1
|
Vergatti A, Abate V, Iannuzzo G, Barbato A, De Filippo G, Rendina D. The bone-heart axis in the pathogenesis of cardiovascular diseases: A narrative review. Nutr Metab Cardiovasc Dis 2025; 35:103872. [PMID: 39956695 DOI: 10.1016/j.numecd.2025.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Cardiovascular diseases (CVDs) cause about 30% of deaths worldwide, increasing social and economic burden in our societies. Although the treatment of the canonical cardiovascular risk factors has reduced the impact of CVDs on morbidity and mortality in the past few years, they continue to represent a major health problem. The definition of the biological properties of the bone-heart axis has led to new insights in the pathogenesis of CVDs; hence, the aim of this review is to try to elucidate the role of this axis on the susceptibility to CVDs. There is evidence that the bone interacts with extra-skeletal organs, including the cardiovascular system, through its endocrine functions. Clinical and experimental data strongly indicate that the interplay between the bone and the cardiovascular system represents a future tool for the prevention, diagnosis and treatment of CVDs. The identification of these non-canonical cardiovascular risk factors could prompt pharmacological research towards new target therapy aimed at precision medicine.
Collapse
Affiliation(s)
- Anita Vergatti
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Gianpaolo De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d'Endocrinologie et Diabétologie, Paris, 75019, France
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy.
| |
Collapse
|
2
|
Wang Y, Zhang D, Zhou R, Yang X, Wang X, Jiang Y, Zhou X, Li D, Zhang J, Wu Y. Baseline fibroblast growth factor 23 predicts incident heart failure and cardiovascular mortality in patients with chronic kidney disease: A 3-year follow-up study. IJC HEART & VASCULATURE 2025; 56:101587. [PMID: 39807363 PMCID: PMC11728072 DOI: 10.1016/j.ijcha.2024.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Background Heart failure (HF) is a significant cause of death among patients with chronic kidney disease (CKD). Emerging data suggest a crucial role of fibroblast growth factor 23 (FGF23) in the pathogenesis of HF in CKD patients. The present study aimed to investigate whether the serum intact FGF23 (iFGF23) level is elevated when ejection fraction (EF) is preserved and to evaluate its predictive value for incident HF and cardiac mortality in CKD patients with preserved EF. Methods and results We prospectively recruited 209 patients (mean age 52.7 ± 11.9 years, 37.3 % male) with CKD stages 3-5 and preserved EF, including those on peritoneal dialysis (PD) from a nephropathy center from November 2020 until July 2024. Results Over a median follow-up of 29 (IQR 24-35) months, 60 (28.7 %) patients met the primary composite endpoints, including 53 (25.4 %) incident HF events and 7 (3.3 %) cardiac deaths. The cumulative incidence of composite endpoints was approximately 2-fold higher in patients with the highest quartile (Q4) level of lgiFGF23, compared with the lower quartiles (Q1-3). Baseline iFGF23 concentration was significantly associated with an increased risk of composite endpoint in the multivariable-adjusted Cox model, independent of kidney function, traditional cardiovascular risk factors, echocardiographic parameters, and α-Klotho. In a competing risk analysis, the Q4 level of lgiFGF23 (HR 2.43, 95 %CI 1.44-4.11; P = 0.001) was independently associated with HF and cardiac death. Conclusion In CKD patients with preserved EF, serum iFGF23 was elevated before LVEF declined. A higher baseline serum iFGF23 level is significantly associated with the incidence of HF and cardiovascular mortality over a 3-year follow-up, demonstrating independent and incremental predictive value beyond traditional risk factors.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Biostatistics of Epidemiology, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dingxin Zhang
- Cardiac Imaging Center, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Runzhe Zhou
- Department of Biostatistics of Epidemiology, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiangjie Yang
- Department of Biostatistics of Epidemiology, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaoxia Wang
- Department of Biostatistics of Epidemiology, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuxin Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xinyuan Zhou
