1
|
El-Shehawi AM, Sayed S, Elseehy MM, Alotaibi S, Alharthi SB, Alsharif G, Soliman M. Screening of Salsola imbricata extract impacts against acrylamide induced hepatic toxicity in rats through the regulation of different global gene expression. Toxicol Res (Camb) 2025; 14:tfaf038. [PMID: 40103578 PMCID: PMC11912560 DOI: 10.1093/toxres/tfaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Acrylamide (A) is known for its biological toxicity and S. imbricata is recognized for its various biological activities. The leaf extract of S. imbricata was utilized as a protective approach from acrylamide-induced oxidative stress at the transcriptome level by analyzing global gene expression, biological processes and pathways. Three groups of rats were used to investigate the protective effect of S. imbricata leaf extract on the liver transcriptome: Group C (Control), group A (received acrylamide), and group A_S (received acrylamide and S. imbricata extract). Transcriptome analysis was conducted using RNAseq with the Illumina NovaSeq 6,000. The results identified 53 differentially expressed genes (DEGs) in A/C and 91 genes in A_S/C comparisons. Various GO terms were significantly enriched, with 19 terms in the A/C comparison and 6 terms in the A_S/C comparison. In addition, several pathways were enriched, including ATP biosynthesis, mitochondrial inner membrane, and iron binding. The extract of S. imbricata exhibited various effects, including A-like, A-antagonistic, or A-agonistic on gene expression. This explains the observed contradiction of S. imbricata extract on the global gene expression of rat liver. The identified DEGs in the current study are associated with various pathways, including electron transport chain, mitochondrial apoptosis, ribosome function, iron binding, and homeostasis. The findings indicate an A-like transcriptomic toxicity of S. imbricata, although its previously reported antioxidant and anti-inflammatory activities. This raises concerns about the safety of medicinal plants and their widespread use in food supplements and alternative medicine, emphasizing the need for their assessment at various biological levels.
Collapse
Affiliation(s)
- Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Aflatoun St., El Shatby, Alexandria 21526, Egypt
| | - Saqer Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Siraj B Alharthi
- Molecular Diagnostic Unit, Alhada Armed Forces Hospital, Al Hada, Taif 26792, Saudi Arabia
- Department of Biological Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O.Box 9515, Jeddah 21423,Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center, P.O.Box 9515 Jeddah 21423, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University 21995, Saudi Arabia
| |
Collapse
|
2
|
Cai Y, Wang Y, He Y, Ren K, Liu Z, Zhao L, Wei T. Utilizing alternative in vivo animal models for food safety and toxicity: A focus on thermal process contaminant acrylamide. Food Chem 2025; 465:142135. [PMID: 39579401 DOI: 10.1016/j.foodchem.2024.142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Rodent models have traditionally been used to assess the toxicity of food chemicals, but this approach is costly, time-consuming, and raises ethical concerns. Alternatively, non-mammalian models such as Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been shown to be suitable for studying the toxicity of food hazards. Their advantages include low cost, short life cycles, adaptability to high-throughput screening, and adherence to the 3R principles of replacement, reduction, and refinement. These models have been extensively studied in the context of acrylamide toxicity, a common food contaminant. This article comprehensively reviews the biological characteristics of non-mammalian models, recent advances and challenges in acrylamide toxicity research using these models, and explores the potential of natural plant compounds in ameliorating acrylamide toxicity. The review aims to guide research using non-mammalian models for food safety assessment.
