1
|
Cunha IVN, Farias IV, Argenta DF, Gerola AP, Campos AM, Caon T. Development of apigenin-loaded invasomes with anti-melanoma potential. Colloids Surf B Biointerfaces 2025; 250:114555. [PMID: 39923381 DOI: 10.1016/j.colsurfb.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Apigenin (APG), a plant-derived flavonoid, has attracted attention as an anti-melanoma agent because of its action on multiple cell signaling pathways and high selectivity for tumor cells. Despite this, extensive metabolism and slow oral absorption are found, which has motivated the development of topical delivery systems. In this context, invasomes were considered, for the first time, for flavonoid incorporation. Given that these vesicles have a more deformable structure than conventional liposomes, greater interaction with the skin is expected. In fact, ATR-FTIR analyses revealed more substantial changes in skin lipid domains with invasomes, which also were more stable to centrifugation and showed lower PDI values. Their reduced particle size (<200 nm), in turn, would allow reaching deeper tumor regions. The APG seems to interact with both polar and apolar domains of invasome lipids, which explains the high encapsulation efficiency (>99 %) and improved vesicle rigidity. Limonene, the terpene selected based on its already described anti-melanoma activity, was crucial for enhancing the retention of APG in the skin (an increase of more than 3.5x when compared to conventional liposomes) as well as vesicle stability. Cholesterol (CHOL) also slightly improved the permeation and retention of this flavonoid in the skin; however, it had a negative effect on the stability of APG-free invasomes. Taking into account the improved distribution of APG in the basal layer of the epidermis (the tumor site) and the advantages in terms of stability and membrane flexibility, invasomes can be considered promising colloidal carriers for the topical delivery of anti-melanoma drugs.
Collapse
Affiliation(s)
- Izi Vieira Nunes Cunha
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Ingrid Vicente Farias
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Debora Fretes Argenta
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | | | - Angela Machado Campos
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil.
| |
Collapse
|
2
|
Pandey P, Verma M, Sanghvi G, R R, Joshi KK, V K, Ray S, Ramniwas S, Singh A, Lakhanpal S, Khan F. Plant-derived terpenoids modulating cancer cell metabolism and cross-linked signaling pathways: an updated reviews. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03937-y. [PMID: 40019530 DOI: 10.1007/s00210-025-03937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Cancer is a critical health issue that remains a predominant cause of mortality globally. It is a complex disease that may effectively regulate many signaling pathways and modify the metabolism of the body to evade the immune system. Understanding neoplastic metabolic reprogramming as a hallmark of cancer has facilitated the creation of innovative metabolism-targeted treatment strategies. Various signaling cascades, such as the PI3K/Akt/mTOR, ERK, JAK/STAT, MAPK/p38, NF-κB/Nrf2, and apoptotic pathways, are commonly involved in this process. It is now widely recognized that an inadequate response and the subsequent development of resistance are frequently caused by the highly selective blockage of these pathways in tumor cells. Consequently, to enhance the overall efficacy of anticancer agents, it is crucial to employ multi-target compounds that can concurrently inhibit multiple vital processes within tumor cells. The utilization of plant-derived bioactive compounds for this purpose is particularly promising, owing to their varied structures and numerous targets. Among these bioactive compounds, terpenoids have exhibited significant anticancer efficacy by targeting various altered signaling pathways. Thus, this review examines the terpenoid class of plant-derived compounds exhibiting potential anticancer activity, including their impact on metabolism and interconnected deregulated signaling pathways in human tumor cells. Accordingly, current research will help in the rational design and critical evaluation of innovative anticancer therapeutics utilizing plant-derived terpenoids for the modulation of cross-linked signaling pathways of cancer metabolism.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal, Pradesh, 174103, India
| | - Meenakshi Verma
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Seema Ramniwas
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
3
|
Seong H, Izutsu R, Osaki M, Okada F. Cancer prevention: past challenges and future directions. Genes Environ 2025; 47:4. [PMID: 40011962 DOI: 10.1186/s41021-025-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Almost 70 years have passed since the molecular mechanism of carcinogenesis was hypothesized to involve multiple gene mutations. More than 1,000 cancer-related genes, including oncogenes and tumor suppressor genes, accelerate carcinogenesis by altering molecular functions and gene expression through mutations and epigenetic changes and have been shown to cause multistep carcinogenesis in several organ cancers. The elucidation of cancer-related gene abnormalities has led to the development of molecular-targeted therapies that focus on driver molecules, known as precision medicine, in addition to conventional treatments such as surgery, radiotherapy, and chemotherapy. Now that the mechanism of cancer development has been largely elucidated, options for cancer treatment and its outcomes have improved, and cancer research is moving to the next stage: cancer prevention. Cancer prevention using chemicals was first proposed approximately 50 years ago. It is the concept of stabilizing, arresting, or reverting precancerous lesions to normal tissues using synthetic vitamin A analogs (retinoids). Cancer chemoprevention is now considered to consist of three elements: "primary prevention," which prevents the development of tumors and prevents benign tumors converting into more malignant ones; "secondary prevention," which aims for early detection through cancer screening and treatment; and "tertiary prevention," which reduces the risk of recurrence and extends the time until death from cancer through treatment. Consequently, there is no clear boundary between the prevention and treatment strategies. Therefore, chemoprevention targets the entire process, from normal cells to precancerous lesions, malignant progression of tumors, and death by cancer. Basic and clinical research has revealed that cancer prevention is influenced by race, regional, and national differences, as well as individual differences such as genetic factors, environmental factors, and lifestyle habits. This review provides an overview of the progress made in cancer prevention and summarizes future directions.
Collapse
Affiliation(s)
- HeeKyung Seong
- Division of Experimental Pathology, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan
| | - Runa Izutsu
- Division of Experimental Pathology, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, 683-8503, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, 683-8503, Japan.
| |
Collapse
|
4
|
Sharma G, Badruddeen, Akhtar J, Khan MI, Ahmad M, Sharma PK. "Methyl jasmonate: bridging plant defense mechanisms and human therapeutics". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03752-x. [PMID: 39847055 DOI: 10.1007/s00210-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects. The underlying mechanism of these actions is examined, emphasizing MJ's ability to modulate important signaling pathways, cause cancer cells to undergo apoptosis, and boost immunological responses. Furthermore, MJ's capacity to manage long-term illnesses like cancer and neurological conditions like Parkinson's and Alzheimer's is examined. Preclinical and clinical research are beginning to provide evidence that MJ may be a useful medicinal drug. Nevertheless, more research is needed to fully understand its mode of action, enhance its administration methods, and evaluate its efficacy and safety in humans. This review highlights MJ's therapeutic promise and supports earlier research into its pharmacological capabilities and possible medical applications. This abstract highlights methyl jasmonate's pharmacological effects and therapeutic potential by providing a concise overview of the main topics covered in a thorough review.
Collapse
Affiliation(s)
- Garima Sharma
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India.
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Prakash Kumar Sharma
- Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India
| |
Collapse
|
5
|
Li K, Ji M, Sun X, Shan J, Su G. Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Curr Nutr Rep 2024; 13:884-895. [PMID: 39340730 DOI: 10.1007/s13668-024-00582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW As science and technology continue to evolve, the potential harm of radiation to the human body cannot be overlooked. Radiation has the capacity to inflict cellular and body-wide damage. Polyphenols are a group of naturally occurring compounds that are found in an array of plant foods. Scientific studies have demonstrated that these compounds possess noteworthy anti-radiation efficacy. Furthermore, they have been observed to be less toxic at higher doses. In the present review, we discussed the mechanisms of ionizing radiation damage and the progress in the research on the radiation resistance mechanism of polyphenol compounds, to provide guidance for the prevention and treatment of radiation related diseases. RECENT FINDINGS Food polyphenols can reduce the oxidative damage caused by ionizing radiation, clear free radicals, reduce DNA damage, regulate NF-KB, MAPK, JAK/STAT, Wnt and other signaling pathways, improve immune function, and have significant protective effects on radiation-induced inflammation, fibrosis, cancer and other aspects. In addition, it also has significant dual effects on radiation sensitization and radiation protection. Food polyphenols come from a wide range of sources, are abundant in daily food, and have no toxic side effects, demonstrating that food polyphenols have great advantages in preventing and treating radiation-related diseases.
