1
|
Mummy DG, McIntosh MJ, Carey KJ, Kehoe S, Esnault S, Johansson MW, Evans MD, Sorkness RL, Schiebler M, Jarjour NN, Denlinger LC, Fain SB. A method for MRI-guided bronchoscopy to identify obstructed airway segments. Physiol Rep 2025; 13:e70119. [PMID: 39980176 PMCID: PMC11842447 DOI: 10.14814/phy2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 02/22/2025] Open
Abstract
Bronchoscopy is not conventionally guided by prior knowledge of segmental airway obstruction. Hyperpolarized gas magnetic resonance imaging (MRI) ventilation abnormalities and computed tomography (CT) air trapping are related to lung function and asthma severity but have not been used to target segmental inflammation and remodeling. We evaluate the feasibility of using bronchoscopy guided by 3He MRI and CT to reveal differences in inflammatory response, morphology, and cellular activity in poorly- (defect) versus well-ventilated (control) lung regions. Eleven participants (5 female; age, 22.8 ± 3.4 years; 9 asthma) who experienced a cold with increased lower airway symptoms underwent 3He MRI and/or CT at least 6 weeks after recovery. Differences between defect and control regions were compared. In defect as compared to control sites, bronchoalveolar lavage neutrophils (p = 0.06) and granulocytes (p = 0.08) trended towards an increase; inflammatory mediators (i.e., 15-epi-LXA4, LXA4) were also significantly different (p < 0.05) between sites. Correlations were observed between macrophages, neutrophils, and eosinophils with inflammatory mediators (i.e., 15-epi-LXA4, LXA4, LTB4). Correlations were observed for macrophages and neutrophils with 15-epi-LXA4, and eosinophils with LXA4 and leukotriene B4. Basement membrane wall thickness was similar for defect versus control sites (p = 0.9). These results support the feasibility of image-guided methods to identify airway obstruction phenotypes.
Collapse
Affiliation(s)
- David G. Mummy
- Department of RadiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | | | - Katherine J. Carey
- Department of Medical PhysicsUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Shannon Kehoe
- Department of Medical PhysicsUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin—MadisonMadisonWisconsinUSA
- Institute for Translational Research in Inflammation—U1286—INFINITEUniversity of LilleLilleFrance
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Michael D. Evans
- Clinical and Translational Science InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ronald L. Sorkness
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Mark Schiebler
- Department of RadiologyUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Nizar N. Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin—MadisonMadisonWisconsinUSA
| | - Sean B. Fain
- Department of RadiologyUniversity of IowaIowa CityIowaUSA
- Roy. J Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Almeida SD, Norajitra T, Lüth CT, Wald T, Weru V, Nolden M, Jäger PF, von Stackelberg O, Heußel CP, Weinheimer O, Biederer J, Kauczor HU, Maier-Hein K. Prediction of disease severity in COPD: a deep learning approach for anomaly-based quantitative assessment of chest CT. Eur Radiol 2024; 34:4379-4392. [PMID: 38150075 PMCID: PMC11213737 DOI: 10.1007/s00330-023-10540-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity. MATERIALS AND METHODS Paired inspiratory/expiratory CT and clinical data from COPDGene and COSYCONET cohort studies were included. COPDGene data served as training/validation/test data sets (N = 3144/786/1310) and COSYCONET as external test set (N = 446). To differentiate low-risk (healthy/minimal disease, [GOLD 0]) from COPD patients (GOLD 1-4), the self-supervised DL model learned semantic information from 50 × 50 × 50 voxel samples from segmented intact lungs. An anomaly detection approach was trained to quantify lung abnormalities related to COPD, as regional deviations. Four supervised DL models were run for comparison. The clinical and radiological predictive power of the proposed anomaly score was assessed using linear mixed effects models (LMM). RESULTS The proposed approach achieved an area under the curve of 84.3 ± 0.3 (p < 0.001) for COPDGene and 76.3 ± 0.6 (p < 0.001) for COSYCONET, outperforming supervised models even when including only inspiratory CT. Anomaly scores significantly improved fitting of LMM for predicting lung function, health status, and quantitative CT features (emphysema/air trapping; p < 0.001). Higher anomaly scores were significantly associated with exacerbations for both cohorts (p < 0.001) and greater dyspnea scores for COPDGene (p < 0.001). CONCLUSION Quantifying heterogeneous COPD manifestations as anomaly offers advantages over supervised methods and was found to be predictive for lung function impairment and morphology deterioration. CLINICAL RELEVANCE STATEMENT Using deep learning, lung manifestations of COPD can be identified as deviations from normal-appearing chest CT and attributed an anomaly score which is consistent with decreased pulmonary function, emphysema, and air trapping. KEY POINTS • A self-supervised DL anomaly detection method discriminated low-risk individuals and COPD subjects, outperforming classic DL methods on two datasets (COPDGene AUC = 84.3%, COSYCONET AUC = 76.3%). • Our contrastive task exhibits robust performance even without the inclusion of expiratory images, while voxel-based methods demonstrate significant performance enhancement when incorporating expiratory images, in the COPDGene dataset. • Anomaly scores improved the fitting of linear mixed effects models in predicting clinical parameters and imaging alterations (p < 0.001) and were directly associated with clinical outcomes (p < 0.001).
Collapse
Affiliation(s)
- Silvia D Almeida
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany.
| | - Tobias Norajitra
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
| | - Carsten T Lüth
- Interactive Machine Learning Group (IML), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tassilo Wald
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Nolden
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Pattern Analysis and Learning Group, Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul F Jäger
- Interactive Machine Learning Group (IML), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oyunbileg von Stackelberg
- Pattern Analysis and Learning Group, Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claus Peter Heußel
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital, Heidelberg, Germany
| | - Oliver Weinheimer
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Biederer
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Medicine, University of Latvia, Raina Bulvaris 19, Riga, LV-1586, Latvia
- Faculty of Medicine, Christian-Albrechts-Universität zu Kiel, D-24098, Kiel, Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany.
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Pattern Analysis and Learning Group, Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Baradaran Mahdavi MM, Rafati M, Ghanei M, Arabfard M. Computer-assisted evaluation of small airway disease in CT scans of Iran-Iraq war victims of chemical warfare by a locally developed software: comparison between different quantitative methods. BMC Med Imaging 2023; 23:165. [PMID: 37872482 PMCID: PMC10594688 DOI: 10.1186/s12880-023-01114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE Diagnosis of small airway disease on computed tomography (CT) scans is challenging in patients with a history of chemical warfare exposure. We developed a software package based on different methodologies to identify and quantify small airway disease in CT images. The primary aim was to identify the best automatic methodology for detecting small airway disease in CT scans of Iran-Iraq War victims of chemical warfare. METHODS This retrospective case-control study enrolled 46 patients with a history of chemical warfare exposure and 27 controls with inspiratory/expiratory (I/E) CT scans and spirometry tests. Image data were automatically segmented, and inspiratory images were registered into the expiratory images' frame using the locally developed software. Parametric response mapping (PRM) and air trapping index (ATI) mapping were performed on the CT images. Conventional QCT methods, including expiratory/inspiratory mean lung attenuation (E/I MLA) ratio, normal density E/I (ND E/I) MLA ratio, attenuation volume Index (AVI), %low attenuation areas (LAA) < -856 in exhale scans, and %LAA < -950 in inhale scans were also computed. QCT measurements were correlated with spirometry results and compared across the two study groups. RESULTS The correlation analysis showed a significant negative relationship between three air trapping (AT) measurements (PRM, ATI, and %LAAExp < -856) and spirometry parameters (Fev1, Fvc, Fev1/Fvc, and MMEF). Moreover, %LAAExp < -856 had the highest significant negative correlation with Fev1/Fvc (r = -0.643, P-value < 0.001). Three AT measurements demonstrated a significant difference between the study groups. The E/I ratio was also significantly different between the two groups (P-value < 0.001). Binary logistic regression models showed PRMFsad, %LAAExp < -856, and ATI as significant and strong predictors of the study outcome. Optimal cut-points for PRMFsad = 19%, %LAAExp < -856 = 23%, and ATI = 27% were identified to classify the participants into two groups with high accuracy. CONCLUSION QCT methods, including PRM, ATI, and %LAAExp < -856 can greatly advance the identification and quantification of SAD in chemical warfare victims. The results should be verified in well-designed prospective studies involving a large population.
Collapse
Affiliation(s)
- Mohammad Mehdi Baradaran Mahdavi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehravar Rafati
- Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Rose CS, Zell-Baran LM, Cool C, Moore CM, Wolff J, Oh AS, Koelsch T, Richards JC, Krefft SD, Wilson CG, Lynch DA. Findings on High Resolution Computed Tomography in Symptomatic Veterans with Deployment-Related Lung Disease. J Thorac Imaging 2023; 38:00005382-990000000-00093. [PMID: 37732711 PMCID: PMC10940183 DOI: 10.1097/rti.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE Military deployment to dusty, austere environments in Southwest Asia and Afghanistan is associated with symptomatic airways diseases including asthma and bronchiolitis. The utility of chest high-resolution computed tomographic (HRCT) imaging in lung disease diagnosis in this population is poorly understood. We investigated visual assessment of HRCT for identifying deployment-related lung disease compared with healthy controls. MATERIALS AND METHODS Chest HRCT images from 46 healthy controls and 45 symptomatic deployed military personnel with clinically confirmed asthma and/or biopsy-confirmed distal lung disease were scored by 3 independent thoracic radiologists. We compared demographic and clinical characteristics and frequency of imaging findings between deployers and controls, and between deployers with asthma and those with biopsy-confirmed distal lung disease, using χ2, Fisher exact or t tests, and logistic regression where appropriate. We also analyzed inter-rater agreement for imaging findings. RESULTS Expiratory air trapping was the only chest CT imaging finding that was significantly more frequent in deployers compared with controls. None of the 24 deployers with biopsy-confirmed bronchiolitis and/or granulomatous pneumonitis had HRCT findings of inspiratory mosaic attenuation or centrilobular nodularity. Only 2 of 21 with biopsy-proven emphysema had emphysema on HRCT. CONCLUSIONS Compared with surgical lung biopsy, visual assessment of HRCT showed few abnormalities in this small cohort of previously deployed symptomatic veterans with normal or near-normal spirometry.
