1
|
Pourvaziri A, Mroueh N, Cochran RL, Srinivas Rao S, Kambadakone A. Beyond Conventional CT: Role of Dual-Energy CT in Monitoring Response to Therapy in Abdominal Malignancies. Radiol Imaging Cancer 2025; 7:e240142. [PMID: 40249270 DOI: 10.1148/rycan.240142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In the era of precision medicine, imaging plays a critical role in evaluating treatment response to various oncologic therapies. For decades, conventional morphologic assessments using cross-sectional imaging have been the standard for monitoring the effectiveness of systemic and locoregional therapies in patients with cancer. However, the development of new functional imaging tools has widened the scope of imaging from mere response assessment to patient selection and outcome prediction. Dual-energy CT (DECT), known for its superior material differentiation capabilities, shows promise in enhancing treatment response evaluation. DECT-based iodine quantification methods are increasingly being investigated as surrogates for assessing tumor vascularity and physiology, which is particularly important in patients undergoing emerging targeted therapies. The purpose of this review article is to discuss the current and emerging role of DECT in assessing treatment response in patients with malignant abdominal tumors. Keywords: CT-Dual Energy, Transcatheter Tumor Therapy, Tumor Response, Iodine Uptake, Therapeutic Response © RSNA, 2025.
Collapse
Affiliation(s)
- Ali Pourvaziri
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Nayla Mroueh
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Rory L Cochran
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Shravya Srinivas Rao
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| |
Collapse
|
2
|
Collinson F, Royle KL, Swain J, Ralph C, Maraveyas A, Eisen T, Nathan P, Jones R, Meads D, Min Wah T, Martin A, Bestall J, Kelly-Morland C, Linsley C, Oughton J, Chan K, Theodoulou E, Arias-Pinilla G, Kwan A, Daverede L, Handforth C, Trainor S, Salawu A, McCabe C, Goh V, Buckley D, Hewison J, Gregory W, Selby P, Brown J, Brown J. Temporary treatment cessation compared with continuation of tyrosine kinase inhibitors for adults with renal cancer: the STAR non-inferiority RCT. Health Technol Assess 2024; 28:1-171. [PMID: 39250424 PMCID: PMC11403377 DOI: 10.3310/jwtr4127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Background There is interest in using treatment breaks in oncology, to reduce toxicity without compromising efficacy. Trial design A Phase II/III multicentre, open-label, parallel-group, randomised controlled non-inferiority trial assessing treatment breaks in patients with renal cell carcinoma. Methods Patients with locally advanced or metastatic renal cell carcinoma, starting tyrosine kinase inhibitor as first-line treatment at United Kingdom National Health Service hospitals. Interventions At trial entry, patients were randomised (1 : 1) to a drug-free interval strategy or a conventional continuation strategy. After 24 weeks of treatment with sunitinib/pazopanib, drug-free interval strategy patients took up a treatment break until disease progression with additional breaks dependent on disease response and patient choice. Conventional continuation strategy patients continued on treatment. Both trial strategies continued until treatment intolerance, disease progression on treatment, withdrawal or death. Objective To determine if a drug-free interval strategy is non-inferior to a conventional continuation strategy in terms of the co-primary outcomes of overall survival and quality-adjusted life-years. Co-primary outcomes For non-inferiority to be concluded, a margin of ≤ 7.5% in overall survival and ≤ 10% in quality-adjusted life-years was required in both intention-to-treat and per-protocol analyses. This equated to the 95% confidence interval of the estimates being above 0.812 and -0.156, respectively. Quality-adjusted life-years were calculated using the utility index of the EuroQol-5 Dimensions questionnaire. Results Nine hundred and twenty patients were randomised (461 conventional continuation strategy vs. 459 drug-free interval strategy) from 13 January 2012 to 12 September 2017. Trial treatment and follow-up stopped on 31 December 2020. Four hundred and eighty-eight (53.0%) patients [240 (52.1%) vs. 248 (54.0%)] continued on trial post week 24. The median treatment-break length was 87 days. Nine hundred and nineteen patients were included in the intention-to-treat analysis (461 vs. 458) and 871 patients in the per-protocol analysis (453 vs. 418). For overall survival, non-inferiority was concluded in the intention-to-treat analysis but not in the per-protocol analysis [hazard ratio (95% confidence interval) intention to treat 0.97 (0.83 to 1.12); per-protocol 0.94 (0.80 to 1.09) non-inferiority margin: 95% confidence interval ≥ 0.812, intention to treat: 0.83 > 0.812 non-inferior, per-protocol: 0.80 < 0.812 not non-inferior]. Therefore, a drug-free interval strategy was not concluded to be non-inferior to a conventional continuation strategy in terms of overall survival. For quality-adjusted life-years, non-inferiority was concluded in both the intention-to-treat and per-protocol analyses [marginal effect (95% confidence interval) intention to treat -0.05 (-0.15 to 0.05); per-protocol 0.04 (-0.14 to 0.21) non-inferiority margin: 95% confidence interval ≥ -0.156]. Therefore, a drug-free interval strategy was concluded to be non-inferior to a conventional continuation strategy in terms of quality-adjusted life-years. Limitations The main limitation of the study is the fewer than expected overall survival events, resulting in lower power for the non-inferiority comparison. Future work Future studies should investigate treatment breaks with more contemporary treatments for renal cell carcinoma. Conclusions Non-inferiority was shown for the quality-adjusted life-year end point but not for overall survival as pre-defined. Nevertheless, despite not meeting the primary end point of non-inferiority as per protocol, the study suggested that a treatment-break strategy may not meaningfully reduce life expectancy, does not reduce quality of life and has economic benefits. Although the treating clinicians' perspectives were not formally collected, the fact that clinicians recruited a large number of patients over a long period suggests support for the study and provides clear evidence that a treatment-break strategy for patients with renal cell carcinoma receiving tyrosine kinase inhibitor therapy is feasible. Trial registration This trial is registered as ISRCTN06473203. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment Programme (NIHR award ref: 09/91/21) and is published in full in Health Technology Assessment; Vol. 28, No. 45. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Fiona Collinson
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Kara-Louise Royle
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jayne Swain
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Christy Ralph
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Anthony Maraveyas
- Academic Oncology, Faculty of Health Sciences, Hull York Medical School, Queens Centre Oncology and Haematology, Hull, UK
| | - Tim Eisen
- Department of Oncology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Paul Nathan
- Department of Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Robert Jones
- School of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - David Meads
- Academic Unit of Health Economics, University of Leeds, Leeds, UK
| | - Tze Min Wah
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Adam Martin
- Academic Unit of Health Economics, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | | | - Jamie Oughton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Kevin Chan
- Medical Oncology, Weston Park Cancer Hospital, Sheffield, UK
| | - Elisavet Theodoulou
- Division of Clinical Medicine, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Gustavo Arias-Pinilla
- Division of Clinical Medicine, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Amy Kwan
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK
| | - Luis Daverede
- Department of Clinical Oncology, Austral University Hospital, Buenos Aires, Argentina
| | - Catherine Handforth
- Division of Clinical Medicine, University of Sheffield, Weston Park Hospital, Sheffield, UK
| | - Sebastian Trainor
- St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Abdulazeez Salawu
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK
| | | | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - David Buckley
- Faculty of Medicine and Health, School of Medicine, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Peter Selby
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Julia Brown
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Janet Brown
- Division of Clinical Medicine, University of Sheffield, Weston Park Hospital, Sheffield, UK
| |
Collapse
|
3
|
Dionese M, Pierantoni F, Bezzon E, Cumerlato E, Bimbatti D, Basso U, Maruzzo M, Zagonel V. Role of enhancement modifications in evaluating tumor response to immunotherapy in metastatic renal cell carcinoma. TUMORI JOURNAL 2023; 109:562-569. [PMID: 37501595 DOI: 10.1177/03008916231188157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Evaluation of tumor response according only to dimensional criteria may underestimate treatment benefit in patients treated for metastatic renal cell carcinoma (RCC). In this study we evaluated the role of lesion enhancement modifications and Choi criteria in patients affected by renal cell carcinoma treated with immunotherapy. METHODS We collected data of 60 consecutive patients (with a total of 154 measurable lesions) treated with immunotherapy (nivolumab or ipilimumab plus nivolumab) at a single Institution. We evaluated tumour response using both RECIST1.1 criteria and Choi criteria at the first radiological assessment; we subsequently associated response with progression free survival and overall survival. RESULTS Choi criteria found a higher rate of objective response compared to RECIST criteria (38.3% vs 18.3%). An objective response according to both criteria was associated with longer progression free survival and overall survival. Response rate for Choi did not vary according to lesion site. CONCLUSION Choi criteria seemed to be able to predict clinical benefit in a higher proportion of patients with renal cell carcinoma treated with immunotherapy than RECIST criteria. Partial response according to RECIST was confirmed as a predictor of longer progression-free survival and overall survival.
Collapse
Affiliation(s)
- Michele Dionese
- Oncology 1 Unit, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Francesco Pierantoni
- Department of Surgery, Oncology and Gastroenterology, University of Padua., Padua, Italy
- Oncology 3 Unit, Veneto Institute of Oncology, IOV - IRCCS, Castelfranco Veneto, Italy
| | - Elisabetta Bezzon
- Radiology Unit, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | | | - Davide Bimbatti
- Oncology 1 Unit, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Umberto Basso
- Oncology 1 Unit, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Marco Maruzzo
- Oncology 1 Unit, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Vittorina Zagonel
- Oncology 1 Unit, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| |
Collapse
|
4
|
Chakrabarty N, Mahajan A, Baheti AD, Choudhari A, Patil V, Popat P, Unde H. A Radiologist's Perspective on Treatment-Related Pseudoprogression: Clues and Hues. Indian J Med Paediatr Oncol 2022; 43:052-059. [DOI: 10.1055/s-0042-1742609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractPseudoprogression refers to the initial apparent increase in tumor burden observed on imaging after cancer therapy, with subsequent delayed response to the same treatment, thus giving a false initial appearance of disease progression. It is essential to differentiate pseudoprogression from true progression to prevent the patients from getting deprived of the benefits of their ongoing cancer therapy owing to their early withdrawal. It also affects their recruitment for clinical trials. Pseudoprogression, albeit uncommon, has been observed after various types of cancer therapy; however, this phenomenon has gained momentum of late due to the emergence of immunotherapy for the treatment of various malignancies. Besides immunotherapy, pseudoprogression has predominantly been of concern in a few patients after radiation therapy for brain tumors and metastasis, after molecular targeted therapy for a variety of tumors, and after chemotherapy in metastatic bone lesions. This article reviews the available data on imaging of pseudoprogression from various types of cancer therapies, highlighting ways to suspect or identify it on imaging.