Collapse
Affiliation(s)
- Yang Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
3
|
Wu J, Lu Q, Hou J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet Res 2025; 56:16. [PMID: 39833939 PMCID: PMC11748510 DOI: 10.1186/s13567-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections. Baicalein, a flavonoid derived from Scutellaria baicalensis, has gained attention for its potential antiviral properties. However, there is little information about the effects and mechanisms of baicalein in relation to PRRSV. In this study, a network pharmacology analysis identified seven potential targets of baicalein against PRRSV, with the epidermal growth factor receptor (EGFR) emerging as the core target. The results of molecular docking and dynamics (MD) simulations confirmed that baicalein has a high binding affinity for EGFR, with a measured value of - 7.935 kcal/mol. Additionally, both in vitro (EC50 = 10.20 μg/mL) and in vivo (2.41 mg/kg) experiments were conducted to assess the effectiveness of baicalein against PRRSV. Notably, baicalein was found to inhibit various stages of the PRRSV replication cycle and could directly bind to PRRSV in vitro. Baicalein inhibited the entry of PRRSV by blocking EGFR phosphorylation and the downstream PI3K-AKT signaling pathway. This was confirmed by a decrease in the expression of p-EGFR/EGFR, p-AKT/AKT, PI3K, and SRC following treatment with baicalein. Additionally, baicalein significantly enhanced the immune response in piglets infected with PRRSV. In conclusion, this study suggests that baicalein may be a promising pharmaceutical candidate for preventing and controlling PRRS, offering new insights into the antiviral potential of Chinese herbal medicine.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| |
Collapse
|
4
|
Üremiş MM, Gültekin S, Üremiş N, Şafak T, Çiğremiş Y, Gül M, Aydin M, Zayman E, Türköz Y. Protective role of vitamin E against acrylamide-induced testicular toxicity from pregnancy to adulthood: insights into oxidative stress and aromatase regulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:829-841. [PMID: 37515736 DOI: 10.1007/s00210-023-02638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Acrylamide (ACR) is a toxic chemical frequently encountered in daily life, posing health risks. This study aimed to elucidate the molecular-level mechanism of ACR's toxic effects on testicles and investigate whether Vitamin E can mitigate these effects. A total of 40 adult pregnant rats were utilized, divided into four groups: Control, ACR, Vitamin E, and ACR + Vitamin E. ACR and Vitamin E were administered to the mother rats during pregnancy and lactation, and to the male offspring until the 8th week post-birth. Serum hormone levels, oxidant-antioxidant parameters, histopathological examination of testicular tissue, and mRNA and protein levels of the testicular and liver aromatase gene were analyzed. Spermiogram analysis was conducted on the collected sperm samples from the male offspring. The results revealed that ACR exposure adversely affected hormone levels, oxidant-antioxidant parameters, histological findings, as well as aromatase gene and protein expressions. However, Vitamin E administration effectively prevented the toxic effects of ACR. These findings demonstrate that ACR application significantly impairs the reproductive performance of male offspring rats by increasing liver aromatase activity.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Sevinç Gültekin
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Tarık Şafak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Muhterem Aydin
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Özal University, Malatya, Türkiye
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
5
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
6
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
7
|
Soliman MM, Sayed SM, Youssef GBA, Athobaiti S, El-Shehawi AM. Taify Pomegranate Juice Extract Abrogates Testicular Dysfunction Induced by Acrylamide: Role of Inflammatory, Antioxidants, and Oxidative Stress Biomarkers. Andrologia 2023; 2023:1-10. [DOI: 10.1155/2023/7812600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
High altitude (HA) poses various dangers to living organisms, the most serious of which are oxidative stress and its accompanying metabolic problems, as well as hypoxia and its associated metabolic abnormalities. Acrylamide is a poisonous chemical produced under the oxidative stress as a result of intracellular reactive oxygen species formation and toxicity. Heating carbohydrates-rich meals give acrylamide that is widely used in the industry. The precise mechanism of acrylamide toxicity is unknown. The current study aimed to examine the impacts of Taify pomegranate juice (TPJ) from Taif area (Punica granatum L.) on acrylamide-induced testicular stress and dysfunction. Twenty four male of adult Wistar rats, were divided into four groups: Group 1 was a negative-control received only saline; Group 2 was a positive-control that received orally acrylamide (20 mg/kg/bw) for consecutive 4 weeks; and Group 3 received TPJ; 2 mL/kg/bw, orally for 4 weeks. Rats in Group 4 received pomegranate juice and acrylamide as described in Groups 2 and 3, with the TPJ delivered 1 week before the acrylamide. Acrylamide elevated serum levels of inflammatory cytokines (interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α)). Moreover, acrylamide decreased concentrations of follicle stimulating hormone (FSH), leutinizing hormone (LH), and testosterone and altered semen characteristics (decreased sperm viability and concentration, and increased sperm abnormalities). Acrylamide increased malondialdehyde levels (MDA), while it decreased antioxidant activities (superoxide dismutase; SOD and reduced glutathione; GSH). The inflammation associated cytokines were restored by TPJ administration to acrylamide rats. GSH and SOD were significantly recovered to near control levels in TPJ plus acrylamide group compared to acrylamide-administered rats. TPJ preadministration to rats restored semen profiles, alteration in testis pathology, and normalized the changes on the male reproductive hormones affected by acrylamide. Furthermore, the TPJ reversed the upregulation in caspases-3 and the decrease in B-cell lymphoma-2 (Bcl-2) gene expressions affected by acrylamide, with significant upregulation of hemoxygenase-1 (HO-1) and nuclear factor erythroid-2 (Nrf2) mRNA expression. These findings collectively revealed that TPJ possesses anti-inflammatory, potent antioxidant, and antiapoptotic effect against acrylamide-induced testicular damage.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Samy M. Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif, Saudi Arabia
