH, respectively. We found that the anti-GFP nanobody expressed via in vitro-transcribed (IVT) mRNA can be detected in 3 h and degraded in 48 h after transfection, whereas the nanobody expressed via plasmid DNA, was not detected until 24 h after transfection. As a result, it is effective in delivering the nanobody through expressing the nanobody/VHH in living cells from its coding mRNA.
Collapse
Affiliation(s)
- Xuechen Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Rui Hao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chen Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zhipeng Su
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Linhong Zhao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
29
|
Evaluation of SCD, ACACA and FASN Mutations: Effects on Pork Quality and Other Production Traits in Pigs Selected Based on RNA-Seq Results. Animals (Basel) 2020; 10:ani10010123. [PMID: 31940936 PMCID: PMC7023423 DOI: 10.3390/ani10010123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study aimed to evaluate mutations within three candidate genes (SCD, ACACA, FASN) for their effects on fattening and slaughter characteristics, as well as meat quality traits, including intramuscular fat (IMF) level in pork. They were selected within differentially expressed genes activated in response to variable backfat content obtained using the RNA sequencing method. The RNA-seq analysis identifies mutations/SNPs located in the mRNA and could be a useful tool for prediction of genetic markers in farm animals. The results showed that selection for FASN A allele in Polish Large White pigs could lead to improved meat quality traits such as water exudation and meat colour. However, analysed polymorphisms showed only slight effects on fat metabolism and IMF content. Abstract In recent years, pig producers have struggled with the problem of low intramuscular fat levels in pork, which impacts palatability and ultimately meat quality. Reduced levels of intramuscular fat are likely the result of breeding objectives aimed at increasing lean meat content. In this study, three mutations within candidate genes for fat content (SCD, ACACA, and FASN) were selected, based on RNA-seq results and the relationship between polymorphisms in genes related to lipid metabolism, fattening and slaughter characteristics, as well as pork quality, including IMF level, were evaluated to identify selection markers. Moreover, their impact on gene expression was also examined. The PCR–RFLP (polymerase cha- in reaction – restriction fragments length) method was used to establish genotypes and effect sizes of potential genetic markers were estimated using a GLM model. It was identified that a FASN missense variant was positively associated with the expression level of this gene, which suggested its linkage with a mutation having a regulatory function. The association study indicated that the FASN missense variant may play a role in the determination of feed conversion and meat colour. In turn, a mutation in the ACACA gene showed a relationship with IMF content in the Puławska breed where the differences reached as much as 20%. We suggest considering all three mutations in further studies based on different pig populations due to the crucial role of SCD, ACACA, and FASN genes in lipid metabolism.
Collapse
|
30
|
Jia XJ, Du Y, Jiang HJ, Li YZ, Xu YN, Si SY, Wang L, Hong B. Identification of Novel Compounds Enhancing SR-BI mRNA Stability through High-Throughput Screening. SLAS DISCOVERY 2019; 25:397-408. [PMID: 31858876 DOI: 10.1177/2472555219894543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases. Reverse cholesterol transport (RCT) is a main mechanism of cholesterol homeostasis and involves the direct transport of high-density lipoprotein (HDL) cholesteryl ester by selective cholesterol uptake. Hepatic scavenger receptor class B member 1 (SR-BI) overexpression can effectively promote RCT and reduce atherosclerosis. SR-BI may be an important target for prevention or treatment of atherosclerotic disease. In our study, we inserted human SR-BI mRNA 3' untranslated region (3'UTR) downstream of the luciferase reporter gene, to establish a high-throughput screening model based on stably transfected HepG2 cells and to screen small-molecule compounds that can significantly enhance the mRNA stability of the SR-BI gene. Through multiple screenings of 25 755 compounds, the top five active compounds that have similar structures were obtained, with a positive rate of 0.19%. The five positive compounds could enhance the SR-BI expression and uptake of DiI-HDL in the hepatocyte HepG2. E238B-63 could also effectively extend the half-life of SR-BI mRNA and enhance the SR-BI mRNA and protein level and the uptake of DiI-HDL in hepatocytes in a time-dependent and dose-dependent manner. The structure-activity relationship analysis showed that the structure N-(3-hydroxy-2-pyridyl) carboxamide is possibly the key pharmacophore of the active compound, providing reference for acquiring candidate compounds with better activity. The positive small molecular compounds obtained in this study might become new drug candidates or lead compounds for the treatment of cardiovascular diseases and contribute to the further study of the posttranscriptional regulation mechanism of the SR-BI gene.
