1
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
2
|
Shahid MU, Frenkel Y, Kuc N, Golowa Y, Cynamon J. Transfemoral-Transcaval Liver Biopsy (TFTC) and Transjugular Liver Biopsy (TJLB) in Patients with Fontan-Associated Liver Disease (FALD). Cardiovasc Intervent Radiol 2024; 47:875-882. [PMID: 38816503 PMCID: PMC11239768 DOI: 10.1007/s00270-024-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To describe our experience in performing transfemoral-transcaval liver biopsy (TFTC) and transjugular liver biopsy (TJLB) in patients with Fontan-associated liver disease (FALD). METHODS A single-center, retrospective review of 23 TFTC and seven TJLB performed between August 2011 and May 2023 on patients who previously underwent the Fontan procedure (median age 23.1 years, ranging 11-43 years, 48% female). Patient demographics, laboratory values, pathology, radiology, and cardiology reports were reviewed. Liver explants were correlated with histopathological evaluation to determine sampling accuracy when available. RESULTS All biopsies achieved technical success (accurate targeting and safe tissue sample extraction) and histopathological success (yielding sufficient tissue for accurate diagnosis). Liver biopsies were performed during simultaneous cardiac catheterization in 28 of 30 (93%) procedures. There was no statistically significant change in hemoglobin, hematocrit, platelet count post-procedure, and fluoroscopy times. There was one major complication within the TJLB group and one minor complication within the TFTC group. CONCLUSION Transvenous liver biopsies, whether via transfemoral or transjugular route, may be safely performed in FALD patients while yielding samples with technical and histopathological success. The transfemoral approach, which is our preferred method; its compatibility with simultaneous cardiac catheterization and its potentially increased safety profile stemming from the avoidance of transversing the Fontan shunt-makes it a particular advantageous option in the management of FALD.
Collapse
Affiliation(s)
- Muhammad Usman Shahid
- Department of Interventional Radiology, University of Miami Miller School of Medicine, 1150 NW 14th Street, Miami, FL, 33136 , USA.
| | - Yosef Frenkel
- Division of Vascular and Interventional Radiology, Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| | - Norbert Kuc
- Division of Vascular and Interventional Radiology, Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| | - Yosef Golowa
- Division of Vascular and Interventional Radiology, Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| | - Jacob Cynamon
- Division of Vascular and Interventional Radiology, Department of Radiology, Montefiore Medical Center, 111 E 210th St, Bronx, NY, 10467, USA
| |
Collapse
|
3
|
Moura Cunha G, Fan B, Navin PJ, Olivié D, Venkatesh SK, Ehman RL, Sirlin CB, Tang A. Interpretation, Reporting, and Clinical Applications of Liver MR Elastography. Radiology 2024; 310:e231220. [PMID: 38470236 PMCID: PMC10982829 DOI: 10.1148/radiol.231220] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Boyan Fan
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Patrick J. Navin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Damien Olivié
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Sudhakar K. Venkatesh
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Richard L. Ehman
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Claude B. Sirlin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - An Tang
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| |
Collapse
|
4
|
Zerunian M, Masci B, Caruso D, Pucciarelli F, Polici M, Nardacci S, De Santis D, Iannicelli E, Laghi A. Liver Magnetic Resonance Elastography: Focus on Methodology, Technique, and Feasibility. Diagnostics (Basel) 2024; 14:379. [PMID: 38396418 PMCID: PMC10887609 DOI: 10.3390/diagnostics14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Magnetic resonance elastography (MRE) is an imaging technique that combines low-frequency mechanical vibrations with magnetic resonance imaging to create visual maps and quantify liver parenchyma stiffness. As in recent years, diffuse liver diseases have become highly prevalent worldwide and could lead to a chronic condition with different stages of fibrosis. There is a strong necessity for a non-invasive, highly accurate, and standardised quantitative assessment to evaluate and manage patients with different stages of fibrosis from diagnosis to follow-up, as the actual reference standard for the diagnosis and staging of liver fibrosis is biopsy, an invasive method with possible peri-procedural complications and sampling errors. MRE could quantitatively evaluate liver stiffness, as it is a rapid and repeatable method with high specificity and sensitivity. MRE is based on the propagation of mechanical shear waves through the liver tissue that are directly proportional to the organ's stiffness, expressed in kilopascals (kPa). To obtain a valid assessment of the real hepatic stiffness values, it is mandatory to obtain a high-quality examination. To understand the pearls and pitfalls of MRE, in this review, we describe our experience after one year of performing MRE from indications and patient preparation to acquisition, quality control, and image analysis.
Collapse
Affiliation(s)
- Marta Zerunian
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Benedetta Masci
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Damiano Caruso
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Francesco Pucciarelli
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Michela Polici
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Stefano Nardacci
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Domenico De Santis
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Elsa Iannicelli
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| |
Collapse
|
5
|
Bhuiyan EH, Ozkaya E, Kennedy P, Del Hoyo JL, Achkar BE, Thung S, Lewis S, Bane O, Taouli B. Magnetic resonance elastography for noninvasive detection of liver fibrosis: is there an added value of 3D acquisition? Abdom Radiol (NY) 2023; 48:3420-3429. [PMID: 37700185 DOI: 10.1007/s00261-023-04036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE (1) Assess the diagnostic performance of liver 3D magnetic resonance elastography (MRE) parameters (including stiffness, storage/loss modulus and damping ratio) compared to liver stiffness measured with 2D MRE for noninvasive detection of advanced liver fibrosis (F3-F4) and cirrhosis (F4) in patients with chronic liver disease. (2) Assess the value of serum markers (FIB-4) in detecting advanced liver fibrosis and cirrhosis in the same patients. METHODS This was a single center, prospective IRB-approved cross-sectional study that included 49 patients (M/F: 23/26, mean age 50.8 y) with chronic liver disease and concomitant liver biopsy. MRE was acquired at 1.5T using a spin echo-EPI sequence. The following parameters were measured: liver stiffness using 2D MRE (LS-2D) and 3D MRE parameters (LS-3D, liver storage, loss modulus and damping ratio). The Mann-Whitney U test, ROC curve analysis, Spearman correlation and logistic regression were performed to evaluate diagnostic performance of MRE parameters and FIB-4. RESULTS LS-2D and LS-3D had similar diagnostic performance for diagnosis of F3-F4, with AUCs of 0.87 and 0.88, sensitivity of 0.71 and 0.81, specificity of 0.89 for both. For diagnosis of F4, LS-2D and LS-3D had similar performance with AUCs of 0.81 for both, sensitivity of 0.75 and 0.83, and specificity of 0.84 and 0.73, respectively. Additional 3D parameters (storage modulus, loss modulus, damping ratio) had variable performance, with AUC range of 0.59-0.78 for F3-F4; and 0.52-0.70 for F4. FIB-4 had lower diagnostic performance, with AUCs of 0.66 for F3-F4, and 0.68 for F4. CONCLUSION Our study shows no added value of 3D MRE compared to 2D MRE for detection of advanced fibrosis and cirrhosis, while FIB-4 had lower diagnostic performance.
Collapse
Affiliation(s)
- Enamul H Bhuiyan
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Efe Ozkaya
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Lloret Del Hoyo
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bassam El Achkar
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swan Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Rabindranath M, Zaya R, Prayitno K, Orchanian-Cheff A, Patel K, Jaeckel E, Bhat M. A Comprehensive Review of Liver Allograft Fibrosis and Steatosis: From Cause to Diagnosis. Transplant Direct 2023; 9:e1547. [PMID: 37854023 PMCID: PMC10581596 DOI: 10.1097/txd.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Despite advances in posttransplant care, long-term outcomes for liver transplant recipients remain unchanged. Approximately 25% of recipients will advance to graft cirrhosis and require retransplantation. Graft fibrosis progresses in the context of de novo or recurrent disease. Recurrent hepatitis C virus infection was previously the most important cause of graft failure but is now curable in the majority of patients. However, with an increasing prevalence of obesity and diabetes and nonalcoholic fatty liver disease as the most rapidly increasing indication for liver transplantation, metabolic dysfunction-associated liver injury is anticipated to become an important cause of graft fibrosis alongside alloimmune hepatitis and alcoholic liver disease. To better understand the landscape of the graft fibrosis literature, we summarize the associated epidemiology, cause, potential mechanisms, diagnosis, and complications. We additionally highlight the need for better noninvasive methods to ameliorate the management of graft fibrosis. Some examples include leveraging the microbiome, genetic, and machine learning methods to address these limitations. Overall, graft fibrosis is routinely seen by transplant clinicians, but it requires a better understanding of its underlying biology and contributors that can help inform diagnostic and therapeutic practices.
Collapse
Affiliation(s)
- Madhumitha Rabindranath
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Rita Zaya
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Khairunnadiya Prayitno
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Keyur Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elmar Jaeckel
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Tsujita Y, Sofue K, Ueshima E, Ueno Y, Hori M, Murakami T. Clinical Application of Quantitative MR Imaging in Nonalcoholic Fatty Liver Disease. Magn Reson Med Sci 2023; 22:435-445. [PMID: 35584952 PMCID: PMC10552668 DOI: 10.2463/mrms.rev.2021-0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Viral hepatitis was previously the most common cause of chronic liver disease. However, in recent years, nonalcoholic fatty liver disease (NAFLD) cases have been increasing, especially in developed countries. NAFLD is histologically characterized by fat, fibrosis, and inflammation in the liver, eventually leading to cirrhosis and hepatocellular carcinoma. Although biopsy is the gold standard for the assessment of the liver parenchyma, quantitative evaluation methods, such as ultrasound, CT, and MRI, have been reported to have good diagnostic performances. The quantification of liver fat, fibrosis, and inflammation is expected to be clinically useful in terms of the prognosis, early intervention, and treatment response for the management of NAFLD. The aim of this review was to discuss the basics and prospects of MRI-based tissue quantifications of the liver, mainly focusing on proton density fat fraction for the quantification of fat deposition, MR elastography for the quantification of fibrosis, and multifrequency MR elastography for the evaluation of inflammation.
