1
|
Rai S, Ray SK, Kanwar JR, Mukherjee S. Exosome-based therapeutics: Advancing drug delivery for neurodegenerative diseases. Mol Cell Neurosci 2025; 133:104004. [PMID: 40122271 DOI: 10.1016/j.mcn.2025.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/23/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
Neurodegenerative disorders include Parkinson's disease, spinal cord injury, multiple sclerosis and Alzheimer's disease, cause gradual neuronal loss, protein misfolding, and accumulation, resulting in severe cognitive and movement deficits. Despite substantial study, therapeutic interventions are hampered by the blood-brain barrier, which prevents medication distribution to the central nervous system. Traditional pharmaceutical methods, such as small compounds, peptides, and inhibitors, have shown minimal effectiveness in addressing this obstacle. Exosomes are nanoscale membrane-bound vesicles that are primarily engaged in intercellular communication. They have the inherent capacity to cross the blood-brain barrier, which allows them to be used as medication delivery vehicles for brain illness therapy. Exosomes may be derived from a variety of cells like microglia, astrocytes identified according to origin, increasing their flexibility as drug delivery vehicles. Advanced engineering approaches optimise exosomes for tailored distribution across the blood-brain barrier, paving the path for novel neurodegenerative disease treatments. This review discusses the promise of exosome-based drug delivery, focussing on their composition, biogenesis, engineering, and applications in treating central nervous system illnesses, eventually overcoming the unmet hurdles of crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Sakshi Rai
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India
| | - Suman Kumar Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Kalinganagar, Bhubaneswar 751003, Odisha, India
| | - Jagat R Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
2
|
Liang X, Wen Y, Feng C, Xu L, Xian Y, Xie H, Huang J, Huang Y, Zhao X, Gao X. Neuroglobin protects dopaminergic neurons in a Parkinson's cell model by interacting with mitochondrial complex NDUFA10. Neuroscience 2024; 562:43-53. [PMID: 39454716 DOI: 10.1016/j.neuroscience.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
The study aimed to validate the protective effect of neuroglobin (Ngb) in a cell model of Parkinson's disease (PD) and explore its therapeutic potential. Lentivirus-Ngb (LvNgb) and siRNA-Ngb (siNgb) were used to achieve Ngb overexpression and knockdown, respectively, in a sporadic PD cell model. Apoptosis was evaluated by flow cytometry-based Annexin V/propidium iodide assays. Activation of the pro-apoptotic factor, Caspase-9, was detected by immunoblotting, and Complex I activities were detected by using enzyme-linked immunosorbent assay (ELISA). Mitochondrial dysfunction was examined by measuring the mitochondrial membrane potential (MMP), NAD+/NADH ratios, and reactive oxygen species (ROS) levels. Additionally, coimmunoprecipitation (Co-IP) assays were conducted in mouse neuroblastoma cell line 9D (MN9D) cells to determine the interactions of Ngb with the Complex I subunit NDUFA10. The results showed that Ngb overexpression reduced the percentages of apoptotic cells, total caspase-9 levels and restored Complex I activities in the PD cell model. Conversely, knockdown of Ngb resulted in an increase in apoptotic cells, higher total caspase-9 levels, and decreased Complex I activities. Furthermore, Ngb overexpression restored MMP and NAD+/NADH ratios and alleviated ROS-mediated oxidative stress in MN9D cells. Finally, Co-IP confirmed the interaction between Ngb and NDUFA10 in MN9D cells. In conclusion, Ngb protects MN9D cells against apoptosis by interacting with Complex I subunit NDUFA10, rescuing its activity and inhibiting the mitochondrial pathway of apoptosis in the MPP+-mediated PD model.
Collapse
Affiliation(s)
- Xiaomei Liang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Yutong Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Lan Xu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ying Xian
- Department of General Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianou Huang
- Department of Neurology, Fifth Affiliated Hospital of Southern Medical University, Conghua, Guangdong 510900, China
| | - Yihong Huang
- Department of Spine Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong 510000, China.
| | - Xiaodong Zhao
- Department of Neurology, Fifth Affiliated Hospital of Southern Medical University, Conghua, Guangdong 510900, China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
3
|
Zhou B, Chen Q, Zhang Q, Tian W, Chen T, Liu Z. Therapeutic potential of adipose-derived stem cell extracellular vesicles: from inflammation regulation to tissue repair. Stem Cell Res Ther 2024; 15:249. [PMID: 39113098 PMCID: PMC11304935 DOI: 10.1186/s13287-024-03863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammation is a key pathological feature of many diseases, disrupting normal tissue structure and resulting in irreversible damage. Despite the need for effective inflammation control, current treatments, including stem cell therapies, remain insufficient. Recently, extracellular vesicles secreted by adipose-derived stem cells (ADSC-EVs) have garnered attention for their significant anti-inflammatory properties. As carriers of bioactive substances, these vesicles have demonstrated potent capabilities in modulating inflammation and promoting tissue repair in conditions such as rheumatoid arthritis, osteoarthritis, diabetes, cardiovascular diseases, stroke, and wound healing. Consequently, ADSC-EVs are emerging as promising alternatives to conventional ADSC-based therapies, offering advantages such as reduced risk of immune rejection, enhanced stability, and ease of storage and handling. However, the specific mechanisms by which ADSC-EVs regulate inflammation under pathological conditions are not fully understood. This review discusses the role of ADSC-EVs in inflammation control, their impact on disease prognosis, and their potential to promote tissue repair. Additionally, it provides insights into future clinical research focused on ADSC-EV therapies for inflammatory diseases, which overcome some limitations associated with cell-based therapies.
Collapse
Affiliation(s)
- Bohuai Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuwen Zhang
- The Affiliated Stomatological Hospital Southwest Medical University, Luzhou, 646000, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Tan WLA, Hudson NJ, Porto Neto LR, Reverter A, Afonso J, Fortes MRS. An association weight matrix identified biological pathways associated with bull fertility traits in a multi-breed population. Anim Genet 2024; 55:495-510. [PMID: 38692842 DOI: 10.1111/age.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Using seven indicator traits, we investigated the genetic basis of bull fertility and predicted gene interactions from SNP associations. We used percent normal sperm as the key phenotype for the association weight matrix-partial correlation information theory (AWM-PCIT) approach. Beyond a simple list of candidate genes, AWM-PCIT predicts significant gene interactions and associations for the selected traits. These interactions formed a network of 537 genes: 38 genes were transcription cofactors, and 41 genes were transcription factors. The network displayed two distinct clusters, one with 294 genes and another with 243 genes. The network is enriched in fertility-associated pathways: steroid biosynthesis, p53 signalling, and the pentose phosphate pathway. Enrichment analysis also highlighted gene ontology terms associated with 'regulation of neurotransmitter secretion' and 'chromatin formation'. Our network recapitulates some genes previously implicated in another network built with lower-density genotypes. Sequence-level data also highlights additional candidate genes relevant to bull fertility, such as FOXO4, FOXP3, GATA1, CYP27B1, and EBP. A trio of regulatory genes-KDM5C, LRRK2, and PME-was deemed core to the network because of their overarching connections. This trio probably influences bull fertility through their interaction with genes, both known and unknown as to their role in male fertility. Future studies may target the trio and their target genes to enrich our understanding of male fertility further.