- Department of Biostatistics of Epidemiology, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dashan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jin Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
3
|
Shankar R, Saha A, Dhull RS, Shroff R, Nangia A, Sharma S. Activin A: a marker of mineral bone disorder in children with chronic kidney disease? Pediatr Nephrol 2024; 39:2773-2777. [PMID: 38744714 DOI: 10.1007/s00467-024-06400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Activin A has been shown to enhance osteoclast activity and its inhibition results in bone growth. The potential role of activin A as a marker of chronic kidney disease-mineral bone disease (CKD-MBD) and its relationship with other markers has not been studied in children with CKD. METHODS A cross sectional study was conducted among 40 children aged 2 to 18 years with CKD (Stage 2 to 5; 10 in each stage) and 40 matched controls. Activin A, cathepsin K, FGF-23, PTH, serum calcium, phosphorous and alkaline phosphatase in both groups were measured and compared. The correlation of activin A and markers of CKD-MBD was studied. A p value of < 0.05 was considered significant. RESULTS The mean age of children with CKD was 9.30 ± 3.64 years. Mean levels of activin A in cases were 485.55 pg/ml compared to 76.19 pg/ml in controls (p < 0.001). FGF-23 levels in cases were 133.18 pg/ml while in controls it was 6.93 pg/ml (p < 0.001). Mean levels of cathepsin K were also significantly higher in cases as compared to controls. There was a progressive increase in activin A and cathepsin K levels with increasing stage of CKD. Activin A had a significant positive correlation with serum creatinine (r = 0.51; p < 0.001). CONCLUSIONS Activin A levels progressively rise with advancing CKD stage. These findings suggest that activin A can be a potential early marker of CKD-MBD in children.
Collapse
Affiliation(s)
- Raagul Shankar
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College & Kalawati Saran Children's Hospital, New Delhi, India
| | - Abhijeet Saha
- Division of Pediatric Nephrology, Department of Pediatrics, Lady Hardinge Medical College & Kalawati Saran Children's Hospital, New Delhi, India.
| | - Rachita Singh Dhull
- Renal Unit, UCL Great Ormond Street Hospital and Institute of Child Health, London, UK
| | - Rukshana Shroff
- Renal Unit, UCL Great Ormond Street Hospital and Institute of Child Health, London, UK
| | - Anita Nangia
- Department of Pathology, Lady Hardinge Medical College & Sucheta Kriplani Hospital, New Delhi, India
| | - Sunita Sharma
- Department of Pathology, Lady Hardinge Medical College & Sucheta Kriplani Hospital, New Delhi, India
| |
Collapse
|
4
|
Abinti M, Vettoretti S, Caldiroli L, Mattinzoli D, Ikehata M, Armelloni S, Molinari P, Alfieri CM, Castellano G, Messa P. Associations of Intact and C-Terminal FGF23 with Inflammatory Markers in Older Patients Affected by Advanced Chronic Kidney Disease. J Clin Med 2024; 13:3967. [PMID: 38999530 PMCID: PMC11242756 DOI: 10.3390/jcm13133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Background: In patients with chronic kidney disease (CKD), Fibroblast Growth Factor 23 (FGF23) is markedly increased and has been proposed to interact with systemic inflammation. Methods: In this cross-sectional study, we evaluated the correlations of intact FGF23, c-terminal FGF23, and the FGF23 ratio (c-terminal to intact) with some inflammatory cytokines in 111 elderly patients with advanced CKD not yet in dialysis. Results: Estimated glomerular filtration rate (eGFR) was inversely correlated with intact FGF23 and c-terminal FGF23, as well as with interleukin 6 (IL-6), tumor necrosis factor alpha (TNFα), and monocyte chemoattractant protein-1 (MCP-1). Intact FGF23 levels were directly correlated with IL-6 (r = 0.403; p < 0.001) and TNFα (r = 0.401; p < 0.001) while c-terminal FGF23 was directly correlated with MCP-1 (r = 0.264; p = 0.005). The FGF23 ratio was, instead, inversely correlated with IL-6 (r = -0.326; p < 0.001). Multivariate analysis revealed that intact FGF23 was directly associated with TNFα [B = 0.012 (95% CI 0.006, 0.019); p = 0.003] and c-terminal FGF23 was directly associated with MCP-1 [B = 0.001 (95% CI 0.000, 0.002); p = 0.038], while the FGF23 ratio was inversely correlated with IL-6 [B = -0.028 (95% CI -0.047, -0.010); p = 0.002]. Conclusions: Our data demonstrate that, in CKD patients, intact FGF23 and the metabolites deriving from its proteolytic cleavage are differently associated with some inflammatory pathways. In particular, intact FGF23 is mainly associated with IL-6 and TNFα, c-terminal FGF23 with MCP-1, and the FGF23 ratio with IL6.