Collapse
Affiliation(s)
- Xiao-Jian Jia
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen University Health Science Center, Shenzhen, PR China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hua-Jun Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yong-Zhen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan-Ni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shu-Yi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
31
|
Bioinformatics analysis of regulatory elements of the CD151 gene and insilico docking of CD151 with diallyl sulfide. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y, Yang YG. Dynamic methylome of internal mRNA N 7-methylguanosine and its regulatory role in translation. Cell Res 2019; 29:927-941. [PMID: 31520064 DOI: 10.1038/s41422-019-0230-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022] Open
Abstract
Over 150 types of RNA modifications are identified in RNA molecules. Transcriptome profiling is one of the key steps in decoding the epitranscriptomic panorama of these chemical modifications and their potential functions. N7-methylguanosine (m7G) is one of the most abundant modifications present in tRNA, rRNA and mRNA 5'cap, and has critical roles in regulating RNA processing, metabolism and function. Besides its presence at the cap position in mRNAs, m7G is also identified in internal mRNA regions. However, its transcriptome-wide distribution and dynamic regulation within internal mRNA regions remain unknown. Here, we have established m7G individual-nucleotide-resolution cross-linking and immunoprecipitation with sequencing (m7G miCLIP-seq) to specifically detect internal mRNA m7G modification. Using this approach, we revealed that m7G is enriched at the 5'UTR region and AG-rich contexts, a feature that is well-conserved across different human/mouse cell lines and mouse tissues. Strikingly, the internal m7G modification is dynamically regulated under both H2O2 and heat shock treatments, with remarkable accumulations in the CDS and 3'UTR regions, and functions in promoting mRNA translation efficiency. Consistently, a PCNA 3'UTR minigene reporter harboring the native m7G modification site displays both enriched m7G modification and increased mRNA translation upon H2O2 treatment compared to the m7G site-mutated minigene reporter (G to A). Taken together, our findings unravel the dynamic profiles of internal mRNA m7G methylome and highlight m7G as a novel epitranscriptomic marker with regulatory roles in translation.
Collapse
Affiliation(s)
- Lionel Malbec
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Sheng Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bo-Yang Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
33
|
Arefeen A, Liu J, Xiao X, Jiang T. TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics 2019; 34:2521-2529. [PMID: 30052912 DOI: 10.1093/bioinformatics/bty110] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Motivation The length of the 3' untranslated region (3' UTR) of an mRNA is essential for many biological activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and translation efficiency. Moreover, correlation between diseases and the shortening (or lengthening) of 3' UTRs has been reported in the literature. This length is largely determined by the polyadenylation cleavage site in the mRNA. As alternative polyadenylation (APA) sites are common in mammalian genes, several tools have been published recently for detecting APA sites from RNA-Seq data or performing shortening/lengthening analysis. These tools consider either up to only two APA sites in a gene or only APA sites that occur in the last exon of a gene, although a gene may generally have more than two APA sites and an APA site may sometimes occur before the last exon. Furthermore, the tools are unable to integrate the analysis of shortening/lengthening events with APA site detection. Results We propose a new tool, called TAPAS, for detecting novel APA sites from RNA-Seq data. It can deal with more than two APA sites in a gene as well as APA sites that occur before the last exon. The tool is based on an existing method for finding change points in time series data, but some filtration techniques are also adopted to remove change points that are likely false APA sites. It is then extended to identify APA sites that are expressed differently between two biological samples and genes that contain 3' UTRs with shortening/lengthening events. Our extensive experiments on simulated and real RNA-Seq data demonstrate that TAPAS outperforms the existing tools for APA site detection or shortening/lengthening analysis significantly. Availability and implementation https://github.com/arefeen/TAPAS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ashraful Arefeen