Collapse
Affiliation(s)
- Yushi Tsujita
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiko Ueno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masatoshi Hori
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
8
|
Tipirneni-Sajja A, Brasher S, Shrestha U, Johnson H, Morin C, Satapathy SK. Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms. MAGMA (NEW YORK, N.Y.) 2023; 36:529-551. [PMID: 36515810 DOI: 10.1007/s10334-022-01053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Quantitative magnetic resonance imaging (MRI) techniques are emerging as non-invasive alternatives to biopsy for assessment of diffuse liver diseases of iron overload, steatosis and fibrosis. For testing and validating the accuracy of these techniques, phantoms are often used as stand-ins to human tissue to mimic diffuse liver pathologies. However, currently, there is no standardization in the preparation of MRI-based liver phantoms for mimicking iron overload, steatosis, fibrosis or a combination of these pathologies as various sizes and types of materials are used to mimic the same liver disease. Liver phantoms that mimic specific MR features of diffuse liver diseases observed in vivo are important for testing and calibrating new MRI techniques and for evaluating signal models to accurately quantify these features. In this study, we review the liver morphology associated with these diffuse diseases, discuss the quantitative MR techniques for assessing these liver pathologies, and comprehensively examine published liver phantom studies and discuss their benefits and limitations.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA.
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sarah Brasher
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Utsav Shrestha
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Cara Morin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sanjaya K Satapathy
- Northwell Health Center for Liver Diseases and Transplantation, Northshore University Hospital/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
9
|
Jang W, Jo S, Song JS, Hwang HP, Kim SH. Correction to: Comparison of diffusion‑weighted imaging and MR elastography in staging liver fibrosis: a meta‑analysis. Abdom Radiol (NY) 2023; 48:2763-2768. [PMID: 37231220 DOI: 10.1007/s00261-023-03942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk, 54907, Korea
| | - Seongil Jo
- Department of Statistics, Inha University, Incheon, Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Korea.
- Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk, 54907, Korea.
| | - Hong Pil Hwang
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Seong-Hun Kim
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| |
Collapse
|
10
|
Obara M, Kwon J, Yoneyama M, Ueda Y, Cauteren MV. Technical Advancements in Abdominal Diffusion-weighted Imaging. Magn Reson Med Sci 2023; 22:191-208. [PMID: 36928124 PMCID: PMC10086402 DOI: 10.2463/mrms.rev.2022-0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Since its first observation in the 18th century, the diffusion phenomenon has been actively studied by many researchers. Diffusion-weighted imaging (DWI) is a technique to probe the diffusion of water molecules and create a MR image with contrast based on the local diffusion properties. The DWI pixel intensity is modulated by the hindrance the diffusing water molecules experience. This hindrance is caused by structures in the tissue and reflects the state of the tissue. This characteristic makes DWI a unique and effective tool to gain more insight into the tissue's pathophysiological condition. In the past decades, DWI has made dramatic technical progress, leading to greater acceptance in clinical practice. In the abdominal region, however, acquiring DWI with good quality is challenging because of several reasons, such as large imaging volume, respiratory and other types of motion, and difficulty in achieving homogeneous fat suppression. In this review, we discuss technical advancements from the past decades that help mitigate these problems common in abdominal imaging. We describe the use of scan acceleration techniques such as parallel imaging and compressed sensing to reduce image distortion in echo planar imaging. Then we compare techniques developed to mitigate issues due to respiratory motion, such as free-breathing, respiratory-triggering, and navigator-based approaches. Commonly used fat suppression techniques are also introduced, and their effectiveness is discussed. Additionally, the influence of the abovementioned techniques on image quality is demonstrated. Finally, we discuss the current and future clinical applications of abdominal DWI, such as whole-body DWI, simultaneous multiple-slice excitation, intravoxel incoherent motion, and the use of artificial intelligence. Abdominal DWI has the potential to develop further in the future, thanks to scan acceleration and image quality improvement driven by technological advancements. The accumulation of clinical proof will further drive clinical acceptance.
Collapse
Affiliation(s)
| | | | | | - Yu Ueda
- MR Clinical Science, Philips Japan Ltd
| | | |
Collapse
|
11
|
Schambeck JPL, Forte GC, Gonçalves LM, Stuker G, Kotlinski JBF, Tramontin G, Altmayer S, Watte G, Hochhegger B. Diagnostic accuracy of magnetic resonance elastography and point-shear wave elastography for significant hepatic fibrosis screening: Systematic review and meta-analysis. PLoS One 2023; 18:e0271572. [PMID: 36730265 PMCID: PMC9894488 DOI: 10.1371/journal.pone.0271572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/03/2022] [Indexed: 02/03/2023] Open
Abstract
The hepatic diseases are extremely common in clinical practice. The correct classification of liver fibrosis is extremely important, as it influences therapy and predicts disease outcomes. The purpose of this study is to compare the diagnostic performance of point-shear wave elastography (pSWE) and magnetic resonance elastography (MRE) in the hepatic fibrosis diagnostic. A meta-analysis was carried out based on articles published until October 2020. The articles are available at following databases: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Scientific Electronic Library Online, LILACS, Scopus, and CINAHL. Diagnostic performances were analyzed per METAVIR F2, using 3.5kPa as target fibrosis. Assessment of the methodological quality of the incorporated papers by the QUADAS-2 tool for pSWE and MRE. A total 2,153 studies articles were evaluated and 44 studies, comprising 6,081 patients with individual data, were included in the meta-analysis: 28 studies for pSWE and 16 studies for MRE. The pooled sensitivity and specificity were 0.86 (95%CI 0.80-0.90) and 0.88 (95%CI 0.85-0.91), respectively, for pSWE, compared with 0.94 (95%CI 0.89-0.97) and 0.95 (95%CI 0.89-0.98) respectively, for MRE. The pooled SROC curve for pSWE shows in the area under the curve (AUC) of 0.93 (95%CI 0.90-0.95), whereas the AUC for MRE was 0.98 (95%CI 0.96-0.99). The diagnostic odds ratio for pSWE and MRE were 41 (95%CI 24-72) and 293 (95%CI 86-1000), respectively. There was statistically significant heterogeneity for pSWE sensitivity (I² = 85.26, P<0.001) and specificity (I² = 89.46, P<0.001). The heterogeneity for MRE also was significant for sensitivity (I² = 73.28, P<0.001) and specificity (I² = 87.24, P<0.001). Therefore, both pSWE and MRE are suitable modalities for assessing liver fibrosis. In addition, MRE is a more accurate imaging technique than pSWE and can be used as alternative to invasive biopsy.
Collapse
Affiliation(s)
- João Paulo L. Schambeck
- Post-Graduate Program in Medicine and Health Science, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Radiology, Hospital São Lucas/Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriele C. Forte
- Departament of Radiology, Hospital São Lucas/Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Luana M. Gonçalves
- Post-Graduate Program in Medicine and Health Science, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Radiology, Hospital São Lucas/Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Stuker
- Departament of Radiology, Hospital São Lucas/Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - João Bruno F. Kotlinski
- Faculty of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giacomo Tramontin
- Departament of Radiology, Hospital São Lucas/Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Stephan Altmayer
- Post-Graduate Program in Medicine and Health Science, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Watte
- Department of Radiology, Medical Imaging Research Lab, LABIMED, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Hochhegger
- Post-Graduate Program in Medicine and Health Science, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Radiology, Hospital São Lucas/Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Radiology, Medical Imaging Research Lab, LABIMED, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Diagnostic Methods, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Hou J, Wong VWS, Qian Y, Jiang B, Chan AWH, Leung HHW, Wong GLH, Yu SCH, Chu WCW, Chen W. Detecting Early-Stage Liver Fibrosis Using Macromolecular Proton Fraction Mapping Based on Spin-Lock MRI: Preliminary Observations. J Magn Reson Imaging 2023; 57:485-492. [PMID: 35753084 DOI: 10.1002/jmri.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Liver fibrosis is characterized by macromolecule depositions. Recently, a novel technology termed macromolecular proton fraction quantification based on spin-lock magnetic resonance imaging (MPF-SL) is reported to measure macromolecule levels. HYPOTHESIS MPF-SL can detect early-stage liver fibrosis by measuring macromolecule levels in the liver. STUDY TYPE Retrospective. SUBJECTS Fifty-five participants, including 22 with no fibrosis (F0) and 33 with early-stage fibrosis (F1-2), were recruited. FIELD STRENGTH/SEQUENCE 3 T; two-dimensional (2D) MPF-SL turbo spin-echo sequence, 2D spin-lock T1rho turbo spin-echo sequence, and multi-slice 2D gradient echo sequence. ASSESSMENT Macromolecular proton fraction (MPF), T1rho, liver iron concentration (LIC), and fat fraction (FF) biomarkers were quantified within regions of interest. STATISTICAL TESTS Group comparison of the biomarkers using Mann-Whitney U tests; correlation between the biomarkers assessed using Spearman's rank correlation coefficient and linear regression with goodness-of-fit; fibrosis stage differentiation using receiver operating characteristic curve (ROC) analysis. P-value < 0.05 was considered statistically significant. RESULTS Average T1rho was 41.76 ± 2.94 msec for F0 and 41.15 ± 3.73 msec for F1-2 (P = 0.60). T1rho showed nonsignificant correlation with either liver fibrosis (ρ = -0.07; P = 0.61) or FF (ρ = -0.14; P = 0.35) but indicated a negative correlation with LIC (ρ = -0.66). MPF was 4.73 ± 0.45% and 5.65 ± 0.81% for F0 and F1-2 participants, respectively. MPF showed a positive correlation with liver fibrosis (ρ = 0.59), and no significant correlations with LIC (ρ = 0.02; P = 0.89) or FF (ρ = 0.05; P = 0.72). The area under the ROC curve was 0.85 (95% confidence interval [CI] 0.75-0.95) and 0.55 (95% CI 0.39-0.71; P = 0.55) for MPF and T1rho to discriminate between F0 and F1-2 fibrosis, respectively. DATA CONCLUSION MPF-SL has the potential to diagnose early-stage liver fibrosis and does not appear to be confounded by either LIC or FF. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Vincent W-S Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Yurui Qian
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Howard H-W Leung
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Grace L-H Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Simon C-H Yu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Winnie C-W Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Kim-Jun Teh K, Pik-Eu Chang J, Boon-Bee Goh G. Noninvasive assessment of liver disease severity: image-related. COMPREHENSIVE GUIDE TO HEPATITIS ADVANCES 2023:3-29. [DOI: 10.1016/b978-0-323-98368-6.00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Updates on Quantitative MRI of Diffuse Liver Disease: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1147111. [PMID: 36619303 PMCID: PMC9812615 DOI: 10.1155/2022/1147111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Diffuse liver diseases are highly prevalent conditions around the world, including pathological liver changes that occur when hepatocytes are damaged and liver function declines, often leading to a chronic condition. In the last years, Magnetic Resonance Imaging (MRI) is reaching an important role in the study of diffuse liver diseases moving from qualitative to quantitative assessment of liver parenchyma. In fact, this can allow noninvasive accurate and standardized assessment of diffuse liver diseases and can represent a concrete alternative to biopsy which represents the current reference standard. MRI approach already tested for other pathologies include diffusion-weighted imaging (DWI) and radiomics, able to quantify different aspects of diffuse liver disease. New emerging MRI quantitative methods include MR elastography (MRE) for the quantification of the hepatic stiffness in cirrhotic patients, dedicated gradient multiecho sequences for the assessment of hepatic fat storage, and iron overload. Thus, the aim of this review is to give an overview of the technical principles and clinical application of new quantitative MRI techniques for the evaluation of diffuse liver disease.