Collapse
Affiliation(s)
- Matteo Abinti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Simone Vettoretti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
| | - Lara Caldiroli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.M.); (M.I.); (S.A.)
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.M.); (M.I.); (S.A.)
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.M.); (M.I.); (S.A.)
| | - Paolo Molinari
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Carlo Maria Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (L.C.); (P.M.); (C.M.A.); (G.C.); (P.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
5
|
Hyeon J, Kim S, Ye BM, Kim SR, Lee DW, Lee SB, Kim IY. Association of 1,25 dihydroxyvitamin D with left ventricular hypertrophy and left ventricular diastolic dysfunction in patients with chronic kidney disease. PLoS One 2024; 19:e0302849. [PMID: 38722953 PMCID: PMC11081214 DOI: 10.1371/journal.pone.0302849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Left ventricular hypertrophy (LVH) and left ventricular diastolic dysfunction (LVDD) are highly prevalent predictors of cardiovascular disease in individuals with chronic kidney disease (CKD). Vitamin D, particularly 25-hydroxyvitamin D [25(OH)D], deficiency has been reported to be associated with cardiac structure and function in CKD patients. In the current study, we investigated the association between 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of 25(OH)D, and LVH/LVDD in CKD patients. We enrolled 513 non-dialysis CKD patients. The presence of LVH and LVDD was determined using transthoracic echocardiography. In multivariable analysis, serum 1,25(OH)2D levels, but not serum 25(OH)D, were independently associated with LVH [odds ratio (OR): 0.90, 95% confidential interval (CI): 0.88-0.93, P < 0.001]. Additionally, age, systolic blood pressure, and intact parathyroid hormone levels were independently associated with LVH. Similarly, multivariable analysis demonstrated that serum 1,25(OH)2D levels, but not 25(OH)D levels, were independently associated with LVDD (OR: 0.88, 95% CI: 0.86-0.91, P < 0.001) with systolic blood pressure showing independent association with LVDD. The optimal cut-off values for serum 1,25(OH)2D levels for identifying LVH and LVDD were determined as ≤ 12.7 pg/dl and ≤ 18.1 pg/dl, respectively. Our findings suggest that serum 1,25(OH)2D levels have independent association with LVH and LVDD in CKD patients, underscoring their potential as biomarkers for these conditions in this patient population.
Collapse
Affiliation(s)
- Jemin Hyeon
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Suji Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Byung Min Ye
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seo Rin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Soo Bong Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Il Young Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
6
|
Ito T, Akamatsu K. Echocardiographic manifestations in end-stage renal disease. Heart Fail Rev 2024; 29:465-478. [PMID: 38071738 DOI: 10.1007/s10741-023-10376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/16/2024]
Abstract
End-stage renal disease (ESRD) is a common but profound clinical condition, and it is associated with extremely increased morbidity and mortality. ESRD can represent four major echocardiographic findings-myocardial hypertrophy, heart failure, valvular calcification, and pericardial effusion. Multiple factors interplay leading to these abnormalities, including pressure/volume overload, oxidative stress, and neurohormonal imbalances. Uremic cardiomyopathy is characterized by left ventricular (LV) hypertrophy and marked diastolic dysfunction. In ESRD patients on hemodialysis, LV geometry is changeable bidirectionally between concentric and eccentric hypertrophy, depending upon changes in corporal fluid volume and arterial pressure, which eventually results in a characteristic of LV systolic dysfunction. Speckle tracking echocardiography enabling to detect subclinical disease might help prevent future advancement to heart failure. Heart valve calcification also is common in ESRD, keeping in mind which progresses faster than expected. In a modern era, pericardial effusion observed in ESRD patients tends to result from volume overload, rather than pericarditis. In this review, we introduce and discuss those four echocardiography-assessed findings of ESRD, with which known and conceivable pathophysiologies for each are incorporated.
