1
|
Indihar DF, Jones JJ, Ochsenbauer C, Kappes JC. Highly Sensitive Analysis of Cervical Mucosal HIV-1 Infection Using Reporter Viruses Expressing Secreted Nanoluciferase. Methods Mol Biol 2024; 2807:299-323. [PMID: 38743237 DOI: 10.1007/978-1-0716-3862-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ex vivo cervical tissue explant models offer a physiologically relevant approach for studying virus-host interactions that underlie mucosal HIV-1 transmission to women. However, the utility of cervical explant tissue (CET) models has been limited for both practical and technical reasons. These include assay variation, inadequate sensitivity for assessing HIV-1 infection and replication in tissue, and constraints imposed by the requirement for using multiple replica samples of CET to test each experimental variable and assay parameter. Here, we describe an experimental approach that employs secreted nanoluciferase (sNLuc) and current HIV-1 reporter virus technologies to overcome certain limitations of earlier ex vivo CET models. This method augments application of the CET model for investigating important questions involving mucosal HIV-1 transmission.
Collapse
Affiliation(s)
- Dana F Indihar
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer J Jones
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christina Ochsenbauer
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Kappes
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Health Care System, Research Service, Birmingham, AL, USA.
| |
Collapse
|
2
|
Berry N, Stein M, Ferguson D, Ham C, Hall J, Giles E, Kempster S, Adedeji Y, Almond N, Herrera C. Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques. Pathogens 2022; 11:1033. [PMID: 36145466 PMCID: PMC9503824 DOI: 10.3390/pathogens11091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Zika virus (ZIKV) cases continue to be reported, and no vaccine or specific antiviral agent has been approved for the prevention or treatment of infection. Though ZIKV is primarily transmitted by mosquitos, cases of sexual transmission and prolonged viral RNA presence in semen have been reported. In this observational study, we report the mucosal responses to sub-cutaneous and mucosal ZIKV exposure in cynomolgus macaques during acute and late chronic infection. Subcutaneous challenge induced a decrease in the growth factor VEGF in colorectal and cervicovaginal tissues 100 days post-challenge, in contrast to the observed increase in these tissues following vaginal infection. This different pattern was not observed in the uterus, where VEGF was upregulated independently of the challenge route. Vaginal challenge induced a pro-inflammatory profile in all mucosal tissues during late chronic infection. Similar responses were already observed during acute infection in a vaginal tissue explant model of ex vivo challenge. Non-productive and productive infection 100 days post-in vivo vaginal challenge induced distinct proteomic profiles which were characterized by further VEGF increase and IL-10 decrease in non-infected animals. Ex vivo challenge of mucosal explants revealed tissue-specific modulation of cytokine levels during the acute phase of infection. Mucosal cytokine profiles could represent biosignatures of persistent ZIKV infection.
Collapse
Affiliation(s)
- Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Monja Stein
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Claire Ham
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Jo Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Elaine Giles
- Division of Analytical and Biological Sciences, NIBSC, Potters Bar EN6 3QC, UK
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Yemisi Adedeji
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
3
|
Else L, Penchala SD, Pillay AD, Seiphetlo TB, Lebina L, Callebaut C, Minhas S, Morley R, Rashid T, Martinson N, Fox J, Khoo S, Herrera C. Pre-Clinical Evaluation of Tenofovir and Tenofovir Alafenamide for HIV-1 Pre-Exposure Prophylaxis in Foreskin Tissue. Pharmaceutics 2022; 14:pharmaceutics14061285. [PMID: 35745857 PMCID: PMC9227286 DOI: 10.3390/pharmaceutics14061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background: HIV-1 pre-exposure prophylaxis (PrEP) has focused predominantly on protective efficacy in receptive sex, with limited research on the dosing requirements for insertive sex. We pre-clinically assessed the ex vivo pharmacokinetic–pharmacodynamic (PK–PD) profile of tenofovir (TFV) and tenofovir alafenamide (TAF) in foreskin tissue. Methods: Inner and outer foreskin explants were exposed to serial dilutions of TFV or TAF prior to addition of HIV-1BaL at a high (HVT) or a low viral titer (LVT). Infection was assessed by measurement of p24 in foreskin culture supernatants. TFV, TAF and TFV–diphosphate (TFV–DP) concentrations were measured in tissues, culture supernatants and dosing and washing solutions. Results: Dose–response curves were obtained for both drugs, with greater potency observed against LVT. Inhibitory equivalency mimicking oral dosing was defined between 1 mg/mL of TFV and 15 µg/mL of TAF against HVT challenge. Concentrations of TFV–DP in foreskin explants were approximately six-fold higher after ex vivo dosing with TAF than with TFV. Statistically significant negative linear correlations were observed between explant levels of TFV or TFV–DP and p24 concentrations following HVT. Conclusions: Pre-clinical evaluation of TAF in foreskin explants revealed greater potency than TFV against penile HIV transmission. Clinical evaluation is underway to support this finding.