Collapse
Affiliation(s)
- Kaidi Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maxin Ji
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiujuan Sun
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junyan Shan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative, Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Li M, Cui H, Deng H, Deng Y, Yin S, Li T, Yuan T. Urolithin A promotes the degradation of TMSB10 to deformation F-actin in non-small-cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156109. [PMID: 39368341 DOI: 10.1016/j.phymed.2024.156109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed cancers and non-small-cell lung cancer (NSCLC) poses major diagnoses. Urolithin A (UA) is a natural compound produced by the gut microbiota through the metabolism of polyphenol ellagitannins (ETs) and ellagic acid (EA), which has been found to inhibit epithelial-mesenchymal transition (EMT) in lung cancer cell lines. However, the mechanism of UA function in NSCLC remains elusive. PROPOSE This study aimed to investigate the potential effectiveness of UA in NSCLC therapeutic and uncovering its underlying mechanisms. METHODS Effects of UA treatment, TMSB10 gene knockdown or overexpression on NSCLC cell phenotype were evaluated by availability, transwell assays. The downstream factors and pathways of UA were investigated by proteomics. TMSB10 expression in NSCLC tissues was detected by bioinformatics analysis as well as immunohistochemistry. Confocal imaging, GST pull-down and western blotting investigated the mechanism of UA induced TMSB10 degradation. RESULTS In the present study, we demonstrated that UA shows an inhibitory role in NSCLC cell proliferation, migration, and invasion. This inhibition is attributed to the accelerated degradation of TMSB10, a biomarker among various cancers, via the autophagy-lysosome pathway. Additionally, knocked down of TMSB10 showed a similar phenotype with UA treatment. The reduction of TMSB10 protein level following decreased ATP level inhibits the F-actin formation for cell migration, thereby disrupting the equilibrium between G-actin-TMSB10 and G-actin-ATP interactions in A549 cells. CONCLUSION Our results reveal that UA is potential for NSCLC therapeutics through reducing the protein level of TMSB10 to deformation the F-actin.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Health, Jiangxi Normal University, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Nanchang, 330022, China; College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Hao Cui
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Huan Deng
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Tumor Immunology Institute, Nanchang University, 330006, Nanchang, Jiangxi, China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, 330031, Nanchang, Jiangxi, China
| | - Yanjuan Deng
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Tumor Immunology Institute, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Tianzhi Li
- School of Health, Jiangxi Normal University, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Nanchang, 330022, China.
| | - Tao Yuan
- School of Health, Jiangxi Normal University, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Nanchang, 330022, China; College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
7
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Patel S, Rana K, Arya P, Nelson J, Hernandez V, Minakova V. Anticancer Activity of Phytochemicals of the Papaya Plant Assessed: A Narrative Review. J Cancer Prev 2024; 29:58-68. [PMID: 39398111 PMCID: PMC11467756 DOI: 10.15430/jcp.24.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 10/15/2024] Open
Abstract
Cancer remains to be a pervasive disease as traditional treatments have plateaued in efficacy. Anticancer research continues to grow in an effort to find novel preventive and treatment measures for cancers. The papaya plant produces several biologically active phytochemicals, which exhibit anti-inflammatory, antibacterial, and anti-oxidative properties. This review explores studies examining these phytochemicals derived from the papaya plant as a potential chemopreventive agent and a cancer therapeutic. Further studies must be done to establish the papaya plant and its phytochemicals as an alternative to traditional cancer treatments.
Collapse
Affiliation(s)
- Shachi Patel
- Saint James School of Medicine, Chicago, IL, USA
| | | | - Param Arya
- Saint James School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
9
|
Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J. Naturally Occurring Phytochemicals to Target Breast Cancer Cell Signaling. Appl Biochem Biotechnol 2024; 196:4644-4660. [PMID: 37773580 DOI: 10.1007/s12010-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Jamuna Vadivelu
- MERDU, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Pandey C, Tiwari P. Differential microRNAs Expression during Cancer Development, and Chemoprevention by Natural Compounds: A Comprehensive Review. J Environ Pathol Toxicol Oncol 2024; 43:65-80. [PMID: 39016142 DOI: 10.1615/jenvironpatholtoxicoloncol.2024050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
MicroRNAs are short non-coding RNAs that inhibit gene expression at the post-transcriptional level. Abnormal microRNA expression has been associated with different human diseases, including cancer. Epigenetic changes, mutation, transcriptional deregulation, DNA copy number abnormalities, and defects in the biogenesis machinery play an important role in abnormal microRNA expression. Modulation of microRNAs by natural agents has emerged to enhance the efficacy of conventional chemotherapy through combinatorial therapeutic approach. This review summarizes the current understanding of abnormal microRNA expression in cancer, the different cellular mechanisms of microRNA, and their prevention by natural compounds. Understanding microRNA expression patterns during cancer development may help to identify stage-specific molecular markers. Natural compounds that exert regulatory effects by modulating microRNAs can be used in better cancer chemopreventive strategies by directly targeting microRNAs or as a way to increase sensitivity to existing chemotherapy regimens.
Collapse
Affiliation(s)
- Chhaya Pandey
- School of Environmental Biology, Awadhesh Pratap Singh University, Rewa-486001, Madhya Pradesh, India
| | | |
Collapse
|
11
|
Wróblewska-Łuczka P, Cabaj J, Bargieł J, Łuszczki JJ. Anticancer effect of terpenes: focus on malignant melanoma. Pharmacol Rep 2023; 75:1115-1125. [PMID: 37515699 PMCID: PMC10539410 DOI: 10.1007/s43440-023-00512-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Melanoma is a highly aggressive and life-threatening form of skin cancer that accounts for a significant proportion of cancer-related deaths worldwide. Although conventional cancer therapies, such as surgical excision, chemotherapy, and radiation, have been used to treat malignant melanoma, their efficacy is often limited due to the development of resistance and adverse side effects. Therefore, there is a growing interest in developing alternative treatment options for melanoma that are more effective and less toxic. Terpenes, a diverse group of naturally occurring compounds of plant origin, have emerged as potential anticancer agents due to their ability to inhibit tumor growth and induce apoptosis in cancer cells. In this review, the current understanding of the anticancer effects of terpenes (including, thymoquinone, β-elemene, carvacrol, limonene, α-pinene, β-caryophyllene, perillyl alcohol, taxol, betulinic acid, α-bisabolol, ursolic acid, linalool, lupeol, and artesunate) was summarized, with a special focus on their potential as therapeutic agents for malignant melanoma.
Collapse
Affiliation(s)
- Paula Wróblewska-Łuczka
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Justyna Cabaj
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Julia Bargieł
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland.
| |
Collapse
|
12
|
Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res 2023; 12:100968. [PMID: 37664456 PMCID: PMC10469086 DOI: 10.1016/j.imr.2023.100968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite the extensive research in recent years, the current treatment modalities for neurological disorders are suboptimal. Curcumin, a polyphenol found in Curcuma genus, has been shown to mitigate the pathophysiology and clinical sequalae involved in neuroinflammation and neurodegenerative diseases. Methods We searched PubMed database for relevant publications on curcumin and its uses in treating neurological diseases. We also reviewed relevant clinical trials which appeared on searching PubMed database using 'Curcumin and clinical trials'. Results This review details the pleiotropic immunomodulatory functions and neuroprotective properties of curcumin, its derivatives and formulations in various preclinical and clinical investigations. The effects of curcumin on neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumors, epilepsy, Huntington's disorder (HD), ischemia, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI) with a major focus on associated signalling pathways have been thoroughly discussed. Conclusion This review demonstrates curcumin can suppress spinal neuroinflammation by modulating diverse astroglia mediated cascades, ensuring the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
13
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
VEISAGA MARIALUISA, AHUMADA MARIAM, SORIANO STACY, ACUNA LEONARDO, ZHANG WEI, LEUNG IVY, BARNUM ROBERT, BARBIERI MANUELA. Anti-proliferative effect of Annona extracts on breast cancer cells. BIOCELL 2023; 47:1835-1852. [PMID: 37771344 PMCID: PMC10538365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Backgorund Fruits and seed extracts of Annona montana have significant cytotoxic potential in several cancer cells. This study evaluates the effect of A. montana leaves hexane extract on several signaling cascades and gene expression in metastatic breast cancer cells upon insulin-like growth factor-1 (IGF-1) stimulation. Methods MTT assay was performed to determine the proliferation of cancer cells. Propidium iodide staining and flow cytometry analysis of Annexin V binding was utilized to measure the progression of the cell cycle and the induction of apoptosis. Protein expression and phosphorylation were determined by western blotting analysis to examine the underlying cellular mechanism triggered upon treatment with A. montana leaves hexane extract. Results A. montana leaves hexane (sub-fraction V) blocked the constitutive stimulation of the PI3K/mTOR signaling pathways. This inhibitory effect was associated with apoptosis induction as evidenced by the positivity with Annexin V and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNNEL) staining, activation of caspase-3, and cleavage of PPAR. It also limited the expression of various downstream genes that regulate proliferation, survival, metastasis, and angiogenesis (i.e., cyclin D1, survivin, COX-2, and VEGF). It increased the expression of p53 and p21. Interestingly, we also observed that this extract blocked the activation of AKT and ERK without affecting the phosphorylation of the IGF-1 receptor and activation of Ras upon IGF-1 stimulation. Conclusion Our study indicates that A. montana leaves (sub-fraction V) extract exhibits a selective anti-proliferative and proapoptotic effect on the metastatic MDA-MB-231 breast cancer cells through the involvement of PI3K/AKT/mTOR/S6K1 pathways.