Collapse
Affiliation(s)
- Takahide Ito
- Department of Cardiology, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Kanako Akamatsu
- Department of Cardiology, Osaka Medical and Pharmaceutical University, 2-7, Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
7
|
Thomas E, Klomhaus AM, Laster ML, Furth SL, Warady BA, Salusky IB, Hanudel MR. Associations between anemia and FGF23 in the CKiD study. Pediatr Nephrol 2024; 39:837-847. [PMID: 37752381 PMCID: PMC10817837 DOI: 10.1007/s00467-023-06160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that plays a central role in chronic kidney disease-mineral bone disorder and is associated with CKD progression and cardiovascular morbidity. Factors related to CKD-associated anemia, including iron deficiency, can increase FGF23 production. This study aimed to assess whether anemia and/or iron deficiency are associated with increased circulating concentrations of FGF23 in the large, well-characterized Chronic Kidney Disease in Children (CKiD) study cohort. METHODS Hemoglobin concentrations, iron parameters, C-terminal (total) FGF23, intact FGF23, and relevant covariables were measured in cross-sectional analysis of CKiD study subjects. RESULTS In 493 pediatric patients with CKD (median [interquartile range] age 13 [9, 16] years), the median estimated glomerular filtration rate was 48 [35, 61] ml/min/1.73 m2, and 103 patients (21%) were anemic. Anemic subjects had higher total FGF23 concentrations than non-anemic subjects (204 [124, 390] vs. 109 [77, 168] RU/ml, p < 0.001). In multivariable linear regression modeling, anemia was independently associated with higher total FGF23, after adjustment for demographic, kidney-related, mineral metabolism, and inflammatory covariables (standardized β (95% confidence interval) 0.10 (0.04, 0.17), p = 0.002). In the subset of subjects with available iron parameters (n = 191), iron deficiency was not associated with significantly higher total FGF23 concentrations. In the subgroup that had measurements of both total and intact FGF23 (n = 185), in fully adjusted models, anemia was significantly associated with higher total FGF23 (standardized β (95% CI) 0.16 (0.04, 0.27), p = 0.008) but not intact FGF23 (standardized β (95% CI) 0.02 (-0.12, 0.15), p = 0.81). CONCLUSIONS In this cohort of pediatric patients with CKD, anemia was associated with increased total FGF23 levels but was not independently associated with elevated intact FGF23, suggesting possible effects on both FGF23 production and cleavage. Further studies are warranted to investigate non-mineral factors affecting FGF23 production and metabolism in CKD.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra M Klomhaus
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marciana L Laster
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susan L Furth
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bradley A Warady
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Dobre MA, Ahlawat S, Schelling JR. Chronic kidney disease associated cardiomyopathy: recent advances and future perspectives. Curr Opin Nephrol Hypertens 2024; 33:203-211. [PMID: 38193308 PMCID: PMC10872957 DOI: 10.1097/mnh.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Cardiomyopathy in chronic kidney disease (CKD) is a complex condition with multiple triggers and poor prognosis. This review provides an overview of recent advances in CKD-associated cardiomyopathy, with a focus on pathophysiology, newly discovered biomarkers and potential therapeutic targets. RECENT FINDINGS CKD is associated with a specific pattern of myocardial hypertrophy and fibrosis, resulting in diastolic and systolic dysfunction, and often triggered by nonatherosclerotic processes. Novel biomarkers, including amino-terminal type III procollagen peptide (PIIINP), carboxy-terminal type I procollagen peptide (PICP), FGF23, marinobufagenin, and several miRNAs, show promise for early detection and risk stratification. Treatment options for CKD-associated cardiomyopathy are limited. Sodium glucose cotransporter-2 inhibitors have been shown to reduce left ventricle hypertrophy and improve ejection fraction in individuals with diabetes and mild CKD, and are currently under investigation for more advanced stages of CKD. In hemodialysis patients calcimimetic etelcalcetide resulted in a significant reduction in left ventricular mass. SUMMARY CKD-associated cardiomyopathy is a common and severe complication in CKD. The identification of novel biomarkers may lead to future therapeutic targets. Randomized clinical trials in individuals with more advanced CKD would be well posed to expand treatment options for this debilitating condition.
