1
|
Zhou X, Yang Y, Su Z, Luo Z. Dexmedetomidine Protects the Brain: Exploring the α2AR/FAK Pathway in Post-Stroke Intestinal Barrier Repair. FRONT BIOSCI-LANDMRK 2025; 30:27159. [PMID: 40018945 DOI: 10.31083/fbl27159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Globally, ischemic stroke is a major cause of mortality and disability, posing a significant challenge in clinical practice and public health. Recent studies have reported that stroke leads to the impairment of the intestinal barrier and the migration of intestinal bacteria to multiple organs. This process exacerbates neurological damage by further impairing intestinal barrier function and leading to bacterial translocation. Dexmedetomidine (Dex), an α2-adrenoceptor (α2AR) agonist, has proven anti-cerebral ischemic effects, yet its effects in post-stroke intestinal dysfunction remain unclear. This study aimed to determine whether Dex mitigates intestinal dysfunction and brain injury following cerebral ischemia-reperfusion. METHODS A C57BL/6J mouse model of middle cerebral artery occlusion (MCAO) was used for in vivo experiments, while lipopolysaccharide (LPS)-induced Caco-2 monolayers served as an in vitro model of intestinal barrier dysfunction. Neuronal apoptosis was evaluated using neuronal nuclei (NeuN) and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) double labeling. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Intestinal permeability was assessed using histological score, serum fluorescein isothiocyanate (FITC)-dextran fluorescence, and endotoxin levels. The expression levels of epithelial cadherin (E-cadherin), zonula occludens-1 (ZO-1), and occludin were analyzed by western blot and immunofluorescence. Statistical analyses included analysis of variance with Tukey's post-hoc test. RESULTS Dex treatment significantly reduced cerebral infarct volume (p < 0.001) and improved neurological scores compared to MCAO controls. Neuronal apoptosis was significantly inhibited (p < 0.01), as evidenced by reduced TUNEL-positive cells in Dex-treatment MCAO mice. TNF-α, IL-1β and IL-6 were markedly downregulated (p < 0.05). While MCAO increased intestinal permeability (elevated serum FITC-dextran and endotoxin levels, p < 0.01), Dex treatment restored barrier integrity. Dex upregulated E-cadherin expression significantly (p < 0.05) but did not restore the decreased levels of ZO-1 and occludin following MCAO. Dex promoted intestinal permeability repair and alleviated brain injury via the α2AR/focal adhesion kinase (FAK) pathway in MCAO mice. Similarly, Dex mitigated LPS-induced barrier dysfunction in Caco-2 monolayers by restoring FAK expression and improving intestinal barrier integrity. CONCLUSIONS Dex alleviates post-stroke intestinal barrier dysfunction and mitigates brain injury, possibly through activating the α2AR/FAK pathway. These findings underscore a potential therapeutic strategy for addressing secondary complications of ischemic stroke and improving patient outcomes.
Collapse
Affiliation(s)
- Xinting Zhou
- Department of Anaesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yan Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zixuan Su
- Department of Anaesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zhonghui Luo
- Department of Anaesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
2
|
Peng W, Guo K, Hu J, Wang Q. Inhibition of Pyroptosis by Hydroxychloroquine as a Neuroprotective Strategy in Ischemic Stroke. eNeuro 2024; 12:ENEURO.0254-24.2024. [PMID: 39694827 PMCID: PMC11728853 DOI: 10.1523/eneuro.0254-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Hydroxychloroquine (HCQ), a well-known antimalarial and anti-inflammatory drug, has demonstrated potential neuroprotective effects in ischemic stroke by inhibiting pyroptosis, a programmed cell death associated with inflammation. This study investigates the impact of HCQ on ischemic stroke pathology using both in vivo and in vitro models. In vivo, C57BL/6 mice subjected to middle cerebral artery occlusion (MCAO) were treated with HCQ. Neurological deficits, infarct volume, and the expression of pyroptosis markers were evaluated. The results demonstrated that HCQ significantly improved motor function and reduced infarct volume in the MCAO mouse model. In vitro, BV2 microglial cells exposed to lipopolysaccharide (LPS) and oxygen-glucose deprivation (OGD) were treated with HCQ. Western blot and immunofluorescence analyses revealed that HCQ effectively suppressed the expression of pyroptosis markers GSDMD and NLRP3 in both in vivo and in vitro models. These findings suggest that HCQ mitigates ischemic stroke damage by inhibiting pyroptosis, highlighting its potential as a therapeutic agent for ischemic stroke. This study provides novel insights into the molecular mechanisms by which HCQ exerts its neuroprotective effects, offering a promising new avenue for developing safe, cost-effective, and widely applicable stroke treatments. The potential of HCQ to modulate neuroinflammatory pathways presents a significant advancement in ischemic stroke therapy, emphasizing the importance of targeting pyroptosis in stroke management and the broader implications for treating neuroinflammatory conditions.Significance Statement Ischemic stroke remains a leading cause of disability and death globally, with limited effective treatments. This study reveals that HCQ significantly mitigates ischemic stroke damage by inhibiting pyroptosis, a form of programmed cell death. Using in vivo and in vitro models, HCQ was shown to improve motor function and reduce infarct volume, highlighting its potential as a neuroprotective agent. These findings offer a promising new therapeutic approach for ischemic stroke, emphasizing the importance of targeting pyroptosis in stroke treatment.