Collapse
Affiliation(s)
- Wei Liang Andre Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicholas James Hudson
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | | | | | - Juliana Afonso
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Empresa Brasileira de Pesquisa Agropecuária, Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | |
Collapse
|
5
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
6
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
7
|
Mobini M, Radbakhsh S, Kubaski F, Eshraghi P, Vakili S, Vakili R, Abbasifard M, Jamialahmadi T, Rajabi O, Emami SA, Tayarani-Najaran Z, Rizzo M, Eid AH, Banach M, Sahebkar A. Effects of Trehalose Administration in Patients with Mucopolysaccharidosis Type III. Curr Med Chem 2024; 31:3033-3042. [PMID: 37038706 DOI: 10.2174/0929867330666230406102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND AIM Mucopolysaccharidosis type III (MPS III) is a rare autosomal recessive lysosomal storage disease (LSD) caused by a deficiency of lysosomal enzymes required for the catabolism of glycosaminoglycans (GAGs), mainly in the central nervous system. Trehalose has been proposed as a potential therapeutic agent to attenuate neuropathology in MPS III. We conducted a single- arm, open-label study to evaluate the efficacy of trehalose treatment in patients with MPS IIIA and MPS IIIB. METHODS Five patients with MPS III were enrolled. Trehalose was administrated intravenously (15 g/week) for 12 weeks. Health-related quality of life and cognitive function, serum biomarkers, liver, spleen, and lung imaging were assessed to evaluate trehalose efficacy at baseline and trial end (week 12). RESULTS TNO-AZL Preschool children Quality of Life (TAPQOL) scores increased in all patients, and the mean scores for quality of life were increased after the intervention. Serum GAG levels were reduced in all treated patients (however, the differences were not statistically significant). Alanine aminotransferase (ALT) levels were reduced in all patients post-treatment (p=0.0039). The mean levels of aspartate transaminase (AST) were also decreased after 12 weeks of treatment with Trehalose. Decreased serum pro-oxidant-antioxidant balance and increased GPX activity were observed at the end of the study. Decreases in mean splenic length were observed, whereas the liver volume did not change. CONCLUSION Improvements in health-related quality of life and serum biomarkers (GAGs, liver aminotransferase levels, antioxidant status), as well as liver and spleen size, were found following 3 months of trehalose administration in patients with MPS IIIA and MPS IIIB.
Collapse
Affiliation(s)
- Moein Mobini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francyne Kubaski
- Department of Genetics, UFRGS, Porto Alegre, 91501970, Brazil
- Medical Genetics Service, HCPA, Porto Alegre, 90035903
- Biodiscovery Lab, HCPA, Porto Alegre, 90035903, Brazil
| | - Peyman Eshraghi
- Department of Pediatric Diseases, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Vakili
- Medical Genetic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Vakili
- Medical Genetic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417, Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Chandrababu K, Radhakrishnan V, Anjana AS, Rajan R, Sivan U, Krishnan S, Baby Chakrapani PS. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies. Exp Brain Res 2024; 242:1-23. [PMID: 38015243 DOI: 10.1007/s00221-023-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.
Collapse
Affiliation(s)
- Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Rahul Rajan
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Unnikrishnan Sivan
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India.
- Centre for Excellence in Neurodegeneration and Brain Health (CENBH), Kochi, Kerala, India.
| |
Collapse
|
9
|
Xie K. PHLPP2: A Prognostic Biomarker in Adenocarcinoma of the Rectum. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1099-1106. [PMID: 37737218 PMCID: PMC10645281 DOI: 10.5152/tjg.2023.23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND/AIMS Adenocarcinoma of the rectum (READ) is typically diagnosed at advanced stages due to a lack of early-onset spe- cific features. MATERIALS AND METHODS The study used bioinformatics analysis of READ ribonucleic acid sequencing data from The Cancer Genome Atlas database to identify differentially expressed genes (DEGs). Overlapping genes between DEGs and autophagy-associated genes were screened for prognosis-associated DEGs, which were then validated in the OncoLnc database. RESULTS A total of 129 autophagy-associated DEGs were identified, with 17 genes found to be associated with READ prognosis. Multivariate Cox regression analysis revealed that only the PHLPP2 gene was significantly associated with READ prognosis (hazard ratio = 0.442, P = .026), and its low expression correlated with low survival in patients with brain lower-grade glioma (P = .00623) and pancreatic adenocarcinoma (P = .00109). CONCLUSIONS PHLPP2 expression may serve as a READ-specific prognostic biomarker and is involved in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keju Xie
- Department of Plastic Surgery, The Affiliated Hospital of Shaoxing University, Shaoxing Municipal Hospital, Shaoxing, China
| |
Collapse
|
10
|
Goenawan H, Kiasati S, Sylviana N, Megantara I, Lesmana R. Exercise-Induced Autophagy Ameliorates Motor Symptoms Progressivity in Parkinson's Disease Through Alpha-Synuclein Degradation: A Review. Neuropsychiatr Dis Treat 2023; 19:1253-1262. [PMID: 37255530 PMCID: PMC10226548 DOI: 10.2147/ndt.s401416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
This study reviews the molecular mechanism of exercise-induced autophagy/mitophagy and its possible mechanism in delaying motor symptoms progressivity in Parkinson's disease (PD). Relevant articles obtained from PubMed and EBSCOhost were reviewed. After analyzing the articles, it was found that autophagy can be induced by exercise and can possibly be activated through the AMPK-ULK1 pathway. Mitophagy can also be induced by exercise and can possibly be activated through PINK1/Parkin pathway and AMPK-dependent pathway. Moreover, exercise-induced autophagy can decrease the accumulation of toxic α-synuclein aggregates in PD and therefore can delay motor symptoms progressivity.
Collapse
Affiliation(s)
- Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Shabrina Kiasati
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Imam Megantara
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
11
|
Zhou L, Ma Z, Gao X. Retinoic Acid Prevents α-Synuclein Preformed Fibrils-Induced Toxicity via Inhibiting STAT1-PARP1 Signaling. Mol Neurobiol 2023:10.1007/s12035-023-03376-x. [PMID: 37171576 DOI: 10.1007/s12035-023-03376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Parkinson's disease (PD), the second-most prevalent neurodegenerative disorder, is characterized by the aberrant deposition of α-synuclein (α-Syn) aggregation in neurons. Recent reports have shown that retinoic acid (RA) ameliorates motor deficits. However, the underlying molecular mechanisms remain unclear. In this article, we investigated the effects of RA on cellular and animal models of PD. We found that RA is beneficial for neuronal survival in PD-associated models. In α-Syn preformed fibrils-treated mice, RA administration relieved the formation of intracellular inclusions, dopaminergic neuronal loss, and behavioral deficits. α-Syn preformed fibrils-treated SH-SY5Y cells manifested decreased cell viability, apoptosis, α-Syn aggregation, and autophagy defects. All these negative phenomena were alleviated by RA. More importantly, RA could inhibit the neurotoxicity via inhibiting α-Syn preformed fibrils-induced STAT1-PARP1 signaling, which could also be antagonized by IFN-γ. In conclusion, RA could hinder α-Syn preformed fibrils-induced toxicity by inhibiting STAT1-PARP1 signaling. Thus, we present new insight into RA in PD management.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zengxia Ma
- Department of Pulmonary and Critical Care Medicine, Shandong Public Health Clinical Center, Jinan, 250013, China.