Collapse
Affiliation(s)
- MARIA-LUISA VEISAGA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - MARIAM AHUMADA
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - STACY SORIANO
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - LEONARDO ACUNA
- Biochemistry Ph.D. Program, Florida International University, Miami, 33199, USA
| | - WEI ZHANG
- Biochemistry Ph.D. Program, Florida International University, Miami, 33199, USA
| | - IVY LEUNG
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - ROBERT BARNUM
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - MANUEL A. BARBIERI
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
- Biochemistry Ph.D. Program, Florida International University, Miami, 33199, USA
- Fairchild Tropical Botanic Garden, Coral Gables, 33156, USA
- International Center of Tropical Botany, Florida International University, Miami, 33199, USA
| |
Collapse
|
15
|
Janta S, Pranweerapaiboon K, Vivithanaporn P, Plubrukarn A, Chairoungdua A, Prasertsuksri P, Apisawetakan S, Chaithirayanon K. Holothurin A Inhibits RUNX1-Enhanced EMT in Metastasis Prostate Cancer via the Akt/JNK and P38 MAPK Signaling Pathway. Mar Drugs 2023; 21:345. [PMID: 37367670 DOI: 10.3390/md21060345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Due to the challenge of prostate cancer (PCa) management, there has been a surge in efforts to identify more safe and effective compounds that can modulate the epithelial-mesenchymal transition (EMT) for driving metastasis. Holothurin A (HA), a triterpenoid saponin isolated from Holothuria scabra, has now been characterized for its diverse biological activities. However, the mechanisms of HA in EMT-driven metastasis of human PCa cell lines has not yet been investigated. Moreover, runt-related transcription factor 1 (RUNX1) acts as an oncogene in prostate cancer, but little is known about its role in the EMT. Thus, the purpose of this study was to determine how RUNX1 influences EMT-mediated metastasis, as well as the potential effect of HA on EMT-mediated metastasis in endogenous and exogenous RUNX1 expressions of PCa cell lines. The results demonstrated that RUNX1 overexpression could promote the EMT phenotype with increased EMT markers, consequently driving metastatic migration and invasion in PC3 cell line through the activation of Akt/MAPK signaling pathways. Intriguingly, HA treatment could antagonize the EMT program in endogenous and exogenous RUNX1-expressing PCa cell lines. A decreasing metastasis of both HA-treated cell lines was evidenced through a downregulation of MMP2 and MMP9 via the Akt/P38/JNK-MAPK signaling pathway. Overall, our approach first demonstrated that RUNX1 enhanced EMT-driven prostate cancer metastasis and that HA was capable of inhibiting the EMT and metastatic processes and should probably be considered as a candidate for metastasis PCa treatment.
Collapse
Affiliation(s)
- Sirorat Janta
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanta Pranweerapaiboon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10540, Thailand
| | - Anuchit Plubrukarn
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 09112, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | | |
Collapse
|
16
|
Mad-adam N, Madla S, Lailerd N, Hiransai P, Graidist P. Piper nigrum Extract: Dietary Supplement for Reducing Mammary Tumor Incidence and Chemotherapy-Induced Toxicity. Foods 2023; 12:2053. [PMID: 37238871 PMCID: PMC10216990 DOI: 10.3390/foods12102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A low piperine fractional Piper nigrum extract (PFPE) was prepared by mixing cold-pressed coconut oil and honey in distilled water, namely, PFPE-CH. In this study, PFPE-CH was orally administered as a dietary supplement to decrease the risk of tumor formation and reduce the side effects of chemotherapeutic drugs during breast cancer treatment. The toxicity study demonstrated no mortality or adverse effects after administrating PFPE-CH at 5000 mg/kg during a 14-day observation period. Additionally, PFPE-CH at 86 mg/kg BW/day did not cause any harm to the kidney or liver function of the rats for six months. In a cancer prevention study, treatment with PFPE-CH at 100 mg/kg BW for 101 days induced oxidative stress and increased the immune response by altering the levels of cancer-associated cytokines (IL-4, IL-6, and IFN-g), leading to a reduction in the tumor incidence of up to 71.4% without any adverse effects. In combination with doxorubicin, PFPE-CH did not disrupt the anticancer effects of the drug in rats with mammary tumors. Surprisingly, PFPE-CH reduced chemotherapy-induced toxicity by improving some hematological and biochemical parameters. Therefore, our results suggest that PFPE-CH is safe and effective in reducing breast tumor incidence and toxicity of chemotherapeutic drugs during cancer treatment in mammary tumor rats.
Collapse
Affiliation(s)
- Nadeeya Mad-adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Siribhon Madla
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsit Hiransai
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
17
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
18
|
Buranrat B, Kraiklang R. Momordica cochinchinensis Suppresses the Human Breast Cancer Cells Growth and Migration by Inhibiting Mevalonate Pathway. Pharmacogn Mag 2023. [DOI: 10.1177/09731296231157982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background: Momordica cochinchinensis (MC) is shown with high antioxidation and is used as herbal medicine in South-East countries. Objectives: This study aims to determine the four parts (aril, fruit, leaf, and seed) of MC extract against human breast cancer cells with underlying mechanisms of actions. Materials and Methods: The effects of MC extract were examined by sulforhodamine B, colony formation, wound healing, real time polymerase chain reaction (RT-PCR), and Western blotting method. Results: Four parts of MC extracts significantly increased MCF-7 cells death, interestingly, seed extract had the greatest activity with IC50 values of 412.3 ± 49.8 µg/mL for 24 h and 113.3 ± 6.4 µg/mL for 48 h. MC extracts potentiated the anticancer drug effect, doxorubicin, with lower IC50 values when compared with MC treatment alone. Moreover, MC extracts decreased colony formation and accompanied by inhibited cell migration. Furthermore, Seed extract inhibited migration by reducing matrix metalloproteinases (MMP) 2, MMP 9, and vascular endothelial growth factor A (VEGFA) inhibition. The molecular analyses revealed that seed extract inhibited cell viability by decreasing cyclin D1 consistent with activating p21, cytochrome c, and caspase-3 protein levels along with reduction of mevalonate (MVA) pathway, Rac1, and RhoA levels, it appeared to inhibit growth and migration. Conclusion: Taken together, MC extract induces MCF-7 cell death and decreases cell migration relatively via attenuation of MVA pathway.
Collapse
Affiliation(s)
- Benjaporn Buranrat
- Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham, Thailand
| | - Ratthaphol Kraiklang
- Department of Public Health Administration, Health Promotion, Nutrition, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
19
|
Gancedo NC, Isolani R, de Oliveira NC, Nakamura CV, de Medeiros Araújo DC, Sanches ACC, Tonin FS, Fernandez-Llimos F, Chierrito D, de Mello JCP. Chemical Constituents, Anticancer and Anti-Proliferative Potential of Limonium Species: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:293. [PMID: 37259435 PMCID: PMC9958820 DOI: 10.3390/ph16020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 04/13/2024] Open
Abstract
Limonium species represent a source of bioactive compounds that have been widely used in folk medicine. This study aimed to synthesize the anticancer and anti-proliferative potential of Limonium species through a systematic review. Searches were performed in the electronic databases PubMed/MEDLINE, Scopus, and Scielo and via a manual search. In vivo or in vitro studies that evaluated the anticancer or anti-proliferative effect of at least one Limonium species were included. In total, 942 studies were identified, with 33 articles read in full and 17 studies included for qualitative synthesis. Of these, 14 (82.35%) refer to in vitro assays, one (5.88%) was in vivo, and two (11.76%) were designed as in vitro and in vivo assays. Different extracts and isolated compounds from Limonium species were evaluated through cytotoxic analysis against various cancer cells lines (especially hepatocellular carcinoma-HepG2; n = 7, 41.18%). Limonium tetragonum was the most evaluated species. The possible cellular mechanism involved in the anticancer activity of some Limonium species included the inhibition of enzymatic activities and expression of matrix metalloproteinases (MMPs), which suggested anti-metastatic effects, anti-melanogenic activity, cell proliferation inhibition pathways, and antioxidant and immunomodulatory effects. The results reinforce the potential of Limonium species as a source for the discovery and development of new potential cytotoxic and anticancer agents. However, further studies and improvements in experimental designs are needed to better demonstrate the mechanism of action of all of these compounds.