Collapse
Affiliation(s)
- Nivedita Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Akshay D. Baheti
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Amit Choudhari
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vasundhara Patil
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Palak Popat
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Himangi Unde
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Hagen F, Peisen F, Spogis J, Mair A, Nikolaou K, Stenzl A, Kruck S, Bedke J, Kaufmann S, Thaiss WM. Is a single portal venous phase in contrast-enhanced CT sufficient to detect metastases or recurrence in clear cell renal cell carcinoma? – a single-center retrospective study. Cancer Imaging 2022; 22:9. [PMID: 35063030 PMCID: PMC8781093 DOI: 10.1186/s40644-022-00444-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aims at describing the imaging features of the metastatic presentation of clear cell renal cell carcinoma (ccRCC) in arterial (AP) and portal venous phase (PVP) of contrast-enhanced-computed-tomography (CECT) during clinical follow-up (FU) and to evaluate the necessity of a dual phase approach for metastasis detection. Methods We identified a total of 584 patients that were diagnosed with ccRCC between January 2016 and April 2020. Inclusion criteria were histologically proven ccRCC with metastatic spread, proven by histology or interim follow-up of at least 2 years and follow-up CT examination with AP and PVP CECT including thorax/abdomen and pelvis. Exclusion criteria were defined by missing or incomplete CT-scans or lack of sufficient follow-up. CT studies of 43 patients with histologically proven ccRCCs were analyzed in retrospect. AP and PVP images were analyzed by two radiologists for metastases, two additional independent radiologists analyzed PVP images only. A 5-point Likert scale was used to evaluate the likelihood off the presence of metastasis. Imaging patterns of the metastases were analyzed visually. Results 43 patients (16 female; mean age: 67±10 years) with recurrent ccRCC and metastatic disease were included. Three imaging patterns were observed (solid, heterogeneous or cystic metastases), which rarely exhibited calcifications (2%). All metastases showed hyperenhancement in AP and PVP. Inter-reader agreement was substantial (Fleiss’ κ 0.6–0.8, p<0.001). No significant differences in sensitivity or specificity between readers (AP and PVP images vs. PVP images only) were present (79.4-85.2%, 97.1-99.6%, p ≥ 0.05). The area under the receiver-operating-characteristic (ROC) curve was between 0.901and 0.922 for all four radiologists. Conclusions Similar rates for detection, sensitivity and specificity of metastasis and local recurrence in ccRCC were observed irrespective of using a dual-phase protocol with AP and PVP or a single PVP protocol only. Thus, a single-phase examination of PVP can be sufficient for experienced radiologists to detect metastatic disease in the follow-up of ccRCC patients.
Collapse
|
6
|
Cheng S, Jin Z, Xue H. Assessment of Response to Chemotherapy in Pancreatic Cancer with Liver Metastasis: CT Texture as a Predictive Biomarker. Diagnostics (Basel) 2021; 11:diagnostics11122252. [PMID: 34943489 PMCID: PMC8700536 DOI: 10.3390/diagnostics11122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we assess changes in CT texture of metastatic liver lesions after treatment with chemotherapy in patients with pancreatic cancer and determine if texture parameters correlate with measured time to progression (TTP). This retrospective study included 110 patients with pancreatic cancer with liver metastasis, and mean, entropy, kurtosis, skewness, mean of positive pixels, and standard deviation (SD) values were extracted during texture analysis. Response assessment was also obtained by using RECIST 1.1, Choi and modified Choi criteria, respectively. The correlation of texture parameters and existing assessment criteria with TTP were evaluated using Kaplan-Meier and Cox regression analyses in the training cohort. Kaplan-Meier curves of the proportion of patients without disease progression were significantly different for several texture parameters, and were better than those for RECIST 1.1-, Choi-, and modified Choi-defined response (p < 0.05 vs. p = 0.398, p = 0.142, and p = 0.536, respectively). Cox regression analysis showed that percentage change in SD was an independent predictor of TTP (p = 0.016) and confirmed in the validation cohort (p = 0.019). In conclusion, CT texture parameters have the potential to become predictive imaging biomarkers for response evaluation in pancreatic cancer with liver metastasis.
Collapse
|
7
|
Girot C, Volk A, Walczak C, Lassau N, Pitre-Champagnat S. New method for quantification of intratumoral heterogeneity: a feasibility study on K trans maps from preclinical DCE-MRI. MAGMA (NEW YORK, N.Y.) 2021; 34:845-857. [PMID: 34091826 DOI: 10.1007/s10334-021-00930-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022]
Abstract
OBJECT To develop new imaging biomarkers of therapeutic efficacy through the quantification of intratumoral microvascular heterogeneity. MATERIALS AND METHODS The described method was a combination of non-supervised clustering and extraction of intratumoral complexity features (ICF): number of non-connected objects, volume fraction. It was applied to a set of 3D DCE-MRI Ktrans maps acquired previously on tumor bearing mice prior to and on day 4 of anti-angiogenic treatment. Evolutions of ICF were compared to conventional summary statistics (CSS) and to heterogeneity related whole tumor texture features (TF) on treated (n = 9) and control (n = 6) mice. RESULTS Computed optimal number of clusters per tumor was 4. Several intratumoral features extracted from the clusters were able to monitor a therapy effect. Whereas no feature significantly changed for the control group, 6 features significantly changed for the treated group (4 ICF, 2 CSS). Among these, 5 also significantly differentiated the two groups (3 ICF, 2 CSS). TF failed in demonstrating differences within and between the two groups. DISCUSSION ICF are potential imaging biomarkers for anti-angiogenic therapy assessment. The presented method may be expected to have advantages with respect to texture analysis-based methods regarding interpretability of results and setup of standardized image analysis protocols.
Collapse
Affiliation(s)
- Charly Girot
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France.
| | - Andreas Volk
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| | - Christine Walczak
- Institut Curie, Inserm, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Nathalie Lassau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France.,Département de Radiologie, Gustave Roussy, 94805, Villejuif, France
| | - Stéphanie Pitre-Champagnat
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Gustave Roussy, 114 Rue Edouard Vaillant, 94805, Villejuif, France
| |
Collapse
|
8
|
Caruso M, Romeo V, Stanzione A, Buonerba C, Di Lorenzo G, Maurea S. Current Imaging Evaluation of Tumor Response to Advanced Medical Treatment in Metastatic Renal-Cell Carcinoma: Clinical Implications. APPLIED SCIENCES 2021; 11:6930. [DOI: 10.3390/app11156930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present review is focused on the role of diagnostic tomographic imaging such as computed tomography and magnetic resonance imaging to assess and predict tumor response to advanced medical treatments in metastatic renal cell carcinoma (RCC) patients. In this regard, antiangiogenic agents and immune checkpoint inhibitors (ICIs) have developed as advanced treatment options replacing the conventional therapy based on interferon-alpha and interleuchin-2 which had unfavorable toxicity profile and low response rates. In clinical practice, the imaging evaluation of treatment response in cancer patients is based on dimensional changes of tumor lesions in sequential scans; in particular, Response Evaluation Criteria in Solid Tumors (RECIST) have been defined for this purpose and also applied in patients with metastatic RCC. However, these new drugs with predominant cytostatic effect make RECIST insufficient to realize an adequate response imaging evaluation. Therefore, new imaging criteria (mCHOI and iRECIST) have been proposed to assess tumor response to advanced medical treatments of metastatic RCC, they correlate better than RECIST with the progression-free survival and overall survival. Finally, a potential role of radiomics and machine learning models has been suggested to predict tumor response.
Collapse
Affiliation(s)
- Martina Caruso
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via S. Pansini, 5, 80131 Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via S. Pansini, 5, 80131 Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via S. Pansini, 5, 80131 Naples, Italy
| | - Carlo Buonerba
- Regional Reference Center for Rare Tumors, Department of Oncology and Hematology, AOU “Federico II” of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Di Lorenzo
- Oncology Unit, Andrea Tortora Hospital, ASL Salerno, 84016 Pagani, Italy
- Vincenzo Tiberio, Department of Medicine & Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
9
|
Poon DMC, Chan CK, Chan K, Chu WH, Kwong PWK, Lam W, Law KS, Lee EKC, Liu PL, Sze HCK, Wong JHM, Chan ESY. Consensus statements on the management of metastatic renal cell carcinoma from the Hong Kong Urological Association and the Hong Kong Society of Uro-Oncology 2019. Asia Pac J Clin Oncol 2021; 17 Suppl 3:27-38. [PMID: 33860644 DOI: 10.1111/ajco.13581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND To establish a set of consensus statements for the management of metastatic renal cell carcinoma, a total of 12 urologists and clinical oncologists from two professional associations in Hong Kong formed an expert consensus panel. METHODS Through a series of meetings and using the modified Delphi method, the panelists presented recent evidence, discussed clinical experiences, and drafted consensus statements on several areas of focus regarding the management of metastatic renal cell carcinoma. Each statement was eventually voted upon by every panelist based on the practicability of recommendation. RESULTS A total of 46 consensus statements were ultimately accepted and established by panel voting. CONCLUSIONS Derived from recent evidence and expert insights, these consensus statements were aimed at providing practical guidance to optimize metastatic renal cell carcinoma management and promote a higher standard of clinical care.