| | - Gehan Basiony Ahmed Youssef
- Department of Forensic Medicine and Toxicology, Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Saed Athobaiti
- Biology Deartment, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| |
Collapse
|
8
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
9
|
Cerrah S, Ozcicek F, Gundogdu B, Cicek B, Coban TA, Suleyman B, Altuner D, Bulut S, Suleyman H. Carvacrol prevents acrylamide-induced oxidative and inflammatory liver damage and dysfunction in rats. Front Pharmacol 2023; 14:1161448. [PMID: 37089925 PMCID: PMC10113504 DOI: 10.3389/fphar.2023.1161448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Acrylamide causes hepatotoxicity with the effect of oxidative stress and inflammatory processes. Carvacrol is a monoterpenic phenol with antioxidant and anti-inflammatory properties. Aims: To determine the effects of carvacrol on oxidative liver injury induced by acrylamide administration in rats. Methods: Rats were divided into three groups of six animals each: healthy group acrylamide group (ACR), and acrylamide + carvacrol group (TACR). First, carvacrol (50 mg/kg) was administered intraperitoneally to the CACR group. One hour later, acrylamide (20 mg/kg) was given orally to the ACR and CACR groups. This procedure was performed for 30 days, after which the animals were sacrificed. The malondialdehyde (MDA) and total glutathione (tGSH) levels, total oxidant (TOS) and total antioxidant status (TAS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and nuclear factor kappa b (NF-κB) were measured in the excised liver tissues. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined in blood serum samples. Liver tissues were also examined histopathologically. Results: In the ACR group, malondialdehyde, TOS, ALT, AST levels, and NF-κB, IL-1β, and TNF-α levels were found to be high, and tGSH and total antioxidant status levels were low. In addition, diffuse degenerative changes and necrosis in hepatocytes, and moderate inflammation in the portal region were detected in the liver tissues of the ACR group. While carvacrol prevented the biochemical changes induced by acrylamide, it also alleviated the damage in the histological structure. Conclusion: Carvacrol may be used for liver damage caused by acrylamide.
Collapse
Affiliation(s)
- Serkan Cerrah
- Division of Gastroenterology, Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| | - Fatih Ozcicek
- Department of Internal Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
- *Correspondence: Halis Suleyman,
| |
Collapse
|
10
|
Senthil Kumar S, Swaminathan A, Abdel-Daim MM, Sheik Mohideen S. A systematic review on the effects of acrylamide and bisphenol A on the development of Drosophila melanogaster. Mol Biol Rep 2022; 49:10703-10713. [PMID: 35753027 DOI: 10.1007/s11033-022-07642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
The current global scenario has instigated a steady upsurge of synthetic chemicals usage thereby creating a toxic environment unsuitable for animals and humans. Acrylamide and bisphenol A are some of the most common toxins found in the atmosphere due to their extensive involvement in numerous industrial processes. Acrylamide, an occupational hazard toxin has been known to cause severe nerve damage and peripheral neuronal damage in both animals and humans. General sources of acrylamide exposure are effluents from textile and paper industries, cosmetics, and thermally processed foods rich in starch. Bisphenol A (BPA) is generally found in food packaging materials, dental sealants, and plastic bottles. It is highly temperature-sensitive that can easily leach into the food products or humans on contact. The genotoxic and neurotoxic effects of acrylamide and bisphenol A have been widely researched; however, more attention should be dedicated to understanding the developmental toxicity of these chemicals. The developmental impacts of toxin exposure can be easily understood using Drosophila melanogaster as a model given considering its short life span and genetic homology to humans. In this review, we have discussed the toxic effects of acrylamide and BPA on the developmental process of Drosophila melanogaster.
Collapse
Affiliation(s)
- Swetha Senthil Kumar
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India
| | - Abhinaya Swaminathan
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Sahabudeen Sheik Mohideen
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
11
|
Protective Effect of Lycium ruthenicum Polyphenols on Oxidative Stress against Acrylamide Induced Liver Injury in Rats. Molecules 2022; 27:molecules27134100. [PMID: 35807346 PMCID: PMC9267984 DOI: 10.3390/molecules27134100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Acrylamide (ACR) is formed during tobacco and carbohydrate-rich food heating and is widely applied in many industries, with a range of toxic effects. The antioxidant properties of Lycium ruthenicum polyphenols (LRP) have been established before. This study aimed to research the protective effect of LRP against ACR-induced liver injury in SD rats. Rats were divided into six groups: Control, ACR (40 mg/kg/day, i.g.), LRP (50, 100, and 200 mg/kg/day, i.g.) plus ACR, and LRP groups. After 19 days, we evaluated oxidative status and mitochondrial functions in the rat’s liver. The results showed that glutathione (GSH) and superoxide dismutase (SOD) levels increased after LRP pretreatment. In contrast, each intervention group reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels compared to the ACR group. Meanwhile, alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver mitochondrial ATPase activity, mRNA expression of mitochondrial complex I, III, and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream proteins were all increased. This study suggested that LRP could reduce ACR-induced liver injury through potent antioxidant activity. LRP is recommended as oxidative stress reliever against hepatotoxicity.