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Juntao Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.,Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.,MOE Key Lab of Bioinformatics and Bioinformatics Division, TNLIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Manek R, Nelson T, Tseng E, Rodriguez-Lebron E. 5'UTR-mediated regulation of Ataxin-1 expression. Neurobiol Dis 2019; 134:104564. [PMID: 31381977 DOI: 10.1016/j.nbd.2019.104564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Expression of mutant Ataxin-1 with an abnormally expanded polyglutamine domain is necessary for the onset and progression of spinocerebellar ataxia type 1 (SCA1). Understanding how Ataxin-1 expression is regulated in the human brain could inspire novel molecular therapies for this fatal, dominantly inherited neurodegenerative disease. Previous studies have shown that the ATXN1 3'UTR plays a key role in regulating the Ataxin-1 cellular pool via diverse post-transcriptional mechanisms. Here we show that elements within the ATXN1 5'UTR also participate in the regulation of Ataxin-1 expression. PCR and PacBio sequencing analysis of cDNA obtained from control and SCA1 human brain samples revealed the presence of three major, alternatively spliced ATXN1 5'UTR variants. In cell-based assays, fusion of these variants upstream of an EGFP reporter construct revealed significant and differential impacts on total EGFP protein output, uncovering a type of genetic rheostat-like function of the ATXN1 5'UTR. We identified ribosomal scanning of upstream AUG codons and increased transcript instability as potential mechanisms of regulation. Importantly, transcript-based analyses revealed significant differences in the expression pattern of ATXN1 5'UTR variants between control and SCA1 cerebellum. Together, the data presented here shed light into a previously unknown role for the ATXN1 5'UTR in the regulation of Ataxin-1 and provide new opportunities for the development of SCA1 therapeutics.
Collapse
Affiliation(s)
- Rachna Manek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Nelson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | | | - Edgardo Rodriguez-Lebron
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
35
|
Zaucker A, Nagorska A, Kumari P, Hecker N, Wang Y, Huang S, Cooper L, Sivashanmugam L, VijayKumar S, Brosens J, Gorodkin J, Sampath K. Translational co-regulation of a ligand and inhibitor by a conserved RNA element. Nucleic Acids Res 2019; 46:104-119. [PMID: 29059375 PMCID: PMC5758872 DOI: 10.1093/nar/gkx938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
In many organisms, transcriptional and post-transcriptional regulation of components of pathways or processes has been reported. However, to date, there are few reports of translational co-regulation of multiple components of a developmental signaling pathway. Here, we show that an RNA element which we previously identified as a dorsal localization element (DLE) in the 3'UTR of zebrafish nodal-related1/squint (ndr1/sqt) ligand mRNA, is shared by the related ligand nodal-related2/cyclops (ndr2/cyc) and the nodal inhibitors, lefty1 (lft1) and lefty2 mRNAs. We investigated the activity of the DLEs through functional assays in live zebrafish embryos. The lft1 DLE localizes fluorescently labeled RNA similarly to the ndr1/sqt DLE. Similar to the ndr1/sqt 3'UTR, the lft1 and lft2 3'UTRs are bound by the RNA-binding protein (RBP) and translational repressor, Y-box binding protein 1 (Ybx1), whereas deletions in the DLE abolish binding to Ybx1. Analysis of zebrafish ybx1 mutants shows that Ybx1 represses lefty1 translation in embryos. CRISPR/Cas9-mediated inactivation of human YBX1 also results in human NODAL translational de-repression, suggesting broader conservation of the DLE RNA element/Ybx1 RBP module in regulation of Nodal signaling. Our findings demonstrate translational co-regulation of components of a signaling pathway by an RNA element conserved in both sequence and structure and an RBP, revealing a 'translational regulon'.