Collapse
Affiliation(s)
- Darren Ming-Chun Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong.,Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong
| | - Chun-Ki Chan
- Division of Urology, Department of Surgery, Princess Margaret Hospital, New Territories, Hong Kong
| | - Kuen Chan
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Wing-Hong Chu
- Suite 418, Central Building, 1 Pedder Street, Central, Hong Kong
| | | | - Wayne Lam
- Department of Surgery, Queen Mary Hospital, University of Hong Kong, Hong Kong Island, Hong Kong
| | - Ka-Suet Law
- Department of Oncology, Princess Margaret Hospital, New Territories, Hong Kong
| | - Eric Ka-Chai Lee
- Department of Clinical Oncology, Tuen Mun Hospital, New Territories, Hong Kong
| | - Pak-Ling Liu
- Department of Surgery, Caritas Medical Centre, Kowloon, Hong Kong
| | | | - Joseph Hon-Ming Wong
- Division of Urology, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong
| | | |
Collapse
|
10
|
Dercle L, Lu L, Schwartz LH, Qian M, Tejpar S, Eggleton P, Zhao B, Piessevaux H. Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. J Natl Cancer Inst 2021; 112:902-912. [PMID: 32016387 DOI: 10.1093/jnci/djaa017] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The authors sought to forecast survival and enhance treatment decisions for patients with liver metastatic colorectal cancer by using on-treatment radiomics signature to predict tumor sensitiveness to irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) alone (F) or in combination with cetuximab (FC). METHODS We retrospectively analyzed 667 metastatic colorectal cancer patients treated with F or FC. Computed tomography quality was classified as high (HQ) or standard (SD). Four datasets were created using the nomenclature (treatment) - (quality). Patients were randomly assigned (2:1) to training or validation sets: FCHQ: 78:38, FCSD: 124:62, FHQ: 78:51, FSD: 158:78. Four tumor-imaging biomarkers measured quantitative radiomics changes between standard of care computed tomography scans at baseline and 8 weeks. Using machine learning, the performance of the signature to classify tumors as treatment sensitive or treatment insensitive was trained and validated using receiver operating characteristic (ROC) curves. Hazard ratio and Cox regression models evaluated association with overall survival (OS). RESULTS The signature (area under the ROC curve [95% confidence interval (CI)]) used temporal decrease in tumor spatial heterogeneity plus boundary infiltration to successfully predict sensitivity to antiepidermal growth factor receptor therapy (FCHQ: 0.80 [95% CI = 0.69 to 0.94], FCSD: 0.72 [95% CI = 0.59 to 0.83]) but failed with chemotherapy (FHQ: 0.59 [95% CI = 0.44 to 0.72], FSD: 0.55 [95% CI = 0.43 to 0.66]). In cetuximab-containing sets, radiomics signature outperformed existing biomarkers (KRAS-mutational status, and tumor shrinkage by RECIST 1.1) for detection of treatment sensitivity and was strongly associated with OS (two-sided P < .005). CONCLUSIONS Radiomics response signature can serve as an intermediate surrogate marker of OS. The signature outperformed known biomarkers in providing an early prediction of treatment sensitivity and could be used to guide cetuximab treatment continuation decisions.
Collapse
Affiliation(s)
- Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA.,Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lin Lu
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Min Qian
- Department of Biostatistics, Columbia University Medical Center, New York, NY, USA
| | - Sabine Tejpar
- Molecular Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | | | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Hubert Piessevaux
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, UCLouvain Brussels, Brussels, Belgium
| |
Collapse
|
11
|
Roberto M, Botticelli A, Panebianco M, Aschelter AM, Gelibter A, Ciccarese C, Minelli M, Nuti M, Santini D, Laghi A, Tomao S, Marchetti P. Metastatic Renal Cell Carcinoma Management: From Molecular Mechanism to Clinical Practice. Front Oncol 2021; 11:657639. [PMID: 33968762 PMCID: PMC8100507 DOI: 10.3389/fonc.2021.657639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The therapeutic sc"enario of metastatic renal cell cancer (mRCC) has noticeably increased, ranging from the most studied molecular target therapies to those most recently introduced, up to immune checkpoint inhibitors (ICIs). The most recent clinical trials with an ICI-based combination of molecular targeted agents and ICI show how, by restoring an efficient immune response against cancer cells and by establishing an immunological memory, it is possible to obtain not only a better radiological response but also a longer progression-free and overall survival. However, the role of tyrosine kinase inhibitors (TKIs) remains of fundamental importance, especially in patients who, for clinical characteristics, tumor burden and comorbidity, could have greater benefit from the use of TKIs in monotherapy rather than in combination with other therapies. However, to use these novel options in the best possible way, knowledge is required not only of the data from the large clinical trials but also of the biological mechanisms, molecular pathways, immunological mechanisms, and methodological issues related to both new response criteria and endpoints. In this complex scenario, we review the latest results of the latest clinical trials and provide guidance for overcoming the barriers to decision-making to offer a practical approach to the management of mRCC in daily clinical practice. Moreover, based on recent literature, we discuss the most innovative combination strategies that would allow us to achieve the best clinical therapeutic results.
Collapse
Affiliation(s)
- Michela Roberto
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Sant’Andrea, Rome, Italy
| | - Anna Maria Aschelter
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Sant’Andrea, Rome, Italy
| | - Alain Gelibter
- Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Chiara Ciccarese
- Department of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mauro Minelli
- Department of Medical Oncology, Azienda Ospedaliera San Giovanni Addolorata, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, University of Rome Sapienza Rome, Rome, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Andrea Laghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Colagrande S, Calistri L, Campani C, Dragoni G, Lorini C, Nardi C, Castellani A, Marra F. CT volume of enhancement of disease (VED) can predict the early response to treatment and overall survival in patients with advanced HCC treated with sorafenib. Eur Radiol 2021; 31:1608-1619. [PMID: 32827266 PMCID: PMC7880966 DOI: 10.1007/s00330-020-07171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To analyse the predictive value of the volume of enhancement of disease (VED), based on the CT arterial enhancement coefficient (ΔArt%), in the evaluation of the sorafenib response in patients with advanced hepatocellular carcinoma (HCC). METHODS Patients with sorafenib-treated advanced HCC, who underwent a multiphase contrast-enhanced CT before (T0) and after 60-70 days of starting therapy (T1), were included. The same target lesions utilised for the response evaluation according to modified Response Evaluation Criteria in Solid Tumors criteria were retrospectively used for the ΔArt% calculation ([(HUarterial phase - HUunenhanced phase) / HUunenhanced phase] × 100). ΔArt% was weighted for the lesion volume to obtain the VED. We compared VEDT0 and VEDT1 values in patients with clinical benefit (CB) or progressive disease (PD). The impact of VED, ancillary imaging findings, and blood chemistries on survival probability was evaluated. RESULTS Thirty-two patients (25 men, mean age 65.8 years) analysed between 2012 and 2016 were selected. At T1, 8 patients had CB and 24 had PD. VEDT0 was > 70% in 8/8 CB patients compared with 12/24 PD patients (p = 0.011). Patients with VEDT0 > 70% showed a significantly higher median survival than those with lower VEDT0 (451.5 days vs. 209.5 days, p = 0.032). Patients with VEDT0 > 70% and alpha-fetoproteinT0 ≤ 400 ng/ml had significantly longer survival than all other three combinations. In multivariate analysis, VEDT0 > 70% emerged as the only factor independently associated with survival (p = 0.037). CONCLUSION In patients with advanced HCC treated with sorafenib, VED is a novel radiologic parameter obtained by contrast-enhanced CT, which could be helpful in selecting patients who are more likely to respond to sorafenib, and with a longer survival. KEY POINTS • To achieve the best results of treatment with sorafenib in advanced HCC, a strict selection of patients is needed. • New radiologic parameters predictive of the response to sorafenib would be essential. • Volume of enhancement of disease (VED) is a novel radiologic parameter obtained by contrast-enhanced CT, which could be helpful in selecting patients who are more likely to respond to therapy, and with a longer survival.
Collapse
Affiliation(s)
- S Colagrande
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.
| | - L Calistri
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - C Campani
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - G Dragoni
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - C Lorini
- Department of Health Science, University of Florence, Viale Morgagni 48, 50134, Florence, Italy
| | - C Nardi
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - A Castellani
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - F Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
- Research Centre Denothe, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Valenzuela RF, Kundra V, Madewell JE, Costelloe CM. Advanced Imaging in Musculoskeletal Oncology: Moving Away From RECIST and Embracing Advanced Bone and Soft Tissue Tumor Imaging (ABASTI) - Part I - Tumor Response Criteria and Established Functional Imaging Techniques. Semin Ultrasound CT MR 2020; 42:201-214. [PMID: 33814106 DOI: 10.1053/j.sult.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
According to the Revised Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, the majority of bone metastases are considered to be nonmeasurable disease. Traditional response criteria rely on physical measurements. New criteria would be valuable if they incorporated newly developed imaging features in order to provide a more comprehensive assessment of oncological status. Advanced magnetic resonance imaging (MRI) sequences such as diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) with dynamic contrast-enhanced (DCE) perfusion imaging are reviewed in the context of the initial and post-therapeutic assessment of musculoskeletal tumors. Particular attention is directed to the pseudoprogression phenomenon in which a successfully treated tumor enlarges from the pretherapeutic baseline, followed by regression without a change in therapy.
Collapse
Affiliation(s)
- Raul Fernando Valenzuela
- The University of Texas MD Anderson Cancer Center, Department of Musculoskeletal Imaging, Houston, Texas.
| | - Vikas Kundra
- The University of Texas MD Anderson Cancer Center, Department of Musculoskeletal Imaging, Houston, Texas
| | - John E Madewell
- The University of Texas MD Anderson Cancer Center, Department of Musculoskeletal Imaging, Houston, Texas
| | - Colleen M Costelloe
- The University of Texas MD Anderson Cancer Center, Department of Musculoskeletal Imaging, Houston, Texas
| |
Collapse
|
14
|
Musaddaq B, Musaddaq T, Gupta A, Ilyas S, von Stempel C. Renal Cell Carcinoma: The Evolving Role of Imaging in the 21st Century. Semin Ultrasound CT MR 2020; 41:344-350. [DOI: 10.1053/j.sult.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Abstract
Patients with renal cell carcinoma may develop metastases after radical nephrectomy, and therefore monitoring with imaging for recurrent or metastatic disease is critical. Imaging varies with specific suspected site of disease. Computed tomography/MRI of the abdomen and pelvis are mainstay modalities. Osseous and central nervous system imaging is reserved for symptomatic patients. Radiologic reporting is evolving to reflect effects of systemic therapy on lesion morphology. Nuclear medicine studies compliment routine imaging as newer agents are evaluated for more accurate tumor staging. Imaging research aims to fill gaps in treatment selection and monitoring of treatment response in metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Soumya V L Vig
- Department of Radiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Elcin Zan
- Department of Radiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Stella K Kang
- Department of Radiology, NYU Langone Medical Center, New York, NY 10016, USA; Department of Population Health NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
16
|
Rubin DL, Ugur Akdogan M, Altindag C, Alkim E. ePAD: An Image Annotation and Analysis Platform for Quantitative Imaging. ACTA ACUST UNITED AC 2020; 5:170-183. [PMID: 30854455 PMCID: PMC6403025 DOI: 10.18383/j.tom.2018.00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medical imaging is critical for assessing the response of patients to new cancer therapies. Quantitative lesion assessment on images is time-consuming, and adopting new promising quantitative imaging biomarkers of response in clinical trials is challenging. The electronic Physician Annotation Device (ePAD) is a freely available web-based zero-footprint software application for viewing, annotation, and quantitative analysis of radiology images designed to meet the challenges of quantitative evaluation of cancer lesions. For imaging researchers, ePAD calculates a variety of quantitative imaging biomarkers that they can analyze and compare in ePAD to identify potential candidates as surrogate endpoints in clinical trials. For clinicians, ePAD provides clinical decision support tools for evaluating cancer response through reports summarizing changes in tumor burden based on different imaging biomarkers. As a workflow management and study oversight tool, ePAD lets clinical trial project administrators create worklists for users and oversee the progress of annotations created by research groups. To support interoperability of image annotations, ePAD writes all image annotations and results of quantitative imaging analyses in standardized file formats, and it supports migration of annotations from various propriety formats. ePAD also provides a plugin architecture supporting MATLAB server-side modules in addition to client-side plugins, permitting the community to extend the ePAD platform in various ways for new cancer use cases. We present an overview of ePAD as a platform for medical image annotation and quantitative analysis. We also discuss use cases and collaborations with different groups in the Quantitative Imaging Network and future directions.
