1
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
2
|
Koo H, Lee S, Kim WH. Usability of serum hedgehog signalling proteins as biomarkers in canine mammary carcinomas. BMC Vet Res 2023; 19:231. [PMID: 37932728 PMCID: PMC10626804 DOI: 10.1186/s12917-023-03761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The hedgehog signalling pathway has been implicated in tumourigenesis and progression of many tumour types. This pathway has recently emerged as a therapeutic target, and inhibitors of hedgehog signalling have gained considerable attention. In dogs, the roles of hedgehog signals in several types of tumours have been investigated, but their relationship with canine mammary gland tumours (MGTs) has not been established. This study aimed to evaluate the expression of sonic hedgehog (SHH) and glioma-associated oncogene 1 (GLI-1) in the serum and mammary tumour tissues of dogs. RESULTS SHH and GLI-1 protein expression levels were significantly higher in MGT tissues than in normal mammary gland tissues, as well as in malignant MGT specimens than in benign MGT specimens. Serum levels of SHH and GLI-1 were higher in MGT patients than in healthy controls (p < .001 and .001, respectively). Serum SHH level showed a statistically significant relationship with metastatic status (p = .01), and serum GLI-1 level showed a statistically significant relationship with histologic grade (p = 0.048) and metastatic status (p = 0.007). Serum hedgehog signalling protein levels were not significantly associated with breed size, sex, tumour size, or histologic type. CONCLUSIONS Hedgehog signalling protein expression in canine MGT tissue and serum differed according to the histological classification (benign and malignant) and metastatic status, indicating a relationship between the hedgehog signalling pathway and canine MGT. Thus, the hedgehog signalling pathway may serve as a new biomarker and therapeutic target in canine MGT patients.
Collapse
Affiliation(s)
- Haein Koo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Sungin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
4
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
6
|
Oliphant MUJ, Kong D, Zhou H, Lewis MT, Ford HL. Two Sides of the Same Coin: The Role of Developmental pathways and pluripotency factors in normal mammary stem cells and breast cancer metastasis. J Mammary Gland Biol Neoplasia 2020; 25:85-102. [PMID: 32323111 PMCID: PMC7395869 DOI: 10.1007/s10911-020-09449-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer initiation and progression are often observed as the result of dysregulation of normal developmental processes and pathways. Studies focused on normal mammary stem/progenitor cell activity have led to an understanding of how breast cancer cells acquire stemness-associated properties including tumor initiation, survival and multi-lineage differentiation into heterogeneous tumors that become difficult to target therapeutically. Importantly, more recent investigations have provided valuable insight into how key developmental regulators can impact multiple phases of metastasis, where they are repurposed to not only promote metastatic phenotypes such as migration, invasion and EMT at the primary site, but also to regulate the survival, initiation and maintenance of metastatic lesions at secondary organs. Herein, we discuss findings that have led to a better understanding of how embryonic and pluripotency factors contribute not only to normal mammary development, but also to metastatic progression. We further examine the therapeutic potential of targeting these developmental pathways, and discuss how a better understanding of compensatory mechanisms, crosstalk between pathways, and novel experimental models could provide critical insight into how we might exploit embryonic and pluripotency regulators to inhibit tumor progression and metastasis.