Collapse
Affiliation(s)
- Cecile S Rose
- National Jewish Health, Division of Environmental and Occupational Health Sciences
- School of Medicine, University of Colorado
| | - Lauren M Zell-Baran
- National Jewish Health, Division of Environmental and Occupational Health Sciences
| | - Carlyne Cool
- National Jewish Health, Division of Environmental and Occupational Health Sciences
- School of Medicine, University of Colorado
| | - Camille M Moore
- National Jewish Health, Center for Genes, Environment and Health
- Department of Biostatistics and Informatics, University of Colorado
| | - Jenna Wolff
- National Jewish Health, Division of Environmental and Occupational Health Sciences
| | - Andrea S Oh
- National Jewish Health, Department of Radiology
| | | | - John C Richards
- National Jewish Health, Department of Radiology
- Radiology Imaging Associates
| | - Silpa D Krefft
- National Jewish Health, Division of Environmental and Occupational Health Sciences
- Veterans Administration Eastern Colorado Health Care System, Division of Pulmonary and Critical Care Medicine, Aurora, CO
| | - Carla G Wilson
- National Jewish Health, Research Informatics Services, Denver
| | - David A Lynch
- National Jewish Health, Department of Radiology
- School of Medicine, University of Colorado
| |
Collapse
|
5
|
Horst C, Patel S, Nair A. Reporting and management of incidental lung findings on computed tomography: beyond lung nodules. Br J Radiol 2023; 96:20220207. [PMID: 36124681 PMCID: PMC9975526 DOI: 10.1259/bjr.20220207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023] Open
Abstract
Non-nodular incidental lung findings can broadly be categorised as airway- or airspace-related abnormalities and diffuse parenchymal abnormalities. Airway-related abnormalities include bronchial dilatation and thickening, foci of low attenuation, emphysema, and congenital variants. Diffuse parenchymal abnormalities relate to the spectrum of diffuse parenchymal lung diseases cover a spectrum from interstitial lung abnormalities (ILAs) and pulmonary cysts to established diffuse parenchymal lung abnormalities such as the idiopathic interstitial pneumonias and cystic lung diseases. In this review, we discuss the main manifestations of these incidental findings, paying attention to their prevalence and importance, descriptors to use when reporting, the limits of what can be considered "normal", and conclude each section with some pragmatic reporting recommendations. We also highlight technical and patient factors which can lead to spurious abnormalities.
Collapse
Affiliation(s)
- Carolyn Horst
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Arjun Nair
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Mahdavi MMB, Arabfard M, Rafati M, Ghanei M. A Computer-based Analysis for Identification and Quantification of Small Airway Disease in Lung Computed Tomography Images: A Comprehensive Review for Radiologists. J Thorac Imaging 2023; 38:W1-W18. [PMID: 36206107 DOI: 10.1097/rti.0000000000000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computed tomography (CT) imaging is being increasingly used in clinical practice for detailed characterization of lung diseases. Respiratory diseases involve various components of the lung, including the small airways. Evaluation of small airway disease on CT images is challenging as the airways cannot be visualized directly by a CT scanner. Small airway disease can manifest as pulmonary air trapping (AT). Although AT may be sometimes seen as mosaic attenuation on expiratory CT images, it is difficult to identify diffuse AT visually. Computer technology advances over the past decades have provided methods for objective quantification of small airway disease on CT images. Quantitative CT (QCT) methods are being rapidly developed to quantify underlying lung diseases with greater precision than subjective visual assessment of CT images. A growing body of evidence suggests that QCT methods can be practical tools in the clinical setting to identify and quantify abnormal regions of the lung accurately and reproducibly. This review aimed to describe the available methods for the identification and quantification of small airway disease on CT images and to discuss the challenges of implementing QCT metrics in clinical care for patients with small airway disease.
Collapse
Affiliation(s)
- Mohammad Mehdi Baradaran Mahdavi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran
| | - Mehravar Rafati
- Department of Medical Physics and Radiology, Faculty of paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran
| |
Collapse
|
7
|
Zell-Baran LM, Humphries SM, Moore CM, Lynch DA, Charbonnier JP, Oh AS, Rose CS. Quantitative imaging analysis detects subtle airway abnormalities in symptomatic military deployers. BMC Pulm Med 2022; 22:163. [PMID: 35477425 PMCID: PMC9047334 DOI: 10.1186/s12890-022-01960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Exposure to inhalational hazards during post-9/11 deployment to Southwest Asia and Afghanistan puts military personnel at risk for respiratory symptoms and disease. Pulmonary function and qualitative chest high resolution computed tomography (HRCT) are often normal in “deployers” with persistent respiratory symptoms. We explored the utility of quantitative HRCT imaging markers of large and small airways abnormalities, including airway wall thickness, emphysema, and air trapping, in symptomatic deployers with clinically-confirmed lung disease compared to controls. Methods Chest HRCT images from 45 healthy controls and 82 symptomatic deployers with asthma, distal lung disease or both were analyzed using Thirona Lung quantification software to calculate airway wall thickness (by Pi10), emphysema (by percentage of lung volume with attenuation < -950 Hounsfield units [LAA%-950]), and three parameters of air trapping (expiratory/inspiratory total lung volume and mean lung density ratios, and LAA%-856). SAS v.9.4 was used to compare demographic and clinical characteristics between deployers and controls using Chi-Square, Fisher Exact or t-tests. Linear regression was used to assess relationships between pulmonary function and quantitative imaging findings. Results Gender and smoking status were not statistically significantly different between groups, but deployers were significantly younger than controls (42 vs 58 years, p < 0.0001), had higher body mass index (31 vs 28 kg/m2, p = 0.01), and had fewer total smoking pack-years (8 vs. 26, p = 0.007). Spirometric measures were not statistically significantly different between groups. Pi10 and LAA%-950 were significantly elevated in deployers compared to controls in unadjusted analyses, with the emphysema measure remaining significantly higher in deployers after adjustment for age, sex, smoking, BMI, and expiratory total lung volume. Air trapping parameters were more common in control images, likely due to differences in age and smoking between groups. Among deployers, LAA%-950 and Pi10 were significantly correlated with spirometric markers of obstruction based on ratio of forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) and/or percent predicted FEV1. Conclusions Quantitative chest HRCT imaging analysis identifies emphysema in deployers with asthma and distal lung disease, and may be useful in detecting and monitoring deployment-related lung disease in a population where spirometry is typically normal.
Collapse
Affiliation(s)
- Lauren M Zell-Baran
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA.
| | | | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.,Department of Biostatistics and Informatics, University of Colorado, Aurora, CO, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO, USA.,School of Medicine, University of Colorado, Aurora, CO, USA
| | | | - Andrea S Oh
- Department of Radiology, National Jewish Health, Denver, CO, USA
| | - Cecile S Rose
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA.,School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
8
|
Wuorimaa T, Haukka J, Tikkinen J, Parkkola K, Piirilä P. Large lungs may predict increased air trapping in navy divers. Physiol Rep 2022; 10:e15153. [PMID: 35212176 PMCID: PMC8874342 DOI: 10.14814/phy2.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023] Open
Abstract
Navy divers tend to have large lungs and low expiratory flow rates in the terminal portion of a spirogram. We examined Finnish Navy divers for the presence of air trapping, airway obstruction, and functional airway compression, and their association with lung volumes. Divers (n = 57) and non-diving men (n = 10) underwent a variety of pulmonary function tests. The amount of trapped air was calculated as the subtraction of the total lung capacity (TLC) measured in a single-breath helium dilution test from the TLC in body plethysmography (TLCb). Mean vital capacity (VC) was 6.4 L in the divers versus 5.8 L in the controls (p = 0.006) and TLCb 8.9 L in the divers versus 8.1 L in the controls (p = 0.002). No difference existed between them in the amount of trapped air. However, we found break points in a linear regression model (Davies test) between trapped air and several pulmonary parameters. Those individuals above the break points had lower ratio of forced expiratory volume in first second to forced vital capacity, lower resistance of airways, and higher reactance than those below the break points. In conclusion, navy divers had larger lungs than controls. Large lung volumes (VC >7.31 L or >122% of predicted value) were associated with air trapping. Furthermore, large volumes of air trapping (>1.1 L) were associated with increased residual volume (RV) and RV/TLCb. Despite no concurrent obstruction, functional airway compression, or reduced diffusing capacity, this slowly ventilated trapped air might remain disadvantageous for divers.
Collapse
Affiliation(s)
- Tomi Wuorimaa
- Diving Medical CentreCentre for Military MedicineUpinniemiFinland
- Department of Clinical Physiology and Nuclear Medicine of HUS Medical Diagnostic CenterLaboratory of Clinical PhysiologyHelsinki University HospitalsHelsinkiFinland
| | - Jari Haukka
- Clinicum/Department of Public HealthUniversity of HelsinkiHelsinkiFinland
| | - Janne Tikkinen
- Diving Medical CentreCentre for Military MedicineUpinniemiFinland
| | - Kai Parkkola
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- National Defence UniversityHelsinkiFinland
| | - Päivi Piirilä
- Department of Clinical Physiology and Nuclear Medicine of HUS Medical Diagnostic CenterLaboratory of Clinical PhysiologyHelsinki University HospitalsHelsinkiFinland
| |
Collapse
|
9
|
Moutafidis D, Gavra M, Golfinopoulos S, Kattamis A, Chrousos G, Kanaka-Gantenbein C, Kaditis AG. Low- and High-Attenuation Lung Volume in Quantitative Chest CT in Children without Lung Disease. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121172. [PMID: 34943369 PMCID: PMC8700567 DOI: 10.3390/children8121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In contrast to studies of adults with emphysema, application of fixed thresholds to determine low- and high-attenuation areas (air-trapping and parenchymal lung disease) in pediatric quantitative chest CT is problematic. We aimed to assess age effects on: (i) mean lung attenuation (full inspiration); and (ii) low and high attenuation thresholds (LAT and HAT) defined as mean attenuation and 1 SD below and above mean, respectively. Chest CTs from children aged 6-17 years without abnormalities were retrieved, and histograms of attenuation coefficients were analyzed. Eighty examinations were included. Inverse functions described relationships between age and mean lung attenuation, LAT or HAT (p < 0.0001). Predicted value for LAT decreased from -846 HU in 6-year-old to -950 HU in 13- to 17-year-old subjects (cut-off value for assessing emphysema in adults). %TLCCT with low attenuation correlated with age (rs = -0.31; p = 0.005) and was <5% for 9-17-year-old subjects. Inverse associations were demonstrated between: (i) %TLCCT with high attenuation and age (r2 = 0.49; p < 0.0001); (ii) %TLCCT with low attenuation and TLCCT (r2 = 0.47; p < 0.0001); (iii) %TLCCT with high attenuation and TLCCT (r2 = 0.76; p < 0.0001). In conclusion, quantitative analysis of chest CTs from children without lung disease can be used to define age-specific LAT and HAT for evaluation of pediatric lung disease severity.
Collapse
Affiliation(s)
- Dimitrios Moutafidis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (D.M.); (C.K.-G.)
| | - Maria Gavra
- CT, MRI & PET/CT Department, Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (M.G.); (S.G.)
| | - Sotirios Golfinopoulos
- CT, MRI & PET/CT Department, Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (M.G.); (S.G.)
| | - Antonios Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece;
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Christina Kanaka-Gantenbein
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (D.M.); (C.K.-G.)
| | - Athanasios G. Kaditis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (D.M.); (C.K.-G.)
| |
Collapse
|
10
|
Kim J. [Pulmonary Emphysema: Visual Interpretation and Quantitative Analysis]. TAEHAN YONGSANG UIHAKHOE CHI 2021; 82:808-816. [PMID: 36238075 PMCID: PMC9514406 DOI: 10.3348/jksr.2021.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 11/21/2022]
Abstract
Pulmonary emphysema is a cause of chronic obstructive pulmonary disease. Emphysema can be accurately diagnosed via CT. The severity of emphysema can be assessed using visual interpretation or quantitative analysis. Various studies on emphysema using deep learning have also been conducted. Although the classification of emphysema has proven clinically useful, there is a need to improve the reliability of the measurement.