Collapse
Affiliation(s)
- Laura Else
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Sujan D. Penchala
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Azure-Dee Pillay
- Division of Immunology, University of Cape Town, Cape Town 7935, South Africa; (A.-D.P.); (T.B.S.)
| | - Thabiso B. Seiphetlo
- Division of Immunology, University of Cape Town, Cape Town 7935, South Africa; (A.-D.P.); (T.B.S.)
| | - Limakatso Lebina
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa; (L.L.); (N.M.)
| | | | - Suks Minhas
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Roland Morley
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Tina Rashid
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa; (L.L.); (N.M.)
| | - Julie Fox
- Guys and St. Thomas’ NHS Foundation Trust and King’s College London, London SE1 9RT, UK;
| | - Saye Khoo
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Carolina Herrera
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, UK
- Correspondence: ; Tel.: +44-207-594-2545
| |
Collapse
|
4
|
Schmidt A, Baumjohann D. 3D Tissue Explant and Single-Cell Suspension Organoid Culture Systems for Ex Vivo Drug Testing on Human Tonsil-Derived T Follicular Helper Cells. Methods Mol Biol 2022; 2380:267-288. [PMID: 34802138 DOI: 10.1007/978-1-0716-1736-6_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Research on the human immune system is often restricted to peripheral blood cells. However, these cells can be different from those found in secondary lymphoid organs. For instance, specialized T and B cells that are localized in germinal centers (GCs), which are complex anatomical structures being required for the generation of potent antibodies, are not found in peripheral blood. Most T helper cells located in GCs belong to the T follicular helper (Tfh) cell subset, which provides critical support to B cells. Bona fide human GC Tfh cells can be obtained from secondary lymphoid tissues such as tonsils, which are routinely removed by surgery. We here describe a method that is based on human lymphoid histoculture (HLH) and human lymphoid aggregate culture (HLAC) to culture human adenoid (pharyngeal tonsil) tissue ex vivo, followed by deep Tfh cell phenotyping by flow cytometry. This method allows studying Tfh cells in a versatile explant culture system that preserves many aspects of the original in vivo three-dimensional (3D) structure, in parallel to single-cell suspension organoid cultures in which the original tissue structure is disintegrated. We also describe how this versatile platform can be used for drug testing or manipulation of human Tfh cells in vitro for mechanistic studies.
Collapse
Affiliation(s)
- Angelika Schmidt
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Kaw S, Ananth S, Tsopoulidis N, Morath K, Coban BM, Hohenberger R, Bulut OC, Klein F, Stolp B, Fackler OT. HIV-1 infection of CD4 T cells impairs antigen-specific B cell function. EMBO J 2020; 39:e105594. [PMID: 33146906 PMCID: PMC7737609 DOI: 10.15252/embj.2020105594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Failures to produce neutralizing antibodies upon HIV‐1 infection result in part from B‐cell dysfunction due to unspecific B‐cell activation. How HIV‐1 affects antigen‐specific B‐cell functions remains elusive. Using an adoptive transfer mouse model and ex vivo HIV infection of human tonsil tissue, we found that expression of the HIV‐1 pathogenesis factor NEF in CD4 T cells undermines their helper function and impairs cognate B‐cell functions including mounting of efficient specific IgG responses. NEF interfered with T cell help via a specific protein interaction motif that prevents polarized cytokine secretion at the T‐cell–B‐cell immune synapse. This interference reduced B‐cell activation and proliferation and thus disrupted germinal center formation and affinity maturation. These results identify NEF as a key component for HIV‐mediated dysfunction of antigen‐specific B cells. Therapeutic targeting of the identified molecular surface in NEF will facilitate host control of HIV infection.