Collapse
Affiliation(s)
- M U J Oliphant
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, 240 Longwood Avenue, Building C1, Room 513B, Boston, MA, 02115, USA
| | - Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - M T Lewis
- Departments of Molecular and Cellular Biology and Radiology. Lester and Sue Smith Breast Center, Baylor College of Medicine. One Baylor Plaza BCM600, Room N1210, Houston, TX, 77030, USA
| | - H L Ford
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Johnson JR, Boulanger CA, Hudson T, Savage E, Smith GH. Microarray and pathway analysis of two COMMA-Dβ derived clones reveal important differences relevant to their developmental capacity in-vivo. Oncotarget 2019; 10:2118-2135. [PMID: 31040905 PMCID: PMC6481333 DOI: 10.18632/oncotarget.26655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 11/25/2022] Open
Abstract
Microarray technologies were used to analyze transcriptomes from Comma-Dβ and clonal derivatives, SP3 (Lobule-competent) and NSP2 (Lobule-incompetent), during different mouse mammary growth phases: in-vitro, in-vivo 5-weeks, and in-vivo 12-weeks. A differentially expressed gene (DEG) algorithm was used to enrich for genes associated with cellular proliferation, differentiation, cell cycle regulation, and carcinogenesis. A pairwise comparison analysis, of SP3 vs. NSP2 in-vitro, revealed a total of 45 DEGs significantly up-regulated in SP3. Of the 45 DEGs, only Ccnd1 (Cyclin D1), Id2 (Inhibitor of DNA binding 2) and Sox9 (SRY Box 9) were identified to be associated with cellular proliferation, regulation of G1/S mitotic cell cycle, mammary gland and alveolar development in SP3. During the regenerative growth phase, in-vivo 5-weeks, we identified a total of 545 DEGs. 308 DEGs, of the 545 DEGs, were significantly up-regulated and 237 DEGs were significantly down-regulated in SP3 vs. NSP2. In addition, we identified 9 DEGs significantly up-regulated, within SP3's cell cycle pathway and a persistent overexpression of Cyclin D1, Id2, and Sox9, consistent with our in-vitro study. During the maintenance phase, in-vivo 12-weeks, we identified 407 DEGs. Of these, 336 DEGs were up-regulated, and 71 were down-regulated in SP3 vs. NSP2. Our data shows 15 DEGs significantly up-regulated, simultaneously, affecting 8 signal transducing carcinogenic pathways. In conclusion, increased expression of Cyclin D1, Id2 and Sox9 appear to be important for lobular genesis in SP3. Also, in-vivo 12 week displays increase expression of genes and pathways, involved in tumorigenesis.
Collapse
Affiliation(s)
- Jabril R Johnson
- Mammary Stem Cell Biology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Corinne A Boulanger
- Mammary Stem Cell Biology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tamaro Hudson
- Howard University Cancer Center, Washington, DC 20059, USA.,Department of Pharmacology, College of Medicine, Washington, DC 20059, USA
| | - Evan Savage
- Genome Explorations, Division of Compass Laboratory Services, Memphis, TN 38105, USA
| | - Gilbert H Smith
- Mammary Stem Cell Biology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Neelakantan D, Zhou H, Oliphant MUJ, Zhang X, Simon LM, Henke DM, Shaw CA, Wu MF, Hilsenbeck SG, White LD, Lewis MT, Ford HL. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 2017; 8:15773. [PMID: 28604738 PMCID: PMC5472791 DOI: 10.1038/ncomms15773] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Recent fate-mapping studies concluded that EMT is not required for metastasis of carcinomas. Here we challenge this conclusion by showing that these studies failed to account for possible crosstalk between EMT and non-EMT cells that promotes dissemination of non-EMT cells. In breast cancer models, EMT cells induce increased metastasis of weakly metastatic, non-EMT tumour cells in a paracrine manner, in part by non-cell autonomous activation of the GLI transcription factor. Treatment with GANT61, a GLI1/2 inhibitor, but not with IPI 926, a Smoothened inhibitor, blocks this effect and inhibits growth in PDX models. In human breast tumours, the EMT-transcription factors strongly correlate with activated Hedgehog/GLI signalling but not with the Hh ligands. Our findings indicate that EMT contributes to metastasis via non-cell autonomous effects that activate the Hh pathway. Although all Hh inhibitors may act against tumours with canonical Hh/GLI signalling, only GLI inhibitors would act against non-canonical EMT-induced GLI activation.