Collapse
|
15
|
Liu X, Zhou J, Zhu L, Zhang X, Li F. Diagnostic accuracy of apparent diffusion coefficient values combined with γ-glutamyl transpeptidase-to-platelet ratio parameters for predicting hepatitis B-related fibrosis. Clin Res Hepatol Gastroenterol 2022; 46:101968. [PMID: 35649482 DOI: 10.1016/j.clinre.2022.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The accuracy of non-invasive liver fibrosis diagnosis based on the apparent diffusion coefficient (ADC) value combined with the γ-glutamyl transpeptidase-to-platelet ratio (GPR) model to predict the stage of hepatitis B-related fibrosis has not been reported. This study aimed to evaluate the diagnostic efficacy of ADC value combined with GPR for liver fibrosis grading. METHODS The data of 180 patients with chronic hepatitis B (CHB) diagnosed by liver biopsy were analyzed. The ADC value, GPR, and their combination were assessed in different cirrhosis stages using receiver operating characteristic curve analysis to evaluate their value in diagnosing liver fibrosis. RESULTS We observed that liver fibrosis stages were inversely associated with ADC values (r=-0.691, P<0.001), and positively associated with GPR (r=0.502, P<0.001). The area under the curve for diagnostic efficacy of ADC values, GPR, and their combination for F≥2 liver fibrosis was 0.831, 0.749, and 0.858, respectively, and for F≥3 was 0.872, 0.771, and 0.903, respectively. The diagnostic cutoffs of the combination for each stage were -7.07, -12.21 and -37.75, respectively. CONCLUSIONS The combined diagnostic tool of ADC and GPR may improve the accuracy of hepatitis B-related liver fibrosis diagnosis, especially for F≥3.
Collapse
Affiliation(s)
- Xingxiang Liu
- Department of Laboratory Medicine, Huai'an Infectious Disease Hospital, Jiangsu, China
| | - Jian Zhou
- Department of Gastroenterology, Huai'an Hospital of Huai'an City, Jiangsu, China
| | - Liyao Zhu
- Department of Hepatology, Huai'an Infectious Disease Hospital, Jiangsu, China
| | - Xin Zhang
- Department of Medical Imaging, Huai'an Infectious Disease Hospital, Jiangsu, China.
| | - Feng Li
- Department of Medical Imaging, Huai'an Infectious Disease Hospital, Jiangsu, China.
| |
Collapse
|
16
|
Tang A, Dzyubak B, Yin M, Schlein A, Henderson WC, Hooker JC, Delgado TI, Middleton MS, Zheng L, Wolfson T, Gamst A, Loomba R, Ehman RL, Sirlin CB. MR elastography in nonalcoholic fatty liver disease: inter-center and inter-analysis-method measurement reproducibility and accuracy at 3T. Eur Radiol 2022; 32:2937-2948. [PMID: 34928415 PMCID: PMC9038857 DOI: 10.1007/s00330-021-08381-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess reproducibility and fibrosis classification accuracy of magnetic resonance elastography (MRE)-determined liver stiffness measured manually at two different centers, and by automated analysis software in adults with nonalcoholic fatty liver disease (NAFLD), using histopathology as a reference standard. METHODS This retrospective, cross-sectional study included 91 adults with NAFLD who underwent liver MRE and biopsy. MRE-determined liver stiffness was measured independently for this analysis by an image analyst at each of two centers using standardized manual analysis methodology, and separately by an automated analysis. Reproducibility was assessed pairwise by intraclass correlation coefficient (ICC) and Bland-Altman analysis. Diagnostic accuracy was assessed by receiver operating characteristic (ROC) analyses. RESULTS ICC of liver stiffness measurements was 0.95 (95% CI: 0.93, 0.97) between center 1 and center 2 analysts, 0.96 (95% CI: 0.94, 0.97) between the center 1 analyst and automated analysis, and 0.94 (95% CI: 0.91, 0.96) between the center 2 analyst and automated analysis. Mean bias and 95% limits of agreement were 0.06 ± 0.38 kPa between center 1 and center 2 analysts, 0.05 ± 0.32 kPa between the center 1 analyst and automated analysis, and 0.11 ± 0.41 kPa between the center 2 analyst and automated analysis. The area under the ROC curves for the center 1 analyst, center 2 analyst, and automated analysis were 0.834, 0.833, and 0.847 for distinguishing fibrosis stage 0 vs. ≥ 1, and 0.939, 0.947, and 0.940 for distinguishing fibrosis stage ≤ 2 vs. ≥ 3. CONCLUSION MRE-determined liver stiffness can be measured with high reproducibility and fibrosis classification accuracy at different centers and by an automated analysis. KEY POINTS • Reproducibility of MRE liver stiffness measurements in adults with nonalcoholic fatty liver disease is high between two experienced centers and between manual and automated analysis methods. • Analysts at two centers had similar high diagnostic accuracy for distinguishing dichotomized fibrosis stages. • Automated analysis provides similar diagnostic accuracy as manual analysis for advanced fibrosis.
Collapse
Affiliation(s)
- An Tang
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Bogdan Dzyubak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Schlein
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Walter C Henderson
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jonathan C Hooker
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Timoteo I Delgado
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Michael S Middleton
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Lin Zheng
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
| | - Tanya Wolfson
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
| | - Anthony Gamst
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
- Computational and Applied Statistics Laboratory (CASL), SDSC - University of California, San Diego, CA, USA
| | - Rohit Loomba
- Division of Gastroenterology, Hepatology, and Medicine, University of California San Diego, San Diego, California, USA
| | | | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
17
|
Shibutani K, Okada M, Tsukada J, Hyodo T, Ibukuro K, Abe H, Matsumoto N, Midorikawa Y, Moriyama M, Takayama T. A proposed model on MR elastography for predicting postoperative major complications in patients with hepatocellular carcinoma. BJR Open 2021; 3:20210019. [PMID: 34877453 PMCID: PMC8611681 DOI: 10.1259/bjro.20210019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 11/05/2022] Open
Abstract
Objective To develop a model for predicting post-operative major complications in patients with hepatocellular carcinoma (HCC). Methods In all, 186 consecutive patients with pre-operative MR elastography were included. Complications were categorised using Clavien‒Dindo classification, with major complications defined as ≥Grade 3. Liver-stiffness measurement (LSM) values were measured on elastogram. The indocyanine green clearance rate of liver remnant (ICG-Krem) was based on the results of CT volumetry, intraoperative data, and ICG-K value. For an easy application to the prediction model, the continuous variables were converted to categories. Moreover, logistic regression analysis and fivefold cross-validation were performed. The prediction model's discriminative performance was evaluated using the area under the receiver operating characteristic curve (AUC), and the calibration of the model was assessed by the Hosmer‒Lemeshow test. Results 43 of 186 patients (23.1%) had major complications. The multivariate analysis demonstrated that LSM, albumin-bilirubin (ALBI) score, intraoperative blood loss, and ICG-Krem were significantly associated with major complications. The median AUC of the five validation subsets was 0.878. The Hosmer-Lemeshow test confirmed no evidence of inadequate fit (p = 0.13, 0.19, 0.59, 0.59, and 0.73) on the fivefold cross-validation. The prediction model for major complications was as follows: -2.876 + 2.912 [LSM (>5.3 kPa)]+1.538 [ALBI score (>-2.28)]+0.531 [Intraoperative blood loss (>860 ml)]+0.257 [ICG-Krem (<0.10)]. Conclusion The proposed prediction model can be used to predict post-operative major complications in patients with HCC. Advances in knowledge The proposed prediction model can be used in routine clinical practice to identify post-operative major complications in patients with HCC and to strategise appropriate treatments of HCC.
Collapse
Affiliation(s)
- Kazu Shibutani
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Masahiro Okada
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Jitsuro Tsukada
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoko Hyodo
- Department of Radiology, Kindai University school of medicine, Osaka, Japan
| | - Kenji Ibukuro
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hayato Abe
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Naoki Matsumoto
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuhiko Moriyama
- Department of Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Kharat A, Vanpully NS, Jeeson JC. Simplified Guide to MR Elastography in Early Detection of Hepatic Fibrosis with Case Reports: The New Norm in Assessing Liver Health. Indian J Radiol Imaging 2021; 31:644-652. [PMID: 34790310 PMCID: PMC8590563 DOI: 10.1055/s-0041-1735929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current unhealthy diets and sedentary lifestyle have led to increase in the prevalence of diabetes and metabolic syndrome globally. Fatty liver is a common occurrence in metabolic syndrome. The liver health is often ignored due to delayed warning signs. Fatty changes of the liver is one of the common findings in ultrasonography. Ultrasound does not detect fibrosis except when cirrhosis is developed. Early stages of fibrosis are asymptomatic with no significant laboratory or preliminary imaging findings. With fibrosis, the elasticity of the liver is reduced and becomes stiffer. Over the years, many techniques have developed to assess the stiffness of the liver, starting from palpation, ultrasonography, and recently developed magnetic resonance elastography (MRE). In this article, we have tried to simplify the concepts of MRE to detect fibrosis and present few case reports. The basic steps involved in generating elastograms and interpretation with some insight on how to incorporate it into the clinical workflow are discussed. MRE is superior to various other available techniques and even offers certain advantages over biopsy. MRE is FDA approved for liver fibrosis since 2009, yet it is hardly used in the Indian setting. MRE is a safe and noninvasive technique to evaluate a large volume of the liver and can be a new norm for the evaluation of fatty liver. Magnetic resonance imaging (MRI)-based elastography techniques hold an exciting future in providing mechanical properties of tissues in various organs like spleen, brain, kidney, and heart.