Collapse
|
12
|
Kumari A, Bhattacharya B, Agarwal T, Paul V, Chakkaravarthi S. Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Res Int 2022; 156:111172. [DOI: 10.1016/j.foodres.2022.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023]
|
13
|
El-Shehawi AM, Sayed S, Hassan MM, Al-Otaibi S, Althobaiti F, Elseehy MM, Soliman M. Taify Pomegranate Juice (TPJ) Abrogates Acrylamide-Induced Oxidative Stress Through the Regulation of Antioxidant Activity, Inflammation, and Apoptosis-Associated Genes. Front Vet Sci 2022; 9:833605. [PMID: 35392110 PMCID: PMC8980525 DOI: 10.3389/fvets.2022.833605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acrylamide (ACR) has various effects on biological systems, including oxidative stress and its associated metabolic disorders. Previous research reports that plants growing at high altitude have a different profile of antioxidants. In the current report, the Taify pomegranate juice (TPJ) of the Taify pomegranate growing at the Taif region (high altitude), Saudi Arabia, was investigated for its protective activity from ACR-induced oxidative stress. Rats were treated with ACR, TPJ, or TPJ+ACR, and various assays, including blood chemistry, liver function biomarkers, gene expression of endogenous antioxidant enzymes, oxidative stress regulatory genes, inflammation biomarkers, and apoptosis, were estimated using biochemical, real-time PCR, histopathological, and immunohistochemical analysis. TPJ showed a protective function of ACR-induced alteration of AST, ALT, GGT, urea, total proteins, albumin, MDA, and NO. It also increased the level of the endogenous antioxidative enzymes, including SOD, catalase, and GSH. It showed anti-inflammatory activity by reduction the TNF-α, IL-6 secretion and the enhancing of IL-10 levels. At the gene expression level, TPJ upregulated the expression of endogenous antioxidant genes (SOD and catalase) and of antioxidant-regulating genes Nrf2 and HO-1; downregulated the expression of inflammatory genes TGF-β1, COX2, and the apoptotic gene caspase-3; and upregulated the expression of antiapoptotic gene Bcl2. At the histological level, TPJ showed a protective effect from the ACR-induced hepatic histological damage. Results of this study conclude that TPJ has a protective effect from ACR-induced oxidative stress and its associated metabolic alterations through its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Ahmed M. El-Shehawi
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
14
|
Ghasemzadeh Rahbardar M, Cheraghi Farmad H, Hosseinzadeh H, Mehri S. Protective effects of selenium on acrylamide-induced neurotoxicity and hepatotoxicity in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1041-1049. [PMID: 34804421 PMCID: PMC8591759 DOI: 10.22038/ijbms.2021.55009.12331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Objective(s): Acrylamide (ACR), has wide uses in different industries. ACR induced several toxicities including neurotoxicity and hepatotoxicity. The probable protective effects of selenium on ACR-induced neurotoxicity and hepatotoxicity in rats were evaluated. Materials and Methods: Male Wistar rats were studied for 11 days in 8 groups: 1. Control, 2. ACR (50 mg/kg, IP), 3-5. ACR+ selenium (0.2, 0.4, 0.6 mg/kg, IP), 6. ACR+ the most effective dose of selenium (0.6 mg/kg, IP) three days after ACR administration, 7. ACR+ vitamin E (200 mg/kg IP, every other day) 8. Selenium (0.6 mg/kg IP). Finally, behavioral tests were done. The levels of malondialdehyde (MDA), glutathione (GSH), Bcl-2, Bax and caspase 3 proteins in liver and cerebral cortex tissues were measured. Also, the amount of albumin, total protein, alanine transaminase (ALT) and aspartate transaminase (AST) enzymes were determined in serum. Results: ACR caused the severe motor impairment, increased MDA level and decreased GSH content, enhanced Bax/Bcl-2 ratio and caspase 3 proteins in brain and liver tissues. Besides, the level of AST was elevated while the total serum protein and albumin levels were decreased. Administration of selenium (0.6 mg/kg) (from the first day of the experiment and the third day) significantly