Collapse
Affiliation(s)
- Naiara Cássia Gancedo
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Raquel Isolani
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Natalia Castelhano de Oliveira
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | | | - Fernanda Stumpf Tonin
- Pharmaceutical Sciences Post-Graduate Research Program, Universidade Federal do Paraná, Curitiba 80210-170, Brazil
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Fernando Fernandez-Llimos
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Danielly Chierrito
- Department of Pharmacy, Centro Universitário Ingá, Maringá 87035-510, Brazil
| | - João Carlos Palazzo de Mello
- Laboratory of Pharmaceutical Biology, Department of Pharmacy, Universidade Estadual de Maringá, Palafito, Maringá 87020-900, Brazil
| |
Collapse
|
20
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
21
|
Cyclic peptides as an inhibitor of metastasis in breast cancer targeting MMP-1: Computational approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Beylerli O, Beilerli A, Shumadalova A, Wang X, Yang M, Sun H, Teng L. Therapeutic effect of natural polyphenols against glioblastoma. Front Cell Dev Biol 2022; 10:1036809. [PMID: 36268515 PMCID: PMC9577362 DOI: 10.3389/fcell.2022.1036809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive tumor of the central nervous system, which has a highly invasive growth pattern, which creates poor prospects for patient survival. Chemotherapy and tumor surgery are limited by anticancer drug resistance and tumor invasion. Evidence suggests that combinations of treatments may be more effective than single drugs alone. Natural polyphenolic compounds have potential as drugs for the treatment of glioblastoma and are considered as potential anticancer drugs. Although these beneficial effects are promising, the efficacy of natural polyphenolic compounds in GBM is limited by their bioavailability and blood-brain barrier permeability. Many of them have a significant effect on reducing the progression of glioblastoma through mechanisms such as reduced migration and cell invasion or chemosensitization. Various chemical formulations have been proposed to improve their pharmacological properties. This review summarizes natural polyphenolic compounds and their physiological effects in glioblastoma models by modulating signaling pathways involved in angiogenesis, apoptosis, chemoresistance, and cell invasion. Polyphenolic compounds are emerging as promising agents for combating the progression of glioblastoma. However, clinical trials are still needed to confirm the properties of these compounds in vitro and in vivo.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingchun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanran Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Teng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Teng,
| |
Collapse
|
23
|
Lu YT, Gunathilake M, Kim J. The influence of dietary vegetables and fruits on endometrial cancer risk: a meta-analysis of observational studies. Eur J Clin Nutr 2022; 77:561-573. [PMID: 36151331 DOI: 10.1038/s41430-022-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Fruits and vegetables store many bioactive compounds and micronutrients, making their consumption ideal for maintaining good health. A previous meta-analysis in 2007 provided evidence that high vegetable and cruciferous vegetable intake might help prevent endometrial cancer (EC) development. The current study purposely explored the favorable effects of vegetables, fruits, and their other specific types using a review of the most recent papers. We conducted a systematic search through August 2021 in the PubMed and EMBASE databases on this topic, through which twenty-seven studies, consisting of 21 case-control and 6 cohort studies, were obtained. The results showed that vegetables (pooled odds ratio [OR], relative risk [RR], hazard ratio [HR] = 0.76, 95% confidence interval [CI] 0.63-0.91), cruciferous vegetables (pooled OR = 0.81, 95% CI 0.70-0.94), dark green and yellow/orange combined vegetables (pooled OR = 0.64, 95% CI 0.42-0.97), and fruits (pooled OR = 0.81, 95% CI 0.70-0.92) were strongly associated with a reduced risk of EC. These results were primarily based on studies of high quality and exhibited either by case-control only or a combination of case-control and cohort studies. Additionally, the results varied by geographic location, such as Western areas, the US, and Italy. This meta-analysis suggested that the consumption of fruits and vegetables has beneficial effects on EC risk and that specific kinds of fruits and vegetables should be recommended differently due to their outstanding bioactive components.
Collapse
Affiliation(s)
- Y-Thanh Lu
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Madhawa Gunathilake
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
24
|
An Overview on Rumex dentatus L.: Its Functions as a Source of Nutrient and Health-Promoting Plant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8649119. [PMID: 35911153 PMCID: PMC9337939 DOI: 10.1155/2022/8649119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
Abstract
Rumex dentatus L. (Polygonaceae), also known as toothed dock or Aegean dock, is a medicinal plant with a high culinary value in addition to being used as an ethnomedicinal plant. This review focuses on the botanical, nutritional, phytochemical, and pharmacological activities of R. dentatus, as well as the future prospects for systematic investigations into these areas. R. dentatus has been subjected to scientific evaluation, which has confirmed its traditional uses and demonstrated a wide range of biological and pharmacological potentials, including antioxidant, anticancer, antifungal, antibacterial, anti-inflammatory, and other biological properties. Phytochemical analyses showed the presence of anthraquinones, chromones, flavonoids, and essential oils. As a result of this current review, the medicinal significance of R. dentatus has been confirmed, and future research on its unexplored aspects, such as the identification of pharmacologically active chemical constituents and related mechanisms and safety, may be stimulated, with the goal of developing it into a drug.
Collapse
|
25
|
Ginsenoside Rg5 Sensitizes Paclitaxel—Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel—And Enhances the Anticancer Effect of Paclitaxel. Genes (Basel) 2022; 13:genes13071142. [PMID: 35885925 PMCID: PMC9316462 DOI: 10.3390/genes13071142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
In cervical cancer chemotherapy, paclitaxel (PTX) chemoresistance has become a major difficulty, and it also affects the survival rate of numerous tumor patients. Thus, for the reversal of chemoresistance, it is imperative to develop combinatory drugs with petite or almost no side effects to sensitize cells to paclitaxel. Ginsenoside Rg5 (GRg5) may act as a chemosensitizer by reversing multidrug resistance. The present study aimed to determine the potential of GRg5 as a chemosensitizer in PTX-resistant human cervical adeno-carcinoma cell lines (HeLa cells). MTT assay was carried out to assess whether GRg5 can potentiate the cytotoxic effect of PTX in PTX- resistant HeLa cells; using flow cytometry-based annexin V-FITC assay, cellular apoptosis was analyzed; the rate of expression of the cell cycle, apoptosis and major cell-survival-signaling-related genes and its proteins were examined using RT-PCR and Western blotting technique. We found increased mRNA expression of Bak, Bax, Bid, and PUMA genes, whereas the mRNA expression of Bcl2, Bcl-XL, c-IAP-1, and MCL-1 were low; GRg5 combination triggered the efficacy of paclitaxel, which led to increased expression of Bax with an enhanced caspase-9/-3 activation, and apoptosis. Moreover, the study supports GRg5 as an inhibitor of two key signaling proteins, Akt and NF-κB, by which GRg5 augments the susceptibility of cervical cancer cells to PTX chemotherapy. GRg5 drastically potentiated the antiproliferative and pro-apoptotic activity of paclitaxel in PTX-resistant human cervical cancer cells in a synergistic mode. Moreover, in the clinical context, combining paclitaxel with GRg5 may prove to be a new approach for enhancing the efficacy of the paclitaxel.