Collapse
Affiliation(s)
- Amit Kharat
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Nikhith Soman Vanpully
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Jacob Cheeran Jeeson
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
19
|
Seyedpour SM, Nabati M, Lambers L, Nafisi S, Tautenhahn HM, Sack I, Reichenbach JR, Ricken T. Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review. Front Physiol 2021; 12:733393. [PMID: 34630152 PMCID: PMC8493836 DOI: 10.3389/fphys.2021.733393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
MRI-based biomechanical studies can provide a deep understanding of the mechanisms governing liver function, its mechanical performance but also liver diseases. In addition, comprehensive modeling of the liver can help improve liver disease treatment. Furthermore, such studies demonstrate the beginning of an engineering-level approach to how the liver disease affects material properties and liver function. Aimed at researchers in the field of MRI-based liver simulation, research articles pertinent to MRI-based liver modeling were identified, reviewed, and summarized systematically. Various MRI applications for liver biomechanics are highlighted, and the limitations of different viscoelastic models used in magnetic resonance elastography are addressed. The clinical application of the simulations and the diseases studied are also discussed. Based on the developed questionnaire, the papers' quality was assessed, and of the 46 reviewed papers, 32 papers were determined to be of high-quality. Due to the lack of the suitable material models for different liver diseases studied by magnetic resonance elastography, researchers may consider the effect of liver diseases on constitutive models. In the future, research groups may incorporate various aspects of machine learning (ML) into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification.
Collapse
Affiliation(s)
- Seyed M. Seyedpour
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| | - Mehdi Nabati
- Department of Mechanical Engineering, Faculty of Engineering, Boğaziçi University, Istanbul, Turkey
| | - Lena Lambers
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| | - Sara Nafisi
- Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University, Jena, Germany
| | - Tim Ricken
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Sato N, Kenjo A, Nishimagi A, Kimura T, Okada R, Ishigame T, Kofunato Y, Yamada S, Hashimoto Y, Marubashi S. Accuracy comparison of MR elastography and biological markers in detecting liver fibrosis and predicting postoperative ascites. HPB (Oxford) 2021; 23:1383-1391. [PMID: 33583734 DOI: 10.1016/j.hpb.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND This retrospective study aimed to compare the discriminative performance between magnetic resonance elastography (MRE) and biological markers in detecting liver fibrosis and in predicting postoperative ascites (PA). METHODS We enrolled 77 patients consecutively who underwent hepatectomy between March 2017 and June 2019. Liver fibrosis was histopathologically graded using the METAVIR scoring system as reference. Discriminative performance of non-invasive assessments in detecting different stages of liver fibrosis and predicting PA was evaluated by receiver-operator curve analysis. RESULTS The concordance indices (C-indices) for MRE and biological markers for detecting significant fibrosis (≥F2) and cirrhosis (F4) were: MRE, 0.84 and 0.86; Wisteria floribunda agglutinin + Mac-2 binding protein (WM2BP), 0.63 and 0.71; Hyaluronic acid (HA), 0.72 and 0.75; 7 S-type 4 collagen (T4C), 0.61 and 0.66; APRI, 0.76 and 0.83; and Fib-4, 0.75 and 0.76. Univariable logistic analysis for predicting PA showed that C-indices were 0.751 (p = 0.007), 0.798 (p = 0.106), 0.771 (p = 0.050), 0.674 (p = 0.855), 0.655 (p = 0.263), and 0.560 (p = 0.640) for MRE, WM2BP, Fib-4, HA, APRI, and T4C, respectively. CONCLUSION MRE has a higher diagnostic performance than biological markers in detecting the stages of liver fibrosis and is a predictor for PA after hepatectomy.
Collapse
Affiliation(s)
- Naoya Sato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan.
| | - Akira Kenjo
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Atsushi Nishimagi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Takashi Kimura
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Ryo Okada
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Teruhide Ishigame
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Yasuhide Kofunato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| | - Shoki Yamada
- Department of Diagnostic Pathology, Fukushima Medical University, Hikarigaoka-1, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Hikarigaoka-1, Fukushima, Japan
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima, Japan
| |
Collapse
|
21
|
Tirkes T, Dasyam AK, Shah ZK, Fogel EL. Role of standardized reporting and novel imaging markers in chronic pancreatitis. Curr Opin Gastroenterol 2021; 37:512-519. [PMID: 34148967 PMCID: PMC8364495 DOI: 10.1097/mog.0000000000000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This article reviews recent efforts about standardized imaging features and reporting of chronic pancreatitis and recently published or ongoing imaging studies, which aim to establish novel imaging biomarkers for detection of parenchymal changes seen in chronic pancreatitis. RECENT FINDINGS New novel MRI techniques are being developed to increase the diagnostic yield of chronic pancreatitis specifically in the early stage. T1 relaxation time, T1 signal intensity ratio and extracellular volume fraction offer potential advantages over conventional cross-sectional imaging, including simplicity of analysis and more objective interpretation of observations allowing population-based comparisons. In addition, standardized definitions and reporting guidelines for chronic pancreatitis based on available evidence and expert consensus have been proposed. These new imaging biomarkers and reporting guidelines are being validated for prognostic/therapeutic assessment of adult patients participating in longitudinal studies of The Consortium for the Study of Chronic Pancreatitis, Diabetes and Pancreatic Cancer. SUMMARY New imaging biomarkers derived from novel MRI sequences promise a new chapter for diagnosis and severity assessment of chronic pancreatitis; a cross-sectional imaging-based diagnostic criteria for chronic pancreatitis combining ductal and parenchymal findings. Standardized imaging findings and reporting guidelines of chronic pancreatitis would enhance longitudinal assessment of disease severity in clinical trials and improve communication between radiologists and pancreatologists in clinical practice.
Collapse
Affiliation(s)
- Temel Tirkes
- Associate Professor of Radiology, Imaging Sciences, Medicine and Urology, Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anil K. Dasyam
- Associate Professor of Radiology and Medicine, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zarine K. Shah
- Associate Professor of Radiology, Department of Radiology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Evan L. Fogel
- Professor of Medicine, Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis. Abdom Radiol (NY) 2021; 46:3889-3907. [PMID: 33770223 DOI: 10.1007/s00261-021-03055-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare the diagnostic performance of diffusion-weighted imaging (DWI), gradient-recalled echo-based magnetic resonance elastography (GRE-MRE), and spin-echo echo-planar imaging-based MRE (SE-EPI-MRE) in liver fibrosis staging. METHODS A systematic literature search was done to collect studies on the performance of DWI, GRE-MRE, and SE-EPI-MRE for diagnosing liver fibrosis. Pooled sensitivity, specificity, diagnostic odds ratio, positive and negative likelihood ratio, and a summary receiver operating characteristic (ROC) curve were estimated with a bivariate random effects model. Subgroup analyses on various study characteristics were performed. RESULTS Sixty studies with a total of 6620 patients were included in the meta-analysis. Pooled sensitivity and specificity of GRE-MRE and SE-EPI-MRE showed high diagnostic accuracy and did not differ significantly. The area under the summary ROC curve for all stages of fibrosis differed significantly between DWI (0.83-0.88) and either GRE-MRE (0.95-0.97) or SE-EPI-MRE (0.95-0.99). Substantial heterogeneity was detected for all three imaging methods. CONCLUSIONS Both GRE-MRE and SE-EPI-MRE are highly accurate for detection of each liver fibrosis stage, with high potential to replace liver biopsy. Although DWI had a moderate accuracy in distinguishing liver fibrosis, it could be regarded as an alternative to MRE, since it is widely available and easily implemented in routine liver MRI.
Collapse
|
23
|
Predictive value of combined computed tomography volumetry and magnetic resonance elastography for major complications after liver resection. Abdom Radiol (NY) 2021; 46:3193-3204. [PMID: 33683428 DOI: 10.1007/s00261-021-02991-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To retrospectively compare the predictive value of computed tomography volumetry (CTV), magnetic resonance elastography (MRE) of the liver, and their combination for major complications after liver resection. METHODS We enrolled 108 consecutive patients who underwent anatomical liver resection for liver tumors and preoperative contrast-enhanced CT and MRE. The future liver remnant (FLR) ratio was calculated by CTV, while the liver stiffness measurement (LSM) was obtained by MRE. FLR ratio alone, LSM alone, and combined FLR ratio and LSM were evaluated to predict major complications (Clavien-Dindo grade ≥ IIIa). Univariate and multivariate analyses of hepatic biochemical parameters and imaging data were performed to identify predictors of major complications. Receiver operating characteristic analyses of FLR ratio, LSM, and their combination were performed, and the sensitivity and specificity were calculated. RESULTS Twenty-two (20.4%) of the 108 patients experienced major complications. According to multiple regression analysis, the FLR ratio (odds ratio [OR] 0.96, 95% confidence interval [CI] 0.91-0.99, p = 0.040) and LSM (OR 1.72, 95% CI 1.01-2.94, p = 0.047) were independent predictors of major complications. The combined FLR ratio and LSM were predictive of major complications, with an area under the curve (AUC) of 0.818, sensitivity of 68.2%, and specificity of 84.9%. The AUC and specificity for combined FLR ratio and LSM were larger than those for FLR ratio (AUC: 0.711, specificity: 80.2%) and LSM (AUC: 0.793, specificity: 80.2%). CONCLUSION Combined CTV and MRE analysis can improve the AUC and specificity for predicting major complications after anatomical liver resection.