Collapse
Affiliation(s)
- Sheetal Kaw
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bahar M Coban
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olcay C Bulut
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, SLK Klinikum Am Gesundbrunnen, Heilbronn, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Köln, Köln, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
7
|
Kinetics of Early Innate Immune Activation during HIV-1 Infection of Humanized Mice. J Virol 2019; 93:JVI.02123-18. [PMID: 30867315 PMCID: PMC6532090 DOI: 10.1128/jvi.02123-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is associated with aberrant immune activation; however, most model systems for HIV-1 have been used during established infection. Here, we utilize ultrasensitive HIV-1 quantification to delineate early events during the eclipse, burst, and chronic phases of HIV-1 infection in humanized mice. We show that very early in infection, HIV-1 suppresses peripheral type I interferon (IFN) and interferon-stimulated gene (ISG) responses, including the HIV-1 restriction factor IFI44. At the peak of innate immune activation, prior to CD4 T cell loss, HIV-1 infection differentially affects peripheral and lymphoid Toll-like receptor (TLR) expression profiles in T cells and macrophages. This results in a trend toward an altered activation of nuclear factor κB (NF-κB), TANK-binding kinase 1 (TBK1), and interferon regulatory factor 3 (IRF3). The subsequent type I and III IFN responses result in preferential induction of peripheral ISG responses. Following this initial innate immune activation, peripheral expression of the HIV-1 restriction factor SAM domain- and HD domain-containing protein 1 (SAMHD1) returns to levels below those observed in uninfected mice, suggesting that HIV-1 interferes with their basal expression. However, peripheral cells still retain their responsiveness to exogenous type I IFN, whereas splenic cells show a reduction in select ISGs in response to IFN. This demonstrates the highly dynamic nature of very early HIV-1 infection and suggests that blocks to the induction of HIV-1 restriction factors contribute to the establishment of viral persistence.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) infection is restricted to humans and some nonhuman primates (e.g., chimpanzee and gorilla). Alternative model systems based on simian immunodeficiency virus (SIV) infection of macaques are available but do not recapitulate all aspects of HIV-1 infection and disease. Humanized mice, which contain a human immune system, can be used to study HIV-1, but only limited information on early events and immune responses is available to date. Here, we describe very early immune responses to HIV-1 and demonstrate a suppression of cell-intrinsic innate immunity. Furthermore, we show that HIV-1 infection interacts differently with innate immune responses in blood and lymphoid organs.
Collapse
|
8
|
MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa. J Acquir Immune Defic Syndr 2017; 74:e67-e74. [PMID: 27552154 DOI: 10.1097/qai.0000000000001167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Population Council's microbicide gel MZC (also known as PC-1005) containing MIV-150 and zinc acetate dihydrate (ZA) in carrageenan (CG) has shown promise as a broad-spectrum microbicide against HIV, herpes simplex virus (HSV), and human papillomavirus. Previous data show antiviral activity against these viruses in cell-based assays, prevention of vaginal and rectal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection, and reduction of vaginal HSV shedding in rhesus macaques and also excellent antiviral activity against HSV and human papillomavirus in murine models. Recently, we demonstrated that MZC is safe and effective against SHIV-RT in macaque vaginal explants. Here we established models of ex vivo SHIV-RT/HSV-2 coinfection of vaginal mucosa and SHIV-RT infection of rectal mucosa in macaques (challenge of rectal mucosa with HSV-2 did not result in reproducible tissue infection), evaluated antiviral activity of MZC, and compared quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay readouts for monitoring SHIV-RT infection. MZC (at nontoxic dilutions) significantly inhibited SHIV-RT in vaginal and rectal mucosas and HSV-2 in vaginal mucosa when present during viral challenge. Analysis of SHIV-RT infection and MZC activity by 1-step simian immunodeficiency virus gag quantitative RT-PCR and p27 enzyme-linked immunosorbent assay demonstrated similar virus growth dynamics and MZC activity by both methods and higher sensitivity of quantitative RT-PCR. Our data provide more evidence that MZC is a promising dual compartment multipurpose prevention technology candidate.