Collapse
Affiliation(s)
- Andreas Zaucker
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Agnieszka Nagorska
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Pooja Kumari
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Nikolai Hecker
- Center for non-coding RNAs in Technology and Health, Department of Veterinary and Animal Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Yin Wang
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sizhou Huang
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Ledean Cooper
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Lavanya Sivashanmugam
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Shruthi VijayKumar
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan Brosens
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan Gorodkin
- Center for non-coding RNAs in Technology and Health, Department of Veterinary and Animal Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | - Karuna Sampath
- Cell & Developmental Biology Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
36
|
Gather F, Schmitz K, Koch K, Vogt LM, Pautz A, Kleinert H. Regulation of human inducible nitric oxide synthase expression by an upstream open reading frame. Nitric Oxide 2019; 88:50-60. [PMID: 31004763 DOI: 10.1016/j.niox.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Katja Schmitz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Kathrin Koch
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Lea-Marie Vogt
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| |
Collapse
|
37
|
Liang XH, Shen W, Crooke ST. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 28639196 DOI: 10.1007/978-981-10-4310-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| |
Collapse
|
38
|
Component of splicing factor SF3b plays a key role in translational control of polyribosomes on the endoplasmic reticulum. Proc Natl Acad Sci U S A 2019; 116:9340-9349. [PMID: 31004060 DOI: 10.1073/pnas.1901742116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the morphological hallmarks of terminally differentiated secretory cells is highly proliferated membrane of the rough endoplasmic reticulum (ER), but the molecular basis for the high rate of protein biosynthesis in these cells remains poorly documented. An important aspect of ER translational control is the molecular mechanism that supports efficient use of targeted mRNAs in polyribosomes. Here, we identify an enhancement system for ER translation promoted by p180, an integral ER membrane protein we previously reported as an essential factor for the assembly of ER polyribosomes. We provide evidence that association of target mRNAs with p180 is critical for efficient translation, and that SF3b4, an RNA-binding protein in the splicing factor SF3b, functions as a cofactor for p180 at the ER and plays a key role in enhanced translation of secretory proteins. A cis-element in the 5' untranslated region of collagen and fibronectin genes is important to increase translational efficiency in the presence of p180 and SF3b4. These data demonstrate that a unique system comprising a p180-SF3b4-mRNA complex facilitates the selective assembly of polyribosomes on the ER.
Collapse
|
39
|
Adamopoulos PG, Mavrogiannis AV, Kontos CK, Scorilas A. Novel alternative splice variants of the human protein arginine methyltransferase 1 (PRMT1) gene, discovered using next-generation sequencing. Gene 2019; 699:135-144. [PMID: 30849541 DOI: 10.1016/j.gene.2019.02.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technology is highly expected to help researchers disclose the complexity of alternative splicing and understand its association with carcinogenesis. Alternative splicing alterations are firmly associated with multiple malignancies, in terms of functional roles in malignant transformation, motility, and/or metastasis of cancer cells. One perfect example illustrating the connection between alternative splicing and cancer is the human protein arginine methyltransferase 1 (PRMT1) gene, previously cloned from members of our research group and involved in a variety of processes including transcription, DNA repair, and signal transduction. Two splice variants of PRMT1 (variants v.1 and v.2) are downregulated in breast cancer. In addition, PRMT1 v.2 promotes the survival and invasiveness of breast cancer cells, while it could serve as a biomarker of unfavorable prognosis in colon cancer patients. The aim of this study was the molecular cloning of novel alternative splice variants of PRMT1 with the use of 3' RACE coupled with NGS technology. Extensive bioinformatics and computational analysis revealed a significant number of 19 novel alternative splicing events between annotated exons of PRMT1 as well as one novel exon, resulting in the discovery of multiple PRMT1 transcripts. In order to validate the full sequence of the novel transcripts, RT-PCR was carried out with the use of variant-specific primers. As a result, 58 novel PRMT1 transcripts were identified, 34 of which are mRNAs encoding new protein isoforms, whereas the rest 24 transcripts are candidates for nonsense-mediated mRNA decay (NMD).
