1
|
Lomelí Martínez SM, Pacheco Moisés FP, Bitzer-Quintero OK, Ramírez-Jirano J, Delgado-Lara DLC, Cortés Trujillo I, Torres Jasso JH, Salazar-Flores J, Torres-Sánchez ED. Effect of N-Acetyl Cysteine as an Adjuvant Treatment in Alzheimer's Disease. Brain Sci 2025; 15:164. [PMID: 40002497 PMCID: PMC11852533 DOI: 10.3390/brainsci15020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress levels are exacerbated in Alzheimer's disease (AD). This phenomenon feeds back into the overactivation of oxidase enzymes, mitochondrial dysfunction, and the formation of advanced glycation end-products (AGEs), with the stimulation of their receptors (RAGE). These factors stimulate Aβ peptide aggregation and tau hyperphosphorylation through multiple pathways, which are addressed in this paper. The aim of this study was to evaluate the regulatory effect of N-acetyl cysteine (NAC) on oxidant/antioxidant balance as an adjuvant treatment in patients with AD. The results obtained showed that NAC supplementation produced improved cognitive performance, decreased levels of oxidative stress markers, lowered activities of oxidase enzymes, increased antioxidant responses, and attenuated inflammatory and apoptotic markers. Moreover, NAC reversed mitochondrial dysfunction, lowered AGEs-RAGE formation, attenuated Aβ peptide oligomerization, and reduced phosphorylation of tau, thereby halting the formation of neurofibrillary tangles and the progression of AD.
Collapse
Affiliation(s)
- Sarah Monserrat Lomelí Martínez
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
- Periodontics Specialty Program, Department of Integrated Dentistry Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Institute of Research in Dentistry, Department of Integral Dental Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Public Health, Department of Wellbeing and Sustainable Development, Northern University Center, University of Guadalajara, Colotlán 46200, Jalisco, Mexico
| | - Fermín Paul Pacheco Moisés
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Oscar Kurt Bitzer-Quintero
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, IMSS, Guadalajara 44340, Jalisco, Mexico; (O.K.B.-Q.); (J.R.-J.)
| | - Javier Ramírez-Jirano
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, IMSS, Guadalajara 44340, Jalisco, Mexico; (O.K.B.-Q.); (J.R.-J.)
| | - Daniela L. C. Delgado-Lara
- Departamento Académico de Formación Universitaria, Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico;
| | - Irán Cortés Trujillo
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
| | - Juan Heriberto Torres Jasso
- Department of Biological Sciences, University Center of the Coast, University of Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico;
| | - Joel Salazar-Flores
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
| | - Erandis Dheni Torres-Sánchez
- Department of Medical and Life Sciences, Cienega University Center, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico; (S.M.L.M.); (I.C.T.); (J.S.-F.)
| |
Collapse
|
2
|
Khatir AA, Mousavi F, Sepidarkish M, Arshadi M, Arjmandi D, Aldaghi M, Rostami A. Association between Alzheimer's disease and Toxocara infection/exposure: a case-control study. Trans R Soc Trop Med Hyg 2024; 118:744-751. [PMID: 38899453 DOI: 10.1093/trstmh/trae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Infections may contribute to Alzheimer's disease (AD) risk. Limited evidence suggests Toxocara spp. infection/exposure could influence AD development. METHODS We investigated Toxocara seropositivity and AD in Iranian adults using a matched case-control study. Our sample included 90 AD cases and 91 healthy older adults. Anti-Toxocara immunoglobulin G (IgG) antibodies were assessed via enzyme-linked immunosorbent assay. We computed the odds ratios (ORs) and 95% confidence intervals (CIs) through univariable and multivariable analyses, adjusting for potential confounders. RESULTS There were 33/90 (36.67% [95% CI 26.75 to 47.48]) anti-Toxocara IgG seropositive individuals identified among the AD cases and 21/91 (23.07% [95% CI 14.89 to 33.09]) among the healthy controls. In univariable analysis, a significant association was identified between anti-Toxocara IgG seropositivity and AD (OR 1.93 [95% CI 1.01 to 3.69], p<0.001). Moreover, the association remained significant (OR 2.18 [95% CI 1.05 to 4.49], p<0.001) in multivariable analysis after adjustment for covariates. There was no association between anti-Toxocara IgG seropositivity and the severity of AD (OR 0.75 [95% CI 0.21 to 2.61], p=0.47). CONCLUSIONS Our findings indicated that Toxocara exposure/infection could be a potential risk factor for development of AD. To better understand a real causality between Toxocara exposure/infection and AD and related dementias, follow-up designed and adequately powered studies are needed.