Collapse
|
24
|
Charatcharoenwitthaya P, Sukonrut K, Korpraphong P, Pongpaibul A, Saiviroonporn P. Diffusion-weighted magnetic resonance imaging for the assessment of liver fibrosis in chronic viral hepatitis. PLoS One 2021; 16:e0248024. [PMID: 33662022 PMCID: PMC7932524 DOI: 10.1371/journal.pone.0248024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background Accurate noninvasive methods for the assessment of liver fibrosis are urgently needed. This prospective study evaluated the diagnostic accuracy of diffusion-weighted magnetic resonance imaging (DWI) for the staging of liver fibrosis and proposed a diagnostic algorithm using DWI to identify cirrhosis in patients with chronic viral hepatitis. Methods One hundred twenty-one treatment-naïve patients with chronic hepatitis B or C were evaluated with DWI followed by liver biopsy on the same day. Breath-hold single-shot echo-planar DWI was performed to measure the apparent diffusion coefficient (ADC) of the liver and spleen. Normalized liver ADC was calculated as the ratio of liver ADC to spleen ADC. Results There was an inverse correlation between fibrosis stage and normalized liver ADC (p<0.05). For the prediction of fibrosis stage ≥2, stage ≥3, and cirrhosis, the area under the receiver-operating curve of normalized liver ADC was 0.603, 0.704, and 0.847, respectively. The normalized liver ADC value ≤1.02×10−3 mm2/s had 88% sensitivity, 81% specificity, 25% positive predictive value (PPV), and 99% negative predictive value (NPV) for the diagnosis of cirrhosis. Using a sequential approach with the Fibrosis-4 index followed by DWI, normalized liver ADC ≤1.02×10−3 mm2/s in patients with Fibrosis-4 >3.25 yielded an 80% PPV for cirrhosis, and a 100% NPV to exclude cirrhosis in patients with Fibrosis-4 between 1.45 and 3.25. Only 15.7% of patients would require a liver biopsy. This sequential strategy can reduce DWI examinations by 53.7%. Conclusion Normalized liver ADC measurement on DWI is an accurate and noninvasive tool for the diagnosis of cirrhosis in patients with chronic viral hepatitis.
Collapse
Affiliation(s)
- Phunchai Charatcharoenwitthaya
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Kamonthip Sukonrut
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpim Korpraphong
- Radiology Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Pathology Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pairash Saiviroonporn
- Radiology Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Fujimoto K, Shiinoki T, Yuasa Y, Tanaka H. Estimation of liver elasticity using the finite element method and four-dimensional computed tomography images as a biomarker of liver fibrosis. Med Phys 2021; 48:1286-1298. [PMID: 33449406 DOI: 10.1002/mp.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Current radiotherapy planning procedures are generally designed based on anatomical information only and use computed tomography (CT) images that do not incorporate organ-functional information. In this study, we developed a method for estimating liver elasticity using the finite element method (FEM) and four-dimensional CT (4DCT) images acquired during radiotherapy planning, and we subsequently evaluated its feasibility as a biomarker for liver fibrosis. MATERIALS AND METHODS Twenty patients who underwent 4DCT and ultrasound-based transient elastography (UTE) were enrolled. All patients had chronic liver disease or cirrhosis. Liver elasticity measurements of the UTE were performed on the right lobe of the patient's liver in 20 patients. The serum biomarkers of the aspartate aminotransferase (AST)-to-platelet ratio index (APRI) and fibrosis-4 index (FIB-4) were available in 18 of the 20 total patients, which were measured within 1 week after undergoing 4DCT. The displacement between the 4DCT images obtained at the endpoints of exhalation and inspiration was determined using the actual (via deformable image registration) and simulated (via FEM) respiration-induced displacement. The elasticity of each element of the liver model was optimized by minimizing the error between the actual and simulated respiration-induced displacement. Then, each patient's estimated liver elasticity was defined as the mean Young's modulus of the liver's right lobe and that of the whole liver using the estimated elasticity map. The estimated liver elasticity was evaluated for correlations with the elasticity obtained via UTE and with two serum biomarkers (APRI and FIB-4). RESULTS The mean ± standard deviation (SD) of the errors between the actual and simulated respiration-induced displacement in the liver model was 0.54 ± 0.33 mm. The estimated liver's right lobe elasticity was statistically significantly correlated with the UTE (r = 0.87, P < 0.001). Furthermore, the estimated whole liver elasticity was statistically significantly correlated with the UTE (r = 0.84, P < 0.001), APRI score (r = 0.62, P = 0.005), and FIB-4 score (r = 0.54, P = 0.021). CONCLUSION In this study, liver elasticity was estimated through FEM-based simulation and actual respiratory-induced liver displacement obtained from 4DCT images. Furthermore, we assessed that the estimated elasticity of the liver's right lobe was strongly correlated with the UTE. Therefore, the estimated elasticity has the potential to be a feasible imaging biomarker for assessing liver fibrosis using only 4DCT images without additional inspection or equipment costs. Because our results were derived from a limited sample of 20 patients, it is necessary to evaluate the accuracy of elasticity estimation for each liver segment on larger groups of biopsied patients to utilize liver elasticity information for radiotherapy planning.
Collapse
Affiliation(s)
- Koya Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| | - Hidekazu Tanaka
- Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8535, Japan
| |
Collapse
|
26
|
Pan S, Wang L, Xin J. Combining 18F-FDG PET and Gd-EOB-DTPA-enhanced MRI for staging liver fibrosis. Life Sci 2021; 269:119086. [PMID: 33476634 DOI: 10.1016/j.lfs.2021.119086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the diagnostic performance of combining 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (18F-FDG PET) and gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for liver fibrosis staging. MATERIALS AND METHODS Male New Zealand white rabbits (n = 48) were treated with carbon tetrachloride (CCl4) to induce liver fibrosis, while control group rabbits (n = 8) received normal saline. The liver tissues of rabbits were histopathologically examined (classified according to the METAVIR classification system) for liver fibrosis staging and real-time polymerase chain reaction (RT-PCR) was used to ensure diagnostic accuracy. Integrated PET/MRI was performed. The mean standardised uptake value (SUVmean) and relative enhancement (RE) were evaluated for different liver fibrosis stages using a Mann-Whitney U test. The performance of PET/MRI was evaluated by using the receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC). KEY FINDINGS In total, 10, 16, and 8 rabbits classified into no fibrosis (F0), mild fibrosis (F1-2), and severe fibrosis (F3-4) categories, respectively. There were significant differences in SUVmean and RE between F0 and F3-4 and between F1-2 and F3-4 (p < 0.01), but no significance between F0 and F1-2 (p > 0.5). Combined SUVmean and RE performed well in staging liver fibrosis, with AUC of 0.8 for F0 or greater, 0.744 for F0 or F1-2, 0.945 for F1-2 or F3-4, and 0.962 for F3-4. SIGNIFICANCE Combining SUVmean and RE provides high accuracy for grading liver fibrosis, especially in the differentiation between F1-2 and F3-4. 18F-FDG and Gd-EOB-DTPA-enhanced PET/MRI could be a non-invasive diagnostic method to guide the selection of clinical treatment options.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lu Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
27
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
28
|
Navin PJ, Olson MC, Knudsen JM, Venkatesh SK. Elastography in the evaluation of liver allograft. Abdom Radiol (NY) 2021; 46:96-110. [PMID: 31950204 DOI: 10.1007/s00261-019-02400-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elastography is an established technique in the evaluation of chronic liver diseases. While there is a large clinical experience and data available regarding the performance of elastography in native liver, elastography experience with liver grafts is limited and still growing. Both ultrasound-based elastography techniques and MR Elastography (MRE) are useful in the assessment of liver fibrosis in liver transplants. Technical modifications for performing elastography will be required for optimum evaluation of the graft. In general, caution needs to be exercised regarding the use of elastography immediately following transplantation as post-operative changes, perioperative conditions/complications, inflammation, and rejection can cause increased stiffness in the graft. In the follow-up, detection of increased stiffness with elastography is useful for predicting development of fibrosis in the graft. Adjunctive MRI or ultrasound with Doppler also provides comprehensive evaluation of anatomy, vascular anastomosis and patency, biliary tree, and stiffness for fibrosis. In this review, we provide a brief overview of elastography techniques available followed by the literature review of elastography in the evaluation of grafts and illustration with clinical examples.
Collapse
|
29
|
Association between liver diffusion-weighted imaging apparent diffusion coefficient values and other measures of liver disease in pediatric autoimmune liver disease patients. Abdom Radiol (NY) 2021; 46:197-204. [PMID: 32462385 DOI: 10.1007/s00261-020-02595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple quantitative magnetic resonance imaging (MRI) methods have been described to noninvasively detect and characterize liver fibrosis, including diffusion-weighted imaging (DWI). PURPOSE To evaluate associations between liver MRI DWI apparent diffusion coefficient (ADC) values and clinical factors and other quantitative liver MRI metrics in pediatric patients with autoimmune liver disease (AILD). MATERIALS AND METHODS Fifty-seven research liver MRI examinations performed from January 2017 to August 2018 for pediatric AILD registry participants were evaluated. Liver DWI ADC values, liver and spleen stiffness (kPa), and iron-corrected T1 (cT1; Perspectum Diagnostics) were measured at four anatomic levels. Participant age, sex, and laboratory data (alanine aminotransferase [ALT], total bilirubin, alkaline phosphatase, gamma-glutamyl transferase [GGT]) were recorded. Spearman's rank-order correlation (rho) and multiple linear regression were used to evaluate the associations between liver ADC values and predictor variables. RESULTS Mean (SD) participant age was 14.8 (4.0) years, 45.6% (26/57) were girls. Mean liver DWI ADC value was 1.34 (0.14 × 10-3) mm2/s. Liver ADC values showed weak to moderate correlations with liver stiffness (r = - 0.42, p = 0.001), spleen stiffness (r = - 0.34; p = 0.015), whole-liver mean cT1 (r = - 0.39; p = 0.007), ALT (r = - 0.50; p = 0.0001), and GGT (r = - 0.48; p = 0.0004). Multiple linear regression showed liver stiffness (p = 0.0009) and sex (p = 0.023) to be independent predictors of liver ADC values. CONCLUSION Liver DWI ADC values are significantly associated with liver and spleen stiffnesses, liver cT1, ALT, GGT, and participant sex, with liver stiffness and sex remaining significant at multivariable regression. Liver ADC ultimately may play a role in multi-parametric prediction of chronic liver disease/fibrosis severity.
Collapse
|
30
|
Taouli B, Alves FC. Imaging biomarkers of diffuse liver disease: current status. Abdom Radiol (NY) 2020; 45:3381-3385. [PMID: 32583139 DOI: 10.1007/s00261-020-02619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
We are happy to introduce this special issue of Abdominal Radiology on "diffuse liver disease". We have invited imaging experts to discuss various topics pertaining to diffuse liver disease, covering a vast array of imaging techniques including ultrasound (US), CT, MRI and new molecular imaging agents. Below, we briefly discussed the current status, limitations, and future directions of imaging biomarkers of diffuse liver disease.