Collapse
|
26
|
Jaiswara PK, Kumar A. Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1445-1457. [PMID: 35199915 DOI: 10.1002/tox.23497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Nimbolide is reported as one of the potential anticancer candidates of the neem tree (Azadirachta indica A. Juss). The cytotoxic action of nimbolide has been well reported against a wide number of malignancies, including breast, prostate, lung, liver, and cervix cancers. Interestingly, only a few in vivo studies conducted on B cell lymphoma, glioblastoma, pancreatic cancer, and buccal pouch carcinoma have shown the in vivo antitumor efficacy of nimbolide. Therefore, it is highly needed to examine the in vivo antineoplastic activity of nimbolide on a wide variety of cancers to establish nimbolide as a promising anticancer drug. In the present study, we investigated the tumor retarding action of nimbolide in a murine model of T cell lymphoma. We noticed significantly augmented apoptosis in nimbolide- administered tumor-bearing mice, possibly due to down-regulated expression of Bcl2 and up-regulated expression of p53, cleaved caspase-3, Cyt c, and ROS. The nimbolide treatment-induced ROS production by suppressing the expression of antioxidant regulatory enzymes, namely superoxide dismutase and catalase. In addition, nimbolide administration impaired glycolysis and pH homeostasis with concomitant inhibition of crucial glycolysis and pH regulatory molecules such as GLUT3, LDHA, MCT1, and V-ATPase, CAIX and NHE1, respectively. Taken together, the present investigation provides novel insights into molecular mechanisms of nimbolide inhibited T cell lymphoma progression and directs the utility of nimbolide as a potential anticancer therapeutic drug for the treatment of T cell lymphoma.
Collapse
Affiliation(s)
- Pradip Kumar Jaiswara
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
27
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
28
|
Suliman RS, Alghamdi SS, Ali R, Rahman I, Alqahtani T, Frah IK, Aljatli DA, Huwaizi S, Algheribe S, Alehaideb Z, Islam I. Distinct Mechanisms of Cytotoxicity in Novel Nitrogenous Heterocycles: Future Directions for a New Anti-Cancer Agent. Molecules 2022; 27:molecules27082409. [PMID: 35458609 PMCID: PMC9029529 DOI: 10.3390/molecules27082409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Electron-rich, nitrogenous heteroaromatic compounds interact more with biological/cellular components than their non-nitrogenous counterparts. The strong intermolecular interactions with proteins, enzymes, and receptors confer significant biological and therapeutic properties to the imidazole derivatives, giving rise to a well-known and extensively used range of therapeutic drugs used for infections, inflammation, and cancer, to name a few. The current study investigates the anti-cancer properties of fourteen previously synthesized nitrogenous heterocycles, derivatives of imidazole and oxazolone, on a panel of cancer cell lines and, in addition, predicts the molecular interactions, pharmacokinetic and safety profiles of these compounds. Method: The MTT and CellTiter-Glo® assays were used to screen the imidazole and oxazolone derivatives on six cancer cell lines: HL60, MDA-MB-321, KAIMRC1, KMIRC2, MCF-10A, and HCT8. Subsequently, in vitro tubulin staining and imaging were performed, and the level of apoptosis was measured using the Promega ApoTox-Glo® triplex assay. Furthermore, several computational tools were utilized to investigate the pharmacokinetics and safety profile, including PASS Online, SEA Search, the QikProp tool, SwissADME, ProTox-II, and an in silico molecular docking study on tubulin to identify the critical molecular interactions. Results: In vitro analysis identified compounds 8 and 9 to possess the most significant potent cytotoxic activity on the HL60 and MDA-MB-231 cell lines, supported by PASS Online anti-cancer predictions with pa scores of 0.413 and 0.434, respectively. In addition, compound 9 induced caspase 3/7 dependent-apoptosis and interfered with tubulin polymerization in the MDA-MB-231 cell line, consistent with in silico docking results, identifying binding similarity to the native ligand colchicine. All the derivatives, including compounds 8 and 9, had acceptable pharmacokinetics; however, the safety profile was suboptimal for all the tested derivates except compound 4. Conclusion: The imidazole derivative compound 9 is a promising anti-cancer agent that switches on caspase-dependent apoptotic cell death and modulates microtubule function. Therefore, it could be a lead compound for further drug optimization and development.
Collapse
Affiliation(s)
- Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
- Correspondence: (R.S.S.); (S.S.A.); Tel.: +966-(11)-429-9570 (R.S.S.); +966-(11)-429-9516 (S.S.A.)
| | - Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
- Correspondence: (R.S.S.); (S.S.A.); Tel.: +966-(11)-429-9570 (R.S.S.); +966-(11)-429-9516 (S.S.A.)
| | - Rizwan Ali
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Tariq Alqahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Ibrahim K. Frah
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
| | - Dimah A. Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Shatha Algheribe
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Zeyad Alehaideb
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Imadul Islam
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| |
Collapse
|
29
|
Luteolin Causes 5'CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells. Int J Mol Sci 2022; 23:ijms23074067. [PMID: 35409426 PMCID: PMC8999529 DOI: 10.3390/ijms23074067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer progression is linked to abnormal epigenetic alterations such as DNA methylation and histone modifications. Since epigenetic alterations, unlike genetic changes, are heritable and reversible, they have been considered as interesting targets for cancer prevention and therapy by dietary compounds such as luteolin. In this study, epigenetic modulatory behaviour of luteolin was analysed on HeLa cells. Various assays including colony forming and migration assays, followed by biochemical assays of epigenetic enzymes including DNA methyltransferase, histone methyl transferase, histone acetyl transferase, and histone deacetylases assays were performed. Furthermore, global DNA methylation and methylation-specific PCR for examining the methylation status of CpG promoters of various tumour suppressor genes (TSGs) and the expression of these TSGs at transcript and protein level were performed. It was observed that luteolin inhibited migration and colony formation in HeLa cells. It also modulated DNA methylation at promoters of TSGs and the enzymatic activity of DNMT, HDAC, HMT, and HAT and reduced the global DNA methylation. Decrease in methylation resulted in the reactivation of silenced tumour suppressor genes including FHIT, DAPK1, PTEN, CDH1, SOCS1, TIMPS, VHL, TP53, TP73, etc. Hence, luteolin-targeted epigenetic alterations provide a promising approach for cancer prevention and intervention.
Collapse
|
30
|
Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072086. [PMID: 35408483 PMCID: PMC9000713 DOI: 10.3390/molecules27072086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures and favorable pharmacology and toxicology profiles. Deoxyelephantopin and isodeoxyelephantopin, sesquiterpene lactone compounds, are major components of Elephantopus scaber and Elephantopus carolinianus, which have long been used as traditional medicines to treat multiple ailments, including liver diseases, diabetes, bronchitis, fever, diarrhea, dysentery, cancer, renal disorders, and inflammation-associated diseases. Recently, deoxyelephantopin and isodeoxyelephantopin have been extensively explored for their anti-cancer activities. This review summarizes and discusses the anti-cancer activities of deoxyelephantopin and isodeoxyelephantopin, with an emphasis on their modes of action and molecular targets. Both compounds disrupt several processes involved in cancer progression by targeting multiple signaling pathways deregulated in cancers, including cell cycle and proliferation, cell survival, autophagy, and invasion pathways. Future directions of research on these two compounds towards anti-cancer drug development are discussed.
Collapse
|
31
|
Protective Effect of Quercetin, a Flavonol against Benzo(a)pyrene-Induced Lung Injury via Inflammation, Oxidative Stress, Angiogenesis and Cyclooxygenase-2 Signalling Molecule. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quercetin (Qu) is an important polyphenolic flavonoid which exhibits tremendous antioxidant, anti-inflammatory and other health promoting effects. The aim of the current study was to explore the therapeutic role of Qu on benzo(a)pyrene [B(a)P]-induced lung injury in rats. B(a)P was given to the rats at dose of 50 mg/kg b.w. for continues 8 weeks through oral gavage. The rats were treated with Qu at dose of 50 mg/kg b.w prior 30 min before the oral administration of B(a)P. The effects of Qu were studied by measuring the level of lactate dehydrogenase (LDH), anti-oxidant enzymes, lipid peroxidation, inflammatory cytokines, lung tissues architecture and expression of cyclooxygenase-2 (COX-2). The level of pro-inflammatory cytokines such as IL-1β (27.30 vs. 22.80 pg/mL), IL-6 (90.64 vs. 55.49 pg/mL) and TNF-α (56.64 vs. 40.49 pg/mL) increased significantly and antioxidant enzymes decreased significantly in benzopyrene-induced lung injury in comparison to the control group. The treatment with Qu potentially reversed the effects of B(a)P to a great extent, as it led to the enhancement of antioxidant enzymes and decreased proinflammatory cytokines level. A significant surge of VEGF level was noticed in the B(a)P group as compared to the control group, while the Qu treatment groups exhibited less angiogenesis as lower level of VEGF levels, compared with the B(a)P treatment group. The Qu treatment significantly decreased the degrees of histopathological changes and collagen deposition in B(a)P-induced lung injury. The B(a)P-treated group showed higher cytoplasmic expression of COX-2 protein, which significantly decreased in the Qu treatment group. These outcomes recommend an effective role of Qu in the protection of lung injury against B(a)P through the regulation of the inflammatory factors, oxidative stress and the maintenance lung tissue architecture.