Collapse
Affiliation(s)
- Ali Alizadeh Khatir
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fariborz Mousavi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Arshadi
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Delaram Arjmandi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Aldaghi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Dubey H, Dubey A, Gulati K, Ray A. S-nitrosoglutathione modulates HDAC2 and BDNF levels in the brain and improves cognitive deficits in experimental model of Alzheimer's disease in rats. Int J Neurosci 2024; 134:777-785. [PMID: 36408590 DOI: 10.1080/00207454.2022.2150190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
AIM Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by cognitive deficits and abnormal memory formation. Histone acetylation is essential for hippocampal memory formation and improving the cognitive deficits, and histone deacetylase 2 (HDAC2) is increased in the hippocampus of AD patients. The present study evaluated the effects of the nitric oxide (NO) mimetics, L-arginine and the nitrosothiol NO donor, s-nitrosoglutathione (GSNO), on memory and brain HDAC2 levels in experimental animal model of sporadic Alzheimer's disease (sAD). METHODS AD was induced experimentally in rats by intracerebroventricular injection of streptozotocin (STZ, 3mg/kg). The effects of NO mimetics, GSNO and L-arginine, were assessed on STZ induced cognitive deficits in the Morris water maze (MWM) test, and, following this, the hippocampal homogenates were assayed for amyloid-β, brain derived neurotropic factor (BDNF) and HDAC2 levels. The neurobehavioral and biochemical data of the drug treated groups were compared with those of experimental control group. RESULTS The results showed that icv-STZ induced cognitive deficits were differentially attenuated by GSNO (50µg/kg) and, to a lesser extent, L-arginine (100mg/kg) with improvement in the spatial learning tasks in MWM test. These behavioral changes were associated with decreased levels of biochemical markers viz. amyloid β, BDNF and HDAC2 levels in hippocampus. CONCLUSIONS It is inferred that NO donors like GSNO could influence AD pathophysiology via epigenetic modification of HDAC2 inhibition.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anamika Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Hamdard University, New Delhi, India
| |
Collapse
|
5
|
Dubey H, Ray A, Dubey A, Gulati K. S-Nitrosoglutathione Attenuates Oxidative Stress and Improves Retention Memory Dysfunctions in Intra-Cerebroventricular-Streptozotocin Rat Model of Sporadic Alzheimer's Disease via Activation of BDNF and Nuclear Factor Erythroid 2-Related Factor-2 Antioxidant Signaling Pathway. Neuropsychobiology 2024; 83:101-113. [PMID: 38744261 DOI: 10.1159/000538348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aβ)-40, Aβ42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aβ levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.
Collapse
Affiliation(s)
- Harikesh Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arunabha Ray
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Departments of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
| | - Anamika Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kavita Gulati
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Khalifa M, Fayed RH, Ahmed YH, Sedik AA, El-Dydamony NM, Khalil HMA. Mitigating effect of ferulic acid on di-(2-ethylhexyl) phthalate-induced neurocognitive dysfunction in male rats with a comprehensive in silico survey. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3493-3512. [PMID: 37966574 PMCID: PMC11074231 DOI: 10.1007/s00210-023-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate threatening public health-induced neurotoxicity. This neurotoxicity is associated with behavioral and biochemical deficits in male rats. Our study investigated the neuroprotective effect of ferulic acid (FA) on male rats exposed to DEHP. Thirty-two male Wistar rats were assigned to four groups. Group I control rats received corn oil, group II intoxicated rats received 300 mg/kg of DEHP, group III received 300 mg/kg of DEHP + 50 mg/kg of FA, and group IV received 50 mg/kg of FA, all agents administrated daily per os for 30 days. Anxiety-like behavior, spatial working memory, and recognition memory were assessed. Also, brain oxidative stress biomarkers, including brain malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF) as well as heme oxygenase-1 (HO-1) were measured. Moreover, brain histopathology examinations associated with immunohistochemistry determination of brain caspase-3 were also evaluated. Furthermore, docking simulation was adapted to understand the inhibitory role of FA on caspase-3 and NO synthase. Compared to DEHP-intoxicated rats, FA-treated rats displayed improved cognitive memory associated with a reduced anxious state. Also, the redox state was maintained with increased BNDF levels. These changes were confirmed by restoring the normal architecture of brain tissue and a decrement in the immunohistochemistry caspase-3. In conclusion, FA has potent antioxidant and antiapoptotic properties that confirm the neuroprotective activity of FA, with a possible prospect for its therapeutic capabilities and nutritional supplement value.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Rabie H Fayed