Collapse
Affiliation(s)
- Daniel L Rubin
- Department of Biomedical Data Science, Radiology, and Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA
| | - Mete Ugur Akdogan
- Department of Biomedical Data Science, Radiology, and Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA
| | - Cavit Altindag
- Department of Biomedical Data Science, Radiology, and Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA
| | - Emel Alkim
- Department of Biomedical Data Science, Radiology, and Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA
| |
Collapse
|
17
|
Ma J, Dercle L, Lichtenstein P, Wang D, Chen A, Zhu J, Piessevaux H, Zhao J, Schwartz LH, Lu L, Zhao B. Automated Identification of Optimal Portal Venous Phase Timing with Convolutional Neural Networks. Acad Radiol 2020; 27:e10-e18. [PMID: 31151901 DOI: 10.1016/j.acra.2019.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To develop a deep learning-based algorithm to automatically identify optimal portal venous phase timing (PVP-timing) so that image analysis techniques can be accurately performed on post contrast studies. METHODS 681 CT-scans (training: 479 CT-scans; validation: 202 CT-scans) from a multicenter clinical trial in patients with liver metastases from colorectal cancer were retrospectively analyzed for algorithm development and validation. An additional external validation was performed on a cohort of 228 CT-scans from gastroenteropancreatic neuroendocrine cancer patients. Image acquisition was performed according to each centers' standard CT protocol for single portal venous phase, portal venous acquisition. The reference gold standard for the classification of PVP-timing as either optimal or nonoptimal was based on experienced radiologists' consensus opinion. The algorithm performed automated localization (on axial slices) of the portal vein and aorta upon which a novel dual input Convolutional Neural Network calculated a probability of the optimal PVP-timing. RESULTS The algorithm automatically computed a PVP-timing score in 3 seconds and reached area under the curve of 0.837 (95% CI: 0.765, 0.890) in validation set and 0.844 (95% CI: 0.786, 0.889) in external validation set. CONCLUSION A fully automated, deep-learning derived PVP-timing algorithm was developed to classify scans' contrast-enhancement timing and identify scans with optimal PVP-timing. The rapid identification of such scans will aid in the analysis of quantitative (radiomics) features used to characterize tumors and changes in enhancement with treatment in a multitude of settings including quantitative response criteria such as Choi and MASS which rely on reproducible measurement of enhancement.
Collapse
Affiliation(s)
- Jingchen Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032
| | - Laurent Dercle
- Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032; Gustave Roussy, Université Paris-Saclay, Université Paris-Saclay, Département D'imagerie Médicale, Villejuif, France
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032
| | - Deling Wang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Aiping Chen
- Department of Radiology, First Affiliated Hospital of NanJing Medical University, Nanjing, China
| | - Jianguo Zhu
- Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Jun Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032
| |
Collapse
|
18
|
Berger L, Mumtaz F. Will three-dimensional models change the way nephrometric scoring is carried out? BJU Int 2019; 124:898-899. [PMID: 31769141 DOI: 10.1111/bju.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Faiz Mumtaz
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Evaluating radiological response in pancreatic neuroendocrine tumours treated with sunitinib: comparison of Choi versus RECIST criteria (CRIPNET_ GETNE1504 study). Br J Cancer 2019; 121:537-544. [PMID: 31477779 PMCID: PMC6889276 DOI: 10.1038/s41416-019-0558-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The purpose of our study was to analyse the usefulness of Choi criteria versus RECIST in patients with pancreatic neuroendocrine tumours (PanNETs) treated with sunitinib. METHOD A multicentre, prospective study was conducted in 10 Spanish centres. Computed tomographies, at least every 6 months, were centrally evaluated until tumour progression. RESULTS One hundred and seven patients were included. Median progression-free survival (PFS) by RECIST and Choi were 11.42 (95% confidence interval [CI], 9.7-15.9) and 15.8 months (95% CI, 13.9-25.7). PFS by Choi (Kendall's τ = 0.72) exhibited greater correlation with overall survival (OS) than PFS by RECIST (Kendall's τ = 0.43). RECIST incorrectly estimated prognosis in 49.6%. Partial response rate increased from 12.8% to 47.4% with Choi criteria. Twenty-four percent of patients with progressive disease according to Choi had stable disease as per RECIST, overestimating treatment effect. Choi criteria predicted PFS/OS. Changes in attenuation occurred early and accounted for 21% of the variations in tumour volume. Attenuation and tumour growth rate (TGR) were associated with improved survival. CONCLUSION Choi criteria were able to capture sunitinib's activity in a clinically significant manner better than RECIST; their implementation in standard clinical practice shall be strongly considered in PanNET patients treated with this drug.
Collapse
|
20
|
Allen BC, Florez E, Sirous R, Lirette ST, Griswold M, Remer EM, Wang ZJ, Bieszczad JE, Cox KL, Goenka AH, Howard-Claudio CM, Kang HC, Nandwana SB, Sanyal R, Shinagare AB, Henegan JC, Storrs J, Davenport MS, Ganeshan B, Vasanji A, Rini B, Smith AD. Comparative Effectiveness of Tumor Response Assessment Methods: Standard of Care Versus Computer-Assisted Response Evaluation. JCO Clin Cancer Inform 2019; 1:1-16. [PMID: 30657391 DOI: 10.1200/cci.17.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To compare the effectiveness of metastatic tumor response evaluation with computed tomography using computer-assisted versus manual methods. MATERIALS AND METHODS In this institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study, 11 readers from 10 different institutions independently categorized tumor response according to three different therapeutic response criteria by using paired baseline and initial post-therapy computed tomography studies from 20 randomly selected patients with metastatic renal cell carcinoma who were treated with sunitinib as part of a completed phase III multi-institutional study. Images were evaluated with a manual tumor response evaluation method (standard of care) and with computer-assisted response evaluation (CARE) that included stepwise guidance, interactive error identification and correction methods, automated tumor metric extraction, calculations, response categorization, and data and image archiving. A crossover design, patient randomization, and 2-week washout period were used to reduce recall bias. Comparative effectiveness metrics included error rate and mean patient evaluation time. RESULTS The standard-of-care method, on average, was associated with one or more errors in 30.5% (6.1 of 20) of patients, whereas CARE had a 0.0% (0.0 of 20) error rate ( P < .001). The most common errors were related to data transfer and arithmetic calculation. In patients with errors, the median number of error types was 1 (range, 1 to 3). Mean patient evaluation time with CARE was twice as fast as the standard-of-care method (6.4 minutes v 13.1 minutes; P < .001). CONCLUSION CARE reduced errors and time of evaluation, which indicated better overall effectiveness than manual tumor response evaluation methods that are the current standard of care.
Collapse
Affiliation(s)
- Brian C Allen
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Edward Florez
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Reza Sirous
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Seth T Lirette
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Michael Griswold
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Erick M Remer
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Zhen J Wang
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Jacob E Bieszczad
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Kelly L Cox
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Ajit H Goenka
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Candace M Howard-Claudio
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Hyunseon C Kang
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Sadhna B Nandwana
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Rupan Sanyal
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Atul B Shinagare
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - J Clark Henegan
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Judd Storrs
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Matthew S Davenport
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Balaji Ganeshan
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Amit Vasanji
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Brian Rini
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| | - Andrew D Smith
- Brian C. Allen, Duke University Medical Center, Durham, NC; Edward Florez, Reza Sirous, Seth T. Lirette, Michael Griswold, Candace M. Howard-Claudio, J. Clark Henegan, Judd Storrs, and Andrew D. Smith, University of Mississippi Medical Center, Jackson, MS; Erick M. Remer and Brian Rini, The Cleveland Clinic; Amit Vasanji, ImageIQ, Cleveland; Jacob E. Bieszczad, University of Toledo Medical Center, Toledo, OH; Zhen J. Wang, University of California at San Francisco Medical Center, San Francisco, CA; Kelly L. Cox and Sadhna B. Nandwana, Emory University School of Medicine, Atlanta, GA; Ajit H. Goenka, The Mayo Clinic, Rochester, MN; Hyunseon C. Kang, University of Texas MD Anderson Cancer Center, Houston, TX; Rupan Sanyal, University of Alabama at Birmingham Medical Center, Birmingham, AL; Atul B. Shinagare, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard University, Boston, MA; Matthew S. Davenport, University of Michigan Health System, Ann Arbor, MI; and Balaji Ganeshan, University College of London, London, United Kingdom
| |
Collapse
|
21
|
Dercle L, Lu L, Lichtenstein P, Yang H, Wang D, Zhu J, Wu F, Piessevaux H, Schwartz LH, Zhao B. Impact of Variability in Portal Venous Phase Acquisition Timing in Tumor Density Measurement and Treatment Response Assessment: Metastatic Colorectal Cancer as a Paradigm. JCO Clin Cancer Inform 2019; 1:1-8. [PMID: 30657405 DOI: 10.1200/cci.17.00108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE New response patterns to anticancer drugs have led tumor size-based response criteria to shift to also include density measurements. Choi criteria, for instance, categorize antiangiogenic therapy response as a decrease in tumor density > 15% at the portal venous phase (PVP). We studied the effect that PVP timing has on measurement of the density of liver metastases (LM) from colorectal cancer (CRC). METHODS Pretreatment PVP computed tomography images from 291 patients with LM-CRC from the CRYSTAL trial (Cetuximab Combined With Irinotecan in First-Line Therapy for Metastatic Colorectal Cancer; ClinicalTrials.gov identifier: NCT00154102) were included. Four radiologists independently scored the scans' timing according to a three-point scoring system: early, optimal, late PVP. Using this, we developed, by machine learning, a proprietary computer-aided quality-control algorithm to grade PVP timing. The reference standard was a computer-refined consensus. For each patient, we contoured target liver lesions and calculated their mean density. RESULTS Contrast-product administration data were not recorded in the digital imaging and communications in medicine headers for injection volume (94%), type (93%), and route (76%). The PVP timing was early, optimal, and late in 52, 194, and 45 patients, respectively. The mean (95% CI) accuracy of the radiologists for detection of optimal PVP timing was 81.7% (78.3 to 85.2) and was outperformed by the 88.6% (84.8 to 92.4) computer accuracy. The mean ± standard deviation of LM-CRC density was 68 ± 15 Hounsfield units (HU) overall and 59.5 ± 14.9 HU, 71.4 ± 14.1 HU, 62.4 ± 12.5 HU at early, optimal, and late PVP timing, respectively. LM-CRC density was thus decreased at nonoptimal PVP timing by 14.8%: 16.7% at early PVP ( P < .001) and 12.6% at late PVP ( P < .001). CONCLUSION Nonoptimal PVP timing should be identified because it significantly decreased tumor density by 14.8%. Our computer-aided quality-control system outperformed the accuracy, reproducibility, and speed of radiologists' visual scoring. PVP-timing scoring could improve the extraction of tumor quantitative imaging biomarkers and the monitoring of anticancer therapy efficacy at the patient and clinical trial levels.