Collapse
|
11
|
Hwang HJ, Seo JB, Lee SM, Kim N, Yi J, Lee JS, Lee SW, Oh YM, Lee SD. New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping. Korean J Radiol 2021; 22:1719-1729. [PMID: 34269529 PMCID: PMC8484152 DOI: 10.3348/kjr.2021.0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/15/2022] Open
Abstract
Objective Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than −856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = −0.659–0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.
Collapse
Affiliation(s)
- Hye Jeon Hwang
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon Beom Seo
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Sang Min Lee
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Namkug Kim
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Wingelaar TT, Bakker L, Nap FJ, van Ooij PJAM, Endert EL, van Hulst RA. Routine Chest X-Rays Are Inaccurate in Detecting Relevant Intrapulmonary Anomalies During Medical Assessments of Fitness to Dive. Front Physiol 2021; 11:613398. [PMID: 33488401 PMCID: PMC7816860 DOI: 10.3389/fphys.2020.613398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: Intrapulmonary pathology, such as bullae or blebs, can cause pulmonary barotrauma when diving. Many diving courses require chest X-rays (CXR) or high-resolution computed tomography (HRCT) to exclude asymptomatic healthy individuals with these lesions. The ability of routine CXRs and HRCT to assess fitness to dive has never been evaluated. Methods: Military divers who underwent yearly medical assessments at the Royal Netherlands Navy Diving Medical Center, including CXR at initial assessment, and who received a HRCT between January and June 2018, were included. The correlations of CXR and HRCT results with fitness to dive assessments were analyzed using Fisher's exact tests. Results: This study included 101 military divers. CXR identified bullae or blebs in seven divers, but HRCT found that these anomalies were not present in three subjects and were something else in four. CXR showed no anomalies in 94 subjects, but HRCT identified coincidental findings in 23 and bullae or blebs in seven. The differences between CXR and HRCT results were statistically significant (p = 0.023). Of the 34 subjects with anomalies on HRCT, 18 (53%) were disqualified for diving. Discussion: Routine CXR in asymptomatic military divers does not contribute to the identification of relevant pathology in fitness to dive assessments and has a high false negative rate (32%). HRCT is more diagnostic than CXR but yields unclear results, leading to disqualification for diving. Fitness to dive tests should exclude routine CXR; rather, HRCT should be performed only in subjects with clinical indications.
Collapse
Affiliation(s)
- Thijs T Wingelaar
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Anaesthesiology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Leonie Bakker
- Woensdrecht Airbase, Royal Netherlands Airforce, Woensdrecht, Netherlands
| | - Frank J Nap
- Department of Radiology, Central Military Hospital, Ministry of Defence, Utrecht, Netherlands
| | - Pieter-Jan A M van Ooij
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Pulmonology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Edwin L Endert
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands
| | - Rob A van Hulst
- Department of Anaesthesiology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| |
Collapse
|
13
|
Uchida Y, Tsugawa T, Tanaka-Mizuno S, Noma K, Aoki K, Fukunaga K, Nakagawa H, Kinose D, Yamaguchi M, Osawa M, Nagao T, Ogawa E, Nakano Y. Prediction of radiation pneumonitis using dose-volume histogram parameters with high attenuation in two types of cancer: A retrospective study. PLoS One 2020; 15:e0244143. [PMID: 33370345 PMCID: PMC7769248 DOI: 10.1371/journal.pone.0244143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
The constraint values of dose-volume histogram (DVH) parameters for radiation pneumonitis (RP) prediction have not been uniform in previous studies. We compared the differences between conventional DVH parameters and DVH parameters with high attenuation volume (HAV) in CT imaging in both esophageal cancer and lung cancer patients to determine the most suitable DVH parameters in predicting RP onset. Seventy-seven and 72 patients who underwent radiation therapy for lung cancer and esophageal cancer, respectively, were retrospectively assessed. RP was valued according to the Common Terminology Criteria for Adverse Events. We quantified HAV with quantitative computed tomography analysis. We compared conventional DVH parameters and DVH parameters with HAV in both groups of patients. Then, the thresholds of DVH parameters that predicted symptomatic RP and the differences in threshold of DVH parameters between lung cancer and esophageal cancer patient groups were compared. The predictive performance of DVH parameters for symptomatic RP was compared using the area under the receiver operating characteristic curve. Mean lung dose, HAV30% (the proportion of the lung with HAV receiving ≥30 Gy), and HAV20% were the top three parameters in lung cancer, while HAV10%, HAV5%, and V10 (the percentage of lung volume receiving 10 Gy or more) were the top three in esophageal cancer. By comparing the differences in the threshold for parameters predicting RP between the two cancers, we saw that HAV30% retained the same value in both cancers. DVH parameters with HAV showed narrow differences in the threshold between the two cancer patient groups compared to conventional DVH parameters. DVH parameters with HAV may have higher commonality than conventional DVH parameters in both patient groups tested.
Collapse
Affiliation(s)
- Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takuya Tsugawa
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Sachiko Tanaka-Mizuno
- Department of Medical Statistics, Shiga University of Medical Science, Otsu, Shiga, Japan
- The Center for Data Science Education and Research, Shiga University, Hikone, Shiga, Japan
| | - Kazuo Noma
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Ken Aoki
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kentaro Fukunaga
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Makoto Osawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Division of Infection Control and Prevention, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Taishi Nagao
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Emiko Ogawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
14
|
Chae KJ, Choi J, Jin GY, Hoffman EA, Laroia AT, Park M, Lee CH. Relative Regional Air Volume Change Maps at the Acinar Scale Reflect Variable Ventilation in Low Lung Attenuation of COPD patients. Acad Radiol 2020; 27:1540-1548. [PMID: 32024604 DOI: 10.1016/j.acra.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate regional air volume changes at the acinar scale of the lung in chronic obstructive pulmonary disease (COPD) patients using an image registration technique. MATERIALS AND METHODS Thirty-four emphysema patients and 24 subjects with normal chest CT and pulmonary function test (PFT) results were included in this retrospective study for which informed consent was waived by the institutional review board. After lung segmentation, a mass-preserving image registration technique was used to compute relative regional air volume changes (RRAVCs) between inspiration and expiration CT scans. After determining the appropriate thresholds of RRAVCs for low ventilation areas (LVAs), they were displayed and analyzed using color maps on the background inspiration CT image, and compared with the low attenuation area (LAA) map. Correlations between quantitative CT parameters and PFTs were assessed using Pearson's correlation test, and parameters were compared between emphysema and normal-CT patients using the Student's t-test. RESULTS LVA percentage with an RRAVC threshold of 0.5 (%LVA0.5) showed the strongest correlations with FEV1/FVC (r = -0.566), FEV1 (r = -0.534), %LAA-950insp (r = 0.712), and %LAA-856exp (r = 0.775). %LVA0.5 was significantly higher (P < 0.001) in COPD patients than normal subjects. Despite the identical appearance of emphysematous lesions on the LAA-950insp map, the RRAVC map depicted a wide range of ventilation differences between these LAA clusters. CONCLUSION RRAVC-based %LVA0.5 correlated well with FEV1/FVC, FEV1, %LAA-950insp and %LAA-856exp. RRAVC holds the potential for providing additional acinar scale functional information for emphysematous LAAs in inspiratory CT images, providing the basis for a novel set for emphysematous phenotypes.
Collapse
|
15
|
Inomata M, Jo T, Kuse N, Awano N, Tone M, Yoshimura H, Moriya A, Bae Y, Terada Y, Furuhata Y, Kumasaka T, Ushiwata A, Harada A, Terasaki Y, Takeuchi M, Sugiura H, Takemura T, Izumo T. Clinical impact of the radiological indeterminate for usual interstitial pneumonia pattern on the diagnosis of idiopathic pulmonary fibrosis. Respir Investig 2020; 59:81-89. [PMID: 32868263 DOI: 10.1016/j.resinv.2020.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease associated with significant morbidity and mortality. The international clinical practice guidelines for the diagnosis of IPF have recently been revised. METHODS In this single-center retrospective study conducted between June 2006 and March 2018, 27 patients with a newly classified indeterminate for usual interstitial pneumonia (UIP) pattern on high-resolution computed tomography (HRCT) who had undergone surgical lung biopsy were enrolled at the Japanese Red Cross Medical Center. Clinical and pathological characteristics and prognosis were retrospectively analyzed from patient records. RESULTS On the basis of multidisciplinary discussion (MDD), IPF was diagnosed in six patients (22%), unclassifiable interstitial pneumonia in 5 (19%), chronic hypersensitivity pneumonitis in 10 (37%), collagen vascular disease-associated interstitial lung disease in 5 (19%), and lymphoproliferative disorder in 1 (4%) patient. Ground-glass opacity, peribronchovascular distribution, upper or middle lobe distribution, mosaic attenuation, consolidation patterns, and honeycombing were found on HRCT. Histological UIP or probable UIP was observed in seven patients. The median survival time from the initial visit was 2770 days (92.3 months). There was a significant difference in survival time in the GAP stage and honeycombing on HRCT according to the log-rank test. CONCLUSIONS Patients with an indeterminate for UIP pattern on HRCT were more likely to have non-IPF than IPF through pathological diagnosis and MDD. GAP stage and honeycombing on HRCT may be significant risk factors for all-cause mortality.