Collapse
|
32
|
Arrigoni R, Ballini A, Santacroce L, Cantore S, Inchingolo A, Inchingolo F, Di Domenico M, Quagliuolo L, Boccellino M. Another look at dietary polyphenols: challenges in cancer prevention and treatment. Curr Med Chem 2021; 29:1061-1082. [PMID: 34375181 DOI: 10.2174/0929867328666210810154732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a pathology that impacts in a profound manner people all over the world. The election strategy against cancer often uses chemotherapy and radiotherapy, which more often than not can present many side effects and not always reliable efficacy. By contrast, it is widely known that a diet rich in fruit and vegetables has a protective effect against cancer insurgence and development. Polyphenols are generally believed to be responsible for those beneficial actions, at least partially. In this review, we highlight the metabolic interaction between polyphenols and our metabolism and discuss their potential for anticancer prevention and therapy.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario "Ernesto Quagliariello", University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Stefania Cantore
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angelo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
33
|
Khalil AAK, Qazi AS, Nasir A, Ahn MJ, Shah MA, Ahmad MS, Sajjad W, Ali T, Naeem M, Shah FA, Khan MTA, Romman M, Shahfiq Ur Rehman, Haider A, Noor R. 2-Methoxy-6-Acetyl-7-Methyljuglone: A Bioactive Phytochemical with Potential Pharmacological Activities. Anticancer Agents Med Chem 2021; 22:687-693. [PMID: 34165415 DOI: 10.2174/1871520621666210623095636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Natural products have been the focus of biomedical and pharmaceutical research to develop new therapies in recent years. 2-methoxy-6-acetyl-7-methyljuglone (2-methoxystypandrone, MAM), a natural bioactive juglone derivative, is known to have various levels of pharmacotherapeutic efficacies as an anti-inflammatory, anticancer, antioxidant, antimicrobial, and anti-HIV activity. MAM fights cancer progression by inducing apoptosis, necroptosis, and deregulating signaling pathways through H2O2-induced JNK/iNOS/NO and MAPK, ERK1/2 pathways, JNK activation, and the RIP1/RIP3 complex. In this review, we summarize the pharmacological importance of MAM in the field of drug discovery. Furthermore, this review not only emphasizes the medicinal properties of MAM but also discusses its potential efficacy in future medicinal products.
Collapse
Affiliation(s)
- Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Muhammad Ajmal Shah
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute, Cumming School of Medicine; University of Calgary, Alberta, T2N 4Z6. Canada
| | - Muhammad Saad Ahmad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute, Cumming School of Medicine; University of Calgary, Alberta, T2N 4Z6. Canada
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | | | - Muhammad Romman
- Department of Botany, University of Chitral, Chitral, Pakistan
| | - Shahfiq Ur Rehman
- Department of Rehabilitation, North West Institute of Health Sciences, Peshawar, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Raishma Noor
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| |
Collapse
|
34
|
Adnan M, Rasul A, Shah MA, Hussain G, Asrar M, Riaza A, Sarfraza I, Hussaina A, Khorsandid K, Laie NS, Hussaina SM. Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms. Anticancer Agents Med Chem 2021; 22:30-39. [PMID: 33874875 DOI: 10.2174/1871520621666210419095829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
The identification and development of radioprotective agents has emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future, however, extensive investigations are still required to better understand their protection mechanisms.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000. Pakistan
| | - Ghulam Hussain
- Neurochemical biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Ammara Riaza
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Iqra Sarfraza
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Arif Hussaina
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| | - Khatereh Khorsandid
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran. Iran
| | - Ngit S Laie
- Institute for Research in Molecular Medicine Universiti Sains Malaysia, Pulau Pinang. Malaysia
| | - Syed M Hussaina
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000. Pakistan
| |
Collapse
|
35
|
Riaz A, Rasul A, Kanwal N, Hussain G, Shah MA, Sarfraz I, Ishfaq R, Batool R, Rukhsar F, Adem Ş. Germacrone: A Potent Secondary Metabolite with Therapeutic Potential in Metabolic Diseases, Cancer and Viral Infections. Curr Drug Metab 2020; 21:1079-1090. [PMID: 32723267 DOI: 10.2174/1389200221999200728144801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nazia Kanwal
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rubab Ishfaq
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Batool
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Science, Çankırı Karatekin Üniversitesi Çankırı, 18100, Turkey
| |
Collapse
|
36
|
Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Biomolecules 2020; 10:biom10111535. [PMID: 33182807 PMCID: PMC7698260 DOI: 10.3390/biom10111535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.
Collapse
|
37
|
Borgi M, Collacchi B, Ortona E, Cirulli F. Stress and coping in women with breast cancer:unravelling the mechanisms to improve resilience. Neurosci Biobehav Rev 2020; 119:406-421. [PMID: 33086128 DOI: 10.1016/j.neubiorev.2020.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer diagnosis, surgery, adjuvant therapies and survivorship can all be extremely stressful. In women, concerns about body image are common as a result of the disease and can affect interpersonal relationships, possibly leading to social isolation, increasing the likelihood for mood disorders. This is particularly relevant as women are at greater risk to develop anxiety and depressive symptoms in response to highly stressful situations. Here we address the mechanisms and the pathways activated as a result of stress and contributing to changes in the pathophysiology of breast cancer, as well as the potential of stress management factors and interventions in buffering the deleterious effects of chronic stress in a gender perspective. An improved understanding of the biological mechanisms linking stress-management resources to health-relevant biological processes in breast cancer patients could reveal novel therapeutic targets and help clarifying which psychosocial interventions can improve cancer outcomes, ultimately offering a unique opportunity to improve contemporary cancer treatments.
Collapse
Affiliation(s)
- Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Elena Ortona
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
38
|
Luna-Dulcey L, da Silva JA, Cominetti MR. SSi6 promotes cell death by apoptosis through cell cycle arrest and inhibits migration and invasion of MDA-MB-231 human breast cancer cells. Anticancer Drugs 2020; 31:35-43. [PMID: 31490285 DOI: 10.1097/cad.0000000000000826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer subtype is the most aggressive type of breast cancer due to the lack of specific therapeutic targets, having limited treatment options, low survival prognosis and high recurrence rates. In this work, we describe the effects of a semisynthetic derivative of [6]-gingerol (6G) called SSi6, produced by the addition of a 2,4-dinitrophenylhydrazine reagent on several aspects of triple-negative breast cancer biology. Human breast cancer cell lines MDA-MB-231 and MCF-10A were used in the experiments. MTT assays were used to detect cell viability. Cell cycle and apoptosis assay were analyzed using flow cytometer Accuri C6 and analysis of proteins as retinoblastoma Rb and kinases Cdk4/6 were analyzed by western blotting. SSi6 induced cytotoxic effects on triple-negative breast cancer cells, with higher selectivity when compared to the non-tumor MCF-10A cells. In addition, SSi6 inhibited migration and invasion of triple-negative breast cancer cells and was able to arrest cell cycle at the G1-phase, mainly by decreasing Cdk4/6-Rb axis levels. Therefore, SSi6 provoked the induction of apoptosis in triple-negative breast cancer cells. SSi6 was more efficient in producing these effects, compared to the original 6G natural product. This study may contribute to a better understanding of the effects of natural and semisynthetic products on the in-vitro metastatic processes in the MDA-MB-231 triple-negative breast cancer cell line. Additional, it can be useful to understand the effects of chemical modifications on already effective natural compounds aiming at the improvement of their bioactive properties, such as in the increase of the cytotoxic selectivity against tumor cells, compared to non-tumor ones.