Collapse
Affiliation(s)
- Mirela A Dobre
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
| | - Shruti Ahlawat
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
| | - Jeffrey R Schelling
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Bedo D, Beaudrey T, Florens N. Unraveling Chronic Cardiovascular and Kidney Disorder through the Butterfly Effect. Diagnostics (Basel) 2024; 14:463. [PMID: 38472936 DOI: 10.3390/diagnostics14050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic Cardiovascular and Kidney Disorder (CCKD) represents a growing challenge in healthcare, characterized by the complex interplay between heart and kidney diseases. This manuscript delves into the "butterfly effect" in CCKD, a phenomenon in which acute injuries in one organ lead to progressive dysfunction in the other. Through extensive review, we explore the pathophysiology underlying this effect, emphasizing the roles of acute kidney injury (AKI) and heart failure (HF) in exacerbating each other. We highlight emerging therapies, such as renin-angiotensin-aldosterone system (RAAS) inhibitors, SGLT2 inhibitors, and GLP1 agonists, that show promise in mitigating the progression of CCKD. Additionally, we discuss novel therapeutic targets, including Galectin-3 inhibition and IL33/ST2 pathway modulation, and their potential in altering the course of CCKD. Our comprehensive analysis underscores the importance of recognizing and treating the intertwined nature of cardiac and renal dysfunctions, paving the way for more effective management strategies for this multifaceted syndrome.
Collapse
Affiliation(s)
- Dimitri Bedo
- Nephrology Department, Hopitaux Universitaires de Strasbourg, F-67091 Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", Translational Medicine Federation of Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Thomas Beaudrey
- Nephrology Department, Hopitaux Universitaires de Strasbourg, F-67091 Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Nans Florens
- Nephrology Department, Hopitaux Universitaires de Strasbourg, F-67091 Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Plawecki M, Gayrard N, Jeanson L, Chauvin A, Lajoix AD, Cristol JP, Jover B, Raynaud F. Cardiac remodeling associated with chronic kidney disease is enhanced in a rat model of metabolic syndrome: Preparation of mesenchymal transition. Mol Cell Biochem 2024; 479:29-39. [PMID: 36976428 DOI: 10.1007/s11010-023-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Cardiac alteration due to chronic kidney disease is described by tissue fibrosis. This remodeling involves myofibroblasts of various origins, including epithelial or endothelial to mesenchymal transitions. In addition, obesity and insulin resistance together or separately seem to exacerbate cardiovascular risk in chronic kidney disease (CKD). The main objective of this study was to assess if pre-existing metabolic disease exacerbates CKD-induced cardiac alterations. In addition, we hypothesised that endothelial to mesenchymal transition participates in this enhancement of cardiac fibrosis. Rats fed cafeteria type diet for 6 months underwent a subtotal nephrectomy at 4 months. Cardiac fibrosis was evaluated by histology and qRT-PCR. Collagens and macrophages were quantified by immunohistochemistry. Endothelial to mesenchymal transitions were assessed by qRT-PCR (CD31, VE-cadherin, α-SMA, nestin) and also by CD31 immunofluorescence staining. Rats fed with cafeteria type regimen were obese, hypertensive and insulin resistant. Cardiac fibrosis was predominant in CKD rats and was highly majored by cafeteria regimen. Collagen-1 and nestin expressions were higher in CKD rats, independently of regimen. Interestingly, in rats with CKD and cafeteria diet we found an increase of CD31 and α-SMA co-staining with suggest an implication of endothelial to mesenchymal transition during heart fibrosis. We showed that rats already obese and insulin resistant had an enhanced cardiac alteration to a subsequent renal injury. Cardiac fibrosis process could be supported by a involvement of the endothelial to mesenchymal transition phenomenon.