Collapse
Affiliation(s)
- Minoru Inomata
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Tatsunori Jo
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Naoyuki Kuse
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Nobuyasu Awano
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Mari Tone
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Hanako Yoshimura
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Atsuko Moriya
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Yuan Bae
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Yuriko Terada
- Department of Thoracic Surgery, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Yoshiaki Furuhata
- Department of Thoracic Surgery, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Toshio Kumasaka
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Ai Ushiwata
- Department of Clinical Medicine (Biostatistics), School of Pharmacy at Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Akinori Harada
- Department of Radiology, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Masahiro Takeuchi
- Department of Clinical Medicine (Biostatistics), School of Pharmacy at Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Hiroaki Sugiura
- Department of Radiology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa City, Saitama, 359-8513, Japan.
| | - Tamiko Takemura
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan; Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama City, Kanagawa, 236-0051, Japan.
| | - Takehiro Izumo
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, 4-1-22 Hiroo Shibuya-ku, Tokyo, 150-8935, Japan.
| |
Collapse
|
16
|
Song L, Leppig JA, Hubner RH, Lassen-Schmidt BC, Neumann K, Theilig DC, Feldhaus FW, Fahlenkamp UL, Hamm B, Song W, Jin Z, Doellinger F. Quantitative CT Analysis in Patients with Pulmonary Emphysema: Do Calculated Differences Between Full Inspiration and Expiration Correlate with Lung Function? Int J Chron Obstruct Pulmon Dis 2020; 15:1877-1886. [PMID: 32801683 PMCID: PMC7413697 DOI: 10.2147/copd.s253602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this retrospective study was to evaluate correlations between parameters of quantitative computed tomography (QCT) analysis, especially the 15th percentile of lung attenuation (P15), and parameters of clinical tests in a large group of patients with pulmonary emphysema. Patients and Methods One hundred and seventy-two patients with pulmonary emphysema and chronic obstructive pulmonary disease (COPD) global initiative for chronic obstructive lung disease (GOLD) stage 3 or 4 were assessed by nonenhanced thin-section CT scans in full inspiratory and expiratory breath-hold, pulmonary function test (PFT), a 6-minute walk test (6MWT), and quality of life questionnaires (SGRQ and CAT). QCT parameters included total lung volume (TLV), total emphysema score (TES), and P15, all measured at inspiration (IN) and expiration (EX). Differences between inspiration and expiration were calculated for TLV (TLVDiff), TES (TESDiff), and P15 (P15Diff). Spearman correlation analysis was performed. Results CT-measured lung volume in inspiration (TLVIN) correlated strongly with spirometry-measured total lung capacity (TLC) (r=0.81, p<0.001) and moderately to strongly with residual volume (RV), forced vital capacity (FVC), and forced expiratory volume in 1 second (FEV1)/FVC (r=0.60, 0.56, and −0.49, each p<0.001). Lung volume in expiration (TLVEX) correlated moderately to strongly with TLC, RV and FEV1/FVC ratio (r=0.75, 0.66, and −0.43, each p<0.001). TES and P15 showed stronger correlations with the carbon monoxide transfer coefficient (KCO%) (r= −0.42, 0.44, both p<0.001), when measured during expiration. P15Diff correlated moderately with KCO% and carbon monoxide diffusing capacity (DLCO%) (r= 0.41, 0.40, both p<0.001). The 6MWT and most QCT parameters showed significant differences between COPD GOLD 3 and 4 groups. Conclusion Our results suggest that QCT can help predict the severity of lung function decrease in patients with pulmonary emphysema and COPD GOLD 3 or 4. Some QCT parameters, including P15EX and P15Diff, correlated moderately to strongly with parameters of pulmonary function tests.
Collapse
Affiliation(s)
- Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jonas A Leppig
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf H Hubner
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Konrad Neumann
- Institute of Biometrics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothea C Theilig
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix W Feldhaus
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute L Fahlenkamp
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Felix Doellinger
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Cheng T, Li Y, Pang S, Wan H, Shi G, Cheng Q, Li Q, Pan Z, Huang S. Normal lung attenuation distribution and lung volume on computed tomography in a Chinese population. Int J Chron Obstruct Pulmon Dis 2019; 14:1657-1668. [PMID: 31413560 PMCID: PMC6662163 DOI: 10.2147/copd.s187596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/10/2019] [Indexed: 01/17/2023] Open
Abstract
Backgroud and objectives: Although lung attenuation distribution and lung volume on computed tomography (CT) have been widely used in evaluating COPD and interstitial lung disease, there are only a few studies regarding the normal range of these indices, especially in Chinese subjects. We aimed to describe the normal range of lung attenuation distribution and lung volume based on CT. Methods: Subjects with normal lung function and basically normal chest CT findings (derivation group) at Ruijin Hospital, Shanghai (from January 2010 to June 2014) were included according to inclusion and exclusion criteria. The range of the percentage of lung volume occupied by low attenuation areas (LAA%), percentile of the histogram of attenuation values (Perc n), and total lung volume were analyzed. Relationships of these measures with demographic variables were evaluated. Participants who underwent chest CT examination for disease screening and had basically normal CT findings served as an external validation group. Results: The number of subjects in the derivation group and external validation groups were 564 and 1,787, respectively. Mean total lung volumes were 4,468±1,271 mL and 4,668±1,192 mL, and median LAA%(-950 HU) was 0.19 (0.03–0.43) and 0.17 (0.01–0.41), in the derivation and external validation groups, respectively. Reference equations for lung volume and attenuation distribution (LAA% using -1,000–210 HU, Perc 1 to Perc 98) were generated: Lung volume (mL) = -1.015 *10^4+605.3*Sex (1= male, 0= female)+92.61*Height (cm) –12.99*Weight (kg) ±1766; LAA% (-950 HU)=[0.2027+0.05926*Sex (1= male, 0= female) –4.111*10^-3*Weight (kg) +4.924*10^-3*Height (cm) +8.504*10^-4*Age]^7.341–0.05; Upper limit of normal range: [0.2027+0.05926*Sex-4.111*10^-3*Weight+4.924*10^-3*Height+8.504*10^-4*Age+0.1993]^7.341–0.05. Conclusion: This large population-based retrospective study demonstrated the normal range of LAA%, Perc n, and total lung volume measured on CT scans among subjects with normal lung function and CT findings. Reference equations are provided.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Li
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shuai Pang
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - HuanYing Wan
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - GuoChao Shi
- Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - QiJian Cheng
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - QingYun Li
- Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - ZiLai Pan
- Department of Radiology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - ShaoGuang Huang
- Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Qing K, Tustison NJ, Mugler JP, Mata JF, Lin Z, Zhao L, Wang D, Feng X, Shin JY, Callahan SJ, Bergman MP, Ruppert K, Altes TA, Cassani JM, Shim YM. Probing Changes in Lung Physiology in COPD Using CT, Perfusion MRI, and Hyperpolarized Xenon-129 MRI. Acad Radiol 2019; 26:326-334. [PMID: 30087065 DOI: 10.1016/j.acra.2018.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES Chronic obstructive pulmonary disease (COPD) is highly heterogeneous and not well understood. Hyperpolarized xenon-129 (Xe129) magnetic resonance imaging (MRI) provides a unique way to assess important lung functions such as gas uptake. In this pilot study, we exploited multiple imaging modalities, including computed tomography (CT), gadolinium-enhanced perfusion MRI, and Xe129 MRI, to perform a detailed investigation of changes in lung morphology and functions in COPD. Utility and strengths of Xe129 MRI in assessing COPD were also evaluated against the other imaging modalities. MATERIALS AND METHODS Four COPD patients and four age-matched normal subjects participated in this study. Lung tissue density measured by CT, perfusion measures from gadolinium-enhanced MRI, and ventilation and gas uptake measures from Xe129 MRI were calculated for individual lung lobes to assess regional changes in lung morphology and function, and to investigate correlations among the different imaging modalities. RESULTS No significant differences were found for all measures among the five lobes in either the COPD or age-matched normal group. Strong correlations (R > 0.5 or < -0.5, p < 0.001) were found between ventilation and perfusion measures. Also gas uptake by blood as measured by Xe129 MRI showed strong correlations with CT tissue density and ventilation measures (R > 0.5 or < -0.5, p < 0.001) and moderate to strong correlations with perfusion measures (R > 0.4 or < -0.5, p < 0.01). Four distinctive patterns of functional abnormalities were found in patients with COPD. CONCLUSION Xe129 MRI has high potential to uniquely identify multiple changes in lung physiology in COPD using a single breath-hold acquisition.
Collapse
|
19
|
Stoel BC, Stolk J, Bakker ME, Parr DG. Regional lung densities in alpha-1 antitrypsin deficiency compared to predicted values. Respir Res 2019; 20:45. [PMID: 30819163 PMCID: PMC6396535 DOI: 10.1186/s12931-019-1012-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background We developed a method to calculate a standard score for lung tissue mass derived from CT scan images from a control group without respiratory disease. We applied the method to images from subjects with emphysema associated with alpha-1 antitrypsin deficiency (AATD) and used it to study regional patterns of differential tissue mass. Methods We explored different covariates in 76 controls. Standardization was applied to facilitate comparability between different CT scanners and a standard Z-score (Standard Mass Score, SMS) was developed, representing lung tissue loss compared to normal lung mass. This normative data was defined for the entire lungs and for delineated apical, central and basal regions. The agreement with DLCO%pred was explored in a data set of 180 patients with emphysema who participated in a trial of alpha-1-antitrypsin augmentation treatment (RAPID). Results Large differences between emphysematous and normal tissue of more than 10 standard deviations were found. There was reasonable agreement between SMS and DLCO%pred for the global densitometry (κ = 0.252, p < 0.001), varying from κ = 0.138 to κ = 0.219 and 0.264 (p < 0.001), in the apical, central and basal region, respectively. SMS and DLCO%pred correlated consistently across apical, central and basal regions. The SMS distribution over the different lung regions showed a distinct pattern suggesting that emphysema due to severe AATD develops from basal to central and ultimately apical regions. Conclusions Standardization and normalization of lung densitometry is feasible and the adoption of the developed principles helps to characterize the distribution of emphysema, required for clinical decision making. Electronic supplementary material The online version of this article (10.1186/s12931-019-1012-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Berend C Stoel
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Els Bakker
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - David G Parr
- Department of Respiratory Medicine, University Hospitals of Coventry and Warwickshire, Clifford Bridge Road, Coventry, UK
| |
Collapse
|
20
|
Chung JH, Landeras L. Probable UIP: What is the Evidence that Compels this Classification and How is it Different from the Indeterminate Category? Semin Roentgenol 2019; 54:15-20. [DOI: 10.1053/j.ro.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Hajian B, De Backer J, Vos W, Van Holsbeke C, Clukers J, De Backer W. Functional respiratory imaging (FRI) for optimizing therapy development and patient care. Expert Rev Respir Med 2018; 10:193-206. [PMID: 26731531 DOI: 10.1586/17476348.2016.1136216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional imaging techniques offer the possibility of improved visualization of anatomical structures such as; airways, lobe volumes and blood vessels. Computer-based flow simulations with a three-dimensional element add functionality to the images. By providing valuable detailed information about airway geometry, internal airflow distribution and inhalation profile, functional respiratory imaging can be of use routinely in the clinic. Three dimensional visualization allows for highly detailed follow-up in terms of disease progression or in assessing effects of interventions. Here, we explore the usefulness of functional respiratory imaging in different respiratory diseases. In patients with asthma and COPD, functional respiratory imaging has been used for phenotyping these patients, to predict the responder and non-responder phenotype and to evaluate different innovative therapeutic interventions.