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Park J, Gong JH, Chen Y, Nghiem THT, Chandrawanshi S, Hwang E, Yang CH, Kim BS, Park JW, Ryter SW, Ahn B, Joe Y, Chung HT, Yu R. Activation of ROS-PERK-TFEB by Filbertone Ameliorates Neurodegenerative Diseases via Enhancing the Autophagy-Lysosomal Pathway. J Nutr Biochem 2023; 118:109325. [PMID: 36958418 DOI: 10.1016/j.jnutbio.2023.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and Huntington's disease remain enigmatic, resulting in an unmet need for therapeutics development. Here, we suggest that filbertone, a key flavor compound found in the fruits of hazel trees of the genus Corylus, can ameliorate PD via lowering the abundance of aggregated α-synuclein. We previously reported that inhibition of hypothalamic inflammation by filbertone is mediated by suppression of nuclear factor kappa-B (NF-κB). Here, we report that filbertone activates PERK through mitochondrial ROS (mtROS) production, resulting in the increased nuclear translocation of transcription factor-EB (TFEB) in SH-SY5Y human neuroblastoma cells. TFEB activation by filbertone promotes the autophagy-lysosomal pathway (ALP), which in turn alleviates the accumulation of α-synuclein. We also demonstrate that filbertone prevented the loss of dopaminergic neurons in the substantia nigra and striatum of mice on high-fat diet (HFD). Filbertone treatment also reduced HFD-induced α-synuclein accumulation through upregulation of the ALP pathway. In addition, filbertone improved behavioral abnormalities (i.e., latency time to fall and decrease of running distance) in the MPTP-induced PD murine model. In conclusion, filbertone may show promise as a potential therapeutic for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeong Heon Gong
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yubing Chen
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Thu-Hang Thi Nghiem
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sonam Chandrawanshi
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Eunyeong Hwang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Byung-Sam Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | | | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
13
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Cano A, Muñoz-Morales Á, Sánchez-López E, Ettcheto M, Souto EB, Camins A, Boada M, Ruíz A. Exosomes-Based Nanomedicine for Neurodegenerative Diseases: Current Insights and Future Challenges. Pharmaceutics 2023; 15:298. [PMID: 36678926 PMCID: PMC9863585 DOI: 10.3390/pharmaceutics15010298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases constitute a group of pathologies whose etiology remains unknown in many cases, and there are no treatments that stop the progression of such diseases. Moreover, the existence of the blood-brain barrier is an impediment to the penetration of exogenous molecules, including those found in many drugs. Exosomes are extracellular vesicles secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Due to their natural origin and molecular similarities with most cell types, exosomes have emerged as promising therapeutic tools for numerous diseases. Specifically, neurodegenerative diseases have shown to be a potential target for this nanomedicine strategy due to the difficult access to the brain and the strategy's pathophysiological complexity. In this regard, this review explores the most important biological-origin drug delivery systems, innovative isolation methods of exosomes, their physicochemical characterization, drug loading, cutting-edge functionalization strategies to target them within the brain, the latest research studies in neurodegenerative diseases, and the future challenges of exosomes as nanomedicine-based therapeutic tools.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Álvaro Muñoz-Morales
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
15
|
Cano A, Ettcheto M, Bernuz M, Puerta R, Esteban de Antonio E, Sánchez-López E, Souto EB, Camins A, Martí M, Pividori MI, Boada M, Ruiz A. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int J Biol Sci 2023; 19:721-743. [PMID: 36778117 PMCID: PMC9910004 DOI: 10.7150/ijbs.79063] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2023] Open
Abstract
Extracellular vesicles are secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Their molecular cargo reflects the physiological processes that their cells of origin are undergoing. Thus, many studies have suggested that extracellular vesicles could be a promising biomarker tool for many diseases, mainly due to their biological relevance and easy accessibility to a broad range of body fluids. Moreover, since their biological composition leads them to cross the blood-brain barrier bidirectionally, growing evidence points to extracellular vesicles as emerging mirrors of brain diseases processes. In this regard, this review explores the biogenesis and biological functions of extracellular vesicles, their role in different physiological and pathological processes, their potential in clinical practice, and the recent outstanding studies about the role of exosomes in major human brain diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or brain tumors.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Mireia Bernuz
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain
| | | | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain.,Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Mercè Martí
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Isabel Pividori
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
16
|
Enomoto A, Fukasawa T. The role of calcium-calpain pathway in hyperthermia. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1005258. [PMID: 39086981 PMCID: PMC11285567 DOI: 10.3389/fmmed.2022.1005258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 08/02/2024]
Abstract
Hyperthermia is a promising anticancer treatment modality. Heat stress stimulates proteolytic machineries to regulate cellular homeostasis. Calpain, an intracellular calcium (Ca2+)-dependent cysteine protease, is a modulator that governs various cellular functions. Hyperthermia induces an increase in cytosolic Ca2+ levels and triggers calpain activation. Contrastingly, pre-exposure of cells to mild hyperthermia induces thermotolerance due to the presence of cellular homeostatic processes such as heat shock response and autophagy. Recent studies suggest that calpain is a potential key molecule that links autophagy and apoptosis. In this review, we briefly introduce the regulation of intracellular Ca2+ homeostasis, basic features of calpains with their implications in cancer, immune responses, and the roles and cross-talk of calpains in cellular protection and cell death in hyperthermia.
Collapse
Affiliation(s)
- Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takemichi Fukasawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Moon SH, Kwon Y, Huh YE, Choi HJ. Trehalose ameliorates prodromal non-motor deficits and aberrant protein accumulation in a rotenone-induced mouse model of Parkinson's disease. Arch Pharm Res 2022; 45:417-432. [PMID: 35618982 DOI: 10.1007/s12272-022-01386-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
Trehalose has been recently revealed as an attractive candidate to prevent and modify Parkinson's disease (PD) progression by regulating autophagy; however, studies have only focused on the reduction of motor symptoms rather than the modulation of disease course from prodromal stage. This study aimed to evaluate whether trehalose has a disease-modifying effect at the prodromal stage before the onset of a motor deficit in 8-week-old male C57BL/6 mice exposed to rotenone. We found significant decrease in tyrosine hydroxylase immunoreactivity in the substantia nigra and motor dysfunction after 2 weeks rotenone treatment. Mice exposed to rotenone for a week showed an accumulation of protein aggregates in the brain and prodromal non-motor deficits, such as depression and olfactory dysfunction, prior to motor deficits. Trehalose significantly improved olfactory dysfunction and depressive-like behaviors and markedly reduced α-synuclein and p62 deposition in the brain. Trehalose further ameliorated motor impairment and loss of nigral tyrosine hydroxylase-positive cells in rotenone-treated mice. We demonstrated that prodromal non-motor signs in a rotenone-induced PD mouse model are associated with protein aggregate accumulation in the brain and that an autophagy inducer could be valuable to prevent PD progression from prodromal stage by regulating abnormal protein accumulation.
Collapse
Affiliation(s)
- Soung Hee Moon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
18
|
Dang T, Cao WJ, Zhao R, Lu M, Hu G, Qiao C. ATP13A2 protects dopaminergic neurons in Parkinson's disease: from biology to pathology. J Biomed Res 2022; 36:98-108. [PMID: 35387901 PMCID: PMC9002154 DOI: 10.7555/jbr.36.20220001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central nervous system. Furthermore, ATP13A2 regulates the normal function of several organelles such as lysosomes, endoplasmic reticulum (ER) and mitochondria, and maintains the normal physiological activity of neural cells. Especially, ATP13A2 protects dopaminergic (DA) neurons against environmental or genetically induced Parkinson's disease (PD). As we all know, PD is a neurodegenerative disease characterized by the loss of DA neurons in the substantia nigra pars compacta. An increasing number of studies have reported that the loss-of-function of ATP13A2 affects normal physiological processes of various organelles, leading to abnormalities and the death of DA neurons. Previous studies in our laboratory have also shown that ATP13A2 deletion intensifies the neuroinflammatory response induced by astrocytes, thus inducing DA neuronal injury. In addition to elucidating the normal structure and function of ATP13A2, this review summarized the pathological mechanisms of ATP13A2 mutations leading to PD in existing literature studies, deepening the understanding of ATP13A2 in the pathological process of PD and other related neurodegenerative diseases. This review provides inspiration for investigators to explore the essential regulatory role of ATP13A2 in PD in the future.