Collapse
Affiliation(s)
- Deepika Neelakantan
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michael U J Oliphant
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Xiaomei Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lukas M Simon
- Institute of Computational Biology, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - David M Henke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Meng-Fen Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lisa D White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
9
|
Benvenuto M, Masuelli L, De Smaele E, Fantini M, Mattera R, Cucchi D, Bonanno E, Di Stefano E, Frajese GV, Orlandi A, Screpanti I, Gulino A, Modesti A, Bei R. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget 2017; 7:9250-70. [PMID: 26843616 PMCID: PMC4891038 DOI: 10.18632/oncotarget.7062] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant Hedgehog (Hh)/glioma-associated oncogene (GLI) signaling has been implicated in cancer progression. Here, we analyzed GLI1, Sonic Hedgehog (Shh) and NF-κB expression in 51 breast cancer (ductal carcinoma) tissues using immunohistochemistry. We found a positive correlation between nuclear GLI1 expression and tumor grade in ductal carcinoma cases. Cytoplasmic Shh staining significantly correlated with a lower tumor grade. Next, the in vitro effects of two Hh signaling pathway inhibitors on breast cancer cell lines were evaluated using the Smoothened (SMO) antagonist GDC-0449 and the direct GLI1 inhibitor GANT-61. GDC-0449 and GANT-61 exhibited the following effects: a) inhibited breast cancer cell survival; b) induced apoptosis; c) inhibited Hh pathway activity by decreasing the mRNA expression levels of GLI1 and Ptch and inhibiting the nuclear translocation of GLI1; d) increased/decreased EGFR and ErbB2 protein expression, reduced p21-Ras and ERK1/ERK2 MAPK activities and inhibited AKT activation; and e) decreased the nuclear translocation of NF-κB. However, GANT-61 exerted these effects more effectively than GDC-0449. The in vivo antitumor activities of GDC-0449 and GANT-61 were analyzed in BALB/c mice that were subcutaneously inoculated with mouse breast cancer (TUBO) cells. GDC-0449 and GANT-61 suppressed tumor growth of TUBO cells in BALB/c mice to different extents. These findings suggest that targeting the Hh pathway using antagonists that act downstream of SMO is a more efficient strategy than using antagonists that act upstream of SMO for interrupting Hh signaling in breast cancer.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Massimo Fantini
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Danilo Cucchi
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giovanni Vanni Frajese
- Department of Physical Education, Human Sciences and Health, University of Rome "Foro Italico", Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Alberto Gulino
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
10
|
Brisken C, Ataca D. Endocrine hormones and local signals during the development of the mouse mammary gland. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:181-95. [PMID: 25645332 DOI: 10.1002/wdev.172] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 01/03/2023]
Abstract
Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
11
|
Jaiswal AS, Hirsch-Weil D, Proulx ER, Hong S, Narayan S. Anti-tumor activity of novel biisoquinoline derivatives against breast cancers. Bioorg Med Chem Lett 2014; 24:4850-3. [PMID: 25240616 DOI: 10.1016/j.bmcl.2014.08.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/31/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022]
Abstract
Breast cancer is classified into three groups according to its expression of hormone/growth factor receptors: (i) estrogen receptor (ER) and progesterone receptor (PR)-positive; (ii) human epidermal growth factor receptor 2 (HER2)-positive; and (iii) ER, PR, and HER2-negative (triple-negative). A series of methoxy-substituted biisoquinoline compounds have been synthesized as a potential chemotherapeutic agent for the triple-negative breast cancers which are especially challenging to manage. Structure activity relationship study revealed that rigid 6,6'-dimethoxy biisoquinoline imidazolium compound (1c, DH20931) exhibited the significant growth inhibitory effects on both triple-positive and triple-negative human breast cancer cell lines with IC50 in the range of 0.3-3.9 μM. The 1c (DH20931) is more potent than structurally related noscapine for growth inhibition of MCF7 cell line (IC50=1.3 vs 57 μM) and MDA-MB231 cell line (IC50=3.9 vs 64 μM).