Collapse
Affiliation(s)
- Bita Hajian
- a Department of Respiratory Medicine , University Hospital Antwerp , Edegem , Belgium
| | | | - Wim Vos
- b FLUIDDA nv , Kontich , Belgium
| | | | - Johan Clukers
- a Department of Respiratory Medicine , University Hospital Antwerp , Edegem , Belgium
| | - Wilfried De Backer
- a Department of Respiratory Medicine , University Hospital Antwerp , Edegem , Belgium
| |
Collapse
|
22
|
Ash SY, Harmouche R, Ross JC, Diaz AA, Rahaghi FN, Vegas Sanchez-Ferrero G, Putman RK, Hunninghake GM, Onieva Onieva J, Martinez FJ, Choi AM, Bowler RP, Lynch DA, Hatabu H, Bhatt SP, Dransfield MT, Wells JM, Rosas IO, San Jose Estepar R, Washko GR. Interstitial Features at Chest CT Enhance the Deleterious Effects of Emphysema in the COPDGene Cohort. Radiology 2018; 288:600-609. [PMID: 29869957 PMCID: PMC6069608 DOI: 10.1148/radiol.2018172688] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 12/28/2022]
Abstract
Purpose To determine if interstitial features at chest CT enhance the effect of emphysema on clinical disease severity in smokers without clinical pulmonary fibrosis. Materials and Methods In this retrospective cohort study, an objective CT analysis tool was used to measure interstitial features (reticular changes, honeycombing, centrilobular nodules, linear scar, nodular changes, subpleural lines, and ground-glass opacities) and emphysema in 8266 participants in a study of chronic obstructive pulmonary disease (COPD) called COPDGene (recruited between October 2006 and January 2011). Additive differences in patients with emphysema with interstitial features and in those without interstitial features were analyzed by using t tests, multivariable linear regression, and Kaplan-Meier analysis. Multivariable linear and Cox regression were used to determine if interstitial features modified the effect of continuously measured emphysema on clinical measures of disease severity and mortality. Results Compared with individuals with emphysema alone, those with emphysema and interstitial features had a higher percentage predicted forced expiratory volume in 1 second (absolute difference, 6.4%; P < .001), a lower percentage predicted diffusing capacity of lung for carbon monoxide (DLCO) (absolute difference, 7.4%; P = .034), a 0.019 higher right ventricular-to-left ventricular (RVLV) volume ratio (P = .029), a 43.2-m shorter 6-minute walk distance (6MWD) (P < .001), a 5.9-point higher St George's Respiratory Questionnaire (SGRQ) score (P < .001), and 82% higher mortality (P < .001). In addition, interstitial features modified the effect of emphysema on percentage predicted DLCO, RVLV volume ratio, 6WMD, SGRQ score, and mortality (P for interaction < .05 for all). Conclusion In smokers, the combined presence of interstitial features and emphysema was associated with worse clinical disease severity and higher mortality than was emphysema alone. In addition, interstitial features enhanced the deleterious effects of emphysema on clinical disease severity and mortality.
Collapse
Affiliation(s)
- Samuel Y. Ash
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Rola Harmouche
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - James C. Ross
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Alejandro A. Diaz
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Farbod N. Rahaghi
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Gonzalo Vegas Sanchez-Ferrero
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Rachel K. Putman
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Gary M. Hunninghake
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Jorge Onieva Onieva
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Fernando J. Martinez
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Augustine M. Choi
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Russell P. Bowler
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - David A. Lynch
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Hiroto Hatabu
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Surya P. Bhatt
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Mark T. Dransfield
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - J. Michael Wells
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Ivan O. Rosas
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - Raul San Jose Estepar
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - George R. Washko
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| | - for the COPDGene Investigators
- From the Division of Pulmonary and Critical Care Medicine, Department
of Medicine (S.Y.A., A.A.D., F.N.R., R.K.P., G.M.H., I.O.R., G.R.W.), Laboratory
of Mathematics in Imaging, Department of Radiology (R.H., J.C.R., G.V.S.,
J.O.O., R.S.J.E.), and Department of Radiology (H.H.), Brigham and
Women’s Hospital, 75 Francis St, PBB CA-3, Boston, MA 02115; Department
of Medicine, Weil Cornell Medical College, New York, NY (F.J.M., A.M.C.);
Departments of Medicine (R.P.B.) and Radiology (D.A.L.), National Jewish Health,
Denver, Colo; and Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
(S.P.B., M.T.D., J.M.W.)
| |
Collapse
|
23
|
Ash SY, Rahaghi FN, Come CE, Ross JC, Colon AG, Cardet-Guisasola JC, Dunican EM, Bleecker ER, Castro M, Fahy JV, Fain SB, Gaston BM, Hoffman EA, Jarjour NN, Mauger DT, Wenzel SE, Levy BD, San Jose Estepar R, Israel E. Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. Am J Respir Crit Care Med 2018; 198:39-50. [PMID: 29672122 PMCID: PMC6034125 DOI: 10.1164/rccm.201712-2426oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/19/2018] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Loss of the peripheral pulmonary vasculature, termed vascular pruning, is associated with disease severity in patients with chronic obstructive pulmonary disease. OBJECTIVES To determine if pulmonary vascular pruning is associated with asthma severity and exacerbations. METHODS We measured the total pulmonary blood vessel volume (TBV) and the blood vessel volume of vessels less than 5 mm2 in cross-sectional area (BV5) and of vessels less than 10 mm2 (BV10) in cross-sectional area on noncontrast computed tomographic scans of participants from the Severe Asthma Research Program. Lower values of the BV5 to TBV ratio (BV5/TBV) and the BV10 to TBV ratio (BV10/TBV) represented vascular pruning (loss of the peripheral pulmonary vasculature). MEASUREMENTS AND MAIN RESULTS Compared with healthy control subjects, patients with severe asthma had more pulmonary vascular pruning. Among those with asthma, those with poor asthma control had more pruning than those with well-controlled disease. Pruning of the pulmonary vasculature was also associated with lower percent predicted FEV1 and FVC, greater peripheral and sputum eosinophilia, and higher BAL serum amyloid A/lipoxin A4 ratio but not with low-attenuation area or with sputum neutrophilia. Compared with individuals with less pruning, individuals with the most vascular pruning had 150% greater odds of reporting an asthma exacerbation (odds ratio, 2.50; confidence interval, 1.05-5.98; P = 0.039 for BV10/TBV) and reported 45% more asthma exacerbations during follow-up (incidence rate ratio, 1.45; confidence interval, 1.02-2.06; P = 0.036 for BV10/TBV). CONCLUSIONS Pruning of the peripheral pulmonary vasculature is associated with asthma severity, control, and exacerbations, and with lung function and eosinophilia.
Collapse
Affiliation(s)
- Samuel Y. Ash
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Carolyn E. Come
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James C. Ross
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Alysha G. Colon
- College of Medicine, University of Florida, Gainesville, Florida
| | | | - Eleanor M. Dunican
- St. Vincent’s University Hospital, University College Dublin, Dublin, Ireland
| | - Eugene R. Bleecker
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Arizona
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Sean B. Fain
- Department of Medical Physics
- Department of Radiology
- Department of Biomedical Engineering, and
| | - Benjamin M. Gaston
- Division of Pediatric Allergy/Immunology and
- Division of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital and Cleveland Medical Center, Cleveland, Ohio
| | - Eric A. Hoffman
- Department of Radiology
- Department of Biomedical Engineering, and
- Department of Medicine, University of Iowa, Iowa City, Iowa
| | - Nizar N. Jarjour
- Division of Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - David T. Mauger
- Division of Biostatistics and Bioinformatics, Eberly College of Science, Penn State University, University Park, Pennsylvania; and
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine and
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine and
| | - SARP Investigators
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
- College of Medicine, University of Florida, Gainesville, Florida
- Division of Allergy and Immunology, Department of Medicine, University of South Florida, Tampa, Florida
- St. Vincent’s University Hospital, University College Dublin, Dublin, Ireland
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Arizona
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
- Department of Medical Physics
- Department of Radiology
- Department of Biomedical Engineering, and
- Division of Pulmonary and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
- Division of Pediatric Allergy/Immunology and
- Division of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital and Cleveland Medical Center, Cleveland, Ohio
- Department of Radiology
- Department of Biomedical Engineering, and
- Department of Medicine, University of Iowa, Iowa City, Iowa
- Division of Biostatistics and Bioinformatics, Eberly College of Science, Penn State University, University Park, Pennsylvania; and
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Spielberg DR, Walkup LL, Stein JM, Crotty EJ, Rattan MS, Hossain MM, Brody AS, Woods JC. Quantitative CT scans of lung parenchymal pathology in premature infants ages 0-6 years. Pediatr Pulmonol 2018; 53:316-323. [PMID: 29266864 DOI: 10.1002/ppul.23921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common, heterogeneous disease in premature infants. We hypothesized that quantitative CT techniques could assess lung parenchymal heterogeneity in BPD patients across a broad age range and demonstrate how pathologies change over time. METHODS A cross-sectional, retrospective study of children age 0-6 years with non-contrast chest CT scans was conducted. BPD subjects met NICHD/NHLBI diagnostic criteria for BPD and were excluded for congenital lung/airway abnormalities or other known/suspected pulmonary diagnoses; control subjects were not premature and had normal CT scan findings. Radiologic opacities, lucencies, and spatial heterogeneity were quantified via: 1) thresholding using CT-attenuation (HU); 2) manual segmentation; and 3) Ochiai reader-scoring system. Clinical outcomes included BPD severity by NICHD/NHLBI criteria, respiratory support at NICU discharge, wheezing, and respiratory exacerbations. RESULTS Heterogeneity (standard deviation) of lung attenuation in BPD was significantly greater than in controls (difference 36.4 HU [26.1-46.7 HU], P < 0.001); the difference between the groups decreased 0.58 HU per month of age (0.08-1.07 HU per month, P = 0.02). BPD patients had greater amounts of opacities and lucencies than controls except with automated quantification of lucencies. Cross-sectionally, lucencies per Ochiai score and opacities per manual segmentation decreased with time. No approach measured a statistically significant relationship to BPD clinical severity. CONCLUSIONS Opacities, lucencies, and overall heterogeneity of lungs via quantitative CT can distinguish BPD patients from healthy controls, and these abnormalities decrease with age across BPD patients. Defining BPD severity by clinical outcomes such as respiratory support at several time points (vs a single time point, per current guidelines) may be meaningful.