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6Th of October City, 12585, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
7
|
Zhang J, Cui X, Zhao S, Chang Z, Zhang J, Chen Y, Liu J, Sun G, Wang Y, Liu Y. Establishment of a pharmacokinetics and pharmacodynamics model of Schisandra lignans against hippocampal neurotransmitters in AD rats based on microdi-alysis liquid chromatography-mass spectrometry. Front Pharmacol 2024; 15:1342121. [PMID: 38529184 PMCID: PMC10961592 DOI: 10.3389/fphar.2024.1342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Objective: Our previous studies substantiated that the biological activity of Schisandra chinensis lignans during the treatment of Alzheimer's disease (AD) was mediated by neurotransmitter levels, and 15 of its active components were identified. However, the pharmacokinetic and pharmacodynamic relationship of Schisandra chinensis lignans has been less studied. The objective of this study was to investigate the relationship between the pharmacokinetics and pharmacodynamics of Schisandra chinensis lignans in the treatment of AD, and to establish a pharmacokinetic-pharmacodynamic (PK-PD) model. Methods and Results: Herein, we established a microdialysis-ultra performance liquid chromatography-triple quadruple mass spectrometry (MD-LC-TQ-MS) technique that could simultaneously and continuously collect and quantitatively analyze the active compounds and neurotransmitters related to the therapeutic effects of Schisandra chinensis in awake AD rats. Eight lignans were detected in the hippocampus, and a PK-PD model was established. The fitted curves highlighted a temporal lag between the maximum drug concentration and the peak drug effect. Following treatment, the levels of four neurotransmitters tended to converge with those observed in the sham operation group. Conclusion: By establishing a comprehensive concentration-time-effect relationship for Schisandra chinensis lignans in AD treatment, our study provides novel insights into the in vivo effects of these lignans in AD rats.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Qian Xi Nan Maternal and Child Care Hospital, Xingyi, China
| | - Xinyuan Cui
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Shuo Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Zenghui Chang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Junshuo Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yufeng Chen
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jiale Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Guohao Sun
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yiyuan Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yuanyuan Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
8
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
9
|
Adams JA, Uryash A, Lopez JR. Harnessing Passive Pulsatile Shear Stress for Alzheimer's Disease Prevention and Intervention. J Alzheimers Dis 2024; 98:387-401. [PMID: 38393906 PMCID: PMC10977433 DOI: 10.3233/jad-231010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) affects more than 40 million people worldwide and is the leading cause of dementia. This disease is a challenge for both patients and caregivers and puts a significant strain on the global healthcare system. To address this issue, the Lancet Commission recommends focusing on reducing modifiable lifestyle risk factors such as hypertension, diabetes, and physical inactivity. Passive pulsatile shear stress (PPSS) interventions, which use devices like whole-body periodic acceleration, periodic acceleration along the Z-axis (pGz), and the Jogging Device, have shown significant systemic and cellular effects in preclinical and clinical models which address these modifiable risks factors. Based on this, we propose that PPSS could be a potential non-pharmacological and non-invasive preventive or therapeutic strategy for AD. We perform a comprehensive review of the biological basis based on all publications of PPSS using these devices and demonstrate their effects on the various aspects of AD. We draw from this comprehensive analysis to support our hypothesis. We then delve into the possible application of PPSS as an innovative intervention. We discuss how PPSS holds promise in ameliorating hypertension and diabetes while mitigating physical inactivity, potentially offering a holistic approach to AD prevention and management.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