Collapse
Affiliation(s)
- Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine At Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine At Mount Sinai, New York, NY, USA.
| | | |
Collapse
|
31
|
MR elastography of liver: current status and future perspectives. Abdom Radiol (NY) 2020; 45:3444-3462. [PMID: 32705312 DOI: 10.1007/s00261-020-02656-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Non-invasive evaluation of liver fibrosis has evolved over the last couple of decades. Currently, elastography techniques are the most widely used non-invasive methods for clinical evaluation of chronic liver disease (CLD). MR elastography (MRE) of the liver has been used in the clinical practice for nearly a decade and continues to be widely accepted for detection and staging of liver fibrosis. With MRE, one can directly visualize propagating shear waves through the liver and an inversion algorithm in the scanner automatically converts the shear wave properties into an elastogram (stiffness map) on which liver stiffness can be calculated. The commonly used MRE method, two-dimensional gradient recalled echo (2D-GRE) sequence has produced excellent results in the evaluation of liver fibrosis in CLD from various etiologies and newer clinical indications continue to emerge. Advances in MRE technique, including 3D MRE, automated liver elasticity calculation, improvements in shear wave delivery and patient experience, are promising to provide a faster and more reliable MRE of liver. Innovations, including evaluation of mechanical parameters, such as loss modulus, displacement, and volumetric strain, are promising for comprehensive evaluation of CLD as well as understanding pathophysiology, and in differentiating various etiologies of CLD. In this review, the current status of the MRE of liver in CLD are outlined and followed by a brief description of advanced techniques and innovations in MRE of liver.
Collapse
|
32
|
Marti-Aguado D, Rodríguez-Ortega A, Alberich-Bayarri A, Marti-Bonmati L. Magnetic Resonance imaging analysis of liver fibrosis and inflammation: overwhelming gray zones restrict clinical use. Abdom Radiol (NY) 2020; 45:3557-3568. [PMID: 32857259 DOI: 10.1007/s00261-020-02713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Magnetic resonance (MR) identification and grading of subjects with liver fibrosis and inflammation represents a clinical challenge. MR elastography plays a well-defined role in fibrosis estimation, but its use is not widely available in clinical settings. Given that liver MR is becoming the reference standard for fat and iron quantitation, there is a need to clarify whether there is any role for MR imaging in the concomitant evaluation of fibrosis and inflammation in this setting. This review summarizes the diagnostic estimations of different MR imaging parameters obtained from conventional non-contrast-enhanced multiple b values diffusion-weighted acquisitions, variable flip angles T1 relaxation maps and STIR images. Although some derived parameters have shown a significant correlation to histological scores, a small magnitude of effect with wide overlap across severity grades is the rule. Contrary to fat and iron quantification, the low precision and reproducibility of MR imaging metrics limits its clinical relevance in fibrosis and inflammation assessment. In a sequential clinical approach combining different methodologies, MR imaging has no applicability for ruling-out and low accuracy for ruling-in advanced fibrosis. Thereby, MR elastography remains as the only image method with high diagnostic accuracy for the detection of advanced fibrosis. Until date, inflammation remains in a gray zone where biopsy cannot be replaced, and further investigations are needed. The present review offers an in-depth discuss of the MR imaging diagnostic performance for the evaluation of liver fibrosis and inflammation, highlighting the need for scientific improvements.
Collapse
Affiliation(s)
- D Marti-Aguado
- Department of Gastroenterology and Hepatology, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
| | - A Rodríguez-Ortega
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
| | - A Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - L Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain.
- Radiology Department, La Fe University and Polytechnic Hospital, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
33
|
Usefulness of Different Imaging Modalities in Evaluation of Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2020; 8:biomedicines8090298. [PMID: 32839409 PMCID: PMC7556032 DOI: 10.3390/biomedicines8090298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are becoming some of the major health problems in well-developed countries, together with the increasing prevalence of obesity, metabolic syndrome, and all of their systemic complications. As the future prognoses are even more disturbing and point toward further increase in population affected with NAFLD/NASH, there is an urgent need for widely available and reliable diagnostic methods. Consensus on a non-invasive, accurate diagnostic modality for the use in ongoing clinical trials is also required, particularly considering a current lack of any registered drug for the treatment of NAFLD/NASH. The aim of this narrative review was to present current information on methods used to assess liver steatosis and fibrosis. There are several imaging modalities for the assessment of hepatic steatosis ranging from simple density analysis by computed tomography or conventional B-mode ultrasound to magnetic resonance spectroscopy (MRS), magnetic resonance imaging proton density fat fraction (MRI-PDFF) or controlled attenuation parameter (CAP). Fibrosis stage can be assessed by magnetic resonance elastography (MRE) or different ultrasound-based techniques: transient elastography (TE), shear-wave elastography (SWE) and acoustic radiation force impulse (ARFI). Although all of these methods have been validated against liver biopsy as the reference standard and provided good accuracy, the MRS and MRI-PDFF currently outperform other methods in terms of diagnosis of steatosis, and MRE in terms of evaluation of fibrosis.
Collapse
|
34
|
Abstract
MR imaging can be optimized to evaluate a spectrum of pancreatic disorders with advanced sequences aimed to provide quantitative results and increase MR diagnostic capabilities. The pancreas remains a challenging organ to image because of its small size and location deep within the body. Besides its anatomic limitations, pancreatic pathology can be difficult to identify in the early stages. For example, subtle changes in ductal anatomy and parenchymal composition seen in early chronic pancreatitis are imperceptible with other modalities, such as computed tomography. This article reviews the application of MR imaging techniques and emerging MR sequences used in pancreas imaging.
Collapse
Affiliation(s)
- Danielle V Hill
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Suite UH0663, Indianapolis, IN 46202, USA
| | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Suite UH0663, Indianapolis, IN 46202, USA.
| |
Collapse
|
35
|
Jeon SK, Lee JM, Joo I, Yoon JH, Lee DH, Han JK. Two-dimensional Shear Wave Elastography with Propagation Maps for the Assessment of Liver Fibrosis and Clinically Significant Portal Hypertension in Patients with Chronic Liver Disease: A Prospective Study. Acad Radiol 2020; 27:798-806. [PMID: 31494001 DOI: 10.1016/j.acra.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the diagnostic performance of liver stiffness (LS) measurements on two-dimensional (2D) shear wave elastography (SWE) for the assessment of hepatic fibrosis using LS measurements on MR elastography (MRE) as the reference standard and the prediction of clinically significant portal hypertension (CSPH). METHODS In this prospective study, 101 patients with chronic liver disease or cirrhosis underwent both MRE and SWE. After exclusion of technical failure on MRE (n = 5), technical failure/unreliable measurement on SWE (n = 4), LS measurements obtained on SWE with the aid of propagation maps were correlated with those of the MRE using Pearson's correlation analysis. Diagnostic performances for significant fibrosis (≥F2: MRE of ≥2.99 kPa) or cirrhosis (F4: MRE of ≥3.63 kPa) and for the prediction of CSPH were assessed using receiver operating characteristics (ROC) curve analysis. RESULTS LS values on SWE showed a strong correlation with those on MRE (r = 0.846, P < 0.001). For the diagnosis of significant fibrosis or cirrhosis in patients with hepatitis B virus-related liver disease (n = 75), SWE showed areas under the ROC curves (AUC) of 0.975 and 0.912, respectively (95% confidence interval [CI], 0.910-997, and 0.824-0.965). For the prediction of CSPH, the AUC of SWE was 0.818 (95% CI, 0.712-0.898), and when an LS value of 11.5 kPa was applied as a cut-off, SWE showed a sensitivity of 81.5% and a specificity of 72.9%. CONCLUSION LS measurements on 2D SWE were demonstrated to be well correlated with those obtained with MRE, and thus, may provide good diagnostic performance for the prediction of hepatic fibrosis and the presence of CSPH.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Seoul National University College of Medicine, Seoul, South Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
36
|
Han JH, Ahn JH, Kim JS. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Radiol Med 2020; 125:1209-1215. [DOI: 10.1007/s11547-020-01210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
|
37
|
Abstract
MRI and MRCP play an important role in the diagnosis of chronic pancreatitis (CP) by imaging pancreatic parenchyma and ducts. MRI/MRCP is more widely used than computed tomography (CT) for mild to moderate CP due to its increased sensitivity for pancreatic ductal and gland changes; however, it does not detect the calcifications seen in advanced CP. Quantitative MR imaging offers potential advantages over conventional qualitative imaging, including simplicity of analysis, quantitative and population-based comparisons, and more direct interpretation of detected changes. These techniques may provide quantitative metrics for determining the presence and severity of acinar cell loss and aid in the diagnosis of chronic pancreatitis. Given the fact that the parenchymal changes of CP precede the ductal involvement, there would be a significant benefit from developing MRI/MRCP-based, more robust diagnostic criteria combining ductal and parenchymal findings. Among cross-sectional imaging modalities, multi-detector CT (MDCT) has been a cornerstone for evaluating chronic pancreatitis (CP) since it is ubiquitous, assesses primary disease process, identifies complications like pseudocyst or vascular thrombosis with high sensitivity and specificity, guides therapeutic management decisions, and provides images with isotropic resolution within seconds. Conventional MDCT has certain limitations and is reserved to provide predominantly morphological (e.g., calcifications, organ size) rather than functional information. The emerging applications of radiomics and artificial intelligence are poised to extend the current capabilities of MDCT. In this review article, we will review advanced imaging techniques by MRI, MRCP, CT, and ultrasound.