Collapse
Affiliation(s)
- David R Spielberg
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura L Walkup
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jill M Stein
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eric J Crotty
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mantosh S Rattan
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Md Monir Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alan S Brody
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason C Woods
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
25
|
Chung MH, Gil BM, Kwon SS, Park HI, Song SW, Jung NY, Yoo WJ. Computed tomographic thoracic morphologic indices in normal subjects and patients with chronic obstructive pulmonary disease: Comparison with spiral CT densitometry and pulmonary function tests. Eur J Radiol 2018; 100:147-153. [PMID: 29496074 DOI: 10.1016/j.ejrad.2018.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To determine what computed tomographic (CT) dimensions can predict obstructive lung disease on routine chest CT scans by comparing morphological and densitometric CT findings with pulmonary function test (PFT) in normal subjects and patients with chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS Consecutive patients (n = 646; 260 females and 386 males; mean age 54.9 years, ranged 20-90 years) who received chest CT scans with densitometry during a 3-month period were retrospectively analyzed in single center. PFT was undertaken in 235 patients (152 males, 83 females) at same times of CT scanning. The patients were grouped by age (<30 years, 31-45 years, 46-60 years, and >61 years). CT parameters including tracheal, azygoesophageal, thoracic vertical, anterior-posterior (AP), transverse diameters, transverse cardiac diameter, diameters of main, right, and left pulmonary arteries, and CT densitometric values including lung volume and density (-900 to -1000 Hounsfield Units, HU), low attenuation value cluster (default threshold: -950 HU) were compared with PFT values. Spearman correlation coefficients was used to evaluate the relationship between the CT indices and PFT. RESULTS Ninety of 235 patients with PFT were smokers (76 males, 14 females). Obstructive PFT was detected in 65 patients (27.7%: 46 males, 19 females). Male smokers with obstructive PFT displayed significantly larger thoracic anterior-posterior (mean: normal, 172.3 cm versus COPD, 185.9 cm, p = 0.0001) and smaller transverse diameters (mean: normal, 247.0 cm vs. COPD, 235.8 cm, p = 0.01), and increased right pulmonary artery diameter (mean: normal, 20.3 cm v s. COPD, 22.1 cm, p < 0.001), and increased left pulmonary artery diameter (mean: normal, 19.7 cm vs. COPD, 20.6 cm, p < 0.025). The lung parenchyma density (-1000 to -900 HU) and greater concentration of largest cluster on densitometry were significantly different between normal and obstructive PFT pattern in male smoker. Residual volume and total lung capacity are positively correlated with lung volume and lung density (-1000 to -800) of densitometry. CONCLUSIONS CT findings of the overexpansion of the lungs, such as increases in the vertical diameter of the lung and decreases in the transverse diameter of the heart, can be significant as indirect findings of early chronic obstructive diseases. However, despite the significant CT findings in male smokers, particularly those in their 40s, most lung function parameters were not decidedly abnormal.
Collapse
Affiliation(s)
- Myung Hee Chung
- Department of Radiology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647, Republic of Korea.
| | - Bo Mi Gil
- Department of Radiology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647, Republic of Korea
| | - Soon Seog Kwon
- Division of Allergy and Pulmonary, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647, Republic of Korea
| | - Hae-Il Park
- Department of Laboratory Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647, Republic of Korea
| | - Sun Wha Song
- Departement of Radiology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Na Young Jung
- Department of Radiology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647, Republic of Korea
| | - Won Jong Yoo
- Departement of Radiology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-do 14647, Republic of Korea
| |
Collapse
|
26
|
Lung Clearance Index and Quantitative Computed Tomography of Post-Infectious Bronchiolitis Obliterans in Infants. Sci Rep 2017; 7:15128. [PMID: 29123150 PMCID: PMC5680196 DOI: 10.1038/s41598-017-15330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
Post-infectious bronchiolitis obliterans (BO) could be diagnosed via spirometry and chest computed tomography (CT); however, these tests are limited in infants. We aimed to evaluate the utility of lung clearance index (LCI) and air-trapping lung volume from chest CT in infants. This prospective study included 20 infants (mean age, 10.9 ± 6.3 months) diagnosed with post-infectious BO between 2009 and 2016. All subjects underwent multiple breath washout tests. For quantitative analysis of chest CT, the mean lung area attenuation value was used as an individual cutoff to determine the air-trapping lung volume. The mean cutoff lung attenuation value was −659 Hounsfield units, the mean total lung volume was 265 ml, and the mean air-trapping lung volume percentage was 22.9%. Functional residual capacity correlated with total lung volume and normal attenuation lung volume (p < 0.02). LCI (p < 0.02) and moment ratio (MR) 1 (p < 0.05) correlated with the air-trapping lung volume percentage. The concordance indices of LCI (0.659, p = 0.025) and MR1 (0.642, p = 0.046) were significantly correlated with the air-trapping lung volume percentage from CT. LCI and quantitative air-trapping lung volume from chest CT are feasible, complimentary tools for assessing infants with post-infectious BO.
Collapse
|
27
|
Uchida Y, Tsugawa T, Tanaka-Mizuno S, Noma K, Aoki K, Shigemori W, Nakagawa H, Kinose D, Yamaguchi M, Osawa M, Ogawa E, Nakano Y. Exclusion of emphysematous lung from dose-volume estimates of risk improves prediction of radiation pneumonitis. Radiat Oncol 2017; 12:160. [PMID: 28969651 PMCID: PMC5625816 DOI: 10.1186/s13014-017-0891-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The risk factors for radiation pneumonitis (RP) in patients with chronic obstructive pulmonary disease (COPD) are unclear. Mean lung dose (MLD) and percentage of irradiated lung volume are common predictors of RP, but the most accurate dosimetric parameter has not been established. We hypothesized that the total lung volume irradiated without emphysema would influence the onset of RP. METHODS We retrospectively evaluated 100 patients who received radiotherapy for lung cancer. RP was graded according to the Common Terminology Criteria for Adverse Events (version 4.03). We quantified low attenuation volume (LAV) using quantitative computed tomography analysis. The association between RP and traditional dosimetric parameters including MLD, volume of the lung receiving a dose of ≥2 Gy, ≥ 5 Gy, ≥ 10 Gy, ≥ 20 Gy, and ≥30 Gy, and counterpart measurements of the lung without LAV, were analyzed by logistic regression. We compared each dosimetric parameter for RP using multiple predictive performance measures including area under the receiver operating characteristic curve (AUC) and integrated discrimination improvement (IDI). RESULTS Of 100 patients, RP of Grades 1, 2, 3, 4, and 5 was diagnosed in 24, 12, 13, 1, and 1 patients, respectively. Compared with traditional dosimetric parameters, counterpart measurements without LAV improved risk prediction of symptomatic RP. The ratio of the lung without LAV receiving ≥30 Gy to the total lung volume without LAV most accurately predicted symptomatic RP (AUC, 0.894; IDI, 0.064). CONCLUSION Irradiated lung volume without LAV predicted RP more accurately than traditional dosimetric parameters.
Collapse
Affiliation(s)
- Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takuya Tsugawa
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Sachiko Tanaka-Mizuno
- Department of Medical Statistics, Shiga University of Medical Science, Otsu, Shiga, Japan.,The Center for Data Science Education and Research, Shiga University, Hikone, Shiga, Japan
| | - Kazuo Noma
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Ken Aoki
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Wataru Shigemori
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Makoto Osawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Division of Infection Control and Prevention, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan
| | - Emiko Ogawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.
| |
Collapse
|
28
|
Radiologic Features of World Trade Center-related Sarcoidosis in Exposed NYC Fire Department Rescue Workers. J Thorac Imaging 2017; 31:296-303. [PMID: 27442523 DOI: 10.1097/rti.0000000000000230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE An increased incidence of sarcoidosis has been demonstrated in firefighters, supporting the concern that occupational/environmental exposure may pose an etiologic risk factor. This incidence increased further after September 11, 2001 following exposure to World Trade Center (WTC) dust and gases. We review computed tomography (CT) features in this population, comparing the range of findings and physiological correlates with those typically reported in unexposed individuals with pulmonary sarcoidosis. MATERIALS AND METHODS With CT imaging we retrospectively identified 46 patients with WTC-related sarcoidosis, between March 18, 2002 and April 5, 2014. Scans were independently reviewed by 2 dedicated thoracic radiologists and assessed for disease patterns and correlation with pulmonary functions. RESULTS The majority (37/46; 80%) had symmetric mediastinal and hilar lymphadenopathy. Similarly, most (38/46; 83%) had perilymphatic nodules. Foci of ill-defined ground glass attenuation were present in 6 (13%). Coalescent nodularity was present in 15 (33%). Only 3 (7%) had parenchymal reticulation. A mixed pattern of lung findings was present in 21 (46%). When all forms of parenchymal disease were scored by zonal distribution, 21 (46%) had parenchymal disease predominantly involving mid and upper lungs; 11/46 (24%) had a random distribution without zonal predominance; 6/46 (13%) demonstrated atypical lower zone predominance. Whereas 15/46 (33%) had obstructive airways disease on pulmonary function tests, there were no CT findings that were predictive of obstructive airways disease. CONCLUSIONS The majority of cases of WTC-related sarcoidosis demonstrated typical radiographic appearances of sarcoidosis, with symmetric hilar and mediastinal lymphadenopathy and mid to upper lung perilymphatic nodules; these findings were consistent with other previously reported cases of sarcoid-like granulomatous disease in association with various alternate underlying etiologies. There was no correlation between disease patterns or extent on CT and pulmonary function testing, likely at least in part due to the overall mild extent of disease in this population.
Collapse
|
29
|
Mohamed Hoesein FA, de Jong PA. Air trapping on computed tomography: regional versus diffuse. Eur Respir J 2017; 49:49/1/1601791. [PMID: 28122856 DOI: 10.1183/13993003.01791-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 11/05/2022]
Affiliation(s)
| | - Pim A de Jong
- Dept of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Kligerman S, Franks TJ, Galvin JR. Clinical-Radiologic-Pathologic Correlation of Smoking-Related Diffuse Parenchymal Lung Disease. Radiol Clin North Am 2016; 54:1047-1063. [PMID: 27719975 DOI: 10.1016/j.rcl.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The direct toxicity of cigarette smoke and the body's subsequent response to this lung injury leads to a wide array of pathologic manifestations and disease states that lead to both reversible and irreversible injury to the large airways, small airways, alveolar walls, and alveolar spaces. These include emphysema, bronchitis, bronchiolitis, acute eosinophilic pneumonia, pulmonary Langerhans cell histiocytosis, respiratory bronchiolitis, desquamative interstitial pneumonia, and pulmonary fibrosis. Although these various forms of injury have different pathologic and imaging manifestations, they are all part of the spectrum of smoking-related diffuse parenchymal lung disease.