Collapse
|
9
|
Ñahui Palomino RA, Zicari S, Vanpouille C, Vitali B, Margolis L. Vaginal Lactobacillus Inhibits HIV-1 Replication in Human Tissues Ex Vivo. Front Microbiol 2017; 8:906. [PMID: 28579980 PMCID: PMC5437121 DOI: 10.3389/fmicb.2017.00906] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/03/2017] [Indexed: 01/11/2023] Open
Abstract
Lactobacillus species, which dominate vaginal microbiota of healthy reproductive-age women, lower the risks of sexually transmitted infections, including the risk of human immunodeficiency virus (HIV) acquisition. The exact mechanisms of this protection remain to be understood. Here, we investigated these mechanisms in the context of human cervico-vaginal and lymphoid tissues ex vivo. We found that all six Lactobacillus strains tested in these systems significantly suppressed HIV type-1 (HIV-1) infection. We identified at least three factors that mediated this suppression: (i) Acidification of the medium. The pH of the undiluted medium conditioned by lactobacilli was between 3.8 and 4.6. Acidification of the culture medium with hydrochloric acid (HCl) to this pH in control experiments was sufficient to abrogate HIV-1 replication. However, the pH of the Lactobacillus-conditioned medium (CM) diluted fivefold, which reached ∼6.9, was also suppressive for HIV-1 infection, while in control experiments HIV-1 infection was not abrogated when the pH of the medium was brought to 6.9 through the use of HCl. This suggested the existence of other factors responsible for HIV-1 inhibition by lactobacilli. (ii) Lactic acid. There was a correlation between the concentration of lactic acid in the Lactobacillus-CM and its ability to suppress HIV-1 infection in human tissues ex vivo. Addition of lactic acid isomers D and L to tissue culture medium at the concentration that corresponded to their amount released by lactobacilli resulted in HIV-1 inhibition. Isomer L was produced in higher quantities than isomer D and was mostly responsible for HIV-1 inhibition. These results indicate that lactic acid, in particular its L-isomer, inhibits HIV-1 independently of lowering of the pH. (iii) Virucidal effect. Incubation of HIV-1 in Lactobacillus-CM significantly suppressed viral infectivity for human tissues ex vivo. Finally, lactobacilli adsorb HIV-1, serving as a sink decreasing the number of free virions. In summary, we found that lactobacilli inhibit HIV-1 replication in human tissue ex vivo by multiple mechanisms. Further studies are needed to evaluate the potential of altering the spectra of vaginal microbiota as an effective strategy to enhance vaginal health. Human tissues ex vivo may serve as a test system for these strategies.
Collapse
Affiliation(s)
- Rogers A Ñahui Palomino
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States.,Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Sonia Zicari
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States
| | - Christophe Vanpouille
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Leonid Margolis
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States
| |
Collapse
|
10
|
Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K. Seminal plasma induces inflammation and enhances HIV-1 replication in human cervical tissue explants. PLoS Pathog 2017; 13:e1006402. [PMID: 28542587 PMCID: PMC5453613 DOI: 10.1371/journal.ppat.1006402] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/01/2017] [Accepted: 05/06/2017] [Indexed: 12/16/2022] Open
Abstract
The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.
Collapse
Affiliation(s)
- Andrea Introini
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stéphanie Boström
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Frideborg Bradley
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gibbs
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Axel Glaessgen
- Department of Clinical Pathology and Cytology, Unilabs AB, Capio St Göran Hospital, Stockholm, Sweden
| | - Annelie Tjernlund
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Broliden
- Unit of Infectious Diseases, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K, Andersson E, Broliden K, Sandberg JK, Tjernlund A. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol 2017; 10:35-45. [PMID: 27049062 PMCID: PMC5053908 DOI: 10.1038/mi.2016.30] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
The female genital tract (FGT) mucosa is a critically important site for immune defense against microbes. Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population that recognizes microbial riboflavin metabolite antigens in an MR1-dependent manner. The role of MAIT cells in the FGT mucosa is unknown. Here, we found that MAIT cells and MR1+ antigen-presenting cells were present in the upper and lower FGT, with distinct tissue localization of MAIT cells in endometrium vs. cervix. The MAIT cells from the FGT and blood displayed a distinct phenotype with expression of interleukin (IL)-18Rα, CD127, α4β7, PD-1, as well as the transcription factors promyelocytic leukemia zinc finger (PLZF), RORγt, Helios, Eomes, and T-bet. Their expression levels of PLZF and Eomes were lower in the FGT compared with blood. When stimulated with Escherichia coli, MAIT cells from the FGT displayed a bias towards IL-17 and IL-22 expression, whereas blood MAIT cells produced primarily IFN-γ, TNF, and Granzyme B. Furthermore, both FGT- and blood-derived MAIT cells were polyfunctional and contributed to the T-cell-mediated response to E. coli. Thus, MAIT cells in the genital mucosa have a distinct IL-17/IL-22 profile and may have an important role in the immunological homeostasis and control of microbes at this site.
Collapse
Affiliation(s)
- Anna Gibbs
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Andrea Introini
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Klara Hasselrot
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
- Department of Obstetrics and Gynecology, Danderyd Hospital, 182 88 Stockholm, Sweden
| | - Emilia Andersson
- Clinical Pathology/Cytology, Capio St. Göran Hospital, Stockholm, Sweden
| | - Kristina Broliden
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Annelie Tjernlund
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Paquin-Proulx D, Gibbs A, Bächle SM, Checa A, Introini A, Leeansyah E, Wheelock CE, Nixon DF, Broliden K, Tjernlund A, Moll M, Sandberg JK. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1843-51. [PMID: 27481843 DOI: 10.4049/jimmunol.1600556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Anna Gibbs
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Susanna M Bächle
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Andrea Introini
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Kristina Broliden
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Annelie Tjernlund
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| |
Collapse
|