Collapse
Affiliation(s)
- Wenshuo Peng
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University,Wenzhou 325015, China
| | - Jian Hu
- Department of pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Wenzhou 325015, China
| | - Qianchun Wang
- Department of gastroenterology, The First affiliated hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
3
|
Wang R, Huang G, Li S, Huang H, Zhu G, Wang L, Yang J, Yang S, Jiang Z, Zhang W. Blueberry extract for the treatment of ischaemic stroke through regulating the gut microbiota and kynurenine metabolism. Phytother Res 2024; 38:4792-4814. [PMID: 39140343 DOI: 10.1002/ptr.8300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Although the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.
Collapse
Affiliation(s)
- Raoqiong Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Shuangyang Li
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hanlin Huang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinrui Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
4
|
Guo HH, Shen HR, Tang MZ, Sheng N, Ding X, Lin Y, Zhang JL, Jiang JD, Gao TL, Wang LL, Han YX. Microbiota-derived short-chain fatty acids mediate the effects of dengzhan shengmai in ameliorating cerebral ischemia via the gut-brain axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116158. [PMID: 36638854 DOI: 10.1016/j.jep.2023.116158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ming-Ze Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Le Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lu-Lu Wang
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Liu Y, Chu M, Wang D, Luo Y, Liu Z, Zhao J. Risk factors for small intestinal bacterial overgrowth in patients with acute ischaemic stroke. J Med Microbiol 2023; 72. [PMID: 36762525 DOI: 10.1099/jmm.0.001666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction. The intestinal flora has become a promising new target in acute ischaemic stroke (AIS), and small intestinal bacterial overgrowth (SIBO) is a common pathological condition of the intestinal flora. Recently, the lactose hydrogen-methane breath test has emerged as a non-invasive and economical method for the detection of SIBO in AIS patients. Exploring the prevalence of SIBO and its associated risk factors will provide a clinical basis for the association between intestinal flora and AIS.Hypothesis/Gap Statement. Given that the prevalence of SIBO and its risk factors in patients with AIS remain to be studied, there is a need to investigate them.Aim. This study aimed to investigate the prevalence and risk factors of SIBO in patients with AISMethodology. Eighty patients tested for SIBO using the lactulose hydrogen-methane breath test were evaluated. Patients were divided into SIBO-positive and SIBO-negative groups according to the presence or absence of SIBO, respectively. The baseline characteristics and clinical biochemical indicators of the patients were compared between the two groups. The independent risk factors and predictive value of SIBO in AIS patients were determined using multivariate logistic regression and receiver operating characteristic (ROC) curve analyses.Results. Of the 80 consecutive patients with AIS, 23 (28.8 %) tested positive for SIBO. Triglyceride (TG) and homocysteine (Hcy) levels were identified as independent risk factors for SIBO in patients with AIS using multivariate logistic regression analysis (P<0.005). ROC curve analysis showed that the area under the curve (AUC) of TG was 0.690 (95 % CI 0.577-0.789, P=0.002). The sensitivity, specificity and optimal cut-off values were 95.7 %, 35.1 % and 1.14 mmol l-1, respectively. The AUC of Hcy was 0.676 (95 % CI 0.562-0.776, P=0.01). The sensitivity, specificity and optimal cut-off values were 73.9 %, 59.7 % and 14.1 µmol-1, respectively. When TG and Hcy levels were combined, the AUC increased to 0.764 (95 % CI 0.656-0.852, P<0.001). The specificity and sensitivity were 61.4 and 82.6 %, respectively. This showed that the combined detection of TG and Hcy levels had a higher predictive valueConclusion. The prevalence of SIBO in patients with AIS was 28.8 %. TG and Hcy levels are independent risk factors for SIBO in patients with AIS. Both markers had good predictive value for the occurrence of SIBO. In the future, we should actively utilize these indicators to prevent intestinal flora imbalance and the occurrence of SIBO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Min Chu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Daosheng Wang