Collapse
|
38
|
Liang Y, Li D. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy. BMC Gastroenterol 2020; 20:89. [PMID: 32252641 PMCID: PMC7137512 DOI: 10.1186/s12876-020-01234-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study was performed to systematically evaluate the accuracy of magnetic resonance elastography (MRE) in staging of liver fibrosis in non-alcoholic fatty liver disease (NAFLD). METHODS PUBMED, EMBASE, Web of Science, CNKI, Cochrane Library database were searched from January 2008 to December 2018 for studies related to MRE in the diagnosis of NAFLD liver fibrosis. The quality of the included literature was assessed by Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The pooled sensitivity, the pooled specificity, and area under the receiver operating characteristic curve (AUROC) value was performed by STATA 14.0 software. RESULTS A total of 12 studies were included, involving 910 patients. The pooled sensitivity and specificity of each group were 0.77 (95%CI 0.69-0.83) and 0.90 (95%CI 0.83-0.94) for F ≥ 1 (mild liver fibrosis), 0.87 (95%CI 0.74-0.94) and 0.86 (95%CI 0.71-0.94) for F ≥ 2 (significant liver fibrosis), 0.89 (95%CI 0.81-0.94) and 0.84 (95%CI 0.63-0.94) for F ≥ 3(severe liver fibrosis), 0.94 (95%CI 0.85-0.98) and 0.75 (95%CI 0.35-0.94) for F ≥ 4 (early cirrhosis), respectively. The area under the summary receiver operating characteristic (SROC) curve was 0.89, 0.93, 0.93, and 0.95, respectively. CONCLUSIONS MRE has high accuracy in the diagnosis of hepatic fibrosis staging in patients with NAFLD.
Collapse
Affiliation(s)
- Yuanzi Liang
- Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Daowei Li
- Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
39
|
Kromrey ML, Le Bihan D, Ichikawa S, Motosugi U. Diffusion-weighted MRI-based Virtual Elastography for the Assessment of Liver Fibrosis. Radiology 2020; 295:127-135. [DOI: 10.1148/radiol.2020191498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Hoffman DH, Ayoola A, Nickel D, Han F, Chandarana H, Shanbhogue KP. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom Radiol (NY) 2020; 45:692-700. [PMID: 31875241 DOI: 10.1007/s00261-019-02382-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To compare liver stiffness measurements obtained from MR elastography with liver T1 relaxation times obtained from T1 mapping and T2 relaxation times obtained from T2 mapping for detection and staging of liver fibrosis. MATERIALS AND METHODS 223 patients with known or suspected liver disease underwent MRI of the liver with T1 mapping (Look-Locker sequence) and 2D SE-EPI MR elastography (MRE) sequences. 139 of these patients also underwent T2 mapping with radial T2 TSE sequence. Two readers (R1 & R2) measured liver stiffness, T1 relaxation times and T2 relaxation times. T1 and T2 times were correlated with stiffness measurements. ROC analysis was used to compare the performance of both techniques in discriminating fibrosis stage in 23 patients who underwent liver biopsy. RESULTS For each reader there was significant moderate positive correlation between liver MRE and liver T1 mapping (r = 0.49 and 0.36). There was significant moderate positive correlation between liver T2 mapping and each of MRE and T1 mapping for one of the readers (r = 0.40 and 0.27). AUC for differentiating early (F0-F2) from advanced (F3-F4) fibrosis in biopsied patients was 0.975 (R1) and 0.925 (R2) for MRE, 0.671 (R1) and 0.642 (R2) for T1 mapping and 0.671 (R1) and 0.743 (R2) for T2 mapping. Inter-reader agreement was good for MRE (ICC = 0.84) substantial for T1 mapping (0.94) and T2 mapping (0.96). CONCLUSIONS Liver T1 and T2 mapping showed moderate positive correlation with MR elastography. Accuracy of MRE is however superior to T1 and T2 mapping in the subset of patients who underwent liver biopsy. Accuracy of combination of MRE and T1 mapping/T2 mapping was not superior to MRE alone.
Collapse
Affiliation(s)
- David H Hoffman
- Department of Radiology, NYU Langone Health, 660 First Ave, New York, NY, 10016, USA
| | - Abimbola Ayoola
- Department of Radiology, NYU Langone Health, 660 First Ave, New York, NY, 10016, USA
| | | | - Fei Han
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- Department of Radiology, NYU Langone Health, 660 First Ave, New York, NY, 10016, USA
| | | |
Collapse
|
41
|
Kim HJ, Kim B, Yu HJ, Huh J, Lee JH, Lee SS, Kim KW, Kim JK. Reproducibility of hepatic MR elastography across field strengths, pulse sequences, scan intervals, and readers. Abdom Radiol (NY) 2020; 45:107-115. [PMID: 31720766 DOI: 10.1007/s00261-019-02312-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the reproducibility of hepatic MRE under various combinations of settings of field strength, pulse sequence, scan interval, and reader in non-alcoholic fatty liver disease (NAFLD) patients. METHODS Adult NAFLD patients were prospectively enrolled for serial hepatic MRE with 1.5 T using 2D GRE sequence and 3.0 T using 2D SE-EPI sequence on the same day and after 2 weeks, resulting a total of four MRE examinations per patient. Three readers with various levels of background knowledge in MRE technique and liver anatomy measured liver stiffness after a training session. Linear regression, Bland-Altman analysis, within-subject coefficient of variation, and reproducibility coefficient (RDC) were used to determine reproducibility of hepatic MRE measurement. RESULTS Twenty patients completed the MRE sessions. Liver stiffness through MRE showed pooled RDC of 26% (upper 95% CI 30.6%) and corresponding limits of agreement (LOA) within 0.55 kPa across field strengths, MRE sequences, and 2-week interscan interval in three readers. Small mean biases and narrow LOA were observed among readers (0.05-0.19 kPa ± 0.53). CONCLUSION The magnitude of change across combinations of scan parameters is within acceptable clinical range, rendering liver stiffness through MRE a reproducible quantitative imaging biomarker. A lower reproducibility was observed for measurements under different field strengths/MRE sequences at a longer (2 weeks) interscan interval. Operators should be trained to acquire region of interest consistently in repeat examinations.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.
| | - Hyun Jeong Yu
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jimi Huh
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jei Hee Lee
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jai Keun Kim
- Department of Radiology, Ajou University School of Medicine, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| |
Collapse
|
42
|
Non-invasive assessment of hepatic fibrosis: comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI. Abdom Radiol (NY) 2020; 45:73-82. [PMID: 31372777 DOI: 10.1007/s00261-019-02140-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To compare the ability of MR elastography (MRE) with transient elastography (TE) and intravoxel incoherent motion (IVIM) diffusion-weighted MRI in staging hepatic fibrosis (HF). MATERIALS AND METHODS 100 patients with chronic liver disease and 25 healthy volunteers underwent preoperative MRE, IVIM on a 3T MRI unit, and ultrasound-based TE. Liver stiffness measurement from MRE (LSM-MRE) and liver stiffness measurement from TE (LSM-TE) were measured; four diffusion parameters including the true diffusion coefficient (Dt), pseudo-diffusion coefficient, perfusion fraction (f), and apparent diffusion coefficient (ADC) were calculated. Receiver operating characteristic (ROC) curves were performed for significant parameters to compare the diagnosis performance for detecting HF. RESULTS LSM-MRE and LSM-TE values showed positive correlation with the fibrosis stage (r = 0.910 and 0.813, P < 0.001). Dt, f, and ADC values showed negative correlation with the fibrosis stage (r = - 0.727, - 0.503, and - 0.601, all P < 0.001). The area under the ROC curve (AUC) of LSM-MRE (AUC = 0.965, 0.957, 0.983) was significantly higher than that of LSM-TE (AUC = 0.906, 0.913, 0.931) and Dt (AUC = 0.875, 0.879, 0.861) in discriminating significant HF (≥ F2), advanced HF (≥ F3), or cirrhosis (F4) (all P < 0.05). Although LSM-TE showed higher AUCs than Dt in detecting fibrosis stages, there were no significant differences between LSM-TE and Dt (P > 0.05) except for detecting F4 (P < 0.05). CONCLUSION MRE shows excellent diagnostic performance for predicting significant fibrosis, advanced fibrosis compared with TE and IVIM, while TE and IVIM have comparable diagnostic performance.
Collapse
|
43
|
Saito S. [7. Reproducibility of Liver Magnetic Resonance Elastography (MRE) Measurement and Its Affecting Factors]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:1484-1490. [PMID: 31866649 DOI: 10.6009/jjrt.2019_jsrt_75.12.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine.,Department of Biomedical Imaging, National Cardiovascular and Cerebral Research Center
| |
Collapse
|
44
|
Salarian M, Turaga RC, Xue S, Nezafati M, Hekmatyar K, Qiao J, Zhang Y, Tan S, Ibhagui OY, Hai Y, Li J, Mukkavilli R, Sharma M, Mittal P, Min X, Keilholz S, Yu L, Qin G, Farris AB, Liu ZR, Yang JJ. Early detection and staging of chronic liver diseases with a protein MRI contrast agent. Nat Commun 2019; 10:4777. [PMID: 31664017 PMCID: PMC6820552 DOI: 10.1038/s41467-019-11984-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Early diagnosis and noninvasive detection of liver fibrosis and its heterogeneity remain as major unmet medical needs for stopping further disease progression toward severe clinical consequences. Here we report a collagen type I targeting protein-based contrast agent (ProCA32.collagen1) with strong collagen I affinity. ProCA32.collagen1 possesses high relaxivities per particle (r1 and r2) at both 1.4 and 7.0 T, which enables the robust detection of early-stage (Ishak stage 3 of 6) liver fibrosis and nonalcoholic steatohepatitis (Ishak stage 1 of 6 or 1 A Mild) in animal models via dual contrast modes. ProCA32.collagen1 also demonstrates vasculature changes associated with intrahepatic angiogenesis and portal hypertension during late-stage fibrosis, and heterogeneity via serial molecular imaging. ProCA32.collagen1 mitigates metal toxicity due to lower dosage and strong resistance to transmetallation and unprecedented metal selectivity for Gd3+ over physiological metal ions with strong translational potential in facilitating effective treatment to halt further chronic liver disease progression. Non-invasive early diagnosis of liver fibrosis is important to prevent disease progression and direct treatment strategies. Here the authors developed a collagen-targeting contrast agent for the detection of early stage fibrosis and non-alcoholic steatohepatitis by magnetic resonance and tested it in animal models.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ravi Chakra Turaga
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Shenghui Xue
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Maysam Nezafati
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Khan Hekmatyar
- Bioimaging Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Shanshan Tan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Yan Hai
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Jibiao Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Rao Mukkavilli
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Pardeep Mittal
- Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Xiaoyi Min
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Shella Keilholz
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Liqing Yu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, 30303, USA
| | - Gengshen Qin
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Alton Brad Farris
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA. .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
45
|
Shin MK, Song JS, Hwang SB, Hwang HP, Kim YJ, Moon WS. Liver Fibrosis Assessment with Diffusion-Weighted Imaging: Value of Liver Apparent Diffusion Coefficient Normalization Using the Spleen as a Reference Organ. Diagnostics (Basel) 2019; 9:diagnostics9030107. [PMID: 31466404 PMCID: PMC6787628 DOI: 10.3390/diagnostics9030107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis staging is of great clinical importance because it is used to assess the severity of the underlying chronic liver disease. Among various imaging-based methods, apparent diffusion coefficient (ADC) measurement using diffusion-weighted imaging (DWI) has the potential to be used as an imaging biomarker for liver fibrosis assessment. In this study, we investigated the usefulness of liver ADC normalization using the spleen as a reference organ in liver fibrosis staging with 66 patients who underwent liver magnetic resonance imaging (MRI), transient elastography (TE), and surgical resection of a hepatic mass. ADC values of the liver (ADCliver) and spleen were analyzed, and the spleen was used for ADCliver normalization (nADCliver). ADCliver showed a weak negative correlation with TE (r = −0.246; p = 0.047) and fibrosis stage (r = −0.269; p = 0.029), while n ADCliver showed a moderate negative correlation with TE (r = −0.504; p < 0.001) and fibrosis stage (r = −0.579; p < 0.001). AUC values for nADCliver (0.777–0.875) were higher than those for ADCliver for each stage of fibrosis (0.596–0.713, p = 0.037–0.157). AUC values for TE (0.726–0.884) and nADCliver were not statistically different. In conclusion, normalized liver ADC can be useful in diagnosing liver fibrosis stage in patients with variable DWI acquisitions.