Collapse
Affiliation(s)
- Seth Kligerman
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21231, USA.
| | - Teri J Franks
- Department of Defense, Defense Health Agency, Joint Pathology Center, 606 Stephen Sitter Avenue, Silver Spring, MD 20910-1290, USA
| | - Jeffrey R Galvin
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21231, USA; Department of Thoracic Radiology, American Institute for Radiologic Pathology, 1010 Wayne Avenue, Suite 320, Silver Spring, MD 20910, USA
| |
Collapse
|
31
|
Silva M, Nemec SF, Dufresne V, Occhipinti M, Heidinger BH, Chamberlain R, Bankier AA. Normal spectrum of pulmonary parametric response map to differentiate lung collapsibility: distribution of densitometric classifications in healthy adult volunteers. Eur Radiol 2015; 26:3063-70. [PMID: 26638165 DOI: 10.1007/s00330-015-4133-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Pulmonary parametric response map (PRM) was proposed for quantitative densitometric phenotypization of chronic obstructive pulmonary disease. However, little is known about this technique in healthy subjects. The purpose of this study was to describe the normal spectrum of densitometric classification of pulmonary PRM in a group of healthy adults. METHODS 15 healthy volunteers underwent spirometrically monitored chest CT at total lung capacity (TLC) and functional residual capacity (FRC). The paired CT scans were analyzed by PRM for voxel-by-voxel characterization of lung parenchyma according to 4 densitometric classifications: normal lung (TLC ≥ -950 HU, FRC ≥ -856 HU); expiratory low attenuation area (LAA) (TLC ≥ -950 HU, FRC < -856 HU); dual LAA (TLC<-950 HU, FRC < -856 HU); uncharacterized (TLC < -950 HU, FRC ≥ -856 HU). RESULTS PRM spectrum was 78 % ± 10 % normal lung, 20 % ± 8 % expiratory LAA, and 1 % ± 1 % dual LAA. PRM was similar between genders, there was moderate correlation between dual LAA and spirometrically assessed TLC (R = 0.531; p = 0.042), and between expiratory LAA and VolExp/Insp ratio (R = -0.572; p = 0.026). CONCLUSIONS PRM reflects the predominance of normal lung parenchyma in a group of healthy volunteers. However, PRM also confirms the presence of physiological expiratory LAA seemingly related to air trapping and a minimal amount of dual LAA likely reflecting emphysema. KEY POINTS • Co-registration of inspiratory and expiratory computed tomography allows dual-phase densitometry. • Dual-phase co-registered densitometry reflects heterogeneous regional changes in lung function. • Quantification of lung in healthy subjects is needed to set reference values. • Expiratory low attenuation areas <30 % could be considered within normal range.
Collapse
Affiliation(s)
- Mario Silva
- Section of Cardiothoracic Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA. .,Section of Radiology, Department of Surgical Sciences, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Stefan F Nemec
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Valerie Dufresne
- Pneumologie, CHU de Charleroi - Hôpital Vésale, Rue de Gozé 706, 6110, Montigny-le-Tilleul, Belgium
| | - Mariaelena Occhipinti
- Section of Cardiothoracic Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Benedikt H Heidinger
- Section of Cardiothoracic Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | | | - Alexander A Bankier
- Section of Cardiothoracic Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
32
|
Optimal threshold of subtraction method for quantification of air-trapping on coregistered CT in COPD patients. Eur Radiol 2015; 26:2184-92. [PMID: 26515547 DOI: 10.1007/s00330-015-4070-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/10/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To investigate the optimal threshold of subtraction method for quantification of air trapping on co-registered CT in COPD patients in correlation with pulmonary function parameters. METHODS From June 2005 to October 2010, 174 patients were included in our study. Inspiration and expiration CT were performed followed by non-rigid registration using in-house software. The subtraction value per voxel between inspiration and registered expiration CT was obtained, and volume fraction of air trapping (air trapping index, ATI), using variable thresholds was calculated. ATI, expiration/inspiration ratio of mean lung density (E/I MLD) and the percentage of lung voxels below -856 HU on expiration CT (Exp-856) were correlated with FEF25-75% and RV/TLC. RESULTS The highest correlation coefficient with FEF25-75% was -0.656, using the threshold of 80 HU. As for RV/TLC, the highest correlation coefficient was 0.664, using the threshold of 30 HU. When plotting the relationship between subtraction thresholds and FEF25-75% and RV/TLC, the threshold of 60 HU was most suitable (r = -0.649 and 0.651). Those correlation coefficients were comparable to the results with E/I MLD (r = -0.670 and 0.657) and Exp-856 (r = -0.604 and 0.565). CONCLUSIONS The optimal threshold for quantification of air trapping was 60 HU and showed comparable correlations with pulmonary function parameters. KEY POINTS • The optimal CT threshold of subtraction method for air trapping was 60 HU. • ATI with 60 HU threshold was comparable to E/I MLD and Exp -856 . • Emphysema may substantially contribute to air trapping with statistical significance (P < 0.001).
Collapse
|
33
|
Kligerman SJ, Henry T, Lin CT, Franks TJ, Galvin JR. Mosaic Attenuation: Etiology, Methods of Differentiation, and Pitfalls. Radiographics 2015; 35:1360-80. [PMID: 26274445 DOI: 10.1148/rg.2015140308] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mosaic attenuation is a commonly encountered pattern on computed tomography that is defined as heterogeneous areas of differing lung attenuation. This heterogeneous pattern of attenuation is the result of diverse causes that include diseases of the small airways, pulmonary vasculature, alveoli, and interstitium, alone or in combination. Small airways disease can be a primary disorder, such as respiratory bronchiolitis or constrictive bronchiolitis, or be part of parenchymal lung disease, such as hypersensitivity pneumonitis, or large airways disease, such as bronchiectasis and asthma. Vascular causes resulting in mosaic attenuation are typically chronic thromboembolic pulmonary hypertension, which is characterized by organizing thrombi in the elastic pulmonary arteries, or pulmonary arterial hypertension, a heterogeneous group of diseases affecting the distal pulmonary arterioles. Diffuse ground-glass opacity can result in a mosaic pattern related to a number of processes in acute (eg, infection, pulmonary edema), subacute (eg, organizing pneumonia), or chronic (eg, fibrotic diseases) settings. Imaging clues that can assist the radiologist in pinpointing a diagnosis include evidence of large airway involvement, cardiovascular abnormalities, septal thickening, signs of fibrosis, and demonstration of airtrapping at expiratory imaging.
Collapse
Affiliation(s)
- Seth J Kligerman
- From the Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 (S.J.K., C.T.L., J.R.G.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Ga (T.H.); and Division of Pulmonary and Mediastinal Pathology, The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, Md (T.J.F.)
| | - Travis Henry
- From the Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 (S.J.K., C.T.L., J.R.G.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Ga (T.H.); and Division of Pulmonary and Mediastinal Pathology, The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, Md (T.J.F.)
| | - Cheng T Lin
- From the Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 (S.J.K., C.T.L., J.R.G.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Ga (T.H.); and Division of Pulmonary and Mediastinal Pathology, The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, Md (T.J.F.)
| | - Teri J Franks
- From the Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 (S.J.K., C.T.L., J.R.G.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Ga (T.H.); and Division of Pulmonary and Mediastinal Pathology, The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, Md (T.J.F.)
| | - Jeffrey R Galvin
- From the Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 (S.J.K., C.T.L., J.R.G.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Ga (T.H.); and Division of Pulmonary and Mediastinal Pathology, The Joint Pathology Center, Defense Health Agency, National Capital Region Medical Directorate, Silver Spring, Md (T.J.F.)
| |
Collapse
|
34
|
Emphysema Is Common in Lungs of Cystic Fibrosis Lung Transplantation Patients: A Histopathological and Computed Tomography Study. PLoS One 2015; 10:e0128062. [PMID: 26047144 PMCID: PMC4457847 DOI: 10.1371/journal.pone.0128062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/23/2015] [Indexed: 11/21/2022] Open
Abstract
Background Lung disease in cystic fibrosis (CF) involves excessive inflammation, repetitive infections and development of bronchiectasis. Recently, literature on emphysema in CF has emerged, which might become an increasingly important disease component due to the increased life expectancy. The purpose of this study was to assess the presence and extent of emphysema in endstage CF lungs. Methods In explanted lungs of 20 CF patients emphysema was semi-quantitatively assessed on histology specimens. Also, emphysema was automatically quantified on pre-transplantation computed tomography (CT) using the percentage of voxels below -950 Houndfield Units and was visually scored on CT. The relation between emphysema extent, pre-transplantation lung function and age was determined. Results All CF patients showed emphysema on histological examination: 3/20 (15%) showed mild, 15/20 (75%) moderate and 2/20 (10%) severe emphysema, defined as 0–20% emphysema, 20–50% emphysema and >50% emphysema in residual lung tissue, respectively. Visually upper lobe bullous emphysema was identified in 13/20 and more diffuse non-bullous emphysema in 18/20. Histology showed a significant correlation to quantified CT emphysema (p = 0.03) and visual emphysema score (p = 0.001). CT and visual emphysema extent were positively correlated with age (p = 0.045 and p = 0.04, respectively). Conclusions In conclusion, this study both pathologically and radiologically confirms that emphysema is common in end-stage CF lungs, and is age related. Emphysema might become an increasingly important disease component in the aging CF population.
Collapse
|
35
|
Lee E, Seo JB, Lee HJ, Chae EJ, Lee SM, Oh SY, Kim N. Quantitative Assessment of Global and Regional Air Trappings Using Non-Rigid Registration and Regional Specific Volume Change of Inspiratory/Expiratory CT Scans: Studies on Healthy Volunteers and Asthmatics. Korean J Radiol 2015; 16:632-40. [PMID: 25995694 PMCID: PMC4435244 DOI: 10.3348/kjr.2015.16.3.632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/12/2015] [Indexed: 01/15/2023] Open
Abstract
Objective The purpose of this study was to compare air trapping in healthy volunteers with asthmatics using pulmonary function test and quantitative data, such as specific volume change from paired inspiratory CT and registered expiratory CT. Materials and Methods Sixteen healthy volunteers and 9 asthmatics underwent paired inspiratory/expiratory CT. ΔSV, which represents the ratio of air fraction released after exhalation, was measured with paired inspiratory and anatomically registered expiratory CT scans. Air trapping indexes, ΔSV0.4 and ΔSV0.5, were defined as volume fraction of lung below 0.4 and 0.5 ΔSV, respectively. To assess the gravity effect of air-trapping, ΔSV values of anterior and posterior lung at three different levels were measured and ΔSV ratio of anterior lung to posterior lung was calculated. Color-coded ΔSV map of the whole lung was generated and visually assessed. Mean ΔSV, ΔSV0.4, and ΔSV0.5 were compared between healthy volunteers and asthmatics. In asthmatics, correlation between air trapping indexes and clinical parameters were assessed. Results Mean ΔSV, ΔSV0.4, and ΔSV0.5 in asthmatics were significantly higher than those in healthy volunteer group (all p < 0.05). ΔSV values in posterior lung in asthmatics were significantly higher than those in healthy volunteer group (p = 0.049). In asthmatics, air trapping indexes, such as ΔSV0.5 and ΔSV0.4, showed negative strong correlation with FEF25-75, FEV1, and FEV1/FVC. ΔSV map of asthmatics showed abnormal geographic pattern in 5 patients (55.6%) and disappearance of anterior-posterior gradient in 3 patients (33.3%). Conclusion Quantitative assessment of ΔSV (the ratio of air fraction released after exhalation) shows the difference in extent of air trapping between health volunteers and asthmatics.