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Dimitri Hirsch-Weil
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Erick R Proulx
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Sukwon Hong
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA; Research Institute for Solar and Sustainable Energies (RISE), School of Materials Science & Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
12
|
Mitchell EH, Serra R. Normal mammary development and function in mice with Ift88 deleted in MMTV- and K14-Cre expressing cells. Cilia 2014; 3:4. [PMID: 24594320 PMCID: PMC3942223 DOI: 10.1186/2046-2530-3-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/14/2014] [Indexed: 12/21/2022] Open
Abstract
Background Primary cilia (PC) are non-motile microtubule based organelles present on almost every cell type and are known to serve as critical organizing centers for several signaling pathways crucial to embryonic and postnatal development. Alterations in the Hh pathway, the most studied signaling pathway regulated by PC, affect mammary gland development as well as maintenance of the stem and progenitor cell populations. Results We developed mouse models with deletion of PC in mammary luminal epithelial, basal epithelial, and stromal cells for evaluation of the function of PC in mammary development via MMTV-Cre, K14-Cre, and Prx1-Cre mediated deletion, respectively. The activity of Cre was confirmed using ROSA26 reporters. Mammary stem and progenitor cells were enriched through growth as mammospheres. Adenovirus-Cre mediated deletion of Ift88 was used to determine a role for PC in this population of cells. Disruption of Ift88 and PC were confirmed in using PCR and immunofluorescent methods. Prx1-Cre; Ift88Del mice demonstrated defects in terminal end buds during puberty. However, these Ift88Del glands exhibited typical terminal end bud formation as well as normal ductal histology when transplanted into wild type hosts, indicating that the phenotype observed was not intrinsic to the mammary gland. Furthermore, no discernable alterations to mammary development were observed in MMTV-Cre- or K14-Cre; Ift88Del lines. These mice were able to feed and support several litters of pups even though wide spread depletion of PC was confirmed. Cells grown in mammosphere culture were enriched for PC containing cells suggesting PC are preferentially expressed on mammary stem and progenitor cells. Deletion of Ift88 in mammary epithelial cells resulted in a significant reduction in the number of primary mammospheres established; however, there was no effect on outgrowth of secondary mammospheres in PC-depleted cells. Conclusions PC regulate systemic factors that can affect mammary development in early puberty. PC on MMTV- or K14-expressing epithelial cells are not required for normal mammary development or function. PC are expressed at high levels on cells in mammosphere cultures. PC may be required for cells to establish mammospheres in culture; however, PC are not required for renewal of the cultures.
Collapse
Affiliation(s)
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd,, 660 MCLM, Birmingham, AL, 35294-0005, USA.
| |
Collapse
|
13
|
Macias H, Hinck L. Mammary gland development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:533-57. [PMID: 22844349 DOI: 10.1002/wdev.35] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
14
|
Zhou W, Wang G, Guo S. Regulation of angiogenesis via Notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta Rev Cancer 2013; 1836:304-20. [PMID: 24183943 DOI: 10.1016/j.bbcan.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, PR China.
| | | | | |
Collapse
|
15
|
Regan JL, Sourisseau T, Soady K, Kendrick H, McCarthy A, Tang C, Brennan K, Linardopoulos S, White DE, Smalley MJ. Aurora A kinase regulates mammary epithelial cell fate by determining mitotic spindle orientation in a Notch-dependent manner. Cell Rep 2013; 4:110-23. [PMID: 23810554 DOI: 10.1016/j.celrep.2013.05.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/16/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022] Open
Abstract
Cell fate determination in the progeny of mammary epithelial stem/progenitor cells remains poorly understood. Here, we have examined the role of the mitotic kinase Aurora A (AURKA) in regulating the balance between basal and luminal mammary lineages. We find that AURKA is highly expressed in basal stem cells and, to a lesser extent, in luminal progenitors. Wild-type AURKA expression promoted luminal cell fate, but expression of an S155R mutant reduced proliferation, promoted basal fate, and inhibited serial transplantation. The mechanism involved regulation of mitotic spindle orientation by AURKA and the positioning of daughter cells after division. Remarkably, this was NOTCH dependent, as NOTCH inhibitor blocked the effect of wild-type AURKA expression on spindle orientation and instead mimicked the effect of the S155R mutant. These findings directly link AURKA, NOTCH signaling, and mitotic spindle orientation and suggest a mechanism for regulating the balance between luminal and basal lineages in the mammary gland.