recovered locomotor disorders, increased GSH content, and reduced MDA level. Also, selenium decreased Bax/Bcl-2 ratio and caspase 3 levels in brain and liver tissues. Conclusion: The oxidative stress and apoptosis pathways have important roles in neurotoxicity and hepatotoxicity of ACR. Selenium significantly reduced ACR-induced toxicity through inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Yang L, Dong L, Zhang L, Bai J, Chen F, Luo Y. Acrylamide Induces Abnormal mtDNA Expression by Causing Mitochondrial ROS Accumulation, Biogenesis, and Dynamics Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7765-7776. [PMID: 34191505 DOI: 10.1021/acs.jafc.1c02569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide, a well-documented neurotoxicant, is commonly found as a byproduct of the Maillard reaction in carbohydrate-rich foods. Numerous studies have indicated that acrylamide-induced apoptosis accompanied by mitochondrial dysfunction contributes to its neurotoxicity. However, the mechanisms of how acrylamide causes mitochondrial impairment is not well understood. In this study, we observed destroyed redox balance, accumulated mitochondrial reactive oxygen species (ROS), damaged mitochondrial structures, and activated apoptosis in astrocytes following acrylamide treatment. Furthermore, acrylamide decreased the expression of mitochondrial biogenesis- and dynamics-related genes, including PGC-1α, TFAM, Mfn2, and Opa1, and altered the expression of mitochondrial DNA (mtDNA)-encoded mitochondrial respiratory chain complexes, along with the inhibited mitochondrial respiration. Pretreatment with a mitochondrial ROS scavenger mitoquinone dramatically restored the expressions of PGC-1α, TFAM, Mfn2, and Opa1; protected the mitochondrial structure; and decreased acrylamide-induced apoptosis. Further in vivo experiments confirmed that acrylamide decreased the expressions of PGC-1α, TFAM, Mfn2, and Opa1 in rat brain tissues. These results revealed that acrylamide triggered the mitochondrial ROS accumulation to interfere with mitochondrial biogenesis and dynamics, causing mtDNA damage and finally resulting in mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
- Liuqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lujia Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jie Bai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Gour A, Dogra A, Kour D, Singh G, Kumar A, Nandi U. Effect of Concomitant Hydroxyurea Therapy with Rutin and Gallic Acid: Integration of Pharmacokinetic and Pharmacodynamic Approaches. ACS OMEGA 2021; 6:14542-14550. [PMID: 34124477 PMCID: PMC8190911 DOI: 10.1021/acsomega.1c01518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 05/28/2023]
Abstract
Hydroxyurea (HU) is the first-ever approved drug by USFDA for sickle cell anemia (SCA). However, its treatment is associated with severe side effects like myelosuppression. Current studies are focused on the supplementation therapy for symptomatic management of SCA. In the present study, we aimed to explore rutin's and gallic acid's potential individually, for concomitant therapy with HU using pharmacokinetic and pharmacodynamic approaches since there is no such precedent till date. In vivo pharmacokinetic studies of HU in rats showed that rutin could be safely co-administered with HU, while gallic acid significantly raised the plasma concentration of HU. Both the phytochemicals did not have any marked inhibitory effect on urease but have considerable effects on horseradish peroxidase enzyme. The experimental phytoconstituents displayed a very low propensity to cause in vitro hemolysis. Gallic acid markedly enhanced the HU-induced decrease in lymphocyte proliferation. A substantial improvement by rutin or gallic acid was observed in HU-induced reduction of the main hematological parameters in rats. Combined treatment of HU with rutin and gallic acid reduced serum levels of both IL-6 and IL-17A. Overall, both rutin and gallic acid are found to have promising phytotherapy potential with HU. Further exploration needs to be done on both candidates for use as phytotherapeutics for SCA.