10
|
Scarano N, Di Palma F, Origlia N, Musumeci F, Schenone S, Spinelli S, Passalacqua M, Zocchi E, Sturla L, Cichero E, Cavalli A. New Insights into the LANCL2- ABA Binding Mode towards the Evaluation of New LANCL Agonists. Pharmaceutics 2023; 15:2754. [PMID: 38140095 PMCID: PMC10747503 DOI: 10.3390/pharmaceutics15122754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The lanthionine synthetase C-like (LANCL) proteins include LANCL2, which is expressed in the central nervous system (CNS) and in peripheral tissues. LANCL2 exhibits glutathionylation activity and is involved in the neutralization of reactive electrophiles. Several studies explored LANCL2 activation as a validated pharmacological target for diabetes and inflammatory bowel disease. In this context, LANCL2 was found to bind the natural product abscisic acid (ABA), whose pre-clinical effectiveness in different inflammatory diseases was reported in the literature. More recently, LANCL2 attracted more attention as a valuable resource in the field of neurodegenerative disorders. ABA was found to regulate neuro-inflammation and synaptic plasticity to enhance learning and memory, exhibiting promising neuroprotective effects. Up until now, a limited number of LANCL2 ligands are known; among them, BT-11 is the only compound patented and investigated for its anti-inflammatory properties. To guide the design of novel putative LANCL2 agonists, a computational study including molecular docking and long molecular dynamic (MD) simulations of both ABA and BT-11 was carried out. The results pointed out the main LANCL2 ligand chemical features towards the following virtual screening of a novel putative LANCL2 agonist (AR-42). Biochemical assays on rat H9c2 cardiomyocytes showed a similar, LANCL2-mediated stimulation by BT-11 and by AR-42 of the mitochondrial proton gradient and of the transcriptional activation of the AMPK/PGC-1α/Sirt1 axis, the master regulator of mitochondrial function, effects that are previously observed with ABA. These results may allow the development of LANCL2 agonists for the treatment of mitochondrial dysfunction, a common feature of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesco Di Palma
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
| | - Nicola Origlia
- National Research Council (CNR), Institute of Neuroscience, 56124 Pisa, Italy;
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy; (M.P.); (E.Z.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Andrea Cavalli
- Computational & Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.P.); (A.C.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
11
|
Zhu X, Cai L, Liu J, Zhu W, Cui C, Ouyang D, Ye J. Effect of seabuckthorn seed protein and its arginine-enriched peptides on combating memory impairment in mice. Int J Biol Macromol 2023; 232:123409. [PMID: 36706884 DOI: 10.1016/j.ijbiomac.2023.123409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
The current study characterized the combating memory impairment effect of seabuckthorn seed protein (SSP) and the arginine (Arg)-enriched peptides (SSPP) on d-galactose-induced brain aging in mice. The Arg content in SSP and SSPP were 10.11 and 17.82 g/100 g, respectively. Seven Arg peptides (Ile/Leu-Arg, Arg-Glu, Asp-Arg-Pro, Arg-Try-Ala, Glu-Arg-Ser, Val-Gly-Arg-Pro, and Lys-Thr-Glu-Arg) were identified from SSPP. The animal experiments of the Morris water maze and the step-down test indicated that the oral administration of SSP (0.25, 0.5, 1.0 mg/g·d) and SSPP (0.25, 0.5, 1.0 mg/g·d) significantly (p < 0.05) reversed the learning and memory impairment symptoms. The activation of endothelial nitric oxide (NO) synthase and neuronal NO synthase were increased, and inducible NO synthase decreased after SSP and SSPP in the hippocampus compared to the model group, with the SSPP being quite effective. Moreover, the treatment significantly exhibited the ability to normalize the serum inflammatory cytokine levels (NF-ĸB, TNF-α, IL-6) and suppress the Arg-inducible nitric oxide (Arg-iNO) pathway. Therefore, SSP and SSPP ingestion reversed the behavioral learning and memory impairment symptoms possibly associated with the anti-inflammation and Arg-iNO pathway. Consumption of SSP and SSPP diets can be beneficial to memory impairment.