Collapse
Affiliation(s)
- Tao Dang
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.,College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen-Jing Cao
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China
| | - Rong Zhao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chen Qiao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.,College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
19
|
Mohamad KA, El-Naga RN, Wahdan SA. Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson's disease: Impact of the SIRT1-AMPK signaling pathway. Toxicol Appl Pharmacol 2022; 435:115853. [PMID: 34973289 DOI: 10.1016/j.taap.2021.115853] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder. Although mounting studies have been conducted, no effective therapy is available to halt its progression. Indole-3-carbinol (I3C) is a naturally occurring compound obtained by β-thioglucosidase-mediated autolysis of glucobrassicin in cruciferous vegetables. Besides its powerful antioxidant activity, I3C has shown neuroprotection against depression and chemically induced neurotoxicity via its anti-inflammatory and antiapoptotic effects. This study aimed to investigate the neuroprotective effects of I3C against rotenone (ROT)-induced PD in male albino rats. The possible protective mechanisms were also explored. PD was induced by subcutaneous administration of ROT (2 mg/kg) for 28 days. The effects of I3C (25, 50, and 100 mg/kg/day) were assessed by catalepsy test (bar test), spontaneous locomotor activity, rotarod test, weight change, tyrosine hydroxylase (TH) expression, α-synuclein (α-Syn) expression, striatal dopamine (DA) content, and histological examination. The highest dose of I3C (100 mg/kg) was the most effective to prevent ROT-mediated motor dysfunctions and amend striatal DA decrease, weight loss, neurodegeneration, TH expression reduction, and α-Syn expression increase in both the midbrain and striatum. Further mechanistic investigations revealed that the neuroprotective effects of I3C are partially attributed to its anti-inflammatory and antiapoptotic effects and the activation of the sirtuin 1/AMP-activated protein kinase pathway. Altogether, these results suggested that I3C could attenuate biochemical, molecular, and functional changes in a rat PD model with following repeated rotenone exposures.
Collapse
Affiliation(s)
- Khalid A Mohamad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
20
|
Lee CY, Menozzi E, Chau KY, Schapira AHV. Glucocerebrosidase 1 and leucine-rich repeat kinase 2 in Parkinson disease and interplay between the two genes. J Neurochem 2021; 159:826-839. [PMID: 34618942 DOI: 10.1111/jnc.15524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/24/2023]
Abstract
The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.
Collapse
Affiliation(s)
- Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
21
|
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharm Sin B 2021; 11:3015-3034. [PMID: 34729301 PMCID: PMC8546670 DOI: 10.1016/j.apsb.2021.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 5-HT2A, Serotonin 2A
- 5-HT2C, serotonin 2C
- A2A, adenosine 2A
- AADC, aromatic amino acid decarboxylase
- ALP, autophagy-lysosomal pathway
- AMPK, 5ʹAMP-activated protein kinase
- ATG, autophagy related protein
- ATP13A2, ATPase cation transporting 13A2
- ATTEC, autophagosome-tethering compound
- AUC, the area under the curve
- AUTAC, autophagy targeting chimera
- Autophagy
- BAF, bafilomycinA1
- BBB, blood−brain barrier
- CL, clearance rate
- CMA, chaperone-mediated autophagy
- CNS, central nervous system
- COMT, catechol-O-methyltransferase
- DA, dopamine
- DAT, dopamine transporter
- DJ-1, Parkinson protein 7
- DR, dopamine receptor
- ER, endoplasmic reticulum
- ERRα, estrogen-related receptor alpha
- F, oral bioavailability
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GBA, glucocerebrosidase β acid
- GWAS, genome-wide association study
- HDAC6, histone deacetylase 6
- HSC70, heat shock cognate 71 kDa protein
- HSPA8, heat shock 70 kDa protein 8
- IMPase, inositol monophosphatase
- IPPase, inositol polyphosphate 1-phosphatase
- KI, knockin
- LAMP2A, lysosome-associated membrane protein 2 A
- LC3, light chain 3
- LIMP-2, lysosomal integrated membrane protein-2
- LRRK2, leucine-rich repeat sequence kinase 2
- LRS, leucyl-tRNA synthetase
- LUHMES, lund human mesencephalic
- Lamp2a, type 2A lysosomal-associated membrane protein
- MAO-B, monoamine oxidase B
- MPP+, 1-methyl-4-phenylpyridinium
- MPTP, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
- MYCBP2, MYC-binding protein 2
- NMDA, N-methyl-d-aspartic acid
- ONRs, orphan nuclear receptors
- PD therapy
- PD, Parkinson's disease
- PDE4, phosphodiesterase 4
- PI3K, phosphatidylinositol 3-kinase
- PI3P, phosphatidylinositol 3-phosphate
- PINK1, PTEN-induced kinase 1
- PLC, phospholipase C
- PREP, prolyl oligopeptidase
- Parkin, parkin RBR E3 ubiquitin−protein ligase
- Parkinson's disease (PD)
- ROS, reactive oxygen species
- SAR, structure–activity relationship
- SAS, solvent accessible surface
- SN, substantia nigra
- SNCA, α-synuclein gene
- SYT11, synaptotagmin 11
- Small-molecule compound
- TFEB, transcription factor EB
- TSC2, tuberous sclerosis complex 2
- Target
- ULK1, UNC-51-like kinase 1
- UPS, ubiquitin−proteasome system
- mAChR, muscarinic acetylcholine receptor
- mTOR, the mammalian target of rapamycin
- α-syn, α-synuclein
Collapse
|
22
|
Ma C, Zhang W, Wang W, Shen J, Cai K, Liu M, Cao M. SKP-SCs transplantation alleviates 6-OHDA-induced dopaminergic neuronal injury by modulating autophagy. Cell Death Dis 2021; 12:674. [PMID: 34226513 PMCID: PMC8257782 DOI: 10.1038/s41419-021-03967-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a common neurodegenerative disease. Cell transplantation is a promising therapeutic option for improving the survival and function of dopaminergic neurons, but the mechanisms underlying the interaction between the transplanted cells and the recipient neurons remain to be studied. In this study, we investigated the effects of skin precursor cell-derived Schwann cells (SKP-SCs) directly cocultured with 6-OHDA-injured dopaminergic neurons in vitro and of SKP-SCs transplanted into the brains of 6-OHDA-induced PD mice in vivo. In vitro and in vivo studies revealed that SKP-SCs could reduce the damage to dopaminergic neurons by enhancing self-autophagy and modulating neuronal autophagy. Thus, the present study provides the first evidence that cell transplantation mitigates 6-OHDA-induced damage to dopaminergic neurons by enhancing self-autophagy, suggesting that earlier transplantation of Schwann cells might help alleviate the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wen Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wengcong Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kefu Cai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
23
|
Wang Y, Mo Y, Peng M, Zhang S, Gong Z, Yan Q, Tang Y, He Y, Liao Q, Li X, Wu X, Xiang B, Zhou M, Li Y, Li G, Li X, Zeng Z, Guo C, Xiong W. The influence of circular RNAs on autophagy and disease progression. Autophagy 2021; 18:240-253. [PMID: 33904341 DOI: 10.1080/15548627.2021.1917131] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that have attracted considerable attention in recent years. Owing to their distinct circular structure, circRNAs are stable in cells. Autophagy is a catabolic process that helps in the degradation and recycling of harmful or inessential biological macromolecules in cells and enables cells to adapt to stress and changes in the internal and external environments. Evidence has shown that circRNAs influence the course of a disease by regulating autophagy, which indicates that autophagy is involved in the onset and development of various diseases and can affect drug resistance (for example, it affects cisplatin resistance in tumors). In this review, we summarized the role of circRNAs in autophagy and their influence on disease onset and progression as well as drug resistance. The review will expand our understanding of tumors as well as cardiovascular and neurological diseases and also suggest novel therapeutic strategies.Abbreviations: ACR: autophagy-related circRNA; ADSCs: adipogenic mesenchymal stem cells; AMPK: AMP-activated protein kinase; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; ceRNA: competing endogenous RNA; circRNA: circular RNA; CMA: chaperone-mediated autophagy; EPCs: endothelial progenitor cells; LE/MVBs: late endosomes/multivesicular bodies; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSCLC: non-small cell lung cancer; PDLSCs: periodontal ligament stem cells; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate 1,2-dipalmitoyl; PTEN: phosphatase and tensin homolog; RBPs: RNA-binding proteins; SiO2: silicon dioxide; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Luo Y, Fu Y, Huang Z, Li M. Transition metals and metal complexes in autophagy and diseases. J Cell Physiol 2021; 236:7144-7158. [PMID: 33694161 DOI: 10.1002/jcp.30359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Transition metals refer to the elements in the d and ds blocks of the periodic table. Since the success of cisplatin and auranofin, transition metal-based compounds have become a prospective source for drug development, particularly in cancer treatment. In recent years, extensive studies have shown that numerous transition metal-based compounds could modulate autophagy, promising a new therapeutic strategy for metal-related diseases and the design of metal-based agents. Copper, zinc, and manganese, which are common components in physiological pathways, play important roles in the progression of cancer, neurodegenerative diseases, and cardiovascular diseases. Furthermore, enrichment of copper, zinc, or manganese can regulate autophagy. Thus, we summarized the current advances in elucidating the mechanisms of some metals/metal-based compounds and their functions in autophagy regulation, which is conducive to explore the intricate roles of autophagy and exploit novel therapeutic drugs for human diseases.