Collapse
Affiliation(s)
- Abhishek Gour
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Ashish Dogra
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Dilpreet Kour
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Gurdarshan Singh
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Ajay Kumar
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Utpal Nandi
- PK-PD,
Toxicology and Formulation Division, CSIR-Indian
Institute of Integrative Medicine, Jammu, Jammu and Kashmir 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
17
|
Elsawy H, Alzahrani AM, Alfwuaires M, Sedky A, El-Trass EE, Mahmoud O, Abdel-Moneim AM, Khalil M. Analysis of silymarin-modulating effects against acrylamide-induced cerebellar damage in male rats: Biochemical and pathological markers. J Chem Neuroanat 2021; 115:101964. [PMID: 33965515 DOI: 10.1016/j.jchemneu.2021.101964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acrylamide (ACR) is a well-proven neurotoxin and potential food carcinogen in humans and rodent models. Silymarin (SIL) is a flavonoid mixture isolated from seeds, leaves, and fruits of Silymarin marianum (milk thistle) that possesses a free-radical scavenging effect. OBJECTIVE In this work, the primary focus was to investigate the efficacy of SIL to mitigate ACR-induced subacute neurotoxic effects and oxidative changes in rat cerebellum. METHODS Adult male rats were treated intraperitoneally with ACR (50 mg/kg) with or without SIL (160 mg/kg). The neuropathology and biochemical parameters viz. lipid peroxidation (measured as levels of malondialdehyde or MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), serotonin (5-hydroxytryptamine; 5-HT), dopamine (DA), and cathepsin D (CTSD) in the cerebellum have been evaluated. RESULTS The data showed that ACR induced redox disruptions as measured by increased MDA levels and inhibition of CAT, SOD, and GPx antioxidant enzyme activities. Besides, cerebellar monoamine neurotransmitters, 5-HT and DA, were depleted in ACR-treated rats. Furthermore, ACR administration caused a significant elevation of CTSD activity, indicating that ACR could trigger apoptosis or apoptosis-like death. At the tissue level, cerebellar cortex sections from ACR-treated animals were characterized by severe neuronal damage. The administration of SIL to ACR-treated rats remarkably alleviated all the aforementioned ACR-induced effects. CONCLUSION SIL has a potent therapeutic effect against ACR-induced cerebellar neurotoxicity in experimental rats via the attenuation of oxidative/antioxidative responses and the inhibition of CTSD-activity.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia.
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia.
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman E El-Trass
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Omar Mahmoud
- Essex Partnership University NHS Foundation Trust: Harlow, Essex, Great Britain, United Kingdom.
| | - Ashraf M Abdel-Moneim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Al-Ahsa, Saudi Arabia; Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mahmoud Khalil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon.
| |
Collapse
|
18
|
Reshmitha T, Nisha P. Lycopene mitigates acrylamide and glycidamide induced cellular toxicity via oxidative stress modulation in HepG2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
20
|
Salimi A, Baghal E, Ghobadi H, Hashemidanesh N, Khodaparast F, Seydi E. Mitochondrial, lysosomal and DNA damages induced by acrylamide attenuate by ellagic acid in human lymphocyte. PLoS One 2021; 16:e0247776. [PMID: 33635915 PMCID: PMC7909646 DOI: 10.1371/journal.pone.0247776] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/14/2021] [Indexed: 01/10/2023] Open
Abstract
Acrylamide (AA), is an important contaminant formed during food processing under high temperature. Due to its potential neurotoxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, genotoxicity and carcinogenicity effects, this food contaminant has been recognized as a human health concern. Previous studies showed that acrylamide-induced toxicity is associated with active metabolite of acrylamide by cytochrome P450 enzyme, oxidative stress, mitochondrial dysfunction and DNA damage. In the current study, we investigated the role of oxidative stress in acrylamide's genotoxicity and therapeutic potential role of ellagic acid (EA) in human lymphocytes. Human lymphocytes were simultaneously treated with different concentrations of EA (10, 25 and 50 μM) and acrylamide (50 μM) for 4 h at 37°C. After 4 hours of incubation, the toxicity parameters such cytotoxicity, ROS formation, oxidized/reduced glutathione (GSH/GSSG) content, malondialdehyde (MDA) level, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed using biochemical and flow cytometry evaluations. It has been found that acrylamide (50 μM) significantly increased cytotoxicity, ROS formation, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage in human lymphocytes. On the other hand, cotreatment with EA (25 and 50 μM) inhibited AA-induced oxidative stress which subsequently led to decreasing of the cytotoxicity, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage. Together, these results suggest that probably the co-exposure of EA with foods containing acrylamide could decrease mitochondrial, lysosomal and DNA damages, and oxidative stress induced by acrylamide in human body.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- * E-mail: , (AS); (ES)
| | - Elahe Baghal
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hassan Ghobadi
- Faculty of Medicine, Internal Medicine Department (Pulmonary Division), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Niloufar Hashemidanesh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- * E-mail: , (AS); (ES)
| |
Collapse
|
21
|