Collapse
Affiliation(s)
- Liany Luna-Dulcey
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, SP
| | - James A da Silva
- Department of Pharmacy, Federal University of Sergipe, São José, SE, Brazil
| | - Marcia R Cominetti
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, SP
| |
Collapse
|
39
|
Pai P, Sukumar S. HOX genes and the NF-κB pathway: A convergence of developmental biology, inflammation and cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1874:188450. [PMID: 33049277 DOI: 10.1016/j.bbcan.2020.188450] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The roles of HOX transcription factors as oncogenes and tumor suppressor genes, and the NF-KB pathway in chronic inflammation, both leading to cancer are well-established. HOX transcription factors are members of an evolutionarily conserved family of proteins required for anteroposterior body axis patterning during embryonic development, and are often dysregulated in cancer. The NF-KB pathway aids inflammation and immunity but it is also important during embryonic development. It is frequently activated in both solid and hematological malignancies. NF-KB and HOX proteins can influence each other through mutual transcriptional regulation, protein-protein interactions, and regulation of upstream and downstream interactors. These interactions have important implications both in homeostasis and in disease. In this review, we summarize the role of HOX proteins in regulating inflammation in homeostasis and disease- with a particular emphasis on cancer. We also describe the relationship between HOX genes and the NF-KB pathway, and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
40
|
Ashaq A, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, Qazi JI, Li Y, Ma T. Hispidulin: A novel natural compound with therapeutic potential against human cancers. Phytother Res 2020; 35:771-789. [PMID: 32945582 DOI: 10.1002/ptr.6862] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most devastating disease and leading cause of death worldwide. The conventional anticancer drugs are monotarget, toxic, expensive and suffer from drug resistance. Development of multi-targeted drugs from natural products has emerged as a new paradigm to overcome aforementioned conventionally encountered obstacles. Hispidulin (HIS), is a biologically active natural flavone with versatile biological and pharmacological activities. The anticancer, antimutagenic, antioxidative and anti-inflammatory properties of HIS have been reported. The aim of this review is to summarize the findings of several studies over the last few decades on the anticancer activity of HIS published in various databases including PubMed, Google Scholar, and Scopus. HIS has been shown to reduce the growth of cancer cells by inducing apoptosis, arresting cell cycle, inhibiting angiogenesis, invasion and metastasis via modulating multiple signaling pathways implicated in cancer initiation and progression. Multitargeted anticancer activity of HIS remains the strongest point for developing it into potential anticancer drug. We also highlighted the natural sources, anticancer mechanism, cellular targets, and chemo-sensitizing potential of HIS. This review will provide bases for design and conduct of further pre-clinical and clinical trials to develop HIS into a lead structure for future anticancer therapy.
Collapse
Affiliation(s)
- Aisha Ashaq
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Amara Maryam
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Khan
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hafiz A Shakir
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Javed I Qazi
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Yongming Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tonghui Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Ojulari OV, Chae JB, Lee SG, Min K, Kwon TK, Nam JO. Apoptotic effect of jaceosidin on MCF-7 human breast cancer cells through modulation of ERK and p38 MAPK pathways. Nat Prod Res 2020; 35:6049-6053. [PMID: 32924593 DOI: 10.1080/14786419.2020.1817917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Jaceosidin a flavone abundant in Artemisia species has been used for its beneficial effects. This study investigated the apoptotic effect of jaceosidin treatment on MCF-7 human breast cancer cells at varying concentrations of (0, 10, 20 and 40 µM) for 24 and 48 h treatment times. Jaceosidin treatment induced a significant (p < 0.05) dose-dependent increase in apoptosis of MCF-7 cells. Jaceosidin similarly modulated the expressions of apoptosis-associated proteins, and revealing a coaction between Bax and Bcl-2, striking a balance between cell survival/cell deaths. Besides, a significant increase in pro-apoptotic expression of cleaved PARP which is a key executioner in apoptosis was observed. Apoptosis was confirmed in the cells by flow cytometry which indicated an early apoptosis (7%, 17%), as well as late apoptosis (36%, 40%) of the cells in varying percentages as treatment concentration increased. Thus, this study demonstrates that jaceosidin could be used as a potential treatment for breast cancer.
Collapse
Affiliation(s)
- Oyindamola Vivian Ojulari
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Beom Chae
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungjin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea.,Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea.,Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
42
|
Shunmuga Priya V, Pradiba D, Aarthy M, Singh SK, Achary A, Vasanthi M. In-silico strategies for identification of potent inhibitor for MMP-1 to prevent metastasis of breast cancer. J Biomol Struct Dyn 2020; 39:7274-7293. [PMID: 32873178 DOI: 10.1080/07391102.2020.1810776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix Metalloproteinase-1 (MMP-1) has been often upregulated in advanced breast cancers, known to participate in ECM degradation, migration, invasion, thus leading to metastasis. Due to these effects, the condition is often reported to inversely correlate with survival in advanced breast cancers. In the present study, in-silico method was adopted based on selective non zinc binding inhibitors of MMP-1. ADME properties were predicted for PASS filtered compounds and docking calculations were performed using Glide XP and IFD protocols of Schrodinger program. We identified six ligands as potent inhibitors and validated by observing structures and the interactions of MMP-1. The identified hits were validated using molecular dynamics simulation studies. Electronic structure analysis was performed for two top hit compounds myricetin and quercetin using density function theory (DFT) at B3LYP/6-31**G level to understand their molecular reactivity. Finally, one compound myricetin has emerged as the structurally stable compound with -7.801 kcal/mol and reasonable pose inside the binding site. Molecular dynamics results indicated that myricetin forms a stable interaction with the key amino acid residues such as Glu209, Glu219, Tyr240 and Pro238. In addition, it did not form any binding with the catalytic zinc at its active site. The interaction pattern of myricetin at its substrate binding site exhibited to be potent MMP-1 inhibitor. DFT study also showed that it has more potent inhibitory effect and solubility. These factors altogether show that myricetin could be considered as the best among the compounds evaluated in inhibiting MMP-1 thereby preventing metastasis of breast cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Velu Shunmuga Priya
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Dhinakararajan Pradiba
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Murali Aarthy
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anant Achary
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Mani Vasanthi
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| |
Collapse
|
43
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
44
|
Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:9081686. [PMID: 32455130 PMCID: PMC7229537 DOI: 10.1155/2020/9081686] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The rise in consumption of energy-dense foods has resulted in the displacement of several essential dietary gaps, causing numerous long-lasting diseases, including obesity, stroke, hypertension, and several forms of cancer. Epidemiological studies encourage more fruit consumption to prevent these diseases. The defensive mechanisms provided by these fruits against illness are due to the existence of several antioxidants. Recent studies proved that (poly) phenolic compounds are ideally the core phytochemicals with both functional and health-promoting properties found in the plant's kingdom, and low intake could result in the risk of certain diseases. Phytonutrients are powerful antioxidants that can modify metabolic activation and detoxification of carcinogens. The ideal motive of this review is to provide an overview as well as illuminate the polyphenolic merits of fruits in general. Fruits have several merits, including weight maintenance, proper health development, and satiety. There are many analytical methods for determining and measuring the phenolic content of different products. Phenolic compounds are of nutritional interest since they aid in the retardation and inhibition of lipids by acting as scavengers that prevent and protect the proliferation of oxidative chains. Future studies are required to help identify the physiological metabolic activities as well as to improve human health.
Collapse
|
45
|
Mahendra CK, Tan LTH, Lee WL, Yap WH, Pusparajah P, Low LE, Tang SY, Chan KG, Lee LH, Goh BH. Angelicin-A Furocoumarin Compound With Vast Biological Potential. Front Pharmacol 2020; 11:366. [PMID: 32372949 PMCID: PMC7176996 DOI: 10.3389/fphar.2020.00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-β/BMP, Wnt/β-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Loh Teng Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
46
|
Chemopreventive Effects and Antioxidant Capacity of Combined Leaf Extracts of Sesamum angustifolium (Oliv.) Engl. and Hibiscus articulatus on Rhabdomyosarcoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8567182. [PMID: 32308718 PMCID: PMC7136805 DOI: 10.1155/2020/8567182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/05/2020] [Accepted: 03/06/2020] [Indexed: 01/09/2023]
Abstract
Sesamum angustifolium (Oliv.) Engl. and Hibiscus articulatus contain compounds that have antimutagenic properties. The rise in rhabdomyosarcoma in paediatrics and prognosis of the disease in infants compared to adults calls for newer, less toxic alternatives in treatment of the disease. The aim of this study was to determine the anticancer activity and antioxidant capacity of combined leaf extracts of Sesamum angustifolium (Oliv.) Engl. and Hibiscus articulatus (SAHA), against rhabdomyosarcoma (RMS) using rhabdomyosarcoma (RD) cell line and mouse (L20B) cell line. Cytotoxicity, morphology, apoptosis induction, and antioxidant capacity assays were done. Of the four solvents used for extraction, the dichloromethane SAHA extract was the most cytotoxic with IC50 of 106 μg/mL after doxorubicin, the reference anticancer drug with IC50 of 0.8 μg/mL. The SAHA extracts had a stronger cytotoxicity effect on the cancerous RD cells than on normal L20B cells. Morphological assessment showed untreated cells maintained their normal striated appearance of muscle cells whereas cells treated with doxorubicin or SAHA extracts exhibited cell shrinkage, loss of surface adherence, reduced cell density along with cell debris, which is a characteristic of apoptosis. Normal L20B cells when treated with doxorubicin or SAHA extracts, maintained their cell shape, and remained adherent to the surface. The apoptotic enzyme caspase-3 was induced in a concentration dependent manner upon treatment of the RD cells with SAHA extracts or doxorubicin. Induction of caspase-3 was ten times less in treated L20B cells compared to the RD cells. Low induction of caspase-9 enzyme was observed in both treated RD and L20B cells. Treatment of both RD and L20B cells with SAHA extracts or doxorubicin resulted in increased activity of peroxidase and reduction of oxidative stress. Results of the study show that the SAHA extracts are potential sources of compounds that may serve as useful agents for treatment of rhabdomyosarcoma.