Collapse
Affiliation(s)
- Joseph L Regan
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
An analysis of cyclin D1, cytokeratin 5/6 and cytokeratin 8/18 expression in breast papillomas and papillary carcinomas. Diagn Pathol 2013; 8:8. [PMID: 23327593 PMCID: PMC3571902 DOI: 10.1186/1746-1596-8-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022] Open
Abstract
Background To evaluate the expression levels of Cyclin D1 in breast papillomas and papillary carcinomas, and to analyze the types of cells that co-express Cyclin D1 with Cytokeratin 5/6 (CK 5/6) or with Cytokeratin 8/18(CK 8/18). Methods Fifty-nine cases of papillary lesions including 36 papillomas and 23 intracystic papillary carcinomas were examined. Cyclin D1, CK 5/6 and CK 8/18 expression levels were evaluated by double immunostaining. Results Cyclin D1 is highly expressed in papillary carcinomas (27.54% ± 15.43%) compared with papillomas (8.81% ± 8.41%, p < 0.01). Cyclin D1 is predominantly expressed in Cytokeratin 8/18- expressing cells, rather than in Cytokeratin 5/6-expressing cells, regardless of the type of lesion. In Papillomas, Cyclin D1 exhibited a mean 11.42% (11.42% ± 10.17%) co-expression rate with Cytokeratin 8/18 compared with a mean 2.50% (2.50% ± 3.24%) co-expression rate with Cytokeratin 5/6 (p < 0.01). In papillary carcinomas, Cyclin D1 exhibited a mean 34.74% (34.74% ± 16.32%) co-expression rate with Cytokeratin 8/18 compared with a co-expression rate of 0.70% (0.70% ± 0.93%) with Cytokeratin 5/6 (p < 0.01). Conclusions The increase in Cyclin D1 suggests an association of Cyclin D1 staining with papillary carcinomas. Although Cyclin D1 is an effective marker for the differential diagnosis of other papillary lesions, it cannot be used to distinguish between papilloma and papillary carcinoma lesions because its expression occurs in both lesions. Our results show that Cyclin D1 and CK 5/6 staining could be used in concert to distinguish between the diagnosis of papilloma (Cyclin D1 < 4.20%, CK 5/6 positive) or papillary carcinoma (Cyclin D1 > 37.00%, CK 5/6 negative). In addition, our data suggest that Cyclin D1 is expressed only in the cancer stem or progenitor cells that co-immunostained with CK 8/18 in papillary carcinomas, and predominantly with CK 8/18 in the papillomas. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7299340558756848
Collapse
|
17
|
|
18
|
Wang Z, Fukushima H, Inuzuka H, Wan L, Liu P, Gao D, Sarkar FH, Wei W. Skp2 is a promising therapeutic target in breast cancer. Front Oncol 2012; 1. [PMID: 22279619 PMCID: PMC3263529 DOI: 10.3389/fonc.2011.00057] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, human epidermal growth factor receptor 2, PI3K/Akt, BRCA1, and BRCA2. Emerging evidence has shown that the F-box protein S-phase kinase associated protein 2 (Skp2) also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural "chemopreventive agents" as targeted approach for the prevention and/or treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Malhotra GK, Zhao X, Band H, Band V. Shared signaling pathways in normal and breast cancer stem cells. J Carcinog 2011; 10:38. [PMID: 22279423 PMCID: PMC3263309 DOI: 10.4103/1477-3163.91413] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/20/2011] [Indexed: 12/31/2022] Open
Abstract
Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs). These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog); with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.
Collapse
Affiliation(s)
- Gautam K Malhotra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
20
|
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:197-213. [PMID: 21193018 PMCID: PMC3060666 DOI: 10.1016/j.bbcan.2010.12.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022]
Abstract
The Notch signaling plays a key role in cell differentiation, survival, and proliferation through diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis. Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders, including human malignancies. Notch signaling is activated by ligand binding, followed by ADAM/tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the nucleus induces the transcriptional activation of Notch target genes. The relationships between Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical drug target for breast and other cancers. Since current status of knowledge in this field changes quickly, our insight should be continuously revised. In this review, we will focus on recent advancements in identification of aberrant Notch signaling in breast cancer and the possible underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting Notch signaling for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Mingli Liu
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310
| | | |
Collapse
|
21
|
Visbal AP, LaMarca HL, Villanueva H, Toneff MJ, Li Y, Rosen JM, Lewis MT. Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened. Dev Biol 2011; 352:116-27. [PMID: 21276786 PMCID: PMC3057274 DOI: 10.1016/j.ydbio.2011.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 11/18/2022]
Abstract