Ahmad Bainmahfouz FR, Ali SS, Al-Shali RA, El-Shitany NAEA. Vitamin E and 5-amino salicylic acid ameliorates acrylamide-induced peripheral neuropathy by inhibiting caspase-3 and inducible nitric oxide synthase immunoexpression. J Chem Neuroanat 2021; 113:101935. [PMID: 33588031 DOI: 10.1016/j.jchemneu.2021.101935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
Acrylamide is a fundamental cause of accidental toxicity in humans. This study aimed to investigate the neuroprotective effect of vitamin E (Vit. E), 5-amino salicylic acid (5-ASA), and their combination against acrylamide-induced sciatic nerve toxicity. For this purpose, 25 male Wister rats were divided into 5 groups: control, acrylamide, acrylamide + Vit. E, acrylamide + 5-ASA, and acrylamide + Vit. E + 5-ASA. Food intake and body weight were assessed after 7 days. Furthermore, the gait score was also evaluated for each rat. The sciatic nerve was dissected, fixed, and processed for routine light and electron microscopic examination. Haematoxylin and eosin, osmium tetroxide for myelin sheath, and toluidine blue for semithin section were used. In addition, immunohistochemistry for caspase-3 and inducible nitric oxide synthase (iNOS) were performed. The results showed reduced food intake and body weight in acrylamide rats. Abnormal gait score was also recorded in acrylamide rats with significant improvement in Vit. E, and Vit. E + 5-ASA groups. Histologically, Vit. E and 5-ASA provided potential protection against decreased sciatic nerve axon density, disrupted myelination, and the alteration in the immunohistochemistry induced by acrylamide. Vit. E and its combination with 5-ASA provided more evident protection compared to 5-ASA alone. 5-ASA significantly decreased apoptotic cell death (caspase-3 immunoexpression) while Vit. E failed. Both Vit. E and 5-ASA significantly decreased iNOS immunoexpression in the sciatic nerve, where 5-ASA was superior to Vit. E. These findings concluded that both Vit. E and 5-ASA protect against acrylamide-induced peripheral neuropathy through downregulation of both caspase-3 and iNOS immunoexpression.
Collapse
Affiliation(s)
- Fatmah Rais Ahmad Bainmahfouz
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Anatomy, College of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia.
| | - Soad Shaker Ali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Histology, College of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Rasha Abdulrahman Al-Shali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nagla Abd El-Aziz El-Shitany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
22
|
Satapathy P, Prakash JK, More SS, Chandramohan V, Zameer F. Structural modulation of dual oxidase (Duox) in Drosophila melanogaster by phyto-elicitors: A free energy study with molecular dynamics approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
|
24
|
Investigation of Composition, Temperature, and Heating Time in the Formation of Acrylamide in Snack: Central Composite Design Optimization and Microextraction Coupled with Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01849-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Lin Z, Zhang Y, Li F, Tan X, Luo P, Liu H. Preventive Effects of Three Polysaccharides on the Oxidative Stress Induced by Acrylamide in a Saccharomyces cerevisiae Model. Mar Drugs 2020; 18:E395. [PMID: 32731522 PMCID: PMC7459515 DOI: 10.3390/md18080395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae was used as a model to explore the preventive effect of two marine polysaccharides separately derived from Sepia esculenta ink (SIP) and Laminaria japonica (FL) as well as one terrestrial polysaccharides from Eleocharis tuberosa peel (WCPP) on toxic injury induced by acrylamide (AA). The growth of yeast was evaluated by kinetics indexes including doubling time, lag phase and maximum proliferation density. Meanwhile, intracellular redox state was determined by contents of MDA and GSH, and SOD activity. The results showed that AA inhibited yeast growth and destroyed the antioxidant defense system. Supplement with polysaccharides, the oxidative damage of cells was alleviated. According to the growth recovery of yeast, FL and WCPP had similar degree of capacity against AA associated cytotoxicity, while SIP was 1.5~2 folds as strong as FL and WCPP. SIP and FL significantly reduced production of MDA by AA administration. Moreover, SIP, FL and WCPP increased SOD activity and repressed GSH depletion caused by AA.
Collapse
Affiliation(s)
| | | | | | | | | | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (F.L.); (X.T.); (P.L.)
| |
Collapse
|
26
|
Senthilkumar S, Raveendran R, Madhusoodanan S, Sundar M, Shankar SS, Sharma S, Sundararajan V, Dan P, Sheik Mohideen S. Developmental and behavioural toxicity induced by acrylamide exposure and amelioration using phytochemicals in Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122533. [PMID: 32279006 DOI: 10.1016/j.jhazmat.2020.122533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Acrylamide, an environmental pollutant, is known to occur in food substances cooked at high temperatures. Studies on various models indicate acrylamide to cause several physiological conditions such as neuro- and reproductive toxicity, and carcinogenesis. In our study, exposure of Drosophila melanogaster (Oregon K strain) to acrylamide via their diet resulted in a concentration and time-dependent mortality, while the surviving flies exhibited significant locomotor deficits, most likely due to oxidative stress-induced neuronal damage. Also, Drosophila embryos exhibited signs of developmental toxicity as evidenced by the alteration in the migration of border cells and cluster cells during the developmental stages, concomitant to modulation in expression of gurken and oskar genes. Curcumin, a known antioxidant has been widely studied for its neuroprotective effects against acrylamide; however; very few studies focus on thymoquinone for its role against food toxicant. Our research focuses on the toxicity elicited by acrylamide and the ability of the antioxidants: thymoquinone, curcumin and combination of thereof, in reversing the same.