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Adamantios V Mavrogiannis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
40
|
hnRNP Q Regulates Internal Ribosome Entry Site-Mediated fmr1 Translation in Neurons. Mol Cell Biol 2019; 39:MCB.00371-18. [PMID: 30478144 DOI: 10.1128/mcb.00371-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
Fragile X syndrome (FXS) caused by loss of fragile X mental retardation protein (FMRP), is the most common cause of inherited intellectual disability. Numerous studies show that FMRP is an RNA binding protein that regulates translation of its binding targets and plays key roles in neuronal functions. However, the regulatory mechanism for FMRP expression is incompletely understood. Conflicting results regarding internal ribosome entry site (IRES)-mediated fmr1 translation have been reported. Here, we unambiguously demonstrate that the fmr1 gene, which encodes FMRP, exploits both IRES-mediated translation and canonical cap-dependent translation. Furthermore, we find that heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) acts as an IRES-transacting factor (ITAF) for IRES-mediated fmr1 translation in neurons. We also show that semaphorin 3A (Sema3A)-induced axonal growth cone collapse is due to upregulation of hnRNP Q and subsequent IRES-mediated expression of FMRP. These data elucidate the regulatory mechanism of FMRP expression and its role in axonal growth cone collapse.
Collapse
|
41
|
Costello A, Lao NT, Barron N, Clynes M. Improved yield of rhEPO in CHO cells with synthetic 5' UTR. Biotechnol Lett 2018; 41:231-239. [PMID: 30506229 DOI: 10.1007/s10529-018-2632-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
The impact of local structure on mRNA translation is not well-defined pertaining to the 5' UTR. Reports suggest structural remodelling of the 5' UTR can significantly influence mRNA translation both in cis and trans however a new layer of complexity has been applied to this model with the now known reversible post-transcriptional chemical modification of RNA. N6-methyladenosine (m6A) is the most abundant internal base modification in mammalian mRNA. It has been reported that mRNAs harbouring m6A motifs in their 5' UTR have improved translation efficiency. The present study evaluated the addition of putative m6A motifs to the 5' UTR of a model recombinant human therapeutic glycoprotein, Erythropoietin (EPO), in a direct comparison with an A to T mutant and a no adenosine control. The m6A construct yielded significantly improved EPO titer in transient batch culture over no adenosine and m6T controls by 2.84 and 2.61-fold respectively. This study highlights that refinement of transgene RNA elements can yield significant improvements to protein titer.
Collapse
Affiliation(s)
- Alan Costello
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland.
| | - Nga T Lao
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland.,University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| |
Collapse
|
42
|
Okamoto N, Okumura M, Tadokoro O, Sogawa N, Tomida M, Kondo E. Effect of single-nucleotide polymorphisms in TRPV1 on burning pain and capsaicin sensitivity in Japanese adults. Mol Pain 2018; 14:1744806918804439. [PMID: 30209980 PMCID: PMC6180359 DOI: 10.1177/1744806918804439] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is expressed in the sensory neurons and responds to various noxious stimuli including heat and capsaicin. The molecular properties of TRPV1 have been clearly examined; however, there are obvious individual differences in human sensitivity to thermal stimuli and capsaicin. Here, we examined the possibility that different genome sequence of human TRPV1 caused the different sensitivity to heat or capsaicin. The sensitivities to burning pain and capsaicin of Japanese adult subjects were compared with their TRPV1 genome sequence, and we detected 6 single-nucleotide polymorphisms and 11 single-nucleotide polymorphisms related to burning pain and capsaicin sensitivity, respectively. In particular, homozygous I585V, a single-nucleotide polymorphism with amino acid substitution, significantly related to higher capsaicin sensitivity.