The Hedgehog (Hh) signaling network is critical for patterning and organogenesis in mammals, and has been implicated in a variety of cancers. Smoothened (Smo), the gene encoding the principal signal transducer, is overexpressed frequently in breast cancer, and constitutive activation in MMTV-SmoM2 transgenic mice caused alterations in mammary gland morphology, increased proliferation, and changes in stem/progenitor cell number. Both in transgenic mice and in clinical specimens, proliferative cells did not usually express detectable Smo, suggesting the hypothesis that Smo functioned in a non-cell autonomous manner to stimulate proliferation. Here, we employed a genetically tagged mouse model carrying a Cre-recombinase-dependent conditional allele of constitutively active Smo (SmoM2) to test this hypothesis. MMTV-Cre- or adenoviral-Cre-mediated SmoM2 expression in the luminal epithelium, but not in the myoepithelium, was required for the hyper-proliferative phenotypes. High levels of proliferation were observed in cells adjacent or in close-proximity to Smo expressing cells demonstrating that SmoM2 expressing cells were stimulating proliferation via a paracrine or juxtacrine mechanism. In contrast, Smo expression altered luminal cell differentiation in a cell-autonomous manner. SmoM2 expressing cells, purified by fluorescence activated cell sorting (FACS) via the genetic fluorescent tag, expressed high levels of Ptch2, Gli1, Gli2, Jag2 and Dll-1, and lower levels of Notch4 and Hes6, in comparison to wildtype cells. These studies provide insight into the mechanism of Smo activation in the mammary gland and its possible roles in breast tumorigenesis. In addition, these results also have potential implications for the interpretation of proliferative phenotypes commonly observed in other organs as a consequence of hedgehog signaling activation.
Collapse
Affiliation(s)
- Adriana P. Visbal
- Developmental Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Heather L. LaMarca
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael J. Toneff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M. Rosen
- Developmental Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael T. Lewis
- Developmental Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
22
|
Johnson RW, Nguyen MP, Padalecki SS, Grubbs BG, Merkel AR, Oyajobi BO, Matrisian LM, Mundy GR, Sterling JA. TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling. Cancer Res 2011; 71:822-31. [PMID: 21189326 PMCID: PMC3077118 DOI: 10.1158/0008-5472.can-10-2993] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer frequently metastasizes to bone, in which tumor cells receive signals from the bone marrow microenvironment. One relevant factor is TGF-β, which upregulates expression of the Hedgehog (Hh) signaling molecule, Gli2, which in turn increases secretion of important osteolytic factors such as parathyroid hormone-related protein (PTHrP). PTHrP inhibition can prevent tumor-induced bone destruction, whereas Gli2 overexpression in tumor cells can promote osteolysis. In this study, we tested the hypothesis that Hh inhibition in bone metastatic breast cancer would decrease PTHrP expression and therefore osteolytic bone destruction. However, when mice engrafted with human MDA-MB-231 breast cancer cells were treated with the Hh receptor antagonist cyclopamine, we observed no effect on tumor burden or bone destruction. In vitro analyses revealed that osteolytic tumor cells lack expression of the Hh receptor, Smoothened, suggesting an Hh-independent mechanism of Gli2 regulation. Blocking Gli signaling in metastatic breast cancer cells with a Gli2-repressor gene (Gli2-rep) reduced endogenous and TGF-β-stimulated PTHrP mRNA expression, but did not alter tumor cell proliferation. Furthermore, mice inoculated with Gli2-Rep-expressing cells exhibited a decrease in osteolysis, suggesting that Gli2 inhibition may block TGF-β propagation of a vicious osteolytic cycle in this MDA-MB-231 model of bone metastasis. Accordingly, in the absence of TGF-β signaling, Gli2 expression was downregulated in cells, whereas enforced overexpression of Gli2 restored PTHrP activity. Taken together, our findings suggest that Gli2 is required for TGF-β to stimulate PTHrP expression and that blocking Hh-independent Gli2 activity will inhibit tumor-induced bone destruction.
Collapse
Affiliation(s)
- Rachelle W. Johnson
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Mai P. Nguyen
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Susan S. Padalecki
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, United States
- Department of Urology, University of Texas Health Science Center at San Antonio, Texas, United States
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Barry G. Grubbs
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Alyssa R. Merkel
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Babatunde O. Oyajobi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, United States
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Lynn M. Matrisian
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Gregory R. Mundy
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, Tennessee, United States
| | - Julie A. Sterling
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, Tennessee, United States
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, Tennessee, United States
| |
Collapse
|