Collapse
|
47
|
Becker G, Brusco I, Casoti R, Marchiori MCL, Cruz L, Trevisan G, Oliveira SM. Copaiba oleoresin has topical antinociceptive activity in a UVB radiation-induced skin-burn model in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112476. [PMID: 31838179 DOI: 10.1016/j.jep.2019.112476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaiba oleoresin, extracted from Copaifera L., is used as a wound healing, analgesic, antimicrobial and, mainly, anti-inflammatory agent. Thus, in this study we investigated the antinociceptive and anti-inflammatory effects of a topical formulation containing Copaiba oleoresin (3%) in a UVB radiation-induced skin burn model (0.75 J/cm2) in mice and performed a cream-formulation stability study. MATERIALS AND METHODS The chemical composition of Copaiba oleoresin was analyzed using gas chromatography (GC-MS). The topical antinociceptive (evaluated through mechanical allodynia and thermal hyperalgesia) and the anti-inflammatory (dermal thickness and inflammatory cell infiltration) effects of treatments were assessed. The cream-formulation stability study was performed after two months, and organoleptic characteristics, pH, spreadability and rheological characteristics were analyzed. RESULTS Copaiba oleoresin cream was able to prevent UVB radiation-induced mechanical allodynia on the 2nd, 3rd and 4th day after UVB radiation exposure with a maximum inhibition (Imax) of 64.6 ± 7% observed on the 2nd day; it also reduced the thermal hyperalgesia on the 1st and 2nd days post UVB radiation, with a Imax of 100% observed on the 2nd day. Moreover, topical treatment with Copaiba oleoresin cream inhibited the inflammatory cell infiltration, but did not reduce the dermal thickness. Such effects can be attributed, at least in part, to the presence of biological components, such as β-caryophyllene and other sesquiterpenes identified by GC-MS. CONCLUSION Our results demonstrate that the topical formulation containing Copaiba oleoresin presented antinociceptive and anti-inflammatory effects in mice subjected to a UVB radiation and that the cream-formulation was stable for two months. Thus, use of Copaiba oleoresin is a promising strategy for the treatment of inflammatory pain associated with sunburn.
Collapse
Affiliation(s)
- Gabriela Becker
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Indiara Brusco
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rosana Casoti
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Marila Crivellaro Lay Marchiori
- Laboratory of Pharmaceutical Technology, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Laboratory of Pharmaceutical Technology, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
48
|
Antitumoral effects of [6]-gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone] in sarcoma 180 cells through cytogenetic mechanisms. Biomed Pharmacother 2020; 126:110004. [PMID: 32145583 DOI: 10.1016/j.biopha.2020.110004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND [6]-Gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone] is a phenolic substance reported for several ethnopharmacological usage by virtue of its antioxidant, antiemetic, anti-inflammatory and anticancer properties. This study assessed the antitumoral effects of [6]-Gingerol in primary cells of Sarcoma 180 as well as in peripheral blood lymphocytes of mice. METHODS The effect of [6]-Gingerol was assessed by applying cytogenetic biomarkers as indicative of genotoxicity, mutagenicity and apoptosis. Ascitic liquid cells were treated with [6]-Gingerol at concentrations of 21.33, 42.66 and 85.33 μM and subjected to the cytotoxicity assays using Trypan blue test and the comet assay, as well as the cytokinesis-block micronucleus assay. Doxorubicin (6 μM) and hydrogen peroxide (85.33 μM) were used as positive controls. RESULTS [6]-Gingerol, especially at concentrations of 42.66 and 85.33 μM, showed notable cytotoxicity in Sarcoma 180 cells by reducing cell viability and cell division rates via induction of apoptosis. Genotoxicity at the concentrations used was punctuated by the increase in the index and frequency of DNA damage in tested groups. [6]-Gingerol, at all concentrations tested, did not induce significant aneugenic and/or clastogenic effects. It did, however, induced other nuclear abnormalities, such as nucleoplasmic bridges, nuclear buds and apoptosis. The genotoxic effects observed in the cotreatment with H2O2 (challenge assay) employing neoplastic and healthy cells, indicated that [6]-Gingerol may induce oxidative stress. CONCLUSIONS Observations suggest that [6]-Gingerol may be a candidate for pharmaceutical antitumoral formulations due to its cytotoxicity and to mechanisms associated with genetic instability generated by nuclear alterations especially by apoptosis.
Collapse
|
49
|
Anger EE, Yu F, Li J. Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches. Int J Mol Sci 2020; 21:E1157. [PMID: 32050524 PMCID: PMC7043226 DOI: 10.3390/ijms21031157] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aristolochic acid (AA) is a generic term that describes a group of structurally related compounds found in the Aristolochiaceae plants family. These plants have been used for decades to treat various diseases. However, the consumption of products derived from plants containing AA has been associated with the development of nephropathy and carcinoma, mainly the upper urothelial carcinoma (UUC). AA has been identified as the causative agent of these pathologies. Several studies on mechanisms of action of AA nephrotoxicity have been conducted, but the comprehensive mechanisms of AA-induced nephrotoxicity and carcinogenesis have not yet fully been elucidated, and therapeutic measures are therefore limited. This review aimed to summarize the molecular mechanisms underlying AA-induced nephrotoxicity with an emphasis on its enzymatic bioactivation, and to discuss some agents and their modes of action to reduce AA nephrotoxicity. By addressing these two aspects, including mechanisms of action of AA nephrotoxicity and protective approaches against the latter, and especially by covering the whole range of these protective agents, this review provides an overview on AA nephrotoxicity. It also reports new knowledge on mechanisms of AA-mediated nephrotoxicity recently published in the literature and provides suggestions for future studies.
Collapse
Affiliation(s)
| | | | - Ji Li
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (E.E.A.); (F.Y.)
| |
Collapse
|
50
|
Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Mol Biol Rep 2020; 47:1895-1904. [PMID: 32026321 DOI: 10.1007/s11033-020-05286-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Pancreatic cancer is the fourth common cause of cancer death. Surgery and chemotherapy are the common treatment strategies for pancreatic cancer patients; however, the response rate is less than 20% at advanced stages. In recent years, growing interest has been dedicated to natural products. Bitter apricot seeds possess a number of pharmacological properties including antitumor activity and amygdalin from bitter apricot seeds can induce apoptosis. In this study, we investigated the cyto/genotoxic effects of bitter apricot ethanolic extract (BAEE) and amygdalin on human pancreatic cancer PANC-1 and normal epithelial 293/KDR cells. BAEE was assessed using high-performance liquid chromatography for the confirmation of the structure. The biological impacts of BAEE and amygdalin on PANC-1 and 293/KDR cells were evaluated by MTT assay, DAPI staining, AnnexinV/PI and Real-time qPCR analysis. BAEE and amygdalin inhibited cancer cell growth in a dose- and time-dependent manner. DAPI staining and flow cytometric analysis revealed fragmented nuclei and elevated numbers of early and late apoptotic cells, respectively. Also, increased Bax/Bcl-2 ratio and upregulation of caspase-3 further confirmed the occurrence of apoptosis in PANC-1 cells, but not in non-cancerous 293/KDR cells. These results indicate that BAEE could mediate apoptosis induction in cancer cells through a mitochondria dependent pathway. These findings suggest that BAEE functions as a potent pro-apoptotic factor for human pancreatic cancer cells without a significant effect on 293/KDR cells. Though, the potent anti-cancer components of BAEE should be further identified. Moreover, in vivo investigations are required to confirm bitter apricot ethanolic extract's clinical value as an anti-tumor drug.
Collapse
|