Collapse
Affiliation(s)
- Nozomu Okamoto
- 1 Department of Oral and Maxillofacial Biology, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Masayo Okumura
- 2 Department of Oral Anatomy, Matsumoto Dental University, Shiojiri, Japan
| | - Osamu Tadokoro
- 2 Department of Oral Anatomy, Matsumoto Dental University, Shiojiri, Japan
| | - Norio Sogawa
- 3 Department of Dental Pharmacology, Matsumoto Dental University, Shiojiri, Japan
| | - Mihoko Tomida
- 4 Department of Oral Health Promotion, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Eiji Kondo
- 1 Department of Oral and Maxillofacial Biology, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,2 Department of Oral Anatomy, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
43
|
Cytoplasmic Relocalization and Colocalization with Viroplasms of Host Cell Proteins, and Their Role in Rotavirus Infection. J Virol 2018; 92:JVI.00612-18. [PMID: 29769336 DOI: 10.1128/jvi.00612-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Rotavirus replicates in the cytoplasm of infected cells in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), which are nucleated by two essential viral nonstructural proteins, NSP2 and NSP5. However, the precise composition of the VM, the intracellular localization of host proteins during virus infection, and their association with VMs or role in rotavirus growth remained largely unexplored. Mass spectrometry analyses revealed the presence of several host heterogeneous nuclear ribonucleoproteins (hnRNPs), AU-rich element-binding proteins (ARE-BPs), and cytoplasmic proteins from uninfected MA104 cell extracts in the pulldown (PD) complexes of the purified viroplasmic proteins NSP2 and NSP5. Immunoblot analyses of PD complexes from RNase-treated and untreated cell extracts, analyses of coimmunoprecipitation complexes using RNase-treated infected cell lysates, and direct binding assays using purified recombinant proteins further demonstrated that the interactions of the majority of the hnRNPs and ARE-BPs with viroplasmic proteins are RNA independent. Time course immunoblot analysis of the nuclear and cytoplasmic fractions from rotavirus-infected and mock-infected cells and immunofluorescence confocal microscopy analyses of virus-infected cells revealed a surprising sequestration of the majority of the relocalized host proteins in viroplasms. Analyses of ectopic overexpression and small interfering RNA (siRNA)-mediated downregulation of expression revealed that host proteins either promote or inhibit viral protein expression and progeny virus production in virus-infected cells. This study demonstrates that rotavirus induces the cytoplasmic relocalization and sequestration of a large number of nuclear and cytoplasmic proteins in viroplasms, subverting essential cellular processes in both compartments to promote rapid virus growth, and reveals that the composition of rotavirus viroplasms is much more complex than is currently understood.IMPORTANCE Rotavirus replicates exclusively in the cytoplasm. Knowledge on the relocalization of nuclear proteins to the cytoplasm or the role(s) of host proteins in rotavirus infection is very limited. In this study, it is demonstrated that rotavirus infection induces the cytoplasmic relocalization of a large number of nuclear RNA-binding proteins (hnRNPs and AU-rich element-binding proteins). Except for a few, most nuclear hnRNPs and ARE-BPs, nuclear transport proteins, and some cytoplasmic proteins directly interact with the viroplasmic proteins NSP2 and NSP5 in an RNA-independent manner and become sequestered in the viroplasms of infected cells. The host proteins differentially affected viral gene expression and virus growth. This study demonstrates that rotavirus induces the relocalization and sequestration of a large number of host proteins in viroplasms, affecting host processes in both compartments and generating conditions conducive for virus growth in the cytoplasm of infected cells.
Collapse
|
44
|
Singh B, Trincado JL, Tatlow PJ, Piccolo SR, Eyras E. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors. Mol Cancer Res 2018; 16:1112-1124. [DOI: 10.1158/1541-7786.mcr-17-0601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
|
45
|
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1474. [PMID: 29582564 DOI: 10.1002/wrna.1474] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 12/24/2022]
Abstract
Genome Wide Association Studies (GWAS) have mapped thousands of genetic variants associated with complex disease risk and regulating quantitative traits, thus exploiting an unprecedented high-resolution genetic characterization of the human genome. A small fraction (3.7%) of the identified associations is located in untranslated regions (UTRs), and the molecular mechanism has been elucidated for few of them. Genetic variations at UTRs may modify regulatory elements affecting the interaction of the UTRs with proteins and microRNAs. The overall functional consequences include modulation of messenger RNA (mRNA) transcription, secondary structure, stability, localization, translation, and access to regulators like microRNAs (miRNAs) and RNA-binding proteins (RBPs). Alterations of these regulatory mechanisms are known to modify molecular pathways and cellular processes, potentially leading to disease processes. Here, we analyze some examples of genetic risk variants mapping in the UTR regulatory elements. We describe a recently identified genetic variant localized in the 3'UTR of the TNFSF13B gene, associated with autoimmunity risk and responsible of an increased stability and translation of TNFSF13B mRNA. We discuss how the correct use and interpretation of public GWAS repositories could lead to a better understanding of etiopathogenetic mechanisms and the generation of robust biological hypothesis as starting point for further functional studies. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institute of Health, Baltimore, Maryland