Collapse
Affiliation(s)
- Laurent Dercle
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lin Lu
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philip Lichtenstein
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hao Yang
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Deling Wang
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jianguo Zhu
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Feiyun Wu
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hubert Piessevaux
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lawrence H Schwartz
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Binsheng Zhao
- Laurent Dercle, Lin Lu, Philip Lichtenstein, Hao Yang, Jianguo Zhu, Feiyun Wu, Lawrence H. Schwartz, and Binsheng Zhao, Columbia University Medical Center, and Presbyterian Hospital, New York, NY; Laurent Dercle, Gustave Roussy, Université Paris-Saclay, UMR1015, Villejuif, France; Deling Wang, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong; State Key Laboratory of Oncology in South China, Hong Kong, Special Administrative Region, People's Republic of China; and Hubert Piessevaux, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
22
|
Izawa N, Sunakawa Y, Doi A, Arai H, Horie Y, Hirakawa M, Mizukami T, Ogura T, Tsuda T, Nakajima TE. Clinical Implications of Decreased Computed Tomography Value after Ramucirumab in Advanced Gastric Cancer. Oncology 2019; 97:94-101. [PMID: 31195391 DOI: 10.1159/000500326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate whether a decrease of computed tomography (CT) value for tumors serves as a predictive marker in patients with advanced gastric cancer (aGC) who have undergone chemotherapy with vascular epithelial growth factor receptor 2 inhibitor (ramucirumab). METHOD We retrospectively analyzed 44 patients with aGC who received taxane alone (TAX arm; n = 33), ramucirumab alone, or ramucirumab in combination with taxane (RAM arm; n = 11) as second-line or later chemotherapy between July 2010 and October 2016. In all patients, tumor size and tumor CT value were evaluated at two timepoints: pretreatment and first evaluation. We calculated the change of the tumors' CT value. The associations of these factors with tumor response, progression-free survival (PFS), and overall survival were investigated. RESULTS Ten (90.9%) of 11 patients in the RAM arm and 18 (54.5%) of 33 patients in the TAX arm showed decreased CT values. The rate of CT value change in the RAM arm (median -32.80%, range -53.63 to 6.84%) was higher than that in the TAX arm (median -0.44%, range -37.47 to 40.64%; p = 0.0005). When using the median value of CT value change as a cut-off, PFS was significantly longer in patients with a high rate of CT value change (decrease ≥32.80%) than in those with a low rate (decrease <32.80%) in the RAM arm (median 292 and 112 days; p = 0.045), while no significant difference of this kind was found in the TAX arm (median 91 and 125 days; p = 0.45). CONCLUSIONS Patients with aGC treated with ramucirumab experienced a significant decrease of CT value of tumors and had an association between the rate of CT value change and PFS. Our study suggests that CT value changes of tumors may be a predictor for the efficacy of ramucirumab in aGC.
Collapse
Affiliation(s)
- Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan,
| | - Ayako Doi
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Arai
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshiki Horie
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Mami Hirakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takuro Mizukami
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Ogura
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Tsuda
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
23
|
Evaluation of serum nitric oxide before and after local radiofrequency thermal ablation for hepatocellular carcinoma. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2012.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Maimaitiyiming Y, Yang C, Wang Y, Hussain L, Naranmandura H. Selection and characterization of novel DNA aptamer against colorectal carcinoma Caco-2 cells. Biotechnol Appl Biochem 2019; 66:412-418. [PMID: 30746785 DOI: 10.1002/bab.1737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Aptamers are short, single-stranded nucleic acid (DNA or RNA) oligonucleotides that can be obtained by a technique called systematic evolution of ligands by exponential enrichment (SELEX) in vitro. Due to superior properties such as small size, high binding affinity, and stability, they are considered to be feasible tools for diagnosis and treatment of disease. In the current study, we attempted to screen a high-affinity DNA aptamer to selectively target the colorectal carcinoma Caco-2 cells by using cell-based SELEX approach. After 14 consecutive rounds of selection, aptamer ApC1 was identified. Confocal microscopy results revealed that ApC1 could rapidly internalize into Caco-2 cells but not HEK 293 cells. Moreover, it showed high specificity to Caco-2 cells rather than other cell lines such as 293T, HeLa, MCF-7, HL-60, and NB4. Collectively, our results demonstrated that aptamer ApC1 has high specificity to colorectal carcinoma Caco-2 cells, which could be further applied for targeted therapy of colorectal cancer in future studies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Liaqat Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hua Naranmandura
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
25
|
Reginelli A, Clemente A, Cardone C, Urraro F, Izzo A, Martinelli E, Troiani T, Ciardiello F, Brunese L, Cappabianca S. Computed tomography densitometric study of anti-angiogenic effect of regorafenib in colorectal cancer liver metastasis. Future Oncol 2018; 14:2905-2913. [DOI: 10.2217/fon-2017-0687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: Regorafenib induces radiological changes in liver metastasis among patients with metastatic colorectal cancer (mCRC). The standard criteria used to evaluate solid tumor response (Response Evaluation Criteria in Solid Tumors) may be limited in assessing response to biologic agents with anti-angiogenic action. Patients & methods: A total of 67 hepatic lesions in 32 selected patients were analyzed to evaluate tumor attenuation as measured by Hounsfield unit (HU) and size changes. Results: Following two cycles of regorafenib, tumor HU values decreased in the in 73.1% (49/67) of lesions (average HU changes -25.6%) while tumor size increased in 64.2% (43/67) of them (average size changes +25.4%). Conclusion: The computed tomography density changes evaluation may be an additional tool, in combination with tumor sizing, to evaluate tumor response in patients treated with regorafenib.
Collapse
Affiliation(s)
- Alfonso Reginelli
- Department of Radiology & Radiotherapy, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, Piazza Miraglia 2, 80138 Naples, Italy
| | - Alfredo Clemente
- Department of Radiology & Radiotherapy, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, Piazza Miraglia 2, 80138 Naples, Italy
| | - Claudia Cardone
- Department of Medical Oncology, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, 80131 Naples, Italy
| | - Fabrizio Urraro
- Department of Radiology & Radiotherapy, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, Piazza Miraglia 2, 80138 Naples, Italy
| | - Andrea Izzo
- Department of Radiology & Radiotherapy, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, Piazza Miraglia 2, 80138 Naples, Italy
| | - Erika Martinelli
- Department of Medical Oncology, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, 80131 Naples, Italy
| | - Teresa Troiani
- Department of Medical Oncology, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, 80131 Naples, Italy
| | - Fortunato Ciardiello
- Department of Medical Oncology, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, 80131 Naples, Italy
| | - Luca Brunese
- Department of Medicine & Health Science ‘V Tiberio’, University of Molise, Campobasso, Italy
| | - Salvatore Cappabianca
- Department of Radiology & Radiotherapy, Department of Internal & Experimental Medicine ‘F Magrassi’, Università degli Studi della Campania ‘L Vanvitelli’, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
26
|
Rossi SH, Prezzi D, Kelly-Morland C, Goh V. Imaging for the diagnosis and response assessment of renal tumours. World J Urol 2018; 36:1927-1942. [PMID: 29948048 PMCID: PMC6280818 DOI: 10.1007/s00345-018-2342-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Imaging plays a key role throughout the renal cell carcinoma (RCC) patient pathway, from diagnosis and staging of the disease, to the assessment of response to therapy. This review aims to summarise current knowledge with regard to imaging in the RCC patient pathway, highlighting recent advances and challenges. METHODS A literature review was performed using Medline. Particular focus was paid to RCC imaging in the diagnosis, staging and response assessment following therapy. RESULTS Characterisation of small renal masses (SRM) remains a diagnostic conundrum. Contrast-enhanced ultrasound (CEUS) has been increasingly applied in this field, as have emerging technologies such as multiparametric MRI, radiomics and molecular imaging with 99mtechnetium-sestamibi single photon emission computed tomography/CT. CT remains the first-line modality for staging of locoregional and suspected metastatic disease. Although the staging accuracy of CT is good, limitations in determining nodal status persist. Response assessment following ablative therapies remains challenging, as reduction in tumour size may not occur. The pattern of enhancement on CT may be a more reliable indicator of treatment success. CEUS may also have a role in monitoring response following ablation. Response assessments following anti-angiogenic and immunotherapies in advanced RCC is an evolving field, with a number of alternative response criteria being proposed. Tumour response patterns may vary between different immunotherapy agents and tumour types; thus, future response criteria modifications may be inevitable. CONCLUSION The diagnosis and characterisation of SRM and response assessment following targeted therapy for advanced RCC are key challenges which warrant further research.
Collapse
Affiliation(s)
- Sabrina H Rossi
- Academic Urology Group, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Davide Prezzi
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Christian Kelly-Morland
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
- Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
| |
Collapse
|
27
|
Planz VB, Lubner MG, Pickhardt PJ. Volumetric analysis at abdominal CT: oncologic and non-oncologic applications. Br J Radiol 2018; 92:20180631. [PMID: 30457881 DOI: 10.1259/bjr.20180631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Volumetric analysis is an objective three-dimensional assessment of a lesion or organ that may more accurately depict the burden of complex objects compared to traditional linear size measurement. Small changes in linear size are amplified by corresponding changes in volume, which could have significant clinical implications. Though early methods of calculating volumes were time-consuming and laborious, multiple software platforms are now available with varying degrees of user-software interaction ranging from manual to fully automated. For the assessment of primary malignancy and metastatic disease, volumetric measurements have shown utility in the evaluation of disease burden prior to and following therapy in a variety of cancers. Additionally, volume can be useful in treatment planning prior to resection or locoregional therapies, particularly for hepatic tumours. The utility of CT volumetry in a wide spectrum of non-oncologic pathology has also been described. While clear advantages exist in certain applications, some data have shown that volume is not always the superior method of size assessment and the associated labor intensity may not be worthwhile. Further, lack of uniformity among software platforms is a challenge to widespread implementation. This review will discuss CT volumetry and its potential oncologic and non-oncologic applications in abdominal imaging, as well as advantages and limitations to this quantitative technique.