Collapse
Affiliation(s)
- Yuping Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiying Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Han X, Zhao S, Song H, Xu T, Fang Q, Hu G, Sun L. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson's disease. Redox Biol 2021; 41:101911. [PMID: 33713908 PMCID: PMC7967038 DOI: 10.1016/j.redox.2021.101911] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that unexpected lipid droplet (LD) deposition and peroxidation can accelerate organelle stress and plays a crucial role in the pathogenesis of neurodegenerative diseases (NDDs). In our previous study, we confirmed that kaempferol (Ka), a natural flavonoid small molecule, exhibited neuroprotective effects on mice with LPS-induced Parkinson's disease (PD). In addition, previous studies have shown that autophagy plays an important role in the regulation of cellular LD deposition. In the current study, we showed that Ka protected against TH+ neuronal loss and behavioral deficits in MPTP/p-induced PD mice, accompanied by reduced lipid oxidative stress in the substantia nigra pars compacta (SNpc). In cultured neuronal cells, Ka exhibited a relatively safe concentration range and significantly suppressed LD accumulation and cellular apoptosis induced by MPP+. Further study indicated that the protective effect of Ka was dependent on autophagy, specifically lipophagy. Critically, Ka promoted autophagy to mediate LD degradation in lysosomes, which then alleviated lipid deposition and peroxidation and the resulting mitochondrial damage, consequently reducing neuronal death. Furthermore, AAV-shAtg5-mediated Atg5 knockdown abolished the neuroprotective effects of Ka against lipid oxidation in PD mice. This work demonstrates that Ka prevents dopaminergic neuronal degeneration in PD via the inhibition of lipid peroxidation-mediated mitochondrial damage by promoting lipophagy and provides a potential novel therapeutic strategy for PD and related NDDs.
Collapse
Affiliation(s)
- Xiaojuan Han
- Department of Rheumatology and Immunology, Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Shengnan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hua Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianshu Xu
- Department of Rheumatology and Immunology, Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qijun Fang
- Department of Rheumatology and Immunology, Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Linyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
26
|
Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1334-1344. [PMID: 33717653 PMCID: PMC7920810 DOI: 10.1016/j.omtn.2021.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s disease. The most important pathological feature of PD is the irreversible damage of dopamine neurons, which is related to autophagy and neuroinflammation in the substantia nigra. Previous studies found that the activation of NAcht Leucine-rich repeat Protein 3 (NLRP3) inflammasome/pyroptosis and cell division protein kinase 5 (CDK5)-mediated autophagy played an important role in PD. Bioinformatics analyses further predicted that microRNA (miR)-188-3p potentially targets NLRP3 and CDK5. Adipose-derived stem cell (ADSC)-derived exosomes were found to be excellent vectors for genetic therapy. We assessed the levels of injury, autophagy, and inflammasomes in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-induced PD mice models and neurotoxin 1-methyl-4-phenylpyridinium (MPP+)-induced cell models after treating them with miR-188-3p-enriched exosomes. miR-188-3p-enriched exosome treatment suppressed autophagy and pyroptosis, whereas increased proliferation via targeting CDK5 and NLRP3 in mice and MN9D cells. It was revealed that mir-188-3p could be a new therapeutic target for curing PD patients.
Collapse
Affiliation(s)
- Qiang Li
- The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Ren X, Chen JF. Caffeine and Parkinson's Disease: Multiple Benefits and Emerging Mechanisms. Front Neurosci 2020; 14:602697. [PMID: 33390888 PMCID: PMC7773776 DOI: 10.3389/fnins.2020.602697] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by dopaminergic neurodegeneration, motor impairment and non-motor symptoms. Epidemiological and experimental investigations into potential risk factors have firmly established that dietary factor caffeine, the most-widely consumed psychoactive substance, may exerts not only neuroprotective but a motor and non-motor (cognitive) benefits in PD. These multi-benefits of caffeine in PD are supported by convergence of epidemiological and animal evidence. At least six large prospective epidemiological studies have firmly established a relationship between increased caffeine consumption and decreased risk of developing PD. In addition, animal studies have also demonstrated that caffeine confers neuroprotection against dopaminergic neurodegeneration using PD models of mitochondrial toxins (MPTP, 6-OHDA, and rotenone) and expression of α-synuclein (α-Syn). While caffeine has complex pharmacological profiles, studies with genetic knockout mice have clearly revealed that caffeine’s action is largely mediated by the brain adenosine A2A receptor (A2AR) and confer neuroprotection by modulating neuroinflammation and excitotoxicity and mitochondrial function. Interestingly, recent studies have highlighted emerging new mechanisms including caffeine modulation of α-Syn degradation with enhanced autophagy and caffeine modulation of gut microbiota and gut-brain axis in PD models. Importantly, since the first clinical trial in 2003, United States FDA has finally approved clinical use of the A2AR antagonist istradefylline for the treatment of PD with OFF-time in Sept. 2019. To realize therapeutic potential of caffeine in PD, genetic study of caffeine and risk genes in human population may identify useful pharmacogenetic markers for predicting individual responses to caffeine in PD clinical trials and thus offer a unique opportunity for “personalized medicine” in PD.
Collapse
Affiliation(s)
- Xiangpeng Ren
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China.,Department of Biochemistry, Medical College, Jiaxing University, Jiaxing, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|
28
|
Controversy of TMEM230 Associated with Parkinson's Disease. Neuroscience 2020; 453:280-286. [PMID: 33212219 DOI: 10.1016/j.neuroscience.2020.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with movement disorders including resting tremor, bradykinesia, rigidity, and postural instability. The key pathological features of PD are selective loss of dopaminergic (DA) neurons in substantial nigra and the presence of Lewy bodies (LBs). Mutations in TMEM230 (transmembrane protein 230) have been recently reported to play a pathological role and contribute to PD pathogenesis. TMEM230 gene encodes two isoforms of TMEM230 proteins, isoform I (183 amino acids) and isoform II (120 amino acids). The function of TMEM230 is not clear, but it may be involved in vesicle trafficking and recycling, autophagy, protein aggregation, and cell toxicity. There are four reported PD-linked TMEM230 mutations (p.Y92C, p.R141L, p.*184Wext*5, p.*184PGext*5). TMEM230-linked PD cases exhibit late-onset, good-response to levodopa, and typical clinical features of sporadic PD with DA neuronal loss in substantial nigra and Lewy body pathology. In this mini review, we recap the current literature of TMEM230 in genetic, neurobiological, and pathological studies in order to further understand the potential roles of TMEM230 in PD pathogenesis.
Collapse
|
29
|
Rostami J, Jäntti M, Cui H, Rinne MK, Kukkonen JP, Falk A, Erlandsson A, Myöhänen T. Prolyl oligopeptidase inhibition by KYP-2407 increases alpha-synuclein fibril degradation in neuron-like cells. Biomed Pharmacother 2020; 131:110788. [PMID: 33152946 DOI: 10.1016/j.biopha.2020.110788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023] Open
Abstract
Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (αSYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase αSYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of αSYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular αSYN fibrils has not been studied before. In this study, the effect of KYP2407 on αSYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astrocytes. Immunostaining analysis revealed that both cell types accumulated αSYN PFFs intracellularly but KYP-2047 decreased intracellular αSYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight αSYN species in SH-SY5Y cell lysates, and secretion of αSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of αSYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular αSYN aggregates.
Collapse
Affiliation(s)
- Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Maiju K Rinne
- Division of Pharmaceutical Chemistry and Technology/Drug Research Program, Faculty of Pharmacy, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Jyrki P Kukkonen
- Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine, P.O. Box 63, 00014, University of Helsinki, Finland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Erlandsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland; Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, 20014, University of Turku, Finland.
| |
Collapse
|
30
|
Abstract
BACKGROUND Paraquat poisoning is one of leading intoxication worldwide without an effective antidote and treatment protocol. Among the other organs, cardiotoxicity of paraquat has been frequently reported. AIM The protective effects of atorvastatin (STN) on paraquat-induced cardiotoxicity and the role of peroxisome proliferator-activated receptors γ in the mediation of STN effects were investigated. METHODS Forty-two male Wistar rats were aliquoted into control or test groups. The animals in test groups in addition of paraquat received saline normal (PQ), pioglitazone (PGT), atorvastatin (STN), PGT + STN, PGT + GW9662, and/or STN + GW9662 for 14 days. RESULTS PGT and STN lowered lipid peroxidation rate, nitric oxide concentration, and activity of myeloperoxidase and CK/MB in the heart. PGT and STN protected from thiol molecules reduction and PQ-induced histopathological injuries. STN regulated the PQ-induced upregulation of COX-II expression in the heart. All STN-related protective effects were reversed by GW9662 as PPARγ antagonist. CONCLUSIONS These data suggest a cardioprotective effect for STN against the PQ-induced inflammation and oxidative stress. The pharmacologic approach of these findings indicates that STN through PPARγ pathway lowered the PQ-induced cardiotoxicity.
Collapse
|
31
|
Madureira M, Connor-Robson N, Wade-Martins R. "LRRK2: Autophagy and Lysosomal Activity". Front Neurosci 2020; 14:498. [PMID: 32523507 PMCID: PMC7262160 DOI: 10.3389/fnins.2020.00498] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
It has been 15 years since the Leucine-rich repeat kinase 2 (LRRK2) gene was identified as the most common genetic cause for Parkinson's disease (PD). The two most common mutations are the LRRK2-G2019S, located in the kinase domain, and the LRRK2-R1441C, located in the ROC-COR domain. While the LRRK2-G2019S mutation is associated with increased kinase activity, the LRRK2-R1441C exhibits a decreased GTPase activity and altered kinase activity. Multiple lines of evidence have linked the LRRK2 protein with a role in the autophagy pathway and with lysosomal activity in neurons. Neurons rely heavily on autophagy to recycle proteins and process cellular waste due to their post-mitotic state. Additionally, lysosomal activity decreases with age which can potentiate the accumulation of α-synuclein, the pathological hallmark of PD, and subsequently lead to the build-up of Lewy bodies (LBs) observed in this disorder. This review provides an up to date summary of the LRRK2 field to understand its physiological role in the autophagy pathway in neurons and related cells. Careful assessment of how LRRK2 participates in the regulation of phagophore and autophagosome formation, autophagosome and lysosome fusion, lysosomal maturation, maintenance of lysosomal pH and calcium levels, and lysosomal protein degradation are addressed. The autophagy pathway is a complex cellular process and due to the variety of LRRK2 models studied in the field, associated phenotypes have been reported to be seemingly conflicting. This review provides an in-depth discussion of different models to assess the normal and disease-associated role of the LRRK2 protein on autophagic function. Given the importance of the autophagy pathway in Parkinson's pathogenesis it is particularly relevant to focus on the role of LRRK2 to discover novel therapeutic approaches that restore lysosomal protein degradation homeostasis.
Collapse
Affiliation(s)
- Marta Madureira
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Astragaloside IV inhibits astrocyte senescence: implication in Parkinson's disease. J Neuroinflammation 2020; 17:105. [PMID: 32252767 PMCID: PMC7137443 DOI: 10.1186/s12974-020-01791-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background Senescent astrocytes have been implicated in the aging brain and neurodegenerative disorders, including Parkinson’s disease (PD). Astragaloside IV (AS-IV) is an antioxidant derivative from a traditional Chinese herbal medicine Astragalus membraneaceus Bunge and exerts anti-inflammatory and longevity effects and neuroprotective activities. However, its effect on astrocyte senescence in PD remains to be defined. Methods Long culture-induced replicative senescence model and lipopolysaccharide/1-methyl-4-phenylpyridinium (LPS/MPP+)-induced premature senescence model and a mouse model of PD were used to investigate the effect of AS-IV on astrocyte senescence in vivo and in vitro. Immunocytochemistry, qPCR, subcellular fractionation, flow cytometric analyses, and immunohistochemistry were subsequently conducted to determine the effects of AS-IV on senescence markers. Results We found that AS-IV inhibited the astrocyte replicative senescence and LPS/MPP+-induced premature senescence, evidenced by decreased senescence-associated β-galactosidase activity and expression of senescence marker p16, and increased nuclear level of lamin B1, and reduced pro-inflammatory senescence-associated secretory phenotype. More importantly, we showed that AS-IV protected against the loss of dopamine neurons and behavioral deficits in the mouse model of PD, which companied by reduced accumulation of senescent astrocytes in substantia nigra compacta. Mechanistically, AS-IV promoted mitophagy, which reduced damaged mitochondria accumulation and mitochondrial reactive oxygen species generation and then contributed to the suppression of astrocyte senescence. The inhibition of autophagy abolished the suppressive effects of AS-IV on astrocyte senescence. Conclusions Our findings reveal that AS-IV prevents dopaminergic neurodegeneration in PD via inhibition of astrocyte senescence through promoting mitophagy and suggest that AS-IV is a promising therapeutic strategy for the treatment of age-associated neurodegenerative diseases such as PD.
Collapse
|
33
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
34
|
Wallings RL, Humble SW, Ward ME, Wade-Martins R. Lysosomal Dysfunction at the Centre of Parkinson's Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Trends Neurosci 2019; 42:899-912. [PMID: 31704179 DOI: 10.1016/j.tins.2019.10.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) and frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) are insidious and incurable neurodegenerative diseases that represent a significant burden to affected individuals, caregivers, and an ageing population. Both PD and FTD/ALS are defined at post mortem by the presence of protein aggregates and the loss of specific subsets of neurons. We examine here the crucial role of lysosome dysfunction in these diseases and discuss recent evidence for converging mechanisms. This review draws upon multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells (iPSCs), and animal models to argue that lysosomal failure is a primary mechanism of disease, rather than merely reflecting association with protein aggregate end-points. This review provides compelling rationale for targeting lysosomes in future therapeutics for both PD and FTD/ALS.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Physiology, Emory University, Decatur, GA, USA; Current address: Department of Neuroscience, Center for Translational Research and Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stewart W Humble
- Oxford Parkinson's Disease Centre, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
35
|
Qian M, Liu B. Pharmaceutical Intervention of Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1086:235-254. [PMID: 30232763 DOI: 10.1007/978-981-13-1117-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aging population represents a significant worldwide socioeconomic challenge. Aging is an inevitable and multifactorial biological process and primary risk factor for most age-related diseases, such as cardiovascular diseases, cancers, type 2 diabetes mellitus (T2DM), and neurodegenerative diseases. Pharmacological interventions targeting aging appear to be a more effective approach in preventing age-related disorders compared with the treatments targeted to specific disease. In this chapter, we focus on the latest findings on molecular compounds that mimic caloric restriction (CR), supplement nicotinamide adenine dinucleotide (NAD+) levels, and eliminate senescent cells, including metformin, resveratrol, spermidine, rapamycin, NAD+ boosters, as well as senolytics. All these interventions modulate the determinants and pathways responsible for aging/longevity, such as the kinase target of rapamycin (TOR), AMP-activated protein kinase (AMPK), sirtuins, and insulin-like growth factor (IGF-1) signaling (Fig. 15.1).
Collapse
Affiliation(s)
- Minxian Qian
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
36
|
Arotcarena ML, Teil M, Dehay B. Autophagy in Synucleinopathy: The Overwhelmed and Defective Machinery. Cells 2019; 8:cells8060565. [PMID: 31181865 PMCID: PMC6627933 DOI: 10.3390/cells8060565] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein positive-intracytoplasmic inclusions are the common denominators of the synucleinopathies present as Lewy bodies in Parkinson’s disease, dementia with Lewy bodies, or glial cytoplasmic inclusions in multiple system atrophy. These neurodegenerative diseases also exhibit cellular dyshomeostasis, such as autophagy impairment. Several decades of research have questioned the potential link between the autophagy machinery and alpha-synuclein protein toxicity in synucleinopathy and neurodegenerative processes. Here, we aimed to discuss the active participation of autophagy impairment in alpha-synuclein accumulation and propagation, as well as alpha-synuclein-independent neurodegenerative processes in the field of synucleinopathy. Therapeutic approaches targeting the restoration of autophagy have started to emerge as relevant strategies to reverse pathological features in synucleinopathies.
Collapse
Affiliation(s)
- Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
37
|
Killing Two Angry Birds with One Stone: Autophagy Activation by Inhibiting Calpains in Neurodegenerative Diseases and Beyond. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4741252. [PMID: 30895192 PMCID: PMC6393885 DOI: 10.1155/2019/4741252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
Proteolytic machineries execute vital cellular functions and their disturbances are implicated in diverse medical conditions, including neurodegenerative diseases. Interestingly, calpains, a class of Ca2+-dependent regulatory proteases, can modulate the degradational system of autophagy by cleaving proteins involved in this pathway. Moreover, both machineries are common players in many molecular pathomechanisms and have been targeted individually or together, as a therapeutic strategy in experimental setups. In this review, we briefly introduce calpains and autophagy, with their roles in health and disease, and focus on their direct pathologically relevant interplay in neurodegeneration and beyond. The modulation of calpain activity may comprise a promising treatment approach to attenuate the deregulation of these two essential mechanisms.
Collapse
|
38
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
39
|
Qian M, Liu B. Advances in pharmacological interventions of aging in mice. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Autophagy and Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:527-550. [DOI: 10.1007/978-981-15-0602-4_25] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Yang ZZ, Yu YT, Lin HR, Liao DC, Cui XH, Wang HB. Lonicera japonica extends lifespan and healthspan in Caenorhabditis elegans. Free Radic Biol Med 2018; 129:310-322. [PMID: 30266681 DOI: 10.1016/j.freeradbiomed.2018.09.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022]
Abstract
Lonicera japonica (LJ) is widely used as the local medicine to improve body and prevent ills in China, but mechanisms of its healthy beneficial effects remain largely unclear. Here, we evaluated the anti-aging and healthspan promoting activities of 75% ethanol extract of LJ (LJ-E) in the animal model Caenorhabditis elegans. Our results showed that LJ-E (500 μg/mL) treatment enhanced the mean lifespan of worms by over 21.87% and significantly improved age-associated physiological functions in C. elegans. The 500 μg/mL concentration of LJ-E enhanced the survival rates under oxidative and thermal stresses, and decreased reactive oxygen species (ROS) levels and fat accumulation in the worms. Gene-specific mutant studies showed that LJ-E-mediated lifespan extension was dependent on mev-1, daf-2, daf-16, and hsf-1, but not eat-2 genes. LJ-E could upregulate stress-inducible genes, viz., hsp-16.2, sod-3 and mtl-1. Moreover, we found that the D1086.10 protein interacted with superoxide dismutase (SOD)-3 by functional protein association networks analysis according to RNA-sequencing results. It was confirmed that D1086.10 was needed to promote longevity, and positively regulated expression of sod-3 by using D1086.10 mutants. Furthermore, LJ-E significantly delayed amyloid β-protein induced paralysis in CL4176 strain. Given the important role of autophagy in aging and protein homeostasis, we observed that LJ-E could remarkably increase the mRNA expression of autophagy gene bec-1 in CL4176 strain, and decrease expression of autophagy substrate p62 protein by more than 40.0% in BC12921 strain. Finally, we found that combination composed of three major compounds (54 μg/mL chlorogenic acid, 15 μg/mL 1,5-dicaffeoylquinic acid and 7.5 μg/mL 1,3-dicaffeoylquinic acid) of 500 μg/mL LJ-E could significantly delay paralysis in CL4176 worms caused by Aβ toxicity, comparable to that of LJ-E. Overall, our study may have important implications in using Lonicera japonica to promote healthy aging and have a potency to design therapeutics for age-related diseases.
Collapse
Affiliation(s)
- Zhen-Zhou Yang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ying-Ting Yu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong-Ru Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - De-Chun Liao
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiang-Huan Cui
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong-Bing Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
42
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
43
|
Jang Y, Kwon I, Song W, Cosio-Lima LM, Lee Y. Endurance Exercise Mediates Neuroprotection Against MPTP-mediated Parkinson’s Disease via Enhanced Neurogenesis, Antioxidant Capacity, and Autophagy. Neuroscience 2018; 379:292-301. [DOI: 10.1016/j.neuroscience.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
44
|
Sterea AM, Almasi S, El Hiani Y. The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium 2018; 72:91-103. [PMID: 29748137 DOI: 10.1016/j.ceca.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023]
Abstract
Lysosomes serve as the control centre for cellular clearance. These membrane-bound organelles receive biomolecules destined for degradation from intracellular and extracellular pathways; thus, facilitating the production of energy and shaping the fate of the cell. At the base of their functionality are the lysosomal ion channels which mediate the function of the lysosome through the modulation of ion influx and efflux. Ion channels form pores in the membrane of lysosomes and allow the passage of ions, a seemingly simple task which harbours the potential of overthrowing the cell's stability. Considered the master regulators of ion homeostasis, these integral membrane proteins enable the proper operation of the lysosome. Defects in the structure or function of these ion channels lead to the development of lysosomal storage diseases, neurodegenerative diseases and cancer. Although more than 50 years have passed since their discovery, lysosomes are not yet fully understood, with their ion channels being even less well characterized. However, significant improvements have been made in the development of drugs targeted against these ion channels as a means of combating diseases. In this review, we will examine how Ca2+, K+, Na+ and Cl- ion channels affect the function of the lysosome, their involvement in hereditary and spontaneous diseases, and current ion channel-based therapies.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shekoufeh Almasi
- Departments of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
45
|
Bellusci L, Laurino A, Sabatini M, Sestito S, Lenzi P, Raimondi L, Rapposelli S, Biagioni F, Fornai F, Salvetti A, Rossi L, Zucchi R, Chiellini G. New Insights into the Potential Roles of 3-Iodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection. Front Pharmacol 2017; 8:905. [PMID: 29311919 PMCID: PMC5732922 DOI: 10.3389/fphar.2017.00905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022] Open
Abstract
3-Iodothyronamine (T1AM) is an endogenous high-affinity ligand of the trace amine-associated receptor 1 (TAAR1), detected in mammals in many organs, including the brain. Recent evidence indicates that pharmacological TAAR1 activation may offer a novel therapeutic option for the treatment of a wide range of neuropsychiatric and metabolic disorders. To assess potential neuroprotection by TAAR1 agonists, in the present work, we initially investigated whether T1AM and its corresponding 3-methylbiaryl-methane analog SG-2 can improve learning and memory when systemically administered to mice at submicromolar doses, and whether these effects are modified under conditions of MAO inhibition by clorgyline. Our results revealed that when i.p. injected to mice, both T1AM and SG-2 produced memory-enhancing and hyperalgesic effects, while increasing ERK1/2 phosphorylation and expression of transcription factor c-fos. Notably, both compounds appeared to rely on the action of ubiquitous enzymes MAO to produce the corresponding oxidative metabolites that were then able to activate the histaminergic system. Since autophagy is key for neuronal plasticity, in a second line of experiments we explored whether T1AM and synthetic TAAR1 agonists SG1 and SG2 were able to induce autophagy in human glioblastoma cell lines (U-87MG). After treatment of U-87MG cells with 1 μM T1AM, SG-1, SG-2 transmission electron microscopy (TEM) and immunofluorescence (IF) showed a significant time-dependent increase of autophagy vacuoles and microtubule-associated protein 1 light chain 3 (LC3). Consistently, Western blot analysis revealed a significant increase of the LC3II/LC3I ratio, with T1AM and SG-1 being the most effective agents. A decreased level of the p62 protein was also observed after treatment with T1AM and SG-1, which confirms the efficacy of these compounds as autophagy inducers in U-87MG cells. In the process to dissect which pathway induces ATG, the effects of these compounds were evaluated on the PI3K-AKT-mTOR pathway. We found that 1 μM T1AM, SG-1 and SG-2 decreased pAKT/AKT ratio at 0.5 and 4 h after treatment, suggesting that autophagy is induced by inhibiting mTOR phosphorylation by PI3K-AKT-mTOR pathway. In conclusion, our study shows that T1AM and thyronamine-like derivatives SG-1 and SG-2 might represent valuable tools to therapeutically intervene with neurological disorders.
Collapse
Affiliation(s)
- Lorenza Bellusci
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| | - Annunziatina Laurino
- Section of Pharmacology and Toxicology, Department of Psychology, Neurology, Drug Sciences, Health of the Child, Pharmacology, University of Florence, Florence, Italy
| | - Martina Sabatini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| | - Simona Sestito
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Paola Lenzi
- Unit of Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Raimondi
- Section of Pharmacology and Toxicology, Department of Psychology, Neurology, Drug Sciences, Health of the Child, Pharmacology, University of Florence, Florence, Italy
| | - Simona Rapposelli
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Unit of Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Salvetti
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Zucchi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Abstract
The 200years of research efforts on Parkinson disease (PD) form the basis of our understanding of the second most common neurodegenerative disorder after Alzheimer disease. This journey has been marked by the revolutionary discovery of a neurotransmitter replacement therapy that provides a longer and healthier life to patients. Since 1997, the advances in the genetics of PD have expanded our understanding of this neurodegenerative disorder and they are opening up new ways to search for disease-modifying therapies. This chapter is a summary of the historical discoveries and latest progress in PD research.
Collapse
Affiliation(s)
- Lina Mastrangelo
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States.
| |
Collapse
|
47
|
Cellular effects mediated by pathogenic LRRK2: homing in on Rab-mediated processes. Biochem Soc Trans 2017; 45:147-154. [PMID: 28202668 DOI: 10.1042/bst20160392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease. Mutations in LRRK2 are associated with increased kinase activity that correlates with cytotoxicity, indicating that kinase inhibitors may comprise promising disease-modifying compounds. However, before embarking on such strategies, detailed knowledge of the cellular deficits mediated by pathogenic LRRK2 in the context of defined and pathologically relevant kinase substrates is essential. LRRK2 has been consistently shown to impair various intracellular vesicular trafficking events, and recent studies have shown that LRRK2 can phosphorylate a subset of proteins that are intricately implicated in those processes. In light of these findings, we here review the link between cellular deficits in intracellular trafficking pathways and the LRRK2-mediated phosphorylation of those newly identified substrates.
Collapse
|
48
|
Wang Y, Ma Q, Ma X, Zhang Z, Liu N, Wang M. Role of mammalian target of rapamycin signaling in autophagy and the neurodegenerative process using a senescence accelerated mouse-prone 8 model. Exp Ther Med 2017; 14:1051-1057. [PMID: 28810557 PMCID: PMC5526151 DOI: 10.3892/etm.2017.4618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is an inhibitor of autophagy, which is an intracellular system involved in the degradation of long-lived proteins and organelles in lysosomes. Recent evidence suggests that the steady incline in mTOR function during aging may be associated with the cognitive decline related to aging and may also promote development of Tau pathology. At present, the senescence accelerated mouse prone 8 (SAMP8) is an experimental model that has been proposed for the study of age-related neurodegenerative changes associated with aging. In the present study, mTOR signaling in the hippocampus of SAMP8 newborn mice and in the control-strain SAMR1 mice was investigated. Consequently, hyper phosphorylated Tau (pS199 or pS396) and upregulated mTOR activity were observed in SAMP8 when compared with SAMR1; however, 0.5 µM rapamycin administration significantly reduced the levels of phosphorylated Tau and p70S6K (pT389) in SAMP8 mice. Related to these findings, SAMP8 exhibited an increase in the neuronal loss of hippocampus that was associated with lower levels of anti-apoptotic proteins. These results indicate that mTOR signaling participates in the neurodegenerative process and rapamycin administration may protect neurons of SAMP8 mice and may have a potential role in curing cognitive decline.
Collapse
Affiliation(s)
- Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Qinying Ma
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Xiaowei Ma
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Zhongxia Zhang
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Na Liu
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Laboratory of Brain Aging and Cognitive Neuroscience of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
49
|
Yang M, Hao Y, Gao J, Zhang Y, Xu W, Tao L. Spinosad induces autophagy of Spodoptera frugiperda Sf9 cells and the activation of AMPK/mTOR signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:52-59. [PMID: 28223193 DOI: 10.1016/j.cbpc.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
Spinosad, a high-selectivity neural toxin, has been widely used in agricultural production. However, the mode of action of spinosad on insect non-neural cells is not yet clear and hence requires further investigation. Therefore, to reveal the cytotoxic mechanisms of spinosad, we investigated whether and how it can induce autophagic cell death. After treating Sf9 cells with spinosad, the resulting autophagosome was observed by transmission electron microscopy and monodansylcadaverine staining. Interestingly, spinosad induced the accumulation of Beclin-1, degradation of p62, and intensification of LC3-B formation and translocation and thus autophagy, whereas, 3-MA treatment reverted the phenotype. Under ATP depletion conditions, spinosad induced autophagy of Sf9 cells and activation of the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mingjun Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youwu Hao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yang Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
50
|
Atashrazm F, Dzamko N. LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives. Clin Pharmacol 2016; 8:177-189. [PMID: 27799832 PMCID: PMC5076802 DOI: 10.2147/cpaa.s102191] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major advances in understanding how genetics underlies Parkinson's disease (PD) have provided new opportunities for understanding disease pathogenesis and potential new targets for therapeutic intervention. One such target is leucine-rich repeat kinase 2 (LRRK2), an enigmatic enzyme implicated in both familial and idiopathic PD risk. Both academia and industry have promoted the development of potent and selective inhibitors of LRRK2, and these are currently being employed to assess the safety and efficacy of such compounds in preclinical models of PD. This review examines the evidence that LRRK2 kinase activity contributes to the pathogenesis of PD and outlines recent progress on inhibitor development and early results from preclinical safety and efficacy testing. This review also looks at some of the challenges remaining for translation of LRRK2 inhibitors to the clinic, if indeed this is ultimately warranted. As a disease with no current cure that is increasing in prevalence in line with an aging population, there is much need for developing new treatments for PD, and targeting LRRK2 is currently a promising option.
Collapse
Affiliation(s)
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|