Collapse
Affiliation(s)
- Xiping Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jinqi Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Wen Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Daofu Ouyang
- Perfect (Guangdong) Daily Necessities Co, Ltd, Zhongshan 528400, Guangdong, China
| | - Jianwen Ye
- Perfect (Guangdong) Daily Necessities Co, Ltd, Zhongshan 528400, Guangdong, China
| |
Collapse
|
12
|
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 2023; 12:antiox12030753. [PMID: 36979000 PMCID: PMC10045816 DOI: 10.3390/antiox12030753] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide, a ubiquitous molecule found throughout the natural world, is a key molecule implicated in many central and benefic molecular pathways and has a well-established role in the function of the central nervous system, as numerous studies have previously shown. Dysregulation of its metabolism, mainly the upregulation of nitric oxide production, has been proposed as a trigger and/or aggravator for many neurological affections. Increasing evidence supports the implication of this molecule in prevalent neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis. The mechanisms proposed for its neurotoxicity mainly center around the increased quantities of nitric oxide that are produced in the brain, their cause, and, most importantly, the pathological metabolic cascades created. These cascades lead to the formation of neuronal toxic substances that impair the neurons' function and structure on multiple levels. The purpose of this review is to present the main causes of increased pathological production, as well as the most important pathophysiological mechanisms triggered by nitric oxide, mechanisms that could help explain a part of the complex picture of neurodegenerative diseases and help develop targeted therapies.
Collapse
Affiliation(s)
- Olga-Maria Iova
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe-Eduard Marin
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Izabella Lazar
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, No. 46-50, 400347 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Ganmaidazao Decoction Alleviated Cognitive Impairment on Alzheimer's Disease Rats by Regulating Gut Microbiota and Their Corresponding Metabolites. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
14
|
Mondal P, Ishigami I, Yeh SR, Wijeratne GB. The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism. Angew Chem Int Ed Engl 2022; 61:e202211521. [PMID: 36169890 PMCID: PMC9675724 DOI: 10.1002/anie.202211521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Mammalian nitric oxide synthase (NOS) mediates the two-step O2 -dependent oxidative degradation of arginine, and has been linked to a medley of disease situations in humans. Nonetheless, its exact mechanism of action still remains unclear. This work presents the first NOS model system where biologically proposed heme superoxo and peroxo intermediates are assessed as active oxidants against oxime substrates. Markedly, heme peroxo intermediates engaged in a bioinspired oxime oxidation reaction pathway, converting oximes to ketones and nitroxyl anions (NO- ). Detailed thermodynamic, kinetic, and mechanistic interrogations all evince a rate-limiting step primarily driven by the nucleophilicity of the heme peroxo moiety. Coherent with other findings, 18 O and 15 N isotope substitution experiments herein suffice compelling evidence toward a detailed mechanism, which draw close parallels to one of the enzymatic proposals. Intriguingly, recent enzymatic studies also lend credence to these findings, and several relevant reaction intermediates have been observed during NOS turnover.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| |
Collapse
|
15
|
Sodium propionate improves cognitive and memory function in mouse models of Alzheimer's disease. Neurosci Lett 2022; 791:136887. [PMID: 36174844 DOI: 10.1016/j.neulet.2022.136887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022]
Abstract
This study was designed to explore whether sodium propionate (SP) alleviates cognitive damage in a mouse model of Alzheimer's disease (AD). We evaluated behavioral and biochemical aspects in an animal model of AD made by intracerebroventricular injection of Aβ1-42 peptide. Two-month-old ICR mice were treated with SP or normal saline for 21 days (control group, Aβ1-42 group, Aβ1-42+SP50 mg/kg group, Aβ1-42+SP100 mg/kg group, and Aβ1-42+SP200 mg/kg group). Behavioral tests showed that SP alleviated cognitive and memory impairments in AD mice. Moreover, SP treatment significantly suppressed the level of inducible nitric oxide synthase (iNOS) in the hippocampus. Concomitantly, the overexpression of interleukin-1α (IL-1α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the hippocampus induced by Aβ1-42 was significantly reduced following treatment with SP. In addition, SP was able to increase the levels of synaptophysin (SYN) and postsynaptic dense protein 95 (PSD95). Our study shows that SP could significantly improve Aβ1-42-induced spatial learning and memory impairment by reducing neuroinflammation via inhibition of proinflammatory cytokines and iNOS activation and restoring synapse plasticity by increasing synaptically associated protein levels, suggesting that SP has a positive effect and potential for AD therapies.