Collapse
Affiliation(s)
| | | | - Perry J Pickhardt
- 1 Department of Radiology, The University of Wisconsin School of Medicine & Public Health , Madison, WI , USA
| |
Collapse
|
28
|
Nishino M. Tumor Response Assessment for Precision Cancer Therapy: Response Evaluation Criteria in Solid Tumors and Beyond. Am Soc Clin Oncol Educ Book 2018; 38:1019-1029. [PMID: 30231378 DOI: 10.1200/edbk_201441] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective assessment of tumor responses and treatment results has been the basis for the advancement of cancer therapies, and imaging plays a key role to provide a "common language" to describe the results of cancer treatment. Although Response Evaluation Criteria in Solid Tumors (RECIST) has been the most widely accepted method for assessing tumor response in the past decades, the limitations of RECIST have increasingly becoming recognized, especially with the recent advances of precision-medicine approaches to cancer. This article reviews the current concept of tumor response evaluations based on RECIST, describes the limitations of RECIST, and proposes strategies to overcome the limitations. The article emphasizes specific limitations in the setting of precision cancer therapy and cancer immunotherapy and discusses the important insights provided by the cutting-edge investigations in the emerging fields.
Collapse
Affiliation(s)
- Mizuki Nishino
- From the Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
29
|
Wang Y, Huang K, Chen J, Luo Y, Zhang Y, Jia Y, Xu L, Chen M, Huang B, Ni D, Li ZP, Feng ST. Combined Volumetric and Density Analyses of Contrast-Enhanced CT Imaging to Assess Drug Therapy Response in Gastroenteropancreatic Neuroendocrine Diffuse Liver Metastasis. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6037273. [PMID: 30510495 PMCID: PMC6230417 DOI: 10.1155/2018/6037273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We propose a computer-aided method to assess response to drug treatment, using CT imaging-based volumetric and density measures in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and diffuse liver metastases. METHODS Twenty-five patients with GEP-NETs with diffuse liver metastases were enrolled. Pre- and posttreatment CT examinations were retrospectively analyzed. Total tumor volume (volume) and mean volumetric tumor density (density) were calculated based on tumor segmentation on CT images. The maximum axial diameter (tumor size) for each target tumor was measured on pre- and posttreatment CT images according to Response Evaluation Criteria In Solid Tumors (RECIST). Progression-free survival (PFS) for each patient was measured and recorded. RESULTS Correlation analysis showed inverse correlation between change of volume and density (Δ(V + D)), change of volume (ΔV), and change of tumor size (ΔS) with PFS (r = -0.653, P=0.001; r = -0.617, P=0.003; r = -0.548, P=0.01, respectively). There was no linear correlation between ΔD and PFS (r = -0.226, P=0.325). CONCLUSION The changes of volume and density derived from CT images of all lesions showed a good correlation with PFS and may help assess treatment response.
Collapse
Affiliation(s)
- Yi Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Kun Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingmei Jia
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ling Xu
- Faculty of Medicine and Dentistry, University of Western Australia, Perth 6009, Australia
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingsheng Huang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Godo S, Yoshida Y, Kawamorita N, Mitsuzuka K, Kawazoe Y, Fujita M, Kudo D, Nomura R, Shimokawa H, Kushimoto S. Life-threatening Hyperkalemia Associated with Axitinib Treatment in Patients with Recurrent Renal Carcinoma. Intern Med 2018; 57:2895-2900. [PMID: 29780111 PMCID: PMC6207819 DOI: 10.2169/internalmedicine.0262-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Axitinib has emerged as a promising antineoplastic agent for the treatment of advanced renal cell carcinoma. Although the administration of axitinib was well-tolerated in clinical trials, the real-world safety and tolerability remain unverified. We herein report a patient with metastatic renal cell carcinoma who suddenly developed life-threatening hyperkalemia following the initiation of axitinib treatment. Although hyperkalemia has been reported with an incidence of <10%, acute severe hyperkalemia may be a considerably critical adverse event of axitinib therapy, especially in patients with risk factors for hyperkalemia. An abundance of caution for unusual and unpredictable toxicities is warranted when using axitinib.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
| | - Yoshitaro Yoshida
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
| | - Naoki Kawamorita
- Department of Urology, Tohoku University Graduate School of Medicine, Japan
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University Graduate School of Medicine, Japan
| | - Yu Kawazoe
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
| | - Motoo Fujita
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
| | - Daisuke Kudo
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Ryosuke Nomura
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Shigeki Kushimoto
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Japan
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
31
|
Alhanafy A, Abdullah MS, Hafez H, Abbas H. Non Size Based Morphology Criteria for Assessment of Response in Patients with Liver Metastases of Gastrointestinal Origin Receiving Systemic Treatment. Asian Pac J Cancer Prev 2018; 19:1655-1660. [PMID: 29938450 PMCID: PMC6103575 DOI: 10.22034/apjcp.2018.19.6.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background and Aim: Liver is the main site of metastases of gastrointestinal cancers, chemotherapy with or without targeted therapy is the standard treatment. Radiologic assessment of tumor response is usually done by the use of Response Evaluation Criteria in Solid Tumor (RECIST) criteria. RECIST depends on tumor size changes but it does not address morphologic changes as overall attenuation, enhancement and tumor liver interface changes which may shown early before tumor size changes. We aimed to evaluate use of contrast enhanced computed tomography (CECT) new morphologic criteria in assessment of response in patients with hepatic metastases of gastrointestinal origin. Methods: This study was carried out by cooperation between Clinical Oncology and Nuclear Medicine and Radiodiagnosis Departments, Faculty of Medicine, Menoufia University. During the period from April 2015 to December 2016 forty patients with stage IV gastrointestinal cancers with hepatic metastases were included, CECT was done before and after systemic treatment, response evaluation was done by RECIST 1.1 and morphology response criteriac. Results: By RECIST, partial response (PR) observed in 57.5%, stable disease (SD) 22.5% and progressive disease (PD) in 20% of patients compared to Optimal response 42.5%, incomplete response 35% and no response in 22.5% of patients by Morphologic response criteria. Regarding survival, patients with PR had median survival of 20 months (95% CI, 17.988 to 22.012months) versus 11 months (95% CI, 1.235 to 8.580 months) in SD or PD by RECIST, (P=.002). while by morphology response criteria the median overall survival of optimally responded patients 23 months (95% CI, 20.04 to 27.81months) versus 16 months (95% CI, 5.590 to 5.044 months) in patients with incomplete or no morphologic response (P=.001). Conclusion: Morphologic response criteria are accurate method for assessment of response of hepatic metastases and correlated well with patients’ survival and better to be incorporated to treatment evaluation.
Collapse
Affiliation(s)
- Alshimaa Alhanafy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Sheben Elkom, Egypt.
| | | | | | | |
Collapse
|
32
|
Vernuccio F, Meyer M, Mileto A, Marin D. Use of Dual-Energy Computed Tomography for Evaluation of Genitourinary Diseases. Urol Clin North Am 2018; 45:297-310. [PMID: 30031456 DOI: 10.1016/j.ucl.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since its clinical inception a decade ago, dual-energy computed tomography has expanded the array of computed tomography imaging tools available to the practicing abdominal radiologist. Of note, diagnostic solutions for imaging-based evaluation of genitourinary diseases, foremost kidney calculi and renal tumors characterization, represent the apogee applications of dual-energy computed tomography in abdominal imaging. This article reviews clinical applications of dual-energy computed tomography for the assessment of genitourinary diseases.
Collapse
Affiliation(s)
- Federica Vernuccio
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA; Section of Radiology -Di.Bi.Med., University Hospital "Paolo Giaccone", University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Mathias Meyer
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, Box 357115, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
33
|
|
34
|
Abstract
Metastatic renal cell carcinoma (mRCC) is an incurable malignancy, characterized by its resistance to traditional chemotherapy, radiation, and hormonal therapy. Treatment perspectives and prognosis of patients with mRCC have been significantly improved by advances in the understanding of its molecular pathogenesis, which have led to the development of targeted therapeutics. Different molecular factors derived from the tumor or the host detected in both tissue or serum could be predictive of therapeutic benefit. Some of them suggest a rational selection of patients to be treated with certain therapies, though none have been validated for routine use. This article provides an overview of both clinical and molecular factors associated with predictive or prognostic value in mRCC and emphasizes that both should be considered in parallel to provide the most appropriate, individualized treatment and achieve the best outcomes in clinical practice.
Collapse
|
35
|
Dynamic contrast-enhanced ultrasonography (D-CEUS) for the early prediction of bevacizumab efficacy in patients with metastatic colorectal cancer. Eur Radiol 2018; 28:2969-2978. [PMID: 29417252 DOI: 10.1007/s00330-017-5254-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate early changes in tumour perfusion parameters by dynamic contrast-enhanced ultrasonography (D-CEUS) and to identify any correlation with survival and tumour response in patients with metastatic colorectal cancer (CRC) treated with bevacizumab (B). METHODS Thirty-seven patients randomized to either chemotherapy (C) plus B or C alone were considered for this study. D-CEUS was performed at baseline and after the first treatment cycle (day 15). Four D-CEUS perfusion parameters were considered: derived peak intensity (DPI), area under the curve (AUC), slope of wash-in (A) and time to peak intensity (TPI). RESULTS In patients treated with C plus B, a ≥22.5 % reduction in DPI, ≥20 % increase in TPI and ≥10 % reduction in AUC were correlated with higher progression-free survival in the C+B arm (p = 0.048, 0.024 and 0.010, respectively) but not in the C arm. None of the evaluated parameter modifications had a correlation with tumour response or overall survival. CONCLUSIONS D-CEUS could be useful for detecting and quantifying dynamic changes in tumour vascularity as early as 15 days after the start of B-based therapy. Although these changes may be predictive of progression-free survival, no correlation with response or overall survival was found. KEY POINTS • D-CEUS showed early changes in liver metastasis perfusion in colorectal cancer. • A decrease in tumour perfusion was associated with longer progression-free survival. • The decrease in perfusion was not correlated with higher overall survival.