Collapse
Affiliation(s)
- Swetha Senthilkumar
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Rakshika Raveendran
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Sayooj Madhusoodanan
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Malini Sundar
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Siddhi Shree Shankar
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Suyash Sharma
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Vignesh Sundararajan
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Pallavi Dan
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Sahabudeen Sheik Mohideen
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
27
|
Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide‐induced neurotoxicity and hepatotoxicity in rats. Phytother Res 2020; 34:3262-3272. [DOI: 10.1002/ptr.6774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Foroutanfar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Marzyeh Kamyar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
28
|
Ibrahim MA, Ibrahem MD. Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY 2020; 35:300-308. [PMID: 31675142 DOI: 10.1002/tox.22863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
This study was carried out to explore the possible deleterious impacts of acrylamide (ACR) on catfish (Clarias gariepinus). The estimation of mortalities, the examination of the clinical picture, the evaluation of blood parameters, oxidative stress, DNA damage, and the histopathological picture were performed in the liver, kidney, and brain samples of the experimentally ACR-exposed catfish. The 96 hours LC50 value was estimated to be 133 mg/L by the hydrostatic method. Fish were reared in water containing four different concentrations of ACR as follows: 20%, 40%, 60%, and 80% of the estimated LC50 for 2 weeks. Abnormal behavioral, clinical, and postmortem responses were depicted. The anemic response including significant decreases in red blood cells, hemoglobin, and packed cell volume following the ascending concentrations of ACR were recorded. The malondialdehyde was significantly increased, whereas reduced glutathione level, superoxide dismutase, and total antioxidant capacity were significantly decreased. The DNA fragmentation assay illustrated a clear laddering pattern in all the tested organs. Notably, the brain was the most influenced organ. It is presumed that ACR contamination showed adverse impacts on the catfish.
Collapse
Affiliation(s)
- Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mai D Ibrahem
- Department of Public health, Faculty of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
29
|
Elblehi SS, El Euony OI, El-Sayed YS. Apoptosis and astrogliosis perturbations and expression of regulatory inflammatory factors and neurotransmitters in acrylamide-induced neurotoxicity under ω3 fatty acids protection in rats. Neurotoxicology 2019; 76:44-57. [PMID: 31647937 DOI: 10.1016/j.neuro.2019.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 01/25/2023]
Abstract
This study was aimed to investigate the potential ameliorative effects of omega-3 (ω3) fatty acids against acrylamide (ACR)-induced neurotoxicity. Thirty-two adult male Sprague Dawley rats were randomly assigned into four groups (n = 8) as follows: control, ω3 fatty acids (1000 mg/kg bwt/day orally), ACR-treated (50 mg/kg bwt/day IP) and ACR plus ω3 fatty acids group. Treatments were performed every other day for 21 consecutive days. ACR induced abnormal gait and elevated serum levels of proinflammatory cytokines (IL-6 and TNF-α), brain and spinal cord MDA levels and decreased brain and spinal cord GSH levels. Moreover, it reduced neurotransmitters (acetylcholine, GABA, serotonin and noradrenaline levels) and increased AChE activity in brain tissues. Histopathologically, ACR caused various degenerative changes, necrosis and glial cell activation in the cerebrum, cerebellum, hippocampus, spinal cord and sciatic nerve. Likewise, the histomorphometric analysis was constant with ACR-induced neurotoxicity. The ACR induced axonal atrophy and myelin disruption and decreased g-ratio of the sciatic nerve. Immunohistochemically, strong positive expressions of apoptotic marker caspase-3 and astroglial GFAP in the examined tissues were detected. Contrariwise, concurrent administration of ω3 fatty acids partially attenuated ACR impacts, as it improved the gait performance, reduced oxidative stress and pro-inflammatory cytokines, and modulate the levels of the neurotransmitters. It also ameliorated the intensity of ACR-induced histopathological and histomorphometric alterations within the examined nervous tissues. It could be concluded that ω3 fatty acids have antioxidant, anti-inflammatory and anti-apoptotic potentials against ACR neurotoxicity via suppression of oxidative stress, lipid peroxidation and pro-inflammatory cytokines, and inhibition of AChE activity and downregulation of caspase-3 and GFAP expressions in the nervous tissues.
Collapse
Affiliation(s)
- Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria 22758, Egypt
| | - Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria 22758, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|