Collapse
Affiliation(s)
- Eunsol Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Hyun Joo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Eun Jin Chae
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Sang Young Oh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
36
|
Lynch DA, Austin JHM, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, Barr RG, Colby TV, Galvin JR, Gevenois PA, Coxson HO, Hoffman EA, Newell JD, Pistolesi M, Silverman EK, Crapo JD. CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society. Radiology 2015; 277:192-205. [PMID: 25961632 DOI: 10.1148/radiol.2015141579] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this statement is to describe and define the phenotypic abnormalities that can be identified on visual and quantitative evaluation of computed tomographic (CT) images in subjects with chronic obstructive pulmonary disease (COPD), with the goal of contributing to a personalized approach to the treatment of patients with COPD. Quantitative CT is useful for identifying and sequentially evaluating the extent of emphysematous lung destruction, changes in airway walls, and expiratory air trapping. However, visual assessment of CT scans remains important to describe patterns of altered lung structure in COPD. The classification system proposed and illustrated in this article provides a structured approach to visual and quantitative assessment of COPD. Emphysema is classified as centrilobular (subclassified as trace, mild, moderate, confluent, and advanced destructive emphysema), panlobular, and paraseptal (subclassified as mild or substantial). Additional important visual features include airway wall thickening, inflammatory small airways disease, tracheal abnormalities, interstitial lung abnormalities, pulmonary arterial enlargement, and bronchiectasis.
Collapse
Affiliation(s)
- David A Lynch
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - John H M Austin
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - James C Hogg
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Philippe A Grenier
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Hans-Ulrich Kauczor
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Alexander A Bankier
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - R Graham Barr
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Thomas V Colby
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Jeffrey R Galvin
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Pierre Alain Gevenois
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Harvey O Coxson
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Eric A Hoffman
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - John D Newell
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Massimo Pistolesi
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - Edwin K Silverman
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| | - James D Crapo
- From the Departments of Radiology (D.A.L.) and Medicine (J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University, New York, NY (J.H.M.A.); Department of Pathology, University of British Columbia, Vancouver, BC, Canada (J.C.H.); Department of Radiology, Hôpital Pitié-Salpêtrière, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany (H.U.K.); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Mass (A.A.B.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Department of Pathology, Mayo Clinic Scottsdale, Scottsdale, Ariz (T.V.C.); Department of Chest Imaging, American Institute for Radiologic Pathology, Silver Spring, Md (J.R.G.); Department of Radiology, Hôpital Erasme, Brussels, Belgium (P.A.G.); Department of Radiology, Vancouver General Hospital, Vancouver, BC, Canada (H.C.); Department of Radiology, Division of Physiological Imaging, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa (E.A.H., J.D.N.); Respiratory Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (M.P.); and Channing Laboratory, Brigham and Women's Hospital, Boston, Mass (E.K.S.)
| |
Collapse
|
37
|
Variation in the percent of emphysema-like lung in a healthy, nonsmoking multiethnic sample. The MESA lung study. Ann Am Thorac Soc 2015; 11:898-907. [PMID: 24983825 DOI: 10.1513/annalsats.201310-364oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Computed tomography (CT)-based lung density is used to quantitate the percentage of emphysema-like lung (hereafter referred to as percent emphysema), but information on its distribution among healthy nonsmokers is limited. OBJECTIVES We evaluated percent emphysema and total lung volume on CT scans of healthy never-smokers in a multiethnic, population-based study. METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study investigators acquired full-lung CT scans of 3,137 participants (ages 54-93 yr) between 2010-12. The CT scans were taken at full inspiration following the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) protocol. "Healthy never-smokers" were defined as participants without a history of tobacco smoking or respiratory symptoms and disease. "Percent emphysema" was defined as the percentage of lung voxels below -950 Hounsfield units. "Total lung volume" was defined by the volume of lung voxels. MEASUREMENTS AND MAIN RESULTS Among 854 healthy never-smokers, the median percent emphysema visualized on full-lung scans was 1.1% (interquartile range, 0.5-2.5%). The percent emphysema values were 1.2 percentage points higher among men compared with women and 0.7, 1.2, and 1.2 percentage points lower among African Americans, Hispanics, and Asians compared with whites, respectively (P < 0.001). Percent emphysema was positively related to age and height and inversely related to body mass index. The findings were similar for total lung volume on CT scans and for percent emphysema defined at -910 Hounsfield units and measured on cardiac scans. Reference equations to account for these differences are presented for never, former and current smokers. CONCLUSIONS Similar to lung function, percent emphysema varies substantially by demographic factors and body size among healthy never-smokers. The presented reference equations will assist in defining abnormal values for percent emphysema and total lung volume on CT scans, although validation is pending.
Collapse
|
38
|
Abstract
High-resolution chest computed tomography (CT) is one of the most useful techniques available for imaging bronchiolitis because it shows highly specific direct and indirect imaging signs. The distribution and combination of these various signs can further classify bronchiolitis as either cellular/inflammatory or fibrotic/constrictive. Emphysema is characterized by destruction of the airspaces, and a brief discussion of imaging findings of this class of disease is also included. Typical CT findings include destruction of airspace, attenuated vasculatures, and hyperlucent as well as hyperinflated lungs.
Collapse
Affiliation(s)
- Rachael M Edwards
- Department of Radiology, University of Washington Medical Center, 1959 Northeast Pacific Street, Seattle, WA 98195, USA.
| | - Gregory Kicska
- Department of Radiology, University of Washington Medical Center, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - Rodney Schmidt
- Department of Pathology, University of Washington Medical Center, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - Sudhakar N J Pipavath
- Department of Radiology, University of Washington Medical Center, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Tokura S, Okuma T, Akira M, Arai T, Inoue Y, Kitaichi M. Utility of expiratory thin-section CT for fibrotic interstitial pneumonia. Acta Radiol 2014; 55:1050-5. [PMID: 24252818 DOI: 10.1177/0284185113512300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Collagen vascular disease-associated interstitial lung disease (CVD-ILD) must be differentiated from idiopathic pulmonary fibrosis (IPF) since prognosis and treatment strategies differ between these two conditions. However, differentiating between CVD-ILD and IPF is often difficult. PURPOSE To examine the utility of expiratory high-resolution computed tomography (HRCT) for differentiating between CVD-ILD and IPF. MATERIAL AND METHODS Seventy patients were examined with expiratory and inspiratory HRCT with CVD-ILD (n = 36) or IPF (n = 34). Associated diagnoses in patients with CVD-ILD were rheumatoid arthritis (n = 22), Sjögren syndrome (n = 3), scleroderma (n = 2), polymyositis/dermatomyositis (n = 1), and unspecified connective tissue disease (n = 8). Parenchymal abnormalities on inspiratory HRCT and visual extent of air trapping on expiratory HRCT were evaluated, statistical differences in HRCT findings between the two conditions were determined, and air trapping CT scores were correlated with the results of pulmonary function testing. RESULTS Air trapping was found in 27 (75%) of 36 cases of CVD-ILD and four (12%) of 34 cases of IPF. Seventeen of the 27 cases for which air trapping was exhibited with CVD-ILD were diagnosed with rheumatoid arthritis. A significant difference in frequency of air trapping was seen between CVD-ILD and IPF (P < 0.0001). Frequency of centrilobular nodules was significantly higher in CVD-ILD than in IPF (P = 0.021). In contrast, frequencies of interlobular interstitial thickening and traction bronchiectasis were significantly higher in IPF than in CVD-ILD (P = 0.005, P = 0.007, respectively). Correlations were seen between visual extent of air trapping and pulmonary function test results such as air trapping index (P = 0.004, r = 0.34), closing volume/vital capacity (P = 0.0002, r = -0.47), and closing capacity/total lung capacity (P < 0.0001, r = -0.51). CONCLUSION The presence of air trapping on expiratory HRCT suggests CVD-ILD rather than IPF.
Collapse
Affiliation(s)
- Sayoko Tokura
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Tomohisa Okuma
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
- Department of Radiology, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Masanori Akira
- Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Toru Arai
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Yoshikazu Inoue
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| | - Masanori Kitaichi
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai City, Japan
| |
Collapse
|
40
|
Freeman CM, McCubbrey AL, Crudgington S, Nelson J, Martinez FJ, Han MK, Washko GR, Chensue SW, Arenberg DA, Meldrum CA, McCloskey L, Curtis JL. Basal gene expression by lung CD4+ T cells in chronic obstructive pulmonary disease identifies independent molecular correlates of airflow obstruction and emphysema extent. PLoS One 2014; 9:e96421. [PMID: 24805101 PMCID: PMC4013040 DOI: 10.1371/journal.pone.0096421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-γ or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-γ production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-γ transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes.
Collapse
Affiliation(s)
- Christine M. Freeman
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Alexandra L. McCubbrey
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sean Crudgington
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Joshua Nelson
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Fernando J. Martinez
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - MeiLan K. Han
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Womans Hospital and Harvard University, Boston, Massachusetts, United States of America
| | - Stephen W. Chensue
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Pathology and Laboratory Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Douglas A. Arenberg
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Catherine A. Meldrum
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Pulmonary and Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lynch DA. Progress in Imaging COPD, 2004 - 2014. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2014; 1:73-82. [PMID: 28848813 PMCID: PMC5559143 DOI: 10.15326/jcopdf.1.1.2014.0125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 01/02/2023]
Abstract
Computed tomography (CT) has contributed substantially to our understanding of COPD over the past decade. Visual and quantitative assessments of CT in COPD are complementary. Visual assessment should provide assessment of centrilobular, panlobular and paraseptal emphysema, airway wall thickening, bronchiectasis, findings of respiratory bronchiolitis, and enlargement of the pulmonary artery. Quantitative CT permits evaluation of severity of emphysema, airway wall thickening, and expiratory air trapping, and is now being used for longitudinal evaluation of the progression of COPD. Innovative techniques are being developed to use CT to characterize the pattern of emphysema and smoking- related respiratory bronchiolitis. Magnetic resonance imaging (MRI) and positron emission tomography PET-CT are useful research tools in the evaluation of COPD.
Collapse
Affiliation(s)
- David A Lynch
- Department of Radiology. National Jewish Health. Denver, CO
| |
Collapse
|
42
|
Abstract
Quantitative computed tomography (QCT) can provide reliable and valid measures of lung structure and volumes. Similar to lung function measured by spirometry, lung measures obtained by QCT vary by demographic and anthropomorphic factors including sex, race/ethnicity, and height in asymptomatic nonsmokers. Hence, accounting for these factors is necessary to define abnormal from normal QCT values. Prediction equations for QCT may be derived from a sample of asymptomatic individuals to estimate reference values. This review article describes the methodology of reference equation development using, as an example, quantitative densitometry to detect pulmonary emphysema. The process described is generalizable to other QCT measures, including lung volumes, airway dimensions, and gas-trapping. Pulmonary emphysema is defined morphologically by airspace enlargement with alveolar wall destruction and has been shown to correlate with low lung attenuation estimated by QCT. Deriving reference values for a normal quantity of low lung attenuation requires 3 steps. First, criteria that define normal must be established. Second, variables for inclusion must be selected on the basis of an understanding of subject-specific, scanner-specific, and protocol-specific factors that influence lung attenuation. Finally, a reference sample of normal individuals must be selected that is representative of the population in which QCT will be used to detect pulmonary emphysema. Sources of bias and confounding inherent to reference values are also discussed. Reference equation development is a multistep process that can define normal values for QCT measures such as lung attenuation. Normative reference values will increase the utility of QCT in both research and clinical practice.
Collapse
Affiliation(s)
- Benjamin M. Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Medicine, McGill University Health Center, Montreal, Canada
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|