Collapse
|
36
|
Arai H, Miyakawa K, Denda T, Mizukami T, Horie Y, Izawa N, Hirakawa M, Ogura T, Tsuda T, Sunakawa Y, Nakajima TE. Early morphological change for predicting outcome in metastatic colorectal cancer after regorafenib. Oncotarget 2017; 8:110530-110539. [PMID: 29299166 PMCID: PMC5746401 DOI: 10.18632/oncotarget.22807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVE It is unclear whether early morphological change (EMC) is a predictive marker for regorafenib in metastatic colorectal cancer (mCRC). Therefore, the present study investigated whether EMC can predict the outcome of mCRC patients receiving regorafenib. RESULTS This study evaluated 68 patients. Among 52 patients with lung metastasis, 16 (31%) had cavity formation (CF). The median progression-free survival (PFS) and overall survival (OS) in patients with/without CF were 4.2/2.4 months (p<0.01) and 9.2/6.5 months (p=0.09), respectively. Among 45 patients with liver metastasis, 14 (31%) had active morphological response (MR). The median PFS and OS in patients with/without active MR were 5.3/2.4 months (p<0.01) and 13.6/6.9 months (p=0.02), respectively. Overall, 25 patients (37%) had EMC. The median PFS and OS in patients with/without EMC were 5.3/2.1 months (p<0.01) and 13.3/6.1 months (p<0.01), respectively. MATERIALS AND METHODS This retrospective study included mCRC patients with lung and/or liver metastases receiving regorafenib. CF in lung metastasis and MR in liver metastasis were evaluated at the first post-treatment computed tomography scan. EMC was determined as CF and/or active MR. We compared PFS and OS between patients with and those without EMC. CONCLUSIONS EMC could be a useful predictive marker for regorafenib in mCRC.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kunihisa Miyakawa
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tadamichi Denda
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Takuro Mizukami
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshiki Horie
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Mami Hirakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Ogura
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takashi Tsuda
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
37
|
Fournier L, Bellucci A, Vano Y, Bouaboula M, Thibault C, Elaidi R, Oudard S, Cuenod C. Imaging Response of Antiangiogenic and Immune-Oncology Drugs in Metastatic Renal Cell Carcinoma (mRCC): Current Status and Future Challenges. KIDNEY CANCER 2017; 1:107-114. [PMID: 30334012 PMCID: PMC6179123 DOI: 10.3233/kca-170011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report aims to review criteria which have been proposed for treatment evaluation in mRCC under anti-angiogenic and immune-oncologic therapies and discuss future challenges for imagers. RECIST criteria seem to only partially reflect the clinical benefit derived from anti-angiogenic drugs in mRCC. New methods of analysis propose to better evaluate response to these drugs, including a new threshold for size criteria (-10%), attenuation (Choi and modified Choi criteria), functional imaging techniques (perfusion CT, ultrasound or MRI), and new PET radiotracers. Imaging of progression is one of the main future challenges facing imagers. It is progression and not response that will trigger changes in therapy, therefore it is tumour progression that should be identified by imaging techniques to guide the oncologist on the most appropriate time to change therapy. Yet little is known on dynamics of tumour progression, and much data still needs to be accrued to understand it. Finally, as immunotherapies develop, flare or pseudo-progression phenomena are observed. Studies need to be performed to determine whether imaging can distinguish between patients undergoing pseudo-progression for which therapy should be continued, or true progression for which the treatment must be changed.
Collapse
Affiliation(s)
- Laure Fournier
- Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Radiology Department, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, INSERM UMRS970, Paris, France
| | - Alexandre Bellucci
- Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Radiology Department, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, INSERM UMRS970, Paris, France
| | - Yann Vano
- Université Paris Descartes Sorbonne Paris Cité, INSERM UMRS970, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Oncology Department, Paris, France
| | - Mehdi Bouaboula
- Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Radiology Department, Paris, France
| | - Constance Thibault
- Université Paris Descartes Sorbonne Paris Cité, INSERM UMRS970, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Oncology Department, Paris, France
| | - Reza Elaidi
- ARTIC (Association pour la Recherche sur les Thérapeutique Innovantes en Cancérologie), Paris, France
| | - Stephane Oudard
- Université Paris Descartes Sorbonne Paris Cité, INSERM UMRS970, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Oncology Department, Paris, France
| | - Charles Cuenod
- Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Radiology Department, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, INSERM UMRS970, Paris, France
| |
Collapse
|
38
|
Occurrence and significance of morphologic changes in patients with metastatic triple negative breast cancer treated with Cabozantinib. Clin Imaging 2017; 48:44-47. [PMID: 29028513 DOI: 10.1016/j.clinimag.2017.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To compare performance of RECIST1.1 and Choi criteria in assessment of patients with metastatic triple-negative breast cancer treated with cabozantinib. METHODS Thirty patients with metastatic triple-negative breast cancer enrolled in phase 2 clinical trial received cabozantinib. Clinical benefit rates assessed by prospectively determined RECIST1.1 and retrospectively assessed Choi criteria were compared. RESULTS Decreased tumor density (≥15%) at first follow-up was seen in 22/30(73%) patients. CBR was 40% (95%CI:23-59%) by RECIST1.1, and 73% (95%CI:54-88%) by Choi (NPV=100%, 95%CI:63-100%; PPV=55%, 95%CI:32-76%). CONCLUSIONS Morphologic changes are seen in the majority of patients treated with cabozantinib, making Choi criteria valuable in response assessment.
Collapse
|
39
|
Cai W, Chen QY, Dang LH, Luesch H. Apratoxin S10, a Dual Inhibitor of Angiogenesis and Cancer Cell Growth To Treat Highly Vascularized Tumors. ACS Med Chem Lett 2017; 8:1007-1012. [PMID: 29057042 DOI: 10.1021/acsmedchemlett.7b00192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022] Open
Abstract
Renal, hepatocellular, and neuroendocrine carcinomas are known as highly vascularized tumors. Although vascular endothelial growth factor A (VEGF-A)-targeted therapies have shown efficacy in the treatment of these cancers, drug resistance is a major concern and might be mediated by interleukin 6 (IL-6). Furthermore, upon antiangiogenic drug exposure, tumor cells may adapt to survive in a vascular-independent manner. Apratoxins are potent marine-derived cytotoxic in vivo-active agents, preventing cotranslational translocation in the secretory pathway, and show promise to overcome resistance by targeting angiogenesis and tumor growth simultaneously. We designed and synthesized a novel apratoxin analogue, apratoxin S10, with a balanced potency and stability as well as synthetic accessibility and scalability. We showed that apratoxin S10 potently inhibits both angiogenesis in vitro and growth of cancer cells from vascularized tumors. Apratoxin S10 down-regulated vascular endothelial growth factor receptor 2 (VEGFR2) on endothelial cells and blocked the secretion of VEGF-A and IL-6 from cancer cells. It inhibited cancer cell growth through down-regulation of multiple receptor tyrosine kinases (RTKs) and compares favorably to currently approved RTK inhibitors in both angiogenesis and cancer cell growth.
Collapse
Affiliation(s)
- Weijing Cai
- Department
of Medicinal Chemistry, ‡Center for Natural Products, Drug Discovery
and Development (CNPD3), and ∥Department of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department
of Medicinal Chemistry, ‡Center for Natural Products, Drug Discovery
and Development (CNPD3), and ∥Department of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Long H. Dang
- Department
of Medicinal Chemistry, ‡Center for Natural Products, Drug Discovery
and Development (CNPD3), and ∥Department of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry, ‡Center for Natural Products, Drug Discovery
and Development (CNPD3), and ∥Department of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
40
|
Lebastchi AH, Watson MJ, Russell CM, George AK, Weizer AZ, Turkbey B. Using Imaging to Predict Treatment Response in Genitourinary Malignancies. Eur Urol Focus 2017; 4:804-817. [PMID: 28918178 DOI: 10.1016/j.euf.2017.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
CONTEXT Over the previous2 decades, there have been numerous advancements in the diagnostic evaluation, therapeutic management, and postoperative assessment of genitourinary malignancies. OBJECTIVE To present a review of current and novel imaging modalities and their utility in the assessment of therapeutic response in the systemic management of renal, testicular, and prostate cancers. EVIDENCE ACQUISITION A PubMed/Medline search of the current published literature inclusive of prospective and retrospective original research, systematic reviews, and meta-analyses was conducted evaluating imaging modalities for renal cell carcinoma, prostate cancer, and testicular cancer. All relevant literature was individually reviewed and summarized to provide a concise description of the currently available imaging modalities and their efficacy in assessing treatment response of the genitourinary malignancies targeted in this review. EVIDENCE SYNTHESIS Conventional imaging techniques play a pivotal role in predicting the treatment response of genitourinary malignancies and have, therefore, been incorporated into clinical guidelines. Advancements in imaging technology have led to increased utilization for prognostication of a genitourinary cancer's response to therapy. CONCLUSIONS A good understanding of current recommended imaging techniques to evaluate treatment response in genitourinary malignancies is of paramount importance for today's clinician, who faces increasing treatment modalities. PATIENT SUMMARY In this review, we summarize available imaging modalities in the evaluation of treatment response in kidney, prostate, or testicular tumors. We believe that a good understanding of current imaging modalities is of paramount importance for healthcare providers treating these cancers.
Collapse
Affiliation(s)
- Amir H Lebastchi
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Watson
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Arvin K George
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Baris Turkbey
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
41
|
Robinson SP, Boult JKR, Vasudev NS, Reynolds AR. Monitoring the Vascular Response and Resistance to Sunitinib in Renal Cell Carcinoma In Vivo with Susceptibility Contrast MRI. Cancer Res 2017; 77:4127-4134. [PMID: 28566330 PMCID: PMC6175052 DOI: 10.1158/0008-5472.can-17-0248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022]
Abstract
Antiangiogenic therapy is efficacious in metastatic renal cell carcinoma (mRCC). However, the ability of antiangiogenic drugs to delay tumor progression and extend survival is limited, due to either innate or acquired drug resistance. Furthermore, there are currently no validated biomarkers that predict which mRCC patients will benefit from antiangiogenic therapy. Here, we exploit susceptibility contrast MRI (SC-MRI) using intravascular ultrasmall superparamagnetic iron oxide particles to quantify and evaluate tumor fractional blood volume (fBV) as a noninvasive imaging biomarker of response to the antiangiogenic drug sunitinib. We also interrogate the vascular phenotype of RCC xenografts exhibiting acquired resistance to sunitinib. SC-MRI of 786-0 xenografts prior to and 2 weeks after daily treatment with 40 mg/kg sunitinib revealed a 71% (P < 0.01) reduction in fBV in the absence of any change in tumor volume. This response was associated with significantly lower microvessel density (P < 0.01) and lower uptake of the perfusion marker Hoechst 33342 (P < 0.05). The average pretreatment tumor fBV was negatively correlated (R2 = 0.92, P < 0.0001) with sunitinib-induced changes in tumor fBV across the cohort. SC-MRI also revealed suppressed fBV in tumors that acquired resistance to sunitinib. In conclusion, SC-MRI enabled monitoring of the antiangiogenic response of 786-0 RCC xenografts to sunitinib, which revealed that pretreatment tumor fBV was found to be a predictive biomarker of subsequent reduction in tumor blood volume in response to sunitinib, and acquired resistance to sunitinib was not associated with a parallel increase in tumor blood volume. Cancer Res; 77(15); 4127-34. ©2017 AACR.