| | - Michael B Whalen
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Trento, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
46
|
Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 2018; 19:158-174. [PMID: 29165424 PMCID: PMC5820134 DOI: 10.1038/nrm.2017.103] [Citation(s) in RCA: 578] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Departments of Biochemistry and Physics, Stanford University, Stanford, California 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
47
|
Nabissi M, Morelli MB, Arcella A, Cardinali C, Santoni M, Bernardini G, Santoni A, Santoni G, Amantini C. Post-transcriptional regulation of 5'-untranslated regions of human Transient Receptor Potential Vanilloid type-1 (TRPV-1) channels: role in the survival of glioma patients. Oncotarget 2018; 7:81541-81554. [PMID: 27829230 PMCID: PMC5348411 DOI: 10.18632/oncotarget.13132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel is a non-selective cation channel belonging to the Transient Receptor Potential family; variation of its expression has been correlated to glioma progression. In human, TRPV1 transcripts display a remarkable homogeneity differing only for the 5'-untranslated region (5'UTR) sequence that generates four variants encoding the same protein. Herein, we investigated the role of the 5'UTR sequences in TRPV1 transcripts stability, regulation of translation, expression in glioma cells and tissues. In addition, the expression of 5'UTR TRPV1 variants as prognostic factor in the survival of glioblastoma patients was evaluated. The expression level for each 5'UTR and their stability was evaluated by RT-PCR analysis. The effect of rapamycin and interferon-gamma in 5'UTR-regulating TRPV1 translation was determined by western blot analysis in glioma cell lines. We demonstrated that the 5'UTR influences the stability and translation efficacy of TRPV1 transcripts, and that TRPV1 variant three (TRPV1v3) was the most stable and the only variant expressed in GBM samples and in glioma stem-like cells. Furthermore, we found that TRPV1v3 expression levels correlate with patient's survival, suggesting that it may represent a potential prognostic marker for patients with glioma.
Collapse
Affiliation(s)
- Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino (MC), Italy
| | | | | | - Claudio Cardinali
- Department of Molecular Medicine, Sapienza University, Rome (RM), Italy
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona (AN), Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University, Rome (RM), Italy.,I.N.M. Neuromed, Pozzilli, Isernia (IS), Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome (RM), Italy.,I.N.M. Neuromed, Pozzilli, Isernia (IS), Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino (MC), Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
48
|
Fan SH, Shen ZY, Xiao YM. Functional polymorphisms of the neuropilin 1 gene are associated with the risk of tetralogy of Fallot in a Chinese Han population. Gene 2018; 653:72-79. [PMID: 29432830 DOI: 10.1016/j.gene.2018.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Abstract
Tetralogy of Fallot (TOF) is one of the most severe forms of cyanotic congenital heart disease (CHD) and is also the most common. Previous genome-wide association study (GWAS) and replication studies have suggested that a polymorphism in the neuropilin 1 (NRP1) gene is significantly associated with the risk of TOF. To further confirm the association between the NRP1 polymorphism and the risk of TOF and to identify additional positive functional single-nucleotide polymorphisms (SNPs) for TOF risk, we systematically screened for functional polymorphisms throughout the regulatory and coding regions of the NRP1 gene. A total of 11 functional SNPs in 747 Chinese Han individuals, including 314 TOF patients and 433 healthy controls, were genotyped using the MassARRAY system and GeneScan. The results revealed that the allelic and genotypic frequencies of the NRP1 polymorphism rs2228638 were strongly associated with the risk of TOF (p = 0.002 and 0.001, respectively). To increase the robustness of rs2228638 as a TOF risk SNP, we conducted a meta-analysis that combined published studies and our current case-control study. The meta-analysis showed that the T allele of the NRP1 polymorphism rs2228638 was significantly associated with an increased risk of TOF in the combined population, which included European and Chinese Han individuals [combined p < 0.00001, odds ratio (OR) = 1.53, 95% confidence interval (95% CI) = 1.35-1.73]. In addition, the association analysis suggested for the first time that there is a strong association between the allele distribution of rs10080 and susceptibility to TOF (p = 0.001). Our data provide further evidence of the association between NRP1 polymorphisms and TOF risk, and suggest that rs2228638 may be an excellent marker for TOF risk in European and Chinese Han populations.