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yunhe Luo
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Zhuohang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
6
|
Kerr NA, Sanchez J, O'Connor G, Watson BD, Daunert S, Bramlett HM, Dietrich WD. Inflammasome-Regulated Pyroptotic Cell Death in Disruption of the Gut-Brain Axis After Stroke. Transl Stroke Res 2022; 13:898-912. [PMID: 35306629 DOI: 10.1007/s12975-022-01005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Approximately 50% of stroke survivors experience gastrointestinal complications. The innate immune response plays a role in changes to the gut-brain axis after stroke. The purpose of this study is to examine the importance of inflammasome-mediated pyroptosis in disruption of the gut-brain axis after experimental stroke. B6129 mice were subjected to a closed-head photothrombotic stroke. We examined the time course of inflammasome protein expression in brain and intestinal lysate using western blot analysis at 1-, 3-, and 7-days post-injury for caspase-1, interleukin-1β, nod-like receptor protein 3 (NLRP3), and apoptosis speck-like protein containing a caspase-recruiting domain (ASC) and gasdermin-D (GSDMD) cleavage. In a separate group of mice, we processed brain tissue 24 and 72 h after thrombotic stroke for immunohistochemical analysis of neuronal and endothelial cell pyroptosis. We examined intestinal tissue for morphological changes and pyroptosis of macrophages. We performed behavioral tests and assessed gut permeability changes to confirm functional changes after stroke. Our data show that thrombotic stroke induces inflammasome activation in the brain and intestinal tissue up to 7-day post-injury as well as pyroptosis of neurons, cerebral endothelial cells, and intestinal macrophages. We found that thrombotic stroke leads to neurocognitive and motor function deficits as well as increased gut permeability. Finally, the adoptive transfer of serum-derived EVs from stroke mice into naive induced inflammasome activation in intestinal tissues. Taken together, these results provide novel information regarding possible mechanisms underlying gut complications after stroke and the identification of new therapeutic targets for reducing the widespread consequences of ischemic brain injury.
Collapse
Affiliation(s)
- Nadine A Kerr
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Juliana Sanchez
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brant D Watson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Ge Y, Zadeh M, Yang C, Candelario-Jalil E, Mohamadzadeh M. Ischemic Stroke Impacts the Gut Microbiome, Ileal Epithelial and Immune Homeostasis. iScience 2022; 25:105437. [PMID: 36388972 PMCID: PMC9650036 DOI: 10.1016/j.isci.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke critically impacts neurovascular homeostasis, potentially resulting in neurological disorders. However, the mechanisms through which stroke-induced inflammation modifies the molecular and metabolic circuits, particularly in ileal epithelial cells (iECs), currently remain elusive. Using multiomic approaches, we illustrated that stroke impaired the ileal microbiome and associated metabolites, leading to increased inflammatory signals and altered metabolites, potentially deteriorating the iEC homeostasis. Bulk transcriptomic and metabolomic profiling demonstrated that stroke enhanced fatty acid oxidation while reducing the tricarboxylic acid (TCA) cycle in iECs within the first day after stroke. Intriguingly, single-cell RNA sequencing analysis revealed that stroke dysregulated cell-type-specific gene responses within iECs and reduced frequencies of goblet and tuft cells. Additionally, stroke augmented interleukin-17A+ γδ T cells but decreased CD4+ T cells in the ileum. Collectively, our findings provide a comprehensive overview of stroke-induced intestinal dysbiosis and unveil responsive gene programming within iECs with implications for disease development.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Changjun Yang
- Department of Neurosciences, University of Florida, Gainesville, FL, USA
| | | | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
8
|
Zhong J, Chen J, Cao M, Fang L, Wang Z, Liao J, Chen D, Zhang X, Guo J, Zhao L, Zhou C. Elevated plasma intestinal fatty acid binding protein and aberrant lipid metabolism predict post-stroke depression. Heliyon 2022; 8:e11848. [DOI: 10.1016/j.heliyon.2022.e11848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/05/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
|