Collapse
Affiliation(s)
- Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom.
| | - Jessica K R Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Naveen S Vasudev
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Andrew R Reynolds
- Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Early Clinical Development, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
42
|
Matoori S, Thian Y, Koh DM, Sohaib A, Larkin J, Pickering L, Gutzeit A. Contrast-Enhanced CT Density Predicts Response to Sunitinib Therapy in Metastatic Renal Cell Carcinoma Patients. Transl Oncol 2017; 10:679-685. [PMID: 28672196 PMCID: PMC5496476 DOI: 10.1016/j.tranon.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/27/2022] Open
Abstract
The first-line therapy in metastatic renal cell carcinoma (mRCC), sunitinib, exhibits an objective response rate of approximately 30%. Therapeutic alternatives such as other tyrosine kinase inhibitors, VEGF inhibitors, or mTOR inhibitors emphasize the clinical need to predict the patient's response to sunitinib therapy before treatment initiation. In this study, we evaluated the prognostic value of pretreatment portal venous phase contrast-enhanced computed tomography (CECT) mean tumor density on overall survival (OS), progression-free survival (PFS), and tumor growth in 63 sunitinib-treated mRCC patients. Higher pretreatment CECT tumor density was associated with longer PFS and OS [hazard ratio (HR)=0.968, P=.002, and HR=0.956, P=.001, respectively], and CECT density was inversely correlated with tumor growth (P=.010). Receiver operating characteristic analysis identified two CECT density cut-off values (63.67 HU, sensitivity 0.704, specificity 0.694; and 68.67 HU, sensitivity 0.593, specificity 0.806) which yielded subpopulations with significantly different PFS and OS (P<.001). Pretreatment CECT is therefore a promising noninvasive strategy for response prediction in sunitinib-treated mRCC patients, identifying patients who will derive maximum therapeutic benefit.
Collapse
Affiliation(s)
- Simon Matoori
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland; Clinical Research Group, Hirslanden Clinic St. Anna, St. Anna-Strasse 32, 6006 Luzern, Switzerland.
| | - Yeeliang Thian
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - Aslam Sohaib
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - James Larkin
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - Lisa Pickering
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - Andreas Gutzeit
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland; Clinical Research Group, Hirslanden Clinic St. Anna, St. Anna-Strasse 32, 6006 Luzern, Switzerland; Department of Radiology, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
43
|
CT Intensity Distribution Curve (Histogram) Analysis of Patients Undergoing Antiangiogenic Therapy for Metastatic Renal Cell Carcinoma. AJR Am J Roentgenol 2017; 209:W85-W92. [DOI: 10.2214/ajr.16.17651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Shinagare AB, Krajewski KM, Braschi-Amirfarzan M, Ramaiya NH. Advanced Renal Cell Carcinoma: Role of the Radiologist in the Era of Precision Medicine. Radiology 2017; 284:333-351. [DOI: 10.1148/radiol.2017160343] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Atul B. Shinagare
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| | - Katherine M. Krajewski
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| | - Marta Braschi-Amirfarzan
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| | - Nikhil H. Ramaiya
- From the Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215; and Department of Radiology, Brigham and Women’s Hospital, Boston, Mass
| |
Collapse
|
45
|
Abstract
OBJECTIVE We aimed to identify key principles of targeted therapy of protein kinases and their application to the management of solid tumors. BACKGROUND Concurrent advances in tumor genomic analysis and molecular inhibitor development have dramatically impacted the diagnosis and treatment of solid tumors, and common themes regarding the use of kinase inhibitors are developing. METHODS The list of kinase inhibitors that have been approved by the US Food and Drug Administration was reviewed and articles related to the agents were searched in the PubMed database up until December 2015. We included pivotal, randomized controlled phase 2 and 3 trials, and also pertinent preclinical studies. RESULTS Small molecule inhibitors targeted against driver kinases, overactive in selected subsets of solid tumors, elicit improved response rates and survival compared with standard chemotherapy. Disease control has been proven in the metastatic and, to a limited extent, the adjuvant setting. However, tumor eradication is rare, and duration of treatment response is limited by the development of drug resistance. CONCLUSIONS Kinase inhibitors induce response in diverse types of solid tumors. Although the agents are often effective in defined molecular subsets, cure is rare and resistance is common. This broad review provides rationale for further investigation of multimodality therapy combining kinase inhibitors with additional systemic and local therapies, including surgery.
Collapse
|
46
|
Kim SH, Park WS, Kim SH, Seo HK, Joung JY, Lee KH, Chung J. Initial computed tomography imaging details during first-line systemic therapy is of significant prognostic value in patients with naïve, unresectable metastatic renal cell carcinoma. PLoS One 2017; 12:e0177975. [PMID: 28562690 PMCID: PMC5451027 DOI: 10.1371/journal.pone.0177975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 05/05/2017] [Indexed: 01/13/2023] Open
Abstract
Purpose We aimed to determine the prognostic significance of computed tomography imaging parameters of unresectable primary renal tumor lesions, obtained at baseline and at first follow-up, on overall survival in naïve, unresectable metastatic renal cell carcinoma patients during first-line systemic therapy. Materials and methods Clinicopathological parameters of 56 patients treated between 2007 and 2015, including imaging parameters (such as the longest tumor diameter, necrotic area diameter, and attenuation in primary renal tumor lesions on baseline vs. follow-up computed tomography), were retrospectively reviewed to derive predictive factors of overall survival. The best overall response was measured according to the RECIST v1.1. Results The median treatment period was 206.3 days and the median follow-up was 14.6 months. Forty-four (78.6%) patients progressed after a median 4.6 months of progression-free survival, and 6 (10.7%) patients survived with a median overall survival of 12.5 months. Multivariate analysis showed that the baseline tumor diameter (hazard ratio [HR] 0.903) and mean attenuation (HR 0.936), change of tumor diameter (HR 0.714) and necrosis diameter (HR 0.861), change in the percentage of tumor diameter (HR 1.483) and of necrosis diameter (HR 1.028) between baseline and follow-up computed tomography images; treatment duration (HR 0.986) and baseline serum hemoglobin (HR 1.790) and albumin level (HR 0.060) were significant factors for overall survival (p<0.05). Conclusion The study showed that baseline and first follow-up computed tomography findings of primary renal lesions during first-line systemic therapy are useful and significant predictors of OS in patients with naïve unresectable mRCC.
Collapse
Affiliation(s)
- Sung Han Kim
- Department of Urology, Center for Prostate Cancer, National Cancer Center, Goyang, Korea
| | - Weon Seo Park
- Department of Pathology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Sun Ho Kim
- Department of Radiology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Ho Kyung Seo
- Department of Urology, Center for Prostate Cancer, National Cancer Center, Goyang, Korea
| | - Jae Young Joung
- Department of Urology, Center for Prostate Cancer, National Cancer Center, Goyang, Korea
| | - Kang Hyun Lee
- Department of Urology, Center for Prostate Cancer, National Cancer Center, Goyang, Korea
| | - Jinsoo Chung
- Department of Urology, Center for Prostate Cancer, National Cancer Center, Goyang, Korea
- * E-mail:
| |
Collapse
|
47
|
Abstract
Reignited by innovations in scanner engineering and software design, dual-energy computed tomography (CT) has come back into the clinical radiology arena in the last decade. Possibilities for noninvasive in vivo characterization of genitourinary disease, especially for renal stones and renal masses, have become the pinnacle offerings of dual-energy CT for body imaging in clinical practice. This article renders a state-of-the-art review on clinical applications of dual-energy CT in genitourinary imaging.
Collapse
Affiliation(s)
- Achille Mileto
- Department of Radiology, University of Washington School of Medicine, Box 357115, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Sennoga CA, Kanbar E, Auboire L, Dujardin PA, Fouan D, Escoffre JM, Bouakaz A. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 2016; 14:1031-1043. [DOI: 10.1080/17425247.2017.1266328] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Emma Kanbar
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | | | - Damien Fouan
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François Rabelais, Tours, France
| |
Collapse
|
49
|
Amin S, Bathe OF. Response biomarkers: re-envisioning the approach to tailoring drug therapy for cancer. BMC Cancer 2016; 16:850. [PMID: 27814715 PMCID: PMC5097425 DOI: 10.1186/s12885-016-2886-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The rapidly expanding arsenal of chemotherapeutic agents approved in the past 5 years represents significant progress in the field. However, this poses a challenge for oncologists to choose which drug or combination of drugs is best for any individual. Because only a fraction of patients respond to any drug, efforts have been made to devise strategies to personalize care. The majority of efforts have involved development of predictive biomarkers. While there are notable successes, there are no predictive biomarkers for most drugs. Moreover, predictive biomarkers enrich the cohort of individuals likely to benefit; they do not guarantee benefit. MAIN TEXT There is a need to devise alternate strategies to tailor cancer care. One alternative approach is to enhance the current adaptive approach, which involves administration of a drug and cessation of treatment once progression is documented. This currently involves radiographic tests for the most part, which are expensive, inconvenient and imperfect in their ability to categorize patients who are and are not benefiting from treatment. A biomarker approach to categorizing response may have advantages. CONCLUSION Herein, we discuss the state of the art on treatment response assessment. While the most mature technologies for response assessment involve radiographic tests such as CT and PET, reports are emerging on biomarkers used to monitor therapeutic efficacy. Potentially, response biomarkers represent a less expensive and more convenient means of monitoring therapy, although an ideal response biomarker has not yet been described. A framework for future response biomarker discovery is described.
Collapse
Affiliation(s)
- Shahil Amin
- Cumming School of Medicine, Faculty of Graduate Studies, University of Calgary, Calgary, Canada.,University of Calgary, Arnie Charbonneau Cancer Research Institute, Health Research Innovation Centre, 2AA-07, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Oliver F Bathe
- Department of Surgery, University of Calgary, Calgary, Canada. .,Department of Oncology, University of Calgary, Calgary, Canada. .,University of Calgary, Arnie Charbonneau Cancer Research Institute, Health Research Innovation Centre, 2AA-07, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada. .,Tom Baker Cancer Center, 1131 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
| |
Collapse
|
50
|
Smith AD, Zhang X, Bryan J, Souza F, Roda M, Sirous R, Zhang H, Vasanji A, Griswold M. Vascular Tumor Burden as a New Quantitative CT Biomarker for Predicting Metastatic RCC Response to Antiangiogenic Therapy. Radiology 2016; 281:484-498. [DOI: 10.1148/radiol.2016160143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|