Collapse
Affiliation(s)
- Maëlle Plawecki
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Laboratoire de Biochimie et d'hormonologie, CHU Lapeyronie, Montpellier, France
| | | | - Laura Jeanson
- BC2M, Université de Montpellier, Montpellier, France
| | - Anthony Chauvin
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Jean-Paul Cristol
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Laboratoire de Biochimie et d'hormonologie, CHU Lapeyronie, Montpellier, France
| | - Bernard Jover
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
11
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Pfaff M, Denburg MR, Meyers KE, Brady TM, Leonard MB, Hoofnagle AN, Sethna CB. Association of Fibroblast Growth Factor 23 with Blood Pressure in Primary Proteinuric Glomerulopathies. Am J Nephrol 2023; 55:187-195. [PMID: 38128487 PMCID: PMC10987260 DOI: 10.1159/000535092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Fibroblast growth factor 23 (FGF23) has direct effects on the vasculature and myocardium, and high levels of FGF23 are a risk factor for cardiovascular disease (CVD); however, the impact of FGF23 on CVD in primary proteinuric glomerulopathies has not been addressed. METHODS The associations of baseline plasma intact FGF23 levels with resting blood pressure (BP) and lipids over time among adults and children with proteinuric glomerulopathies enrolled in the Nephrotic Syndrome Study Network (NEPTUNE) were analyzed using generalized estimating equation regression analyses. Models were adjusted for age, sex, glomerular diagnosis, follow-up time, estimated glomerular filtration rate, urine protein/creatinine ratio, obesity, and serum phosphorous levels. RESULTS Two hundred and four adults with median FGF23 77.5 (IQR 51.3-119.3) pg/mL and 93 children with median FGF23 62.3 (IQR 44.6-83.6) pg/mL were followed for a median of 42 (IQR 20.5-54) months. In adjusted models, each 1 µg/mL increase in FGF23 was associated with a 0.3 increase in systolic BP index at follow-up (p < 0.001). Greater baseline FGF23 was associated with greater odds of hypertensive BP (OR = 1.0003; 95% CI 1.001-1.006, p = 0.03) over time. Compared to tertile 1, tertile 2 (OR = 2.1; 95% CI 1.12-3.99, p = 0.02), and tertile 3 (OR = 3; 95% CI 1.08-8.08, p = 0.04), FGF23 levels were associated with greater odds of hypertensive BP over time. Tertile 2 was associated with greater triglycerides compared to tertile 1 (OR = 48.1; 95% CI 4.4-91.9, p = 0.03). CONCLUSION Overall, higher baseline FGF23 was significantly associated with hypertensive BP over time in individuals with proteinuric glomerulopathies. Further study of FGF23 as a therapeutic target for reducing CVD in proteinuric glomerular disease is warranted.
Collapse
Affiliation(s)
- Mairead Pfaff
- Cohen Children’s Medical Center of NY, New Hyde Park, NY, United States
| | - Michelle R. Denburg
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin E. Meyers
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | | | | | | |
Collapse
|
13
|
Yeung WCG, Palmer SC, Strippoli GFM, Talbot B, Shah N, Hawley CM, Toussaint ND, Badve SV. Vitamin D Therapy in Adults With CKD: A Systematic Review and Meta-analysis. Am J Kidney Dis 2023; 82:543-558. [PMID: 37356648 DOI: 10.1053/j.ajkd.2023.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/24/2023] [Indexed: 06/27/2023]
Abstract
RATIONALE & OBJECTIVE Vitamin D is widely used to manage chronic kidney disease-mineral and bone disorder (CