1
|
Zhang S, Liu C, Li W, Zhang Y, Yang Y, Yang H, Zhao Z, Xu F, Cao W, Li X, Wang J, Kong L, Du G. Kaempferol promotes angiogenesis through HIF-1α/VEGF-A/Notch1 pathway in ischemic stroke rats. Neurochem Int 2025; 185:105953. [PMID: 39988285 DOI: 10.1016/j.neuint.2025.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Stroke is a severe disease characterized by the obstruction of blood vessels in the central nervous system. An essential therapeutic strategy for ischemic stroke is strengthening angiogenesis, which effectively promotes the long-term recovery of neurological function. Therefore, it is critical to explore and develop new drugs that promote angiogenesis after ischemic stroke. Kaempferol has been employed to treat ischemic diseases; However, its proangiogenic effects in ischemic stroke remain unclear. In the study, we explored the long-term therapeutic effects and mechanisms of kaempferol on ischemic stroke in vivo and in vitro. A rat model of autologous thrombus stroke and oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs) model was established to assess the effects of kaempferol in vivo (50 mg/kg/d, ig, 14 d) and in vitro (0.1, 0.3, 1 μmol L-1). The results showed that long-term administration of kaempferol ameliorated neurological deficits and infarct volume in ischemic stroke rats. In addition, kaempferol relieved vascular embolization; enhanced microvascular endothelial cell survival, proliferation, migration, and lumen formation; increased the density of microvessels in the peri-infarct cortex; and promoted neovascular structure remodeling by increasing the coverage of astrocyte end-feet and expression of tight-junction proteins (TJPs). Further analysis revealed that the HIF-1α/VEGF-A/Notch1 signaling pathway was activated by kaempferol, and that inhibition of Notch1 blocked kaempferol-induced angiogenesis. Taken together, our results indicate that kaempferol exerts neuroprotective effects by stimulating endogenous angiogenesis and neovascular structural remodeling via the HIF-1α/VEGF-A/Notch1 signaling pathway, suggesting the therapeutic potential of kaempferol in ischemic stroke.
Collapse
Affiliation(s)
- Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Chengdi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacy, Affiliated Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ziyuan Zhao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoxue Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Linglei Kong
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Chen M, Wu Y, Wang Y, Li Z. Functional connectivity and white matter microstructural alterations in patients with left basal ganglia acute ischemic stroke. Brain Imaging Behav 2025; 19:421-432. [PMID: 39964657 DOI: 10.1007/s11682-025-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 04/09/2025]
Abstract
Lesions in the basal ganglia present different neuroimaging manifestations compared to other regions. The functional connectivity and white matter (WM) microstructural alterations in patients with left basal ganglia acute ischemic stroke (AIS) remain unknown. This study aimed to explore the alterations of functional connectivity and WM microstructure, as well as their relationship with cognitive performance in patients with left basal ganglia AIS. We acquired resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI) data from 41 individuals with left basal ganglia AIS and 41 healthy controls (HC). The degree centrality (DC) method was applied to calculate the functional connectivity and Tract-Based Spatial Statistics was employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), radial diffusivity, mean kurtosis (MK), axial kurtosis, and radial kurtosis (RK). AIS showed attenuated DC in the bilateral precuneus and enhanced DC in the left caudate nucleus, compared with HC. In AIS, DC in the left caudate nucleus correlated positively with the Montreal Cognitive Assessment (MoCA) score (r = 0.681, p < 0.05). AIS had significantly decreased FA, AD, MK, and RK in WM tracts, including the internal capsule (IC), genu of corpus callosum (CC), body of CC, left superior longitudinal fasciculus (SLF), left cerebral peduncle, left corticospinal tract, anterior corona radiata (ACR), and left cingulum gyrus (CG). The MK in a cluster including the body of CC, right IC, left cingulate, SLF, ACR, and left CG was also significantly negatively correlated with MoCA scores (r = -0.508, p < 0.05). This study revealed that left basal ganglia AIS not only disrupted the functional connectivity of the whole brain but also had a pervasive impact on the WM microstructure of the whole brain. These findings provide novel insights into the underlying neural mechanisms of early cognitive decline in patients after AIS.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yufan Wu
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China.
| |
Collapse
|
3
|
Alamri FF, Almarghalani DA, Alatawi Y, Alraddadi EA, Babateen O, Alayyafi A, Almalki Z, Alsalhi K, Alzahrani K, Alghamdi A, Aldera H, Karamyan VT. Assessing the effects of antidepressant use on stroke recurrence and related outcomes in ischemic stroke patients: a propensity score matched analysis. Front Pharmacol 2025; 16:1558703. [PMID: 40144654 PMCID: PMC11936935 DOI: 10.3389/fphar.2025.1558703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The effect of antidepressant use, particularly that of selective serotonin reuptake inhibitors, on stroke outcomes remains unclear. This hospital-based, retrospective, observational study utilized propensity score-matching (PSM) to assess the association between antidepressant use, stroke-related outcomes, and complications. The study was conducted at King Abdulaziz Medical City (KAMC) in Jeddah and Riyadh and included 1,125 patients with acute-subacute ischemic stroke, of whom 1,025 were antidepressant non-users and 100 antidepressant users. After PSM, 200 patients (100 antidepressant users and 100 non-users) were included in the final analysis. This study aimed to assess the association between antidepressant use, stroke recurrence, and mortality. Additionally, the study examined the association between antidepressant use and stroke severity, functional independence, and incidence of post-stroke complications. The Kaplan-Meier analysis revealed no statistically significant differences in stroke recurrence (p = 0.5619) or mortality (p = 0.6433) between antidepressant users and non-users over the 1-year follow-up period. Additionally, no significant differences were observed in stroke severity at admission and discharge (p = 0.33210 and p = 0.78410, respectively) or functional independence (p = 0.9176 and p = 0.4383, respectively) between the two groups. These findings suggest that antidepressant use does not significantly affect stroke recurrence, mortality, stroke severity, or functional independence. However, further large-scale studies are warranted to validate these findings and investigate potential confounding factors, such as stroke subtypes, co-use of certain medications, and physical activity.
Collapse
Affiliation(s)
- Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Daniyah A. Almarghalani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
| | - Yasser Alatawi
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Alayyafi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ziyad Almalki
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Khaled Alsalhi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Khaled Alzahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Alghamdi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hussain Aldera
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Vardan T. Karamyan
- Department of Foundational Medical Studies, Oakland University, Rochester, MI, United States
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| |
Collapse
|
4
|
Qu Q, Zhang K, Wang H, Zhu J, Lin Y, Jia J. A resting-state fMRI cross-sectional study of cardiorespiratory fitness decline after stroke. Front Neurol 2025; 16:1465467. [PMID: 40040907 PMCID: PMC11877007 DOI: 10.3389/fneur.2025.1465467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 03/06/2025] Open
Abstract
Objective The present study aimed to investigate alterations in neural activity and reorganization of functional networks within critical brain regions associated with reduced cardiorespiratory fitness (CRF) in stroke patients. By employing resting-state functional magnetic resonance imaging (fMRI), we sought to identify specific brain areas that may be implicated in CRF decline among this patient population. Methods A total of 22 patients with stroke and 15 healthy subjects matched for age, gender, and body mass index were recruited. Rehabilitation assessments included peak oxygen uptake (VO2peak), peak work-rate, 10-meter walk test (10mWT), five times sit-to-stand test (FTSST), and 6-min walking distance (6MWD). Resting-state fMRI data were collected for the two groups, and correlation between changes in the amplitude of low-frequency fluctuations (ALFF) and CRF was analyzed to detect brain regions related to CRF and local neural activity in patients with stroke. On the basis of ALFF analysis, brain network analysis was performed, and the CRF-related brain regions in patients with stroke were selected as seed points. Functional connectivity (FC) analysis was the used to identify brain regions and networks potentially associated with CRF in patients with stroke. Results Patients with stroke exhibited significantly lower VO2peak, peak work-rate, 10mWT, and 6MWD compared to healthy controls (p < 0.001). FTSST was significantly higher in patients with stroke than healthy controls (p < 0.001). ALFF analysis identified CRF-related brain regions in patients with stroke, including the ipsilesional superior temporal gyrus (r = 0.56947, p = 0.00036), middle frontal gyrus (r = 0.62446, p = 0.00006), and precentral gyrus (r = 0.56866, p = 0.00036). FC analysis revealed that the functional connectivity of brain regions related to CRF in patients with stroke involved the ipsilesional M1 to ipsilesional precentral gyrus and contralesional postcentral gyrus, and the correlation coefficients were r = 0.54802 (p = 0.00065) and r = 0.49511 (p = 0.0025), respectively. The correlation coefficients of ipsilesional middle frontal gyrus to contralesional middle frontal gyrus, angular gyrus and ipsilesional superior frontal gyrus were r = 0.58617 (p = 0.00022), r = 0.57735 (p = 0.00028), and r = -0.65229 (p = 0.00002), respectively. Conclusion This study observed that CRF levels were lower in stroke patients compared to those in healthy individuals. Resting fMRI analysis was applied to identify CRF-related brain regions (ipsilesional superior temporal, middle frontal, precentral gyri) and networks in patients with stroke. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=151095.
Collapse
Affiliation(s)
- Qingming Qu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kexu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jie Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yingnan Lin
- Department of General Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Jing K, Gu R, Chen F, Wan J, Sun Y, Guo P, Chen F, Feng J, Guo J, Liu X. Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke. Pharmacol Res 2024; 209:107422. [PMID: 39293585 DOI: 10.1016/j.phrs.2024.107422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Development of functional recovery therapies is critical to reduce the global impact of stroke as the leading cause of long-term disability. Our previous studies found that acute-phase protein orosomucoid (ORM) could provide an up to 6 h therapeutic time window to reduce infarct volume in acute ischemic stroke by improving endothelial function. However, its role in neurons and functional recovery post-stroke remains largely unknown. Here, we showed that exogenous ORM administration with initial injection at 0.5 h (early) or 12 h (delayed) post-MCAO daily for consecutive 7 days significantly decreased infarct area, improved motor and cognitive functional recovery, and promoted mitochondrial biogenesis after MCAO. While neuron-specific knockout of ORM2, a dominant subtype of ORM in the brain, produced opposite effects which could be rescued by exogenous ORM. In vitro, exogenous ORM protected SH-SY5Y cells from OGD-induced damage and promoted mitochondrial biogenesis, while endogenous ORM2 deficiency worsened these processes. Mechanistically, inactivation of CCR5 or AMPK eliminated the protective effects of ORM on neuronal damage and mitochondrial biogenesis. Taken together, our findings demonstrate that ORM, mainly ORM2, is an endogenous regulator of neuronal mitochondrial biogenesis by activating CCR5/AMPK signaling pathway, and might act as a potential therapeutic target for the functional recovery post-stroke.
Collapse
Affiliation(s)
- Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Ruinan Gu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Pengyue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jinmin Guo
- Department of Clinical Pharmacy, 960th Hospital of Joint Logistic Support Force, Jinan, Shandong, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai 200082, China.
| |
Collapse
|
6
|
Liu Y, Wang Q, Li Q, Cui X, Chen H, Wan X. Immediate changes in stroke patients' gait following the application of lower extremity elastic strap binding technique. Front Physiol 2024; 15:1441471. [PMID: 39324104 PMCID: PMC11422075 DOI: 10.3389/fphys.2024.1441471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 09/27/2024] Open
Abstract
Objective To ascertain the immediate changes in stroke patients' temporal and spatial parameters of gait and the joint angles of stroke patients throughout the entire gait cycle following the application of lower extremity elastic strap binding technique. Methods Twenty-nine stroke patients were invited as the study participants. The patient seated, flexed the hip and knee, utilized a 5 cm-wide elastic strap, positioning its midpoint beneath the affected foot and crossing it anterior to the ankle joint. Upon standing, the strap encircled the posterior aspect of the lower leg, proceeded around the back of the knee, and ascended the thigh on the affected side. Crossing anteriorly over the thigh, it then encircled the back of the waist before being secured in place. Using Qualisys motion capture system to collect kinematic data of the lower extremities during walking while wearing shoes only or strapping. A paired sample t-test was used to analyze the effects of the technique on gait spatiotemporal parameters and joint angles in stroke patients. Results The patients' step length decreased (P = 0.024), and step width increased (P = 0.008) during the gait cycle after the strapping. In the gait cycle between 0% and 2%, 7%-77%, and 95%-100%, the hip flexion angle on the affected side was significantly larger after the strapping (P < 0.05). In the gait cycle between 0% to 69% and 94%-100%, the knee flexion angle on the affected side was significantly larger after the strapping (P < 0.05). In the gait cycle between 0% to 57% and 67%-100%, the ankle dorsiflexion angle on the affected side was significantly smaller after the strapping (P < 0.05), and in the gait cycle between 0% to 35% and 68%-100%, the ankle inversion angle on the affected side was significantly smaller after the strapping (P < 0.05). Conclusion The lower extremity elastic strap binding technique can decrease the hip flexion and knee flexion limitations in stroke patients during walking, and reduce the ankle plantar flexion and ankle inversion angle of stroke patients. The lower extremity elastic strap binding technique enabled stroke patients to adopt a more stable gait pattern.
Collapse
Affiliation(s)
- Yuduo Liu
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Qi Wang
- People’s Hospital of Queshan, Zhumadian, China
| | - Qiujie Li
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Xueji Cui
- People’s Hospital of Queshan, Zhumadian, China
| | - Huimeng Chen
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Xianglin Wan
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training and Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Tang Z, Xu B, Wang J, Wang W, Sha S, Sun Y. Novel metabolic biomarkers for the diagnosis of acute ischemic stroke. Biomark Med 2024; 18:727-737. [PMID: 39235047 PMCID: PMC11457651 DOI: 10.1080/17520363.2024.2389033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To identify novel metabolic biomarkers for patients with acute ischemic stroke (AIS).Methods: The metabolites in the sera of 63 patients with AIS aged 45∼77 years and 60 healthy individuals were analyzed by liquid chromatography (LC)-mass spectrometry (MS)/MS. The efficiency of significantly altered metabolites as biomarkers of AIS was evaluated by ROC curve analysis.Results: Different metabolic profiles were revealed in AIS patients' sera compared with healthy persons. Twelve significantly altered metabolites had an area under the curve (AUC) value >0.80, demonstrating their potential as a biomarker of AIS. Among them, six metabolites are firstly reported to distinguish between AIS patients and healthy individuals.Conclusion: These 12 metabolites can be further researched as potential diagnostic biomarkers of AIS.
Collapse
Affiliation(s)
- Zhenzhen Tang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Baoli Xu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Junjun Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Wenzhen Wang
- Department of Biochemistry & Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Shanshan Sha
- Department of Biochemistry & Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Yongjin Sun
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
8
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
9
|
Casella A, Panacci C, Aydin M, Lucia S, Di Bello B, Di Russo F. Effects of a Virtual Reality Reaction Training Protocol on Physical and Cognitive Skills of Young Adults and Their Neural Correlates: A Randomized Controlled Trial Study. Brain Sci 2024; 14:663. [PMID: 39061404 PMCID: PMC11274505 DOI: 10.3390/brainsci14070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing evidence shows that virtual reality (VR) training is highly effective in cognitive and motor rehabilitation. Another modern form of training is cognitive-motor dual-task training (CMDT), which has been demonstrated to rapidly improve physical and cognitive functions in real environments. This study aims to test whether a VR-based CMDT protocol can be used for motor and cognitive skill enhancement in young, healthy subjects. For this aim, 24 university students participated in a randomized control trial. The experimental group participated in a 5-week virtual reality reaction training (VRRT), performing 30 min sessions once a week. The control group did not receive any training but was tested twice with the same measures and temporal distance as the experimental group. Before and after the intervention, motor, cognitive, and electrophysiological measures were assessed. The results showed that following VRRT, the response time for both physical and cognitive tests was improved by about 14% and 12%, respectively, while the control group did not show significant changes. Moreover, electrophysiological data revealed a significant increase in anticipatory motor readiness in premotor brain areas in the experimental group only; however, cognitive top-down control tended to be increased in prefrontal areas after VRRT. This training protocol in a VR modality seems to be as effective as other CMDT methodologies carried out in a real modality. Still, it has the advantages of being more flexible and more user-friendly compared to standard training. The VRRT's efficacy on physical and cognitive functions indicates that virtual reality applications can be used by the young population, not only for entertainment purposes but also in the form of cognitive-motor training.
Collapse
Affiliation(s)
- Andrea Casella
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.C.); (M.A.); (S.L.); (B.D.B.)
| | | | - Merve Aydin
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.C.); (M.A.); (S.L.); (B.D.B.)
| | - Stefania Lucia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.C.); (M.A.); (S.L.); (B.D.B.)
- Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - BiancaMaria Di Bello
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.C.); (M.A.); (S.L.); (B.D.B.)
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.C.); (M.A.); (S.L.); (B.D.B.)
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy;
| |
Collapse
|
10
|
Pazzaglia C, Cuccagna C, Gatto DM, Giovannini S, Fusco A, Castelli L, Padua L. Modification of heart rate variability induced by focal muscle vibration in patients with severe acquired brain injury. Brain Inj 2024; 38:436-442. [PMID: 38426450 DOI: 10.1080/02699052.2024.2311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND/PURPOSE Heart rate variability (HRV) is a biomarker of autonomic nervous system (ANS) reaction in persons with severe acquired brain injury (sABI) who undergo a rehabilitation treatment, such as focal muscle vibration (FMV).This study aims to evaluate if and how FMV can modulate HRV and to compare potential differences in FMV modulation in HRV between patients with sABI and healthy controls. METHODS Ten patients with sABI and seven healthy controls have been recruited. Each individual underwent the same stimulation protocol (four consecutive trains of vibration of 5 minutes each with a 1-minute pause). HRV was analyzed through the ratio of frequency domain heart-rate variability (LF/HF). RESULTS In the control group, after performing FMV, a significant LF/HF difference was observed in the in the second vibration session compared to the POST phase. Patients with SABI treated on the affected side showed a statistically significant LF/HF difference in the PRE compared to the first vibration session. CONCLUSION These preliminary results suggest that FMV may modify the cardiac ANS activity in patients with sABI.
Collapse
Affiliation(s)
- Costanza Pazzaglia
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina Cuccagna
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Dario Mattia Gatto
- Dipartimento di Scienze Geriatriche e Ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Giovannini
- Dipartimento di Scienze Geriatriche e Ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
- UOS Riabiltiazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Letizia Castelli
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Padua
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Geriatriche e Ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Alecu-Mihai VM, Zamfirescu A, Aurelian SM, Onose G. A topical reappreasal on use of repetitive Transcranial Magnetic Stimulation in elderly patients with postischemic stroke statuses - a systematic literature review. BALNEO AND PRM RESEARCH JOURNAL 2024; 15:679-679. [DOI: 10.12680/balneo.2024.679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Abstract: Introduction: Stroke is a cerebrovascular disease with an impressive potential of disabil-ity, (multi)morbidity, and mortality among elderly patients. After stroke, a series of seque-lae represents a dynamic challenge for rehabilitation, especially for improving motor, cognitive and depressive disorders (1,2). Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive, painless, neuromodulations and neurostimulation method, which uses electromagnetic induction to administer repeated trains of pulses, with thera-peutic, diagnostic and research purposes (3–5).
Method: We performed a systematic literature review of the related literature using a widely international accepted method - Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)(6), by searching, filtering, and selecting profile documen-tary material. Combinations/syntaxes of keywords were searched in the following interna-tional databases: Elsevier(7), PubMed(8), PMC(9), PEDro(10), in ISI indexed journals by Web of Knowledge/Science(11) during 1/01/2019-31/12/2021. Besides the 9 articles selected to enhance our related knowledge base we have also used some works freely identified in the literature.
Results and discussions: 9 articles satisfied all the previous filtering criteria/ PRISMA steps and were selected for qualitative and detailed analysis. The benefits of rTMS, aiming to bring further insight into the responsiveness of motor deficit, depression, and cognitive impairment of the treatment, and through the favorable dynamic progress of the scores of the quantification scales used: HAMD-17/ HDRS, Hamilton Depression Scale; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assesment; SCWT, Stroop Color-Word Interference Test; WAIS, Wechsler Adult Intelligence Scale; NIHSS, National Institutes of Health Stroke Scale; Barthel Index Score; ADL, Activities of Daily Living; mRS, modified Rankin Scale; FIM, Functional Independence Measures.
Conclusions: Through this systematic review, we wish to present the perspective of the successful use of rTMS among elderly patients. We also intend for this work to be the start-ing point in the development of a doctoral study, which will include post-stroke sequelae, such as motor deficits, depressive and cognitive disorders, and through which we will strengthen scientific confidence in the tolerability and effectiveness of this type of stimula-tion for this segment of age.
Collapse
Affiliation(s)
| | - Andreea Zamfirescu
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”
| | | | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”,
| |
Collapse
|
12
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
13
|
LI M, WANG Y, RAN D, YANG X, DENG S, SHI L, MENG Z. Effects of anterior sciatic nerve acupuncture on lower limb paralysis after cerebral infarction: study protocol for a randomized controlled trial. J TRADIT CHIN MED 2024; 44:205-211. [PMID: 38213256 PMCID: PMC10774733 DOI: 10.19852/j.cnki.jtcm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/16/2022] [Indexed: 01/13/2024]
Abstract
Stroke is the main cause of disability in the middle and old age. Hemiplegia, especially lower limb paralysis, often leads to the loss of self-care ability and a series of secondary injuries. The main method to improve hemiplegic limb movement is exercise therapy, but there are still many patients with disabilities after rehabilitation treatment. As one of the non-pharmacological therapies for stroke, acupuncture has been recognized to improve motor function in patients. Here, we propose a new method, anterior sciatic nerve acupuncture, which can stimulate both the femoral nerve and the sciatic nerve. We designed this study to determine the effect of this method on lower limb motor function. Sixty participants recruited with hemiplegia after cerebral infarction will be randomly assigned to the test group or control group in a 1:1 ratio. The control group will receive Xingnao Kaiqiao acupuncture, and the test group will receive anterior sciatic nerve acupuncture on this basis. All participants will get acupuncture treatment once a day, 6 times a week for 2 weeks. The primary outcome is Fugl-Meyer Assessment of Lower Extremity and the secondary outcomes are Modified Ashworth Scale and Modified Barthel Index. Data will be collected before treatment, 1 week after treatment, and 2 weeks after treatment, and then statistical analysis will be performed. This study can preliminarily verify the effect of anterior sciatic nerve acupuncture on improving lower limb motor function in patients with cerebral infarction, which may provide an alternative approach for clinical treatment of hemiplegia.
Collapse
Affiliation(s)
- Menghan LI
- 1 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate department, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu WANG
- 2 Department of Massage and Rehabilitation, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Dawei RAN
- 3 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xinming YANG
- 3 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Shizhe DENG
- 3 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Lei SHI
- 3 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Zhihong MENG
- 3 Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
14
|
Baena-Caldas GP, Li J, Pedraza L, Ghosh S, Kalmes A, Barone FC, Moreno H, Hernández AI. Neuroprotective effect of the RNS60 in a mouse model of transient focal cerebral ischemia. PLoS One 2024; 19:e0295504. [PMID: 38166102 PMCID: PMC10760892 DOI: 10.1371/journal.pone.0295504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/22/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Stroke is a major cause of death, disability, and public health problems. Its intervention is limited to early treatment with thrombolytics and/or endovascular clot removal with mechanical thrombectomy without any available subacute or chronic neuroprotective treatments. RNS60 has reduced neuroinflammation and increased neuronal survival in several animal models of neurodegeneration and trauma. The aim here was to evaluate whether RNS60 protects the brain and cognitive function in a mouse stroke model. METHODS Male C57BL/6J mice were subjected to sham or ischemic stroke surgery using 60-minute transient middle cerebral artery occlusion (tMCAo). In each group, mice received blinded daily administrations of RNS60 or control fluids (PNS60 or normal saline [NS]), beginning 2 hours after surgery over 13 days. Multiple neurobehavioral tests were conducted (Neurological Severity Score [mNSS], Novel Object Recognition [NOR], Active Place Avoidance [APA], and the Conflict Variant of APA [APAc]). On day 14, cortical microvascular perfusion (MVP) was measured, then brains were removed and infarct volume, immunofluorescence of amyloid beta (Aβ), neuronal density, microglial activation, and white matter damage/myelination were measured. SPSS was used for analysis (e.g., ANOVA for parametric data; Kruskal Wallis for non-parametric data; with post-hoc analysis). RESULTS Thirteen days of treatment with RNS60 reduced brain infarction, amyloid pathology, neuronal death, microglial activation, white matter damage, and increased MVP. RNS60 reduced brain pathology and resulted in behavioral improvements in stroke compared to sham surgery mice (increased memory-learning in NOR and APA, improved cognitive flexibility in APAc). CONCLUSION RNS60-treated mice exhibit significant protection of brain tissue and improved neurobehavioral functioning after tMCAo-stroke. Additional work is required to determine mechanisms, time-window of dosing, and multiple dosing volumes durations to support clinical stroke research.
Collapse
Affiliation(s)
- Gloria Patricia Baena-Caldas
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- Health Sciences Division, Department of Morphology, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Jie Li
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Lina Pedraza
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Supurna Ghosh
- Revalesio Corporation, Tacoma, WA, United States of America
| | - Andreas Kalmes
- Revalesio Corporation, Tacoma, WA, United States of America
| | - Frank C. Barone
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - Herman Moreno
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - A. Iván Hernández
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| |
Collapse
|
15
|
Wang J, Zhu M, Sun J, Feng L, Yang M, Sun B, Mao L. Gene therapy of adeno-associated virus (AAV) vectors in preclinical models of ischemic stroke. CNS Neurosci Ther 2023; 29:3725-3740. [PMID: 37551863 PMCID: PMC10651967 DOI: 10.1111/cns.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Stroke has been associated with devastating clinical outcomes, with current treatment strategies proving largely ineffective. Therefore, there is a need to explore alternative treatment options for addressing post-stroke functional deficits. Gene therapy utilizing adeno-associated viruses (AAVs) as a critical gene vector delivering genes to the central nervous system (CNS) gene delivery has emerged as a promising approach for treating various CNS diseases. This review aims to provide an overview of the biological characteristics of AAV vectors and the therapeutic advancements observed in preclinical models of ischemic stroke. The study further investigates the potential of manipulating AAV vectors in preclinical applications, emphasizing the challenges and prospects in the selection of viral vectors, drug delivery strategies, immune reactions, and clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mengna Zhu
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Jingyi Sun
- Department of Spinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lina Feng
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Baoliang Sun
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
16
|
Montes P, Ortíz-Islas E, Rodríguez-Pérez CE, Ruiz-Sánchez E, Silva-Adaya D, Pichardo-Rojas P, Campos-Peña V. Neuroprotective-Neurorestorative Effects Induced by Progesterone on Global Cerebral Ischemia: A Narrative Review. Pharmaceutics 2023; 15:2697. [PMID: 38140038 PMCID: PMC10747486 DOI: 10.3390/pharmaceutics15122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Progesterone (P4) is a neuroactive hormone having pleiotropic effects, supporting its pharmacological potential to treat global (cardiac-arrest-related) cerebral ischemia, a condition associated with an elevated risk of dementia. This review examines the current biochemical, morphological, and functional evidence showing the neuroprotective/neurorestorative effects of P4 against global cerebral ischemia (GCI). Experimental findings show that P4 may counteract pathophysiological mechanisms and/or regulate endogenous mechanisms of plasticity induced by GCI. According to this, P4 treatment consistently improves the performance of cognitive functions, such as learning and memory, impaired by GCI. This functional recovery is related to the significant morphological preservation of brain structures vulnerable to ischemia when the hormone is administered before and/or after a moderate ischemic episode; and with long-term adaptive plastic restoration processes of altered brain morphology when treatment is given after an episode of severe ischemia. The insights presented here may be a guide for future basic research, including the study of P4 administration schemes that focus on promoting its post-ischemia neurorestorative effect. Furthermore, considering that functional recovery is a desired endpoint of pharmacological strategies in the clinic, they could support the study of P4 treatment for decreasing dementia in patients who have suffered an episode of GCI.
Collapse
Affiliation(s)
- Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Emma Ortíz-Islas
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Pavel Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| |
Collapse
|
17
|
Hu Y, Yuan X, Ye P, Chang C, Hu YH, Zhang W, Li K. Virtual Reality in Clinical Nursing Practice Over the Past 10 Years: Umbrella Review of Meta-Analyses. JMIR Serious Games 2023; 11:e52022. [PMID: 37997773 PMCID: PMC10690102 DOI: 10.2196/52022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023] Open
Abstract
Background Virtual reality (VR) has shown promising levels of effectiveness in nursing education, pain management, and rehabilitation. However, meta-analyses have discussed the effects of VR usage in nursing unilaterally and inconsistently, and the evidence base is diffuse and varied. Objective We aimed to synthesize the combined evidence from meta-analyses that assessed the effects of nurses using VR technology on nursing education or patient health outcomes. Methods We conducted an umbrella review by searching for meta-analyses about VR intervention in clinical nursing practice on Web of Science, Embase, Cochrane, and PubMed, and in reference lists. Eligible studies were published in English between December 1, 2012, and September 20, 2023. Meta-analyses of ≤2 intervention studies and meta-analyses without 95% CI or heterogeneity data were excluded. Characteristic indicators, population information, VR intervention information, and 95% CIs were extracted. A descriptive analysis of research results was conducted to discern relationships between VR interventions and outcomes. I2 and P values were used to evaluate publication bias. AMSTAR (A Measurement Tool to Assess Systematic Reviews) 2 and the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) checklist were used to appraise literature quality. Results In total, 768 records were identified; 74 meta-analyses were included for review. The most reported VR study conditions were neuronursing (25/74, 34%), pediatric nursing (13/74, 18%), surgical and wound care (11/74, 15%), oncological nursing (11/74, 15%), and older adult nursing (10/74, 14%). Further, 30% (22/74) of meta-analyses reported publication bias, and 15% (11/74) and 8% (6/74) were rated as "high" based on AMSTAR 2 and the GRADE checklist, respectively. The main outcome indicators among all included meta-analyses were pain (37/214, 17.3%), anxiety (36/214, 16.8%), cognitive function (17/214, 7.9%), balance (16/214, 7.5%), depression (16/214, 7.5%), motor function (12/214, 5.6%), and participation in life (12/214, 5.6%). VR treatment for cognition, pain, anxiety, and depression was effective (all P values were <.05), while the utility of VR for improving motor function, balance, memory, and attention was controversial. Adverse effects included nausea, vomiting, and dizziness (incidence: range 4.76%-50%). The most common VR platforms were Pico VR glasses, head-mounted displays, the Nintendo Wii, and the Xbox Kinect. VR intervention duration ranged from 2 weeks to 12 months (typically ≥4 wk). VR session length and frequency ranged from 5 to 100 minutes and from 1 to 10 times per week, respectively. Conclusions VR in nursing has positive effects-relieving patients' pain, anxiety, and depression and improving cognitive function-despite the included studies' limited quality. However, applying VR in nursing to improve patients' motor function, balance, memory, and attention remains controversial. Nursing researchers need to further explore the effects and standard operation protocols of VR in clinical practice, and more high-quality research on VR in nursing is needed.
Collapse
Affiliation(s)
- Yanjie Hu
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xingzhu Yuan
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Peiling Ye
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Chengting Chang
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Han Hu
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Weihua Zhang
- School of Computer Science, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Li S. Stroke Recovery Is a Journey: Prediction and Potentials of Motor Recovery after a Stroke from a Practical Perspective. Life (Basel) 2023; 13:2061. [PMID: 37895442 PMCID: PMC10608684 DOI: 10.3390/life13102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Stroke recovery is a journey. Stroke survivors can face many consequences that may last the rest of their lives. Assessment of initial impairments allows reasonable prediction of biological spontaneous recovery at 3 to 6 months for a majority of survivors. In real-world clinical practice, stroke survivors continue to improve their motor function beyond the spontaneous recovery period, but management plans for maximal recovery are not well understood. A model within the international classification of functioning (ICF) theoretical framework is proposed to systematically identify opportunities and potential barriers to maximize and realize the potentials of functional recovery from the acute to chronic stages and to maintain their function in the chronic stages. Health conditions of individuals, medical and neurological complications can be optimized under the care of specialized physicians. This permits stroke survivors to participate in various therapeutic interventions. Sufficient doses of appropriate interventions at the right time is critical for stroke motor rehabilitation. It is important to highlight that combining interventions is likely to yield better clinical outcomes. Caregivers, including family members, can assist and facilitate targeted therapeutic exercises for these individuals and can help stroke survivors comply with medical plans (medications, visits), and provide emotional support. With health optimization, comprehensive rehabilitation, support from family and caregivers and a commitment to a healthy lifestyle, many stroke survivors can overcome barriers and achieve potentials of maximum recovery and maintain their motor function in chronic stages. This ICF recovery model is likely to provide a guidance through the journey to best achieve stroke recovery potentials.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center—Houston, Houston, TX 77025, USA;
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
19
|
Saceleanu VM, Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Bordeianu A, Corlatescu AD, Ciurea AV. Integrative Approaches in Acute Ischemic Stroke: From Symptom Recognition to Future Innovations. Biomedicines 2023; 11:2617. [PMID: 37892991 PMCID: PMC10604797 DOI: 10.3390/biomedicines11102617] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Among the high prevalence of cerebrovascular diseases nowadays, acute ischemic stroke stands out, representing a significant worldwide health issue with important socio-economic implications. Prompt diagnosis and intervention are important milestones for the management of this multifaceted pathology, making understanding the various stroke-onset symptoms crucial. A key role in acute ischemic stroke management is emphasizing the essential role of a multi-disciplinary team, therefore, increasing the efficiency of recognition and treatment. Neuroimaging and neuroradiology have evolved dramatically over the years, with multiple approaches that provide a higher understanding of the morphological aspects as well as timely recognition of cerebral artery occlusions for effective therapy planning. Regarding the treatment matter, the pharmacological approach, particularly fibrinolytic therapy, has its merits and challenges. Endovascular thrombectomy, a game-changer in stroke management, has witnessed significant advances, with technologies like stent retrievers and aspiration catheters playing pivotal roles. For select patients, combining pharmacological and endovascular strategies offers evidence-backed benefits. The aim of our comprehensive study on acute ischemic stroke is to efficiently compare the current therapies, recognize novel possibilities from the literature, and describe the state of the art in the interdisciplinary approach to acute ischemic stroke. As we aspire for holistic patient management, the emphasis is not just on medical intervention but also on physical therapy, mental health, and community engagement. The future holds promising innovations, with artificial intelligence poised to reshape stroke diagnostics and treatments. Bridging the gap between groundbreaking research and clinical practice remains a challenge, urging continuous collaboration and research.
Collapse
Affiliation(s)
- Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania;
- Neurosurgery Department, “Lucian Blaga” University of Medicine, 550024 Sibiu, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020022 Bucharest, Romania
| | - Horia Ples
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babes” University of Medicine and Pharmacy, 300736 Timisoara, Romania
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
20
|
Samake B, Houot M, Zavanone C, Vassilev K, Thivard L, Herlin B, Dupont S. Late but not early seizures impact negatively early post stroke recovery: A case-control study. Eur Stroke J 2023; 8:784-791. [PMID: 37329139 PMCID: PMC10472947 DOI: 10.1177/23969873231182493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Seizures are a frequent complication of strokes. The initial severity of the stroke is a risk factor for both seizure occurrence and poor functional recovery. AIM To determine whether epilepsy has a negative impact on functional recovery or is just a proxy for the initial severity of the stroke. PATIENTS AND METHODS We conducted a monocentric retrospective case-control study in 408 consecutive patients hospitalized in the neurological rehabilitation department of the Pitié-Salpêtrière Hospital for rehabilitation of a recent stroke between 1999 and 2019. We matched 1:1 stroke patients with and without seizures according to numerous variables that may influence the outcome: type of stroke (ischemic vs hemorrhagic (ICH)), type of endovascular treatment performed (thrombolysis, thrombectomy), exact location of the stroke (arterial territory for ischemic strokes, lobar territory for ICH), extent of the stroke, side of the stroke, and age at the time of stroke. Two criteria were used to judge the impact on neurological recovery: the change in modified Rankin score between entry and the discharge from the rehabilitation department, and the length of stay. Seizures were divided into early (within 7 days of stroke) and late (after 7 days) seizures. RESULTS We accurately matched 110 stroke patients with and without seizures. Compared to seizure-free matched stroke patients, stroke patients with late seizures had a poorer neurological functional recovery in terms of Rankin score evolution (p = 0.011*) and length of stay (p = 0.004*). The occurrence of early seizures had no significant impact on functional recovery criteria. CONCLUSION Late seizures, that is, stroke-related epilepsy, have a negative impact on early rehabilitation, whereas early symptomatic seizures do not negatively impact functional recovery. These results reinforce the recommendation not to treat early seizures.
Collapse
Affiliation(s)
- Bakary Samake
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Marion Houot
- Centre of Excellence of Neurodegenerative Disease (CoEN), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Clinical Investigation Centre, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Paris, France
| | - Chiara Zavanone
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Kosta Vassilev
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Lionel Thivard
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Bastien Herlin
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Sophie Dupont
- Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Epileptology Unit, Reference Center for Rare Epilepsies, Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
21
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Chou CL, Chung CH, Hsu YH, Wu CC, Sun CA, Chien WC, Tang SE, Fann LY. Risk of secondary stroke subsequent to restarting aspirin in chronic stroke patients suffering from traumatic brain injury in Taiwan. Sci Rep 2023; 13:8001. [PMID: 37198229 DOI: 10.1038/s41598-023-34986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Traumatic brain injury (TBI) is a silent epidemic that has been easily ignored. The safety and efficacy of restarting antiplatelet therapy after encountering traumatic brain injury (TBI) events remain a challenge. We explored the outcomes of restarting aspirin use on secondary stroke and mortality in patients with chronic stroke 4 weeks after suffering from a TBI episode in Taiwan. This study analyzed data from the National Health Insurance Research Database from January 2000 to December 2015. Overall, 136,211 individuals diagnosed with chronic stroke who suffered from acute TBI and received inpatient service were enrolled. The study outcomes were a competing risk of secondary stroke (ischemic and hemorrhagic) hospitalization and all-cause mortality. We identified a case group of 15,035 patients with chronic stroke (mean [SD] age of 53.25 [19.74] years; 55.63% male) who restarted aspirin use 4 weeks after suffering from TBI and a control group of 60,140 patients with chronic stroke (mean [SD] age of 53.12 [19.22] years; 55.63% male) who discontinued aspirin use after suffering from TBI. The risk of hospitalization of secondary ischemic stroke [adjusted hazard ratio (aHR) 0.694; 95% confidence interval (CI) 0.621-0.756; P < 0.001] and hemorrhagic stroke (aHR 0.642; 95% CI 0.549-0.723; P < 0.001) and all-cause mortality (aHR 0.840; 95% CI 0.720-0.946; P < 0.001) significantly decreased in patients with chronic stroke restarting aspirin use 1 month after suffering from TBI events (including intracranial hemorrhage) in comparison with the control subjects, regardless of those with or without diabetes mellitus, chronic kidney disease, myocardial infarction, atrial fibrillation, clopidogrel use, and dipyridamole use. Restarting aspirin use could lower the risks of secondary stroke (ischemic and hemorrhagic) hospitalization and all-cause mortality in patients with chronic stroke 1 month after suffering from TBI episodes.
Collapse
Affiliation(s)
- Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, Republic of China
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, Republic of China
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, Republic of China
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, Republic of China
- Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, Republic of China.
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, 7115R, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, Republic of China.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | - Shih-En Tang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | - Li-Yun Fann
- Department of Nursing, Taipei City Hospital, Taipei, Taiwan, Republic of China.
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, Republic of China.
| |
Collapse
|
23
|
Liu Y, Dong X, Huo H, Feng L, Tong D, Liu J, Zhang H, Zheng Y, Wang S, Wang D. Effects of programmed flexor-extensor alternating electrical acupoint stimulation on upper limb motor functional reconstruction after stroke: study protocol for a double-blind, randomized controlled trial. Trials 2023; 24:324. [PMID: 37170159 PMCID: PMC10174617 DOI: 10.1186/s13063-023-07283-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Stroke's prevalence and morbidity are increasing (Guano, et al. Neuro 89:53-61, 2017), and limb motor dysfunction is left in most patients (Gittler, et al. JAMA 319:820-821, 2018). Particularly, the rehabilitation of upper limbs is more difficult and time-consuming (Borges, et al. The Cochrane database of systematic reviews 10:CD011887, 2018). METHODS A double-blind randomized controlled trial (RCT) will be conducted to investigate whether a new functional electrical stimulation (FES) combined with acupoint therapy is more effective in the rehabilitation of upper limb motor dysfunction after stroke. Patients who meet the inclusion criteria will be randomly divided into two groups: programmed flexor-extensor alternating electrical acupoint stimulation group (PES group) and conventional flexor-extensor alternating electrical acupoint stimulation group (CES group), which will be treated for 3 weeks. The primary outcome measures are electroencephalogram (EEG) and surface electromyogram (sEMG). The secondary outcome variables include MBI (modified Barthel index), China Stroke Scale (CSS), FMA-U (Fugl-Meyer assessment upper limb), MMT (manual muscle testing), and Brunnstrom. DISCUSSION The results of this study are expected to verify the efficacy of PES therapy in the rehabilitation of upper limb motor function after stroke. This may promote the widespread use of the therapy in hospitals, communities, and homes for early and continuous treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT05333497. Registered on April 11, 2022.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Xu Dong
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Hong Huo
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Liyuan Feng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Dan Tong
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Jiahui Liu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Hongyan Zhang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Yingkang Zheng
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Shuai Wang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Dongyan Wang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China.
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China.
| |
Collapse
|
24
|
Kim S, Choi J, Kwon J. Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106-126) via Neurotrophic Factor Signaling. Molecules 2023; 28:molecules28093920. [PMID: 37175330 PMCID: PMC10180446 DOI: 10.3390/molecules28093920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Prion protein peptide (PrP) has demonstrated neurotoxicity in brain cells, resulting in the progression of prion diseases with spongiform degenerative, amyloidogenic, and aggregative properties. Thymosin beta 4 (Tβ4) plays a role in the nervous system and may be related to motility, axonal enlargement, differentiation, neurite outgrowth, and proliferation. However, no studies about the effects of Tβ4 on prion disease have been performed yet. In the present study, we investigated the protective effect of Tβ4 against synthetic PrP (106-126) and considered possible mechanisms. Hippocampal neuronal HT22 cells were treated with Tβ4 and PrP (106-126) for 24 h. Tβ4 significantly reversed cell viability and reactive oxidative species (ROS) affected by PrP (106-126). Apoptotic proteins induced by PrP (106-126) were reduced by Tβ4. Interestingly, a balance of neurotrophic factors (nerve growth factor and brain-derived neurotrophic factor) and receptors (nerve growth factor receptor p75, tropomyosin related kinase A and B) were competitively maintained by Tβ4 through receptors reacting to PrP (106-126). Our results demonstrate that Tβ4 protects neuronal cells against PrP (106-126) neurotoxicity via the interaction of neurotrophic factors/receptors.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
- Knotus Co., Ltd., Incheon 22014, Republic of Korea
| | - Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
25
|
Zhuo B, Deng S, Li B, Zhu W, Zhang M, Qin C, Meng Z. Possible Effects of Acupuncture in Poststroke Aphasia. Behav Neurol 2023; 2023:9445381. [PMID: 37091130 PMCID: PMC10115536 DOI: 10.1155/2023/9445381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/30/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
Neural plasticity promotes the reorganization of language networks and is an essential recovery mechanism for poststroke aphasia (PSA). Neuroplasticity may be a pivotal bridge to elucidate the potential recovery mechanisms of acupuncture for aphasia. Therefore, understanding the neuroplasticity mechanism of acupuncture in PSA is crucial. However, the underlying therapeutic mechanism of neuroplasticity in PSA after acupuncture needs to be explored. Excitotoxicity after brain injury affects the activity of neurotransmitters and disrupts the transmission of normal neuron information. Thus, a helpful strategy of acupuncture might be to improve PSA by affecting the availability of these neurotransmitters and glutamate receptors at synapses. In addition, the regulation of neuroplasticity by acupuncture may also be related to the regulation of astrocytes. Considering the guiding significance of acupuncture for clinical treatment, it is necessary to carry out further study about the influence of acupuncture on the recovery of aphasia after stroke. This study summarizes the current research on the neural mechanism of acupuncture in treating PSA. It seeks to elucidate the potential effect of acupuncture on the recovery of PSA from the perspective of synaptic plasticity and integrity of gray and white matter.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menglong Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
26
|
Li L, Yu K, Mo Z, Yang K, Chen F, Yang J. In Vitro Neurotrophic Properties and Structural Characterization of a New Polysaccharide LTC-1 from Pyrola corbieri Levl (Luticao). Molecules 2023; 28:1544. [PMID: 36838533 PMCID: PMC9964326 DOI: 10.3390/molecules28041544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Pyrola corbieri Levl has been used to strengthen bones and nourish the kidney (the kidney governs the bone and is beneficial to the brain) by the local Miao people in China. However, the functional components and neurotrophic activity have not been reported. A new acidic homogeneous heteropolysaccharide named LTC-1 was obtained and characterized by periodate oxidation, Smith degradation, partial acid hydrolysis, GC-MS spectrometry, methylation analysis, and Fourier transform infrared spectroscopy, and its molecular weight was 3239 Da. The content of mannuronic acid (Man A) in LTC-1 was 46%, and the neutral sugar was composed of L-rhamnose (L-Rha), L-arabinose (L-Ara), D-xylose (D-Xyl), D-mannose (D-Man), D-glucose (D-Glc) and D-galactose (D-Gal) with a molar ratio of 1.00:3.63:0.86:1.30:6.97:1.30. The main chain of LTC-1 was composed of Glc, Gal, Man, Man A and the branched chain Ara, Glc, Gal. The terminal residues were composed of Glc and Gal. The main chain and branched chains were linked by (1→5)-linked-Ara, (1→3)-linked-Glc, (1→4)-linked-Glc, (1→6)-linked-Glc, (1→3)-linked-Gal, (1→6)-linked-Gal, (1→3, 6)-linked-Man and ManA. Meanwhile, neurotrophic activity was evaluated through PC12 and primary hippocampal neuronal cell models. LTC-1 exhibited neurotrophic activity in a concentration-dependent manner, which significantly induced the differentiation of PC12 cells, promoted the neurite outgrowth of PC12 cells, enhanced the formation of the web architecture of dendrites, and increased the density of dendritic spines in hippocampal neurons and the expression of PSD-95. These results displayed significant neurotrophic factor-like activity of LTC-1, which suggests that LTC-1 is a potential treatment option for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangqun Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Kangkang Yu
- School of Life Science, Shanghai University, Shanghai 200444, China
| | | | - Keling Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Fuxue Chen
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
27
|
Meng J, Yan Z, Gu F, Tao X, Xue T, Liu D, Wang Z. Transcranial direct current stimulation with virtual reality versus virtual reality alone for upper extremity rehabilitation in stroke: A meta-analysis. Heliyon 2022; 9:e12695. [PMID: 36685449 PMCID: PMC9849940 DOI: 10.1016/j.heliyon.2022.e12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Background Stroke is one of the most prevalent diseases. Motor impairment in patients with stroke frequently affects the upper extremities. Several randomized clinical trials (RCTs) have tried to prove whether or not the combination of transcranial direct current stimulation (tDCS) with virtual reality (VR) is superior to VR alone for upper extremity rehabilitation. Methods We searched Embase, MEDLINE, the Cochrane Library database, and Clinicaltrials.gov for relevant RCTs published before June 10, 2022. The results were analyzed by using standard mean differences (SMD) and 95% confidence intervals (95% CI). Results We pooled 120 patients from 4 RCTs. There were no significant improvements in the Fugl-Meyer Upper Extremity scale (SMD = 0.51; 95% CI, -0.04 to 1.06), the Box and Block Test (SMD = 0.42; 95% CI, -0.02 to 0.86), and the Modified Ashworth Scale after the combined treatment of tDCS and VR. But tDCS combined with VR could enhance the Barthel Index scores in patients with stroke compared to VR alone (SMD = 0.49; 95% CI, 0.04 to 0.94). Conclusions The combination of tDCS and VR can improve the quality of daily living in patients with stroke. No more satisfactory efficacy has been demonstrated in terms of upper extremity function. However, we observe a distinct trend toward significance in some outcomes.
Collapse
Affiliation(s)
- Jiahao Meng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Zeya Yan
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Feng Gu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Xinyu Tao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Dan Liu
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China,Corresponding author. Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China,Corresponding author. Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| |
Collapse
|
28
|
Fava-Felix PE, Bonome-Vanzelli SRC, Ribeiro FS, Santos FH. Systematic review on post-stroke computerized cognitive training: Unveiling the impact of confounding factors. Front Psychol 2022; 13:985438. [PMID: 36578681 PMCID: PMC9792177 DOI: 10.3389/fpsyg.2022.985438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Background Stroke is a highly incapacitating disease that can lead to disabilities due to cognitive impairment, physical, emotional, and social sequelae, and a decrease in the quality of life of those affected. Moreover, it has been suggested that cognitive reserve (patients' higher levels of education or having a skilled occupation), for instance, can promote faster cognitive recovery after a stroke. For this reason, this review aims to identify the cognitive, functional, and behavioral effects of computerized rehabilitation in patients aged 50 years or older who had a stroke, considering cognitive reserve proxies. Methods We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis-PRISMA, and performed the search for peer-reviewed randomized controlled trials without a date restriction on CINAHL, LILACS, PubMed, Scopus, and Web of Science databases were chosen. Results We screened 780 papers and found 19 intervention studies, but only 4 met the inclusion criteria and shared data. These studies included computerized tools for motor and cognitive rehabilitation in the experimental groups. In all studies, computerized training was combined with other interventions, such as standard therapy, occupational therapy, and aerobic exercises. There were 104 participants affected by ischemic or hemorrhagic stroke, predominantly male (57.69%), and all with cognitive impairment. Conclusion Despite a limited number of studies, varied methods and insufficient information available, schooling as a CR proxy combined with high-intensity computerized cognitive training was key to mediating cognitive improvement. The systematic review also identified that the associated ischemic stroke and shorter time of onset for rehabilitation contribute to the cognitive evolution of patients. Findings do not support a greater benefit of computerized cognitive training compared to conventional cognitive therapies. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=296193], identifier [CRD42022296193].
Collapse
Affiliation(s)
| | | | - Fabiana S. Ribeiro
- Department of Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Flávia H. Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Abstract
This review is based on the previous one published in 2016 (Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol 2016; 63 (Supl 3): S1-S73), incorporating 176 new references, having all the information available in the same document to facilitate the access to the information in one document. This review is focused on the main indications of the drug, as acute stroke and its sequelae, including the cognitive impairment, and traumatic brain injury and its sequelae. There are retrieved the most important experimental and clinical data in both indications.
Collapse
Affiliation(s)
- Julio J. Secades
- Departamento Médico. Grupo Ferrer, S.A. Barcelona, EspañaDepartamento MédicoDepartamento MédicoBarcelonaEspaña
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido. ASP Catanzaro. Catanzaro, ItaliaCenter for Cognitive Disorders and Dementia - Catanzaro LidoCenter for Cognitive Disorders and Dementia - Catanzaro LidoCatanzaroItalia
| |
Collapse
|
30
|
Naro A, Calabrò RS. Improving Upper Limb and Gait Rehabilitation Outcomes in Post-Stroke Patients: A Scoping Review on the Additional Effects of Non-Invasive Brain Stimulation When Combined with Robot-Aided Rehabilitation. Brain Sci 2022; 12:1511. [PMID: 36358437 PMCID: PMC9688385 DOI: 10.3390/brainsci12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/03/2024] Open
Abstract
Robot-aided rehabilitation (RAR) and non-invasive brain stimulation (NIBS) are the two main interventions for post-stroke rehabilitation. The efficacy of both approaches in combination has not been well established yet. The importance of coupling these interventions, which both enhance brain plasticity to promote recovery, lies in augmenting the rehabilitation potential to constrain the limitation in daily living activities and the quality of life following stroke. This review aimed to evaluate the evidence of NIBS coupled with RAR in improving rehabilitation outcomes of upper limb and gait motor impairment in adult individuals with stroke. We included 18 clinical trials in this review. All studies were highly heterogeneous concerning the technical characteristics of robotic devices and NIBS protocols. However, the studies reported a global improvement in body structure and function and activity limitation for the upper limb, which were non-significant between the active and control groups. Concerning gait training protocols, the active group outperformed the control group in improving walking capacity and recovery. According to this review, NIBS and RAR in combination are promising but not yet largely recommendable as a systematic approach for stroke rehabilitation as there is not enough data about this. Therefore, more homogenous clinical trials are required, pointing out the best characteristics of the combined therapeutic protocols.
Collapse
Affiliation(s)
- Antonino Naro
- Stroke Unit, AOU Policlinico G. Martino, 98122 Messina, Italy
| | | |
Collapse
|
31
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
32
|
Li KP, Zhang ZQ, Zhou ZL, Su JQ, Wu XH, Shi BH, Xu JG. Effect of music-based movement therapy on the freezing of gait in patients with Parkinson’s disease: A randomized controlled trial. Front Aging Neurosci 2022; 14:924784. [PMID: 36337701 PMCID: PMC9627030 DOI: 10.3389/fnagi.2022.924784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Progression of freezing of gait (FOG), a common pathological gait in Parkinson’s disease (PD), has been shown to be an important risk factor for falls, loss of independent living ability, and reduced quality of life. However, previous evidence indicated poor efficacy of medicine and surgery in treating FOG in patients with PD. Music-based movement therapy (MMT), which entails listening to music while exercising, has been proposed as a treatment to improve patients’ motor function, emotions, and physiological activity. In recent years, MMT has been widely used to treat movement disorders in neurological diseases with promising results. Results from our earlier pilot study revealed that MMT could relieve FOG and improve the quality of life for patients with PD. Objective To explore the effect of MMT on FOG in patients with PD. Materials and methods This was a prospective, evaluator-blinded, randomized controlled study. A total of 81 participants were randomly divided into music-based movement therapy group (MMT, n = 27), exercise therapy group (ET, n = 27), and control group (n = 27). Participants in the MMT group were treated with MMT five times (1 h at a time) every week for 4 weeks. Subjects in the ET group were intervened in the same way as the MMT group, but without music. Routine rehabilitation treatment was performed on participants in all groups. The primary outcome was the change of FOG in patients with PD. Secondary evaluation indicators included FOG-Questionnaire (FOG-Q) and the comprehensive motor function. Results After 4 weeks of intervention, the double support time, the cadence, the max flexion of knee in stance, the max hip extension, the flexion moment of knee in stance, the comprehensive motor function (UPDRS Part III gait-related items total score, arising from chair, freezing of gait, postural stability, posture, MDS-UPDRS Part II gait-related items total score, getting out of bed/a car/deep chair, walking and balance, freezing), and the FOG-Q in the MMT group were lower than that in the control group and ET group (p < 0.05). The gait velocity, the max ankle dorsiflexion in stance, ankle range of motion (ROM) during push-off, ankle ROM over gait cycle, the knee ROM over gait cycle, and the max extensor moment in stance (ankle, knee) in the MMT group were higher than that in the control group and ET group (p < 0.05). However, no significant difference was reported between the control group and ET group (p > 0.05). The stride length and hip ROM over gait cycle in the MMT group were higher than that in the control group (p < 0.05), and the max knee extension in stance in the MMT group was lower than that in the control group (p < 0.05). Nevertheless, there was no significant difference between the ET group and MMT group (p > 0.05) or control group (p > 0.05). Conclusion MMT improved gait disorders in PD patients with FOG, thereby improving their comprehensive motor function.
Collapse
Affiliation(s)
- Kun-peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng-qiao Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong-lei Zhou
- School of Public Health, Fudan University, Shanghai, China
| | - Jian-qing Su
- Department of Neurorehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Xian-hua Wu
- Changqiao Community Health Service Centre, Shanghai, China
| | - Bo-han Shi
- Department of Neurorehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jian-guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ministry of Education, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Shanghai, China
- *Correspondence: Jian-guang Xu,
| |
Collapse
|
33
|
Findlay MC, Bauer SZ, Gautam D, Lucke-Wold B. Rehabilitation After Neurotrauma: A Commentary. JOURNAL OF SURGERY CARE 2022; 1:19-26. [PMID: 36321858 PMCID: PMC9620735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rehabilitation following neurotrauma is an important component of recovery. The best outcomes involve multidisciplinary management. This involves medical therapies, functional therapies, and physical therapies. Speech therapy, physical therapy, and occupational therapy are crucial components. Emerging evidence has implicated the need for vision therapies and a focus on mental health. A seamless integration from inpatient to outpatient is validated. This can be at outpatient facilities or home care. The importance is a key point person for the patient.
Collapse
Affiliation(s)
| | - Sawyer Z Bauer
- Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Diwas Gautam
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida USA
| |
Collapse
|
34
|
Wang S, Rao B, Miao G, Zhang X, Zheng J, Lin J, Yu M, Zhou X, Xu H, Liao W. The resting-state topological organization damage of language-related brain regions in post-stroke cognitive impairment. Brain Imaging Behav 2022; 16:2608-2617. [PMID: 36136202 DOI: 10.1007/s11682-022-00716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Abstract
The topology of brain networks is the foundation of cognition. We hypothesized that stroke damaged topological organization resulting in cognitive impairment. The aim was to explore the damage pattern of the resting-state topology in post-stroke cognitive impairment (PSCI) patients. Thirty-seven patients with PSCI and thirty-seven gender- and age-matched healthy controls (HC) were recruited. The structural and functional data were collected from all subjects. The degree centrality (DC), betweenness centrality (BC), and global properties of brain networks were analyzed between groups. Spearman correlation analysis was performed between topological properties that changed significantly and clinical cognitive function scale scores. Compared with HC, the PSCI patients had significantly reduced DC in language-related brain regions and significantly higher DC in the right frontal lobe, hippocampus, and paracentral lobule. The decreased BC was located in the left caudate, thalamus, temporal, and frontal lobes. The increased BC was detected in the left cuneus and right precuneus. In addition, PSCI exhibited increased characteristic path length and decreased small-worldness. PSCI patients had impaired functional topology of the language-related brain regions, mainly in the left hemisphere. The enhanced processing and relaying information of some right high-order cognitive brain regions may be a compensatory mechanism. However, the whole brain's function integration was reduced, and there was an imbalance between efficiency and consumption.
Collapse
Affiliation(s)
- Sirui Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Guofu Miao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Junbin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
35
|
Liu H, Wei T, Huang Q, Liu W, Yang Y, Jin Y, Wu D, Yuan K, Zhang P. The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Front Aging Neurosci 2022; 14:924262. [PMID: 36062152 PMCID: PMC9428262 DOI: 10.3389/fnagi.2022.924262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.
Collapse
Affiliation(s)
- Haijing Liu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, China
- School of Continuing Education, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qin Huang
- Department of Teaching Affairs and Administration, Kunming Medical University, Kunming, China
| | - Wei Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yaopeng Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Kai Yuan
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
36
|
Rao B, Wang S, Yu M, Chen L, Miao G, Zhou X, Zhou H, Liao W, Xu H. Suboptimal states and frontoparietal network-centered incomplete compensation revealed by dynamic functional network connectivity in patients with post-stroke cognitive impairment. Front Aging Neurosci 2022; 14:893297. [PMID: 36003999 PMCID: PMC9393744 DOI: 10.3389/fnagi.2022.893297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeural reorganization occurs after a stroke, and dynamic functional network connectivity (dFNC) pattern is associated with cognition. We hypothesized that dFNC alterations resulted from neural reorganization in post-stroke cognitive impairment (PSCI) patients, and specific dFNC patterns characterized different pathological types of PSCI.MethodsResting-state fMRI data were collected from 16 PSCI patients with hemorrhagic stroke (hPSCI group), 21 PSCI patients with ischemic stroke (iPSCI group), and 21 healthy controls (HC). We performed the dFNC analysis for the dynamic connectivity states, together with their topological and temporal features.ResultsWe identified 10 resting-state networks (RSNs), and the dFNCs could be clustered into four reoccurring states (modular, regional, sparse, and strong). Compared with HC, the hPSCI and iPSCI patients showed lower standard deviation (SD) and coefficient of variation (CV) in the regional and modular states, respectively (p < 0.05). Reduced connectivities within the primary network (visual, auditory, and sensorimotor networks) and between the primary and high-order cognitive control domains were observed (p < 0.01).ConclusionThe transition trend to suboptimal states may play a compensatory role in patients with PSCI through redundancy networks. The reduced exploratory capacity (SD and CV) in different suboptimal states characterized cognitive impairment and pathological types of PSCI. The functional disconnection between the primary and high-order cognitive control network and the frontoparietal network centered (FPN-centered) incomplete compensation may be the pathological mechanism of PSCI. These results emphasize the flexibility of neural reorganization during self-repair.
Collapse
Affiliation(s)
- Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofu Miao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Weijing Liao,
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Haibo Xu,
| |
Collapse
|
37
|
Xie YL, Yang YX, Jiang H, Duan XY, Gu LJ, Qing W, Zhang B, Wang YX. Brain-machine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials. Front Neurosci 2022; 16:949575. [PMID: 35992923 PMCID: PMC9381818 DOI: 10.3389/fnins.2022.949575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Upper extremity dysfunction after stroke is an urgent clinical problem that greatly affects patients' daily life and reduces their quality of life. As an emerging rehabilitation method, brain-machine interface (BMI)-based training can extract brain signals and provide feedback to form a closed-loop rehabilitation, which is currently being studied for functional restoration after stroke. However, there is no reliable medical evidence to support the effect of BMI-based training on upper extremity function after stroke. This review aimed to evaluate the efficacy and safety of BMI-based training for improving upper extremity function after stroke, as well as potential differences in efficacy of different external devices. Methods English-language literature published before April 1, 2022, was searched in five electronic databases using search terms including “brain-computer/machine interface”, “stroke” and “upper extremity.” The identified articles were screened, data were extracted, and the methodological quality of the included trials was assessed. Meta-analysis was performed using RevMan 5.4.1 software. The GRADE method was used to assess the quality of the evidence. Results A total of 17 studies with 410 post-stroke patients were included. Meta-analysis showed that BMI-based training significantly improved upper extremity motor function [standardized mean difference (SMD) = 0.62; 95% confidence interval (CI) (0.34, 0.90); I2 = 38%; p < 0.0001; n = 385; random-effects model; moderate-quality evidence]. Subgroup meta-analysis indicated that BMI-based training significantly improves upper extremity motor function in both chronic [SMD = 0.68; 95% CI (0.32, 1.03), I2 = 46%; p = 0.0002, random-effects model] and subacute [SMD = 1.11; 95%CI (0.22, 1.99); I2 = 76%; p = 0.01; random-effects model] stroke patients compared with control interventions, and using functional electrical stimulation (FES) [SMD = 1.11; 95% CI (0.67, 1.54); I2 = 11%; p < 0.00001; random-effects model]or visual feedback [SMD = 0.66; 95% CI (0.2, 1.12); I2 = 4%; p = 0.005; random-effects model;] as the feedback devices in BMI training was more effective than using robot. In addition, BMI-based training was more effective in improving patients' activities of daily living (ADL) than control interventions [SMD = 1.12; 95% CI (0.65, 1.60); I2 = 0%; p < 0.00001; n = 80; random-effects model]. There was no statistical difference in the dropout rate and adverse effects between the BMI-based training group and the control group. Conclusion BMI-based training improved upper limb motor function and ADL in post-stroke patients. BMI combined with FES or visual feedback may be a better combination for functional recovery than robot. BMI-based trainings are well-tolerated and associated with mild adverse effects.
Collapse
Affiliation(s)
- Yu-lei Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yu-xuan Yang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Jiang
- Department of Rehabilitation Medicine, Xichong County People's Hospital, Nanchong Central Hospital, Nanchong, China
| | - Xing-Yu Duan
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li-jing Gu
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wu Qing
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Zhang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- Bo Zhang
| | - Yin-xu Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Yin-xu Wang
| |
Collapse
|
38
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
39
|
Zhu S, Liu F, Zhang R, Xiong Z, Zhang Q, Hao L, Chen S. Neuroprotective Potency of Neolignans in Magnolia officinalis Cortex Against Brain Disorders. Front Pharmacol 2022; 13:857449. [PMID: 35784755 PMCID: PMC9244706 DOI: 10.3389/fphar.2022.857449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, neurological diseases including Alzheimer’s disease, Parkinson’s disease and stroke are one of the main causes of death in the world. At the same time, the incidence of psychiatric disorders including depression and anxiety has been increasing. Accumulating elderly and stressed people suffer from these brain disorders, which is undoubtedly a huge burden on the modern aging society. Neolignans, the main active ingredients in Magnolia officinalis cortex, were reported to have neuroprotective effects. In addition, the key bioactive ingredients of neolignans, magnolol (1) and honokiol (2), were proved to prevent and treat neurological diseases and psychiatric disorders by protecting nerve cells and brain microvascular endothelial cells (BMECs). Furthermore, neolignans played a role in protecting nerve cells via regulation of neuronal function, suppression of neurotoxicity, etc. This review summarizes the neuroprotective effect, primary mechanisms of the leading neolignans and provides new prospects for the treatment of brain disorders in the future.
Collapse
Affiliation(s)
- Shun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongxiang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Hao
- Huarun Sanjiu (ya’an) Pharmaceutical Group Co., LTD., Ya’an, China
| | - Shiyin Chen
- Department of Orthopedics of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| |
Collapse
|
40
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
41
|
Effect of telestroke practices on short-term mortality in ischemic stroke patients. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.973616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Wei H, Zhen L, Wang S, Zhang Y, Wang K, Jia P, Zhang Y, Wu Z, Yang Q, Hou W, Lv J, Zhang P. De novo Lipogenesis in Astrocytes Promotes the Repair of Blood-Brain Barrier after Transient Cerebral Ischemia Through Interleukin-33. Neuroscience 2022; 481:85-98. [PMID: 34822949 DOI: 10.1016/j.neuroscience.2021.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes experience significant metabolic shifts in the "sensitive period" of neurological function recovery following cerebral ischemia. However, the changes in astrocyte lipid metabolism and their implications for neurological recovery remain unknown. In the present study, we employed a mouse middle cerebral artery occlusion model to investigate the changes in de novo lipogenesis and interleukin-33 (IL-33) production in astrocytes and elucidate their role in blood-brain barrier (BBB) repair in the subacute phase of cerebral ischemia. Neurological behavior evaluation was used to assess functional changes in mice. Pharmacological inhibition and astrocyte-specific downregulation of fatty acid synthase (FASN) were used to evaluate the role of de novo lipogenesis in brain injury. Intracerebroventricular administration of recombinant IL-33 was performed to study the contribution of IL-33 to BBB disruption. Extravasation of Evans blue dye, dextran and IgG were used to assess BBB integrity. Western blotting of tight junction proteins ZO-1, Occludin, and Claudin-5 were performed at defined time points to evaluate changes in BBB. It was found that de novo lipogenesis was activated, and IL-33 production increased in astrocytes at the subacute stage of cerebral ischemia injury. Inhibition of lipogenesis in astrocytes decreased IL-33 production in the peri-infarct area, deteriorated BBB damage and interfered with neurological recovery. In addition, supplementation of IL-33 alleviated BBB destruction and improved neurological recovery worsened by lipogenesis inhibition. These findings indicate that astrocyte lipogenesis increases the production of IL-33 in the peri-infarct area, which promotes BBB repair in the subacute phase of cerebral ischemia injury and improves long-term functional recovery.
Collapse
Affiliation(s)
- Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Luming Zhen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhixin Wu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
43
|
Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu Ș, Munteanu C. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 2022; 23:907. [PMID: 35055089 PMCID: PMC8846361 DOI: 10.3390/ijms23020907] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral circulation delivers the blood flow to the brain through a dedicated network of sanguine vessels. A healthy human brain can regulate cerebral blood flow (CBF) according to any physiological or pathological challenges. The brain is protected by its self-regulatory mechanisms, which are dependent on neuronal and support cellular populations, including endothelial ones, as well as metabolic, and even myogenic factors. OBJECTIVES Accumulating data suggest that "non-pharmacological" approaches might provide new opportunities for stroke therapy, such as electro-/acupuncture, hyperbaric oxygen therapy, hypothermia/cooling, photobiomodulation, therapeutic gases, transcranial direct current stimulations, or transcranial magnetic stimulations. We reviewed the recent data on the mechanisms and clinical implications of these non-pharmaceutical treatments. METHODS To present the state-of-the-art for currently available non-invasive, non-pharmacological-related interventions in acute ischemic stroke, we accomplished this synthetic and systematic literature review based on the Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses (PRISMA). RESULTS The initial number of obtained articles was 313. After fulfilling the five steps in the filtering/selection methodology, 54 fully eligible papers were selected for synthetic review. We enhanced our documentation with other bibliographic resources connected to our subject, identified in the literature within a non-standardized search, to fill the knowledge gaps. Fifteen clinical trials were also identified. DISCUSSION Non-invasive, non-pharmacological therapeutic/rehabilitative interventions for acute ischemic stroke are mainly holistic therapies. Therefore, most of them are not yet routinely used in clinical practice, despite some possible beneficial effects, which have yet to be supplementarily proven in more related studies. Moreover, few of the identified clinical trials are already completed and most do not have final results. CONCLUSIONS This review synthesizes the current findings on acute ischemic stroke therapeutic/rehabilitative interventions, described as non-invasive and non-pharmacological.
Collapse
Affiliation(s)
- Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Dan Blendea
- Faculty of Medicine, University ”Titu Maiorescu”, 0400511 Bucharest, Romania;
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Daia
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Mihaela Oprea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aura Spinu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Anca Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Ștefan Busnatu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy” Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
44
|
Kiselev A, Kotov A, Mikhaleva M, Stovbun S, Kotov S. Ampakines — a promising approach to neuroprotection. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:54-62. [DOI: 10.17116/jnevro202212209154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Kotov SV, Borisova VA, Slyunkova EV, Isakova EV, Kiselev AV, Kotov AS. [Dynamics of recovery of cognitive deficit in patients in the early recovery period of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:26-32. [PMID: 34932282 DOI: 10.17116/jnevro202112111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Study of the effectiveness of the use of the drug Ampasse in the process of complex rehabilitation in patients in the early recovery period of ischemic stroke at the second (stationary) stage. MATERIAL AND METHODS The study included 60 patients, 28 women and 32 men, aged 43 to 76 years (mean - 58.4±9.1 years), in the recovery period after suffering a stroke in the period from 1 to 12 months (on average - 4.7±3.5 months). All patients received complex rehabilitation, patients of the 1st group received additional intravenous injections of the drug Ampasse 25 mg (5.0 ml), 15 injections. Patients of the 2nd group (n 0) did not receive Ampasse. To assess cognitive functions, the following tests were used: the Montreal Cognitive Assessment Scale (MoCA), Stroop's test, subtest 9 of the Wechsler test, Koos cubes (CC), the severity of anxiety and depression was assessed, and motor recovery was assessed by the hand motor activity test (ARAT). The assessment was carried out before the start of treatment and on the 21st day. RESULTS There was a statistically significant increase in the score on the MoCA scale, in patients of the 1st group by an average of 2 points, in the 2nd group there was no significant dynamics, a statistically significant difference was found in the proportion of patients who had an increase in the MoCA index after the course of treatment in the 1st group. compared with the 2nd (χ2 - 22.528, p<0.001). Decreased the level of rigidity according to the Stroop test in patients of the 1st group compared with the 2nd (χ2 - 8.297, p=0.004). The number of patients who showed positive dynamics in the Koos cubes test in the 1st group was statistically significantly higher (χ2- 4.344, p=0.038). A statistically significant decrease in the level of depression was revealed in patients of the 1st group. The number of patients with improved motor function of the hand was greater in the 1st group of MG (χ2 - 4.286, p<0.039). CONCLUSION In patients in complex therapy receiving intravenous administration of the drug Ampasse at a dose of 25 mg (5.0 ml) 15 administrations, a statistically significant improvement in cognitive functions was revealed according to MoCA tests, Stroop test, Koos Cubes, when compared with the comparison group. The use of Ampasse increased the effectiveness of cognitive and motor rehabilitation in patients with post-stroke disorders.
Collapse
Affiliation(s)
- S V Kotov
- Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V A Borisova
- Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - E V Slyunkova
- Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - E V Isakova
- Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - A V Kiselev
- Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - A S Kotov
- Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
46
|
Zhong D, Chen L, Feng Y, Song R, Huang L, Liu J, Zhang L. Effects of virtual reality cognitive training in individuals with mild cognitive impairment: A systematic review and meta-analysis. Int J Geriatr Psychiatry 2021; 36:1829-1847. [PMID: 34318524 DOI: 10.1002/gps.5603] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Virtual reality (VR) is used to improve specific health needs by combining multiple technologies; it is increasingly being used in the medical field, showing satisfactory effects, especially in the management of chronic disease. The aim of this study was to assess the effects of VR cognitive training for individuals with mild cognitive impairment (MCI). METHODS Peer-reviewed articles were searched from the PubMed, Embase, Web of Science, the Cochrane Library, Science Direct, and EBSCOhost databases, as well as CNKI, Sinomed, Vip. and Wan Fang, through 23 May 2021. We only included randomized controlled trials (RCTs) enrolling participants with MCI. RESULTS Seventeen RCTs were included, with a total of 744 participants. Evidence of moderate quality showed that VR cognitive training significantly enhanced MCI patients' global cognitive function, as measured by the Montreal Cognitive Assessment (standardized mean difference [SMD] = 0.42; 95% confidence interval [CI], 0.04-0.79; p = 0.03) and executive function, as measured by trail making test A (SMD = -0.58; 95% CI, -0.80 to -0.35; p < 0.001). The meta-analysis indicated that the effects of VR cognitive training on delayed memory, immediate memory, attention and instrumental activities of daily living were not statistically significant (p > 0.05). CONCLUSION The available data showed that VR cognitive training might be beneficial for improving global cognitive function and executive function in individuals with MCI, although the effects were short term.
Collapse
Affiliation(s)
- Dongmei Zhong
- School of Nursing, Sun Yat-sen University, Guangzhou, China
| | - Liangying Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongshen Feng
- School of Nursing, Sun Yat-sen University, Guangzhou, China
| | - Rui Song
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Likui Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lifeng Zhang
- School of Nursing, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Onose G, Anghelescu A, Blendea CD, Ciobanu V, Daia CO, Firan FC, Munteanu C, Oprea M, Spinu A, Popescu C. Non-invasive, non-pharmacological/bio-technological interventions towards neurorestoration upshot after ischemic stroke, in adults-systematic, synthetic, literature review. FRONT BIOSCI-LANDMRK 2021; 26:1204-1239. [PMID: 34856764 DOI: 10.52586/5020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Considering its marked life-threatening and (not seldom: severe and/or permanent) disabling, potential, plus the overall medico-psycho-socio-economic tough burden it represents for the affected persons, their families and the community, the cerebrovascular accident (CVA)-including with the, by far more frequent, ischemic type-is subject to considerable scientific research efforts that aim (if possible) at eliminating the stroke induced lesions, and consist, as well, in ambitious-but still poorly transferable into medical practice-goals such as brain neuroregeneration and/or repair, within related corollary/upshot of neurorestoration. We have conducted, in this respect, a systematic and synthetic literature review, following the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" concept. Accordingly, we have interrogated five internationally renowned medical data bases: Elsevier, NCBI/PubMed, NCBI/PMC, PEDro, and ISI Web of Knowledge/Science (the last one to check whether the initially identified articles are published in ISI indexed journals), based on a large (details in the body text) number of most appropriate, to our knowledge, key word combinations/"syntaxes"-used contextually-and subsequently fulfilling the related, on five steps, filtering/selection methodology. We have thereby selected 114 fully eligible (of which contributive: 83-see further) papers; at the same time, additionally, we have enhanced our documentation-basically, but not exclusively, for the introductive part of this work (see further)-with bibliographic resources, overall connected to our subject, identified in the literature within a non-standardized search. It appears that the opportunity window for morph-functional recovery after stroke is larger than previously thought, actually being considered that brain neurorestoration/repair could occur, and therefore be expected, in later stages than in earlier ones, although, in this context, the number of cases possibly benefitting (for instance after physical and/or cognitive rehabilitation-including with magnetic or direct current transcranial stimulation) is quite small and with more or less conflicting, related outcomes, in the literature. Moreover, applying especially high intense, solicitating, rehabilitation interventions, in early stages post (including ischemic) stroke could even worsen the functional evolution. Accordingly, for clarifications and validation of more unitary points of view, continuing and boosting research efforts in this complex, interdisciplinary domain, is necessary. Until finding (if ever) effective modalities to cure the lesions of the central nervous system (CNS)-including post ischemic stroke-it is reasonable and recommendable-based on rigorous methodologies-the avail of combined ways: physiatric, pharmacologic, possibly also bio-technologic. On a different note, but however connected to our subject: periodic related systematic, synthetic literature reviews reappraisals are warranted and welcome.
Collapse
Affiliation(s)
- Gelu Onose
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
- Specific Disciplines Department, Faculty of Midwifes and Nursing, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| | - Corneliu Dan Blendea
- Medical-Surgical and Prophylactic Disciplines Department - Medical Rehabilitation, Recovery and Medical Physical Culture Discipline, Faculty of Medicine, University "Titu Maiorescu", 040051 Bucharest, Romania
- Physical and Rehabilitation Medicine & Balneology Clinic Division - The Neuro-Rehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest, Computer Science Department, 060042 Bucharest, Romania
| | - Cristina Octaviana Daia
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division - The Neuro-Rehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700454 Iasi, Romania
| | - Mihaela Oprea
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Aura Spinu
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| |
Collapse
|
48
|
da Rosa Pinheiro DR, Cabeleira MEP, da Campo LA, Gattino LAF, de Souza KS, Dos Santos Burg L, Gamarra Blauth AHE, Corrêa PS, Cechetti F. Upper limbs cycle ergometer increases muscle strength, trunk control and independence of acute stroke subjects: A randomized clinical trial. NeuroRehabilitation 2021; 48:533-542. [PMID: 33998550 DOI: 10.3233/nre-210022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Studies demonstrate the benefits of upper limbs cycle ergometer (ULCE) in subacute and chronic stroke subjects, but the literature still needs to explore the acute phase of the disease. OBJECTIVE Verify the effects of ULCE on muscular strength, trunk control and independence of post-stroke subjects in hospital acute phase. METHODS In this randomized clinical trial participants were allocated into two groups. The control group (CG) performed two daily sessions of conventional physiotherapy, while the intervention group (IG) had one daily session of conventional physiotherapy and one of ULCE. The interventions were carried out for 20 minutes for five days. Both groups were assessed before and after the treatment for upper limbs strength by manual dynamometer, trunk control by Trunk Impairment Scale and level of independence by the Modified Rankin Scale. RESULTS Twenty subjects with mean ages of 63.5±4.5 were enrolled. There was a significant intra-group difference of palmar grip, shoulder abductors, elbow flexor and wrist extensor strength, trunk control and functional independence only in IG. Inter-group difference for all variables showed superiority in IG. CONCLUSIONS ULCE is an effective device for increasing muscle strength, trunk control and consequently improving the independence of post-stroke subjects in the acute hospital phase.
Collapse
Affiliation(s)
- Douglas Rafael da Rosa Pinheiro
- Rehabilitation Sciences Post-Graduation Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | | | - Luigi Antonio da Campo
- Rehabilitation Sciences Post-Graduation Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Kellen Sábio de Souza
- Department of Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Laura Dos Santos Burg
- Department of Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Ariane Haydeé Estrada Gamarra Blauth
- Rehabilitation Sciences Post-Graduation Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Philipe Souza Corrêa
- Rehabilitation Sciences Post-Graduation Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Cechetti
- Rehabilitation Sciences Post-Graduation Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
49
|
Biomarkers of Angiogenesis and Neuroplasticity as Promising Clinical Tools for Stroke Recovery Evaluation. Int J Mol Sci 2021; 22:ijms22083949. [PMID: 33920472 PMCID: PMC8068953 DOI: 10.3390/ijms22083949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several key issues impact the clinical practice of stroke rehabilitation including a patient’s medical history, stroke experience, the potential for recovery, and the selection of the most effective type of therapy. Until clinicians have answers to these concerns, the treatment and rehabilitation are rather intuitive, with standard procedures carried out based on subjective estimations using clinical scales. Therefore, there is a need to find biomarkers that could predict brain recovery potential in stroke patients. This review aims to present the current state-of-the-art stroke recovery biomarkers that could be used in clinical practice. The revision of biochemical biomarkers has been developed based on stroke recovery processes: angiogenesis and neuroplasticity. This paper provides an overview of the biomarkers that are considered to be ready-to-use in clinical practice and others, considered as future tools. Furthermore, this review shows the utility of biomarkers in the development of the concept of personalized medicine. Enhancing brain neuroplasticity and rehabilitation facilitation are crucial concerns not only after stroke, but in all central nervous system diseases.
Collapse
|
50
|
Cai H, Wang XP, Yang GY. Sleep Disorders in Stroke: An Update on Management. Aging Dis 2021; 12:570-585. [PMID: 33815883 PMCID: PMC7990374 DOI: 10.14336/ad.2020.0707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of disability and mortality all over the world. Due to an aging population, the incidence of stroke is rising significantly, which has led to devastating consequences for patients. In addition to traditional risk factors such as age, hypertension, hyperlipidemia, diabetes and atrial fibrillation, sleep disorders, as independent modifiable risk factors for stroke, have been highlighted increasingly. In this review, we provide an overview of common types of current sleep disturbances in cerebrovascular diseases, including insomnia, hypersomnia, breathing-related sleep disorders, and parasomnias. Moreover, evidence-based clinical therapeutic strategies and pitfalls of specific sleep disorders after stroke are discussed. We also review the neurobiological mechanisms of these treatments as well as their effects on stroke. Since depression after stroke is so prevalent and closely related to sleep disorders, treatments of post-stroke depression are also briefly mentioned in this review article.
Collapse
Affiliation(s)
- Hongxia Cai
- Department of Neurology, Tong-Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Ping Wang
- Department of Neurology, Tong-Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|