Collapse
Affiliation(s)
- Min Ki Shin
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea
| | - Ji Soo Song
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| | - Seung Bae Hwang
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Hong Pil Hwang
- Department of Surgery, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Young Jun Kim
- Department of Radiology, Presbyterian Medical Center, Jeonju 54907, Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
46
|
Tirkes T, Yadav D, Conwell DL, Territo PR, Zhao X, Venkatesh SK, Kolipaka A, Li L, Pisegna JR, Pandol SJ, Park WG, Topazian M, Serrano J, Fogel EL. Magnetic resonance imaging as a non-invasive method for the assessment of pancreatic fibrosis (MINIMAP): a comprehensive study design from the consortium for the study of chronic pancreatitis, diabetes, and pancreatic cancer. Abdom Radiol (NY) 2019; 44:2809-2821. [PMID: 31089778 DOI: 10.1007/s00261-019-02049-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Characteristic features of chronic pancreatitis (CP) may be absent on standard imaging studies. Quantitative Magnetic Resonance Imaging (MRI) techniques such as T1 mapping, extracellular volume (ECV) fraction, diffusion-weighted imaging (DWI) with apparent diffusion coefficient map (ADC), MR elastography (MRE), and T1-weighted signal intensity ratio (SIR) have shown promise for the diagnosis and grading severity of CP. However, radiologists still use the Cambridge classification which is based on traditional ductal imaging alone. There is an urgent need to develop new diagnostic criteria that incorporate both parenchymal and ductal features of CP seen by MRI/MRCP. Designed to fulfill this clinical need, we present the MINIMAP study, which was funded in September 2018 by the National Institutes of Health. This is a comprehensive quantitative MR imaging study which will be performed at multiple institutions in well-phenotyped CP patient cohorts. We hypothesize that quantitative MRI/MRCP features can serve as valuable non-invasive imaging biomarkers to detect and grade CP. We will evaluate the role of T1 relaxometry, ECV, T1-weighted gradient echo SIR, MRE, arteriovenous enhancement ratio, ADC, pancreas volume/atrophy, pancreatic fat fraction, ductal features, and pancreatic exocrine output following secretin stimulation in the assessment of CP. We will attempt to generate a multi-parametric pancreatic tissue fibrosis (PTF) scoring system. We anticipate that a quantitative scoring system may serve as a biomarker of pancreatic fibrosis; hence this imaging technique can be used in clinical practice as well as clinical trials to evaluate the efficacy of agents which may slow the progression or reverse measures of CP.
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550N. University Blvd. Suite 0663, Indianapolis, IN, 46202, USA.
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Darwin L Conwell
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 950 W. Walnut Street, R2 E124G, Indianapolis, IN, 46202, USA
| | - Xuandong Zhao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 950 W. Walnut Street, R2 E124G, Indianapolis, IN, 46202, USA
| | | | - Arunark Kolipaka
- The Ohio State University Wexner Medical Center, 395 West 12th AVE, 4th Floor, Columbus, OH, 43210, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Pisegna
- Division of Gastroenterology and Hepatology, Departments of Medicine and Human Genetics, VA Greater Los Angeles HCS, Los Angeles, CA, USA
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Mark Topazian
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic Campus, Rochester, MN, USA
| | - Jose Serrano
- CAPT, Medical Corps US Public Health Service, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, 2 Democracy Plaza, Room 6007, MSC 5450, Bethesda, MD, 20892, USA
| | - Evan L Fogel
- Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
47
|
Akkaya HE, Erden A, Kuru Öz D, Ünal S, Erden İ. Magnetic resonance elastography: basic principles, technique, and clinical applications in the liver. ACTA ACUST UNITED AC 2019; 24:328-335. [PMID: 30272563 DOI: 10.5152/dir.2018.18186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic resonance elastography (MRE) is a constantly advancing technique for assessment of stiffness of tissues with newer technology and sequences. It is being increasingly used for the assessment of liver fibrosis. In this article, we discuss the advantages of MRE over biopsy and noninvasive methods such as US elastography in the assessment of liver fibrosis. Image acquisition and interpretation of liver MRE is also discussed.
Collapse
Affiliation(s)
| | - Ayşe Erden
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Diğdem Kuru Öz
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Sena Ünal
- Department of Radiology, Erzurum Local Training and Research Hospital, Erzurum, Turkey
| | - İlhan Erden
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
48
|
Plaikner M, Kremser C, Zoller H, Steurer M, Glodny B, Jaschke W, Henninger B. Does gadoxetate disodium affect MRE measurements in the delayed hepatobiliary phase? Eur Radiol 2019; 29:829-837. [PMID: 30027410 PMCID: PMC6302879 DOI: 10.1007/s00330-018-5616-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess if the administration of gadoxetate disodium (Gd-EOB-DTPA) significantly affects hepatic magnetic resonance elastography (MRE) measurements in the delayed hepatobiliary phase (DHBP). METHODS A total of 47 patients (15 females, 32 males; age range 23-78 years, mean 54.28 years) were assigned to standard hepatic magnetic resonance imaging (MRI) with application of Gd-EOB-DTPA and hepatic MRE. MRE was performed before injection of Gd-EOB-DTPA and after 40-50 min in the DHBP. Liver stiffness values were obtained before and after contrast media application and differences between pre- and post-Gd-EOB-DTPA values were evaluated using a Bland-Altman plot and the Mann-Whitney-Wilcoxon test. In addition, the data were compared with regard to the resulting fibrosis classification. RESULTS Mean hepatic stiffness for pre-Gd-EOB-DTPA measurements was 4.01 kPa and post-Gd-EOB-DTPA measurements yielded 3.95 kPa. We found a highly significant individual correlation between pre- and post-Gd-EOB-DTPA stiffness values (Pearson correlation coefficient of r = 0.95 (p < 0.001) with no significant difference between the two measurements (p =0.49)). Bland-Altman plot did not show a systematic effect for the difference between pre- and post-stiffness measurements (mean difference: 0.06 kPa, SD 0.81). Regarding the classification of fibrosis stages, the overall agreement was 87.23% and the intraclass correlation coefficient was 96.4%, indicating excellent agreement. CONCLUSIONS Administration of Gd-EOB-DTPA does not significantly influence MRE stiffness measurements of the liver in the DHBP. Therefore, MRE can be performed in the DHBP. KEY POINTS • MRE of the liver can reliably be performed in the delayed hepatobiliary phase. • Gd-EOB-DTPA does not significantly influence MRE stiffness measurements of the liver. • MRE performed in the delayed hepatobiliary-phase is reasonable in patients with reduced liver function.
Collapse
Affiliation(s)
- M Plaikner
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - C Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - H Zoller
- Department of Internal Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - M Steurer
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - B Glodny
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - W Jaschke
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria
| | - B Henninger
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, Innsbruck, Austria.
| |
Collapse
|
49
|
Garteiser P, Doblas S, Van Beers BE. Magnetic resonance elastography of liver and spleen: Methods and applications. NMR IN BIOMEDICINE 2018; 31:e3891. [PMID: 29369503 DOI: 10.1002/nbm.3891] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The viscoelastic properties of the liver and spleen can be assessed with magnetic resonance elastography (MRE). Several actuators, MRI acquisition sequences and reconstruction algorithms have been proposed for this purpose. Reproducible results are obtained, especially when the examination is performed in standard conditions with the patient fasting. Accurate staging of liver fibrosis can be obtained by measuring liver stiffness or elasticity with MRE. Moreover, emerging evidence shows that assessing the tissue viscous parameters with MRE is useful for characterizing liver inflammation, non-alcoholic steatohepatitis, hepatic congestion, portal hypertension, and hepatic tumors. Further advances such as multifrequency acquisitions and compression-sensitive MRE may provide novel quantitative markers of hepatic and splenic mechanical properties that may improve the diagnosis of hepatic and splenic diseases.
Collapse
Affiliation(s)
- Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Center of Research on Inflammation, UMR 1149 INSERM-University Paris Diderot, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| |
Collapse
|
50
|
Abstract
The mechanical properties of soft tissues are closely associated with a variety of diseases. This motivates the development of elastography techniques in which tissue mechanical properties are quantitatively estimated through imaging. Magnetic resonance elastography (MRE) is a noninvasive phase-contrast MR technique wherein shear modulus of soft tissue can be spatially and temporally estimated. MRE has recently received significant attention due to its capability in noninvasively estimating tissue mechanical properties, which can offer considerable diagnostic potential. In this work, recent technology advances of MRE, its future clinical applications, and the related limitations will be discussed.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard D. White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|