Collapse
|
16
|
Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines 2022; 10:biomedicines10081772. [PMID: 35892672 PMCID: PMC9331517 DOI: 10.3390/biomedicines10081772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
Collapse
|
17
|
Elsallabi O, Patruno A, Pesce M, Cataldi A, Carradori S, Gallorini M. Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules 2022; 27:738. [PMID: 35164003 PMCID: PMC8839434 DOI: 10.3390/molecules27030738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological disorders-including Alzheimer's disease-age is one of the higher-risk factors. Since in many Western countries the average age is increasing, determining approaches for decreasing the effects of aging on brain function is taking on a new urgency. Neuroinflammation and oxidative stress are two convoluted key factors in brain aging and chronic neurodegenerative diseases. The diverseness of factors, causing an age-related decrease in brain functions, requires identifying small molecules that have multiple biological activities that can affect all these factors. One great source of these small molecules is related to polyphenolic flavonoids. Recently, 3,3',4',7-tetrahydroxyflavone (fisetin) has been reported as a potent senotherapeutic capable of extending lifespan by reducing peroxidation levels and enhancing antioxidant cell responses. The neuroprotective effects of fisetin have been shown in several in vitro and in vivo models of neurological disorders due to its actions on multiple pathways associated with different neurological disorders. The present work aims to collect the most recent achievements related to the antioxidant and neuroprotective effects of fisetin. Moreover, in silico pharmacokinetics, pharmacodynamics, and toxicity of fisetin are also comprehensively described along with emerging novel drug delivery strategies for the amelioration of this flavonol bioavailability and chemical stability.
Collapse
Affiliation(s)
- Osama Elsallabi
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| |
Collapse
|
18
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
19
|
Wang G, Shen D, Zhang X, Ferrini MG, Li Y, Liao H. Comparison of critical biomarkers in 2 erectile dysfunction models based on GEO and NOS-cGMP-PDE5 pathway. Medicine (Baltimore) 2021; 100:e27508. [PMID: 34731136 PMCID: PMC8519209 DOI: 10.1097/md.0000000000027508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Erectile dysfunction is a disease commonly caused by diabetes mellitus (DMED) and cavernous nerve injury (CNIED). Bioinformatics analyses including differentially expressed genes (DEGs), enriched functions and pathways (EFPs), and protein-protein interaction (PPI) networks were carried out in DMED and CNIED rats in this study. The critical biomarkers that may intervene in nitric oxide synthase (NOS, predominantly nNOS, ancillary eNOS, and iNOS)-cyclic guanosine monophosphate (cGMP)-phosphodiesterase 5 enzyme (PDE5) pathway, an important mechanism in erectile dysfunction treatment, were then explored for potential clinical applications. METHODS GSE2457 and GSE31247 were downloaded. Their DEGs with a |logFC (fold change)| > 0 were screened out. Database for Annotation, Visualization and Integrated Discovery (DAVID) online database was used to analyze the EFPs in Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes networks based on down-regulated and up-regulated DEGs respectively. PPI analysis of 2 datasets was performed in Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. Interactions with an average score greater than 0.9 were chosen as the cutoff for statistical significance. RESULTS From a total of 1710 DEGs in GSE2457, 772 were down-regulated and 938 were up-regulated, in contrast to the 836 DEGs in GSE31247, from which 508 were down-regulated and 328 were up-regulated. The 25 common EFPs such as aging and response to hormone were identified in both models. PPI results showed that the first 10 hub genes in DMED were all different from those in CNIED. CONCLUSIONS The intervention of iNOS with the hub gene complement component 3 in DMED and the aging process in both DMED and CNIED deserves attention.
Collapse
Affiliation(s)
- Guangying Wang
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Dayue Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xilan Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Monica G. Ferrini
- Department of Health and Life Sciences & Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yuanping Li
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Liao
- Department of Pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Raybould R, Sims R. Searching the Dark Genome for Alzheimer's Disease Risk Variants. Brain Sci 2021; 11:332. [PMID: 33800766 PMCID: PMC7999247 DOI: 10.3390/brainsci11030332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Sporadic Alzheimer's disease (AD) is a complex genetic disease, and the leading cause of dementia worldwide. Over the past 3 decades, extensive pioneering research has discovered more than 70 common and rare genetic risk variants. These discoveries have contributed massively to our understanding of the pathogenesis of AD but approximately half of the heritability for AD remains unaccounted for. There are regions of the genome that are not assayed by mainstream genotype and sequencing technology. These regions, known as the Dark Genome, often harbour large structural DNA variants that are likely relevant to disease risk. Here, we describe the dark genome and review current technological and bioinformatics advances that will enable researchers to shed light on these hidden regions of the genome. We highlight the potential importance of the hidden genome in complex disease and how these strategies will assist in identifying the missing heritability of AD. Identification of novel protein-coding structural variation that increases risk of AD will open new avenues for translational research and new drug targets that have the potential for clinical benefit to delay or even prevent clinical symptoms of disease.