Collapse
Affiliation(s)
- Sai-Hou Fan
- Department of Adult Cardiac Surgery Center, Shanghai Yodak Cardiothoracic Hospital, Shanghai, PR China
| | - Zhen-Ya Shen
- Department of cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, PR China.
| | - Yi-Min Xiao
- Department of Adult Cardiac Surgery Center, Shanghai Yodak Cardiothoracic Hospital, Shanghai, PR China
| |
Collapse
|
49
|
Safari R, Tunca Z, Özerdem A, Ceylan D, Yalçın Y, Sakizli M. Glial cell-derived neurotrophic factor gene polymorphisms affect severity and functionality of bipolar disorder. J Integr Neurosci 2018; 16:471-481. [DOI: 10.3233/jin-170031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Roghaiyeh Safari
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir 35220, Turkey
| | - Zeliha Tunca
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
- Department of Neuroscience, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Deniz Ceylan
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Yaprak Yalçın
- Department of Psychiatry, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| | - Meral Sakizli
- Department of Medical Biology and Genetics, Faculty of Medicine and Institute of Health Sciences, Dokuz Eylul University, Izmir 35220, Turkey
| |
Collapse
|
50
|
Hinze F, Drewe-Boss P, Milek M, Ohler U, Landthaler M, Gotthardt M. Expanding the map of protein-RNA interaction sites via cell fusion followed by PAR-CLIP. RNA Biol 2018; 15:359-368. [PMID: 29028411 DOI: 10.1080/15476286.2017.1384120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation) facilitates the identification and mapping of protein/RNA interactions. So far, it has been limited to select cell-lines as it requires efficient 4SU uptake. To increase transcriptome complexity and thus identify additional RNA-protein interaction sites we fused HEK 293 T-Rex cells (HEK293-Y) that express the RNA binding protein YBX1 with PC12 cells expressing eGFP (PC12-eGFP). The resulting hybrids enable PAR-CLIP on a neuronally expanded transcriptome (Fusion-CLIP) and serve as a proof of principle. The fusion cells express both parental marker genes YBX1 and eGFP and the expanded transcriptome contains human and rat transcripts. PAR-CLIP of fused cells versus the parental HEK293-Y identified 768 novel RNA targets of YBX1. We were able to trace the origin of the majority of the short PAR-CLIP reads as they differentially mapped to the human and rat genome. Furthermore, Fusion-CLIP expanded the CAUC RNA binding motif of YBX1 to UCUUUNNCAUC. The fusion of HEK293-Y and PC12-eGFP cells resulted in cells with a diverse genome expressing human and rat transcripts that enabled the identification of novel YBX1 substrates. The technique allows the expansion of the HEK 293 transcriptome and makes PAR-CLIP available to fusion cells of diverse origin.
Collapse
Affiliation(s)
- Florian Hinze
- a Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine , Berlin , Germany.,e DZHK (German Center for Cardiovascular Research), Partner Site Berlin , Berlin , Germany
| | - Philipp Drewe-Boss
- b Computational Regulatory Genomics, Max-Delbrück-Center for Molecular Medicine , Berlin , Germany
| | - Miha Milek
- c RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine , Berlin , Germany
| | - Uwe Ohler
- b Computational Regulatory Genomics, Max-Delbrück-Center for Molecular Medicine , Berlin , Germany
| | - Markus Landthaler
- c RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine , Berlin , Germany.,d IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Michael Gotthardt
- a Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine , Berlin , Germany.,e DZHK (German Center for Cardiovascular Research), Partner Site Berlin , Berlin , Germany
| |
Collapse
|