Collapse
Affiliation(s)
- Rachel Raybould
- UK Dementia Research Institute in Cardiff, Haydn Ellis Building, Cardiff University, Wales CF24 4HQ, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales CF24 4HQ, UK
| |
Collapse
|
22
|
Fanet H, Tournissac M, Leclerc M, Caron V, Tremblay C, Vancassel S, Calon F. Tetrahydrobiopterin Improves Recognition Memory in the Triple-Transgenic Mouse Model of Alzheimer's Disease, Without Altering Amyloid-β and Tau Pathologies. J Alzheimers Dis 2021; 79:709-727. [PMID: 33337360 PMCID: PMC7902975 DOI: 10.3233/jad-200637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifactorial disease, implying that multi-target treatments may be necessary to effectively cure AD. Tetrahydrobiopterin (BH4) is an enzymatic cofactor required for the synthesis of monoamines and nitric oxide that also exerts antioxidant and anti-inflammatory effects. Despite its crucial role in the CNS, the potential of BH4 as a treatment in AD has never been scrutinized. OBJECTIVE Here, we investigated whether BH4 peripheral administration improves cognitive symptoms and AD neuropathology in the triple-transgenic mouse model of AD (3xTg-AD), a model of age-related tau and amyloid-β (Aβ) neuropathologies associated with behavior impairment. METHODS Non-transgenic (NonTg) and 3xTg-AD mice were subjected to a control diet (5% fat - CD) or to a high-fat diet (35% fat - HFD) from 6 to 13 months to exacerbate metabolic disorders. Then, mice received either BH4 (15 mg/kg/day, i.p.) or vehicle for ten consecutive days. RESULTS This sub-chronic administration of BH4 rescued memory impairment in 13-month-old 3xTg-AD mice, as determined using the novel object recognition test. Moreover, the HFD-induced glucose intolerance was completely reversed by the BH4 treatment in 3xTg-AD mice. However, the HFD or BH4 treatment had no significant impact on Aβ and tau neuropathologies. CONCLUSION Overall, our data suggest a potential benefit from BH4 administration against AD cognitive and metabolic deficits accentuated by HFD consumption in 3xTg-AD mice, without altering classical neuropathology. Therefore, BH4 should be considered as a candidate for drug repurposing, at least in subtypes of cognitively impaired patients experiencing metabolic disorders.
Collapse
Affiliation(s)
- Hortense Fanet
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| | - Marine Tournissac
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
| | - Sylvie Vancassel
- INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| |
Collapse
|
23
|
Singh S. Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology. ACS Chem Neurosci 2020; 11:2407-2415. [PMID: 32564594 DOI: 10.1021/acschemneuro.0c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a versatile gasotransmitter that contributes in a range of physiological and pathological mechanims depending on its cellular levels. An appropriate concentration of NO is essentially required for cellular physiology; however, its increased level triggers pathological mechanisms like altered cellular redox regulation, functional impairment of mitochondrion, and modifications in cellular proteins and DNA. Its increased levels also exhibit post-translational modifications in protein through S-nitrosylation of their thiol amino acids, which critically affect the cellular physiology. Along with such modifications, NO could also nitrosylate the endoplasmic reticulum (ER)-membrane located sensors of ER stress, which subsequently affect the cellular protein degradation capacity and lead to aggregation of misfolded/unfolded proteins. Since protein aggregation is one of the pathological hallmarks of neurodegenerative disease, NO should be taken into account during development of disease therapies. In this Review, we shed light on the diverse role of NO in both cellular physiology and pathology and discussed its involvement in various pathological events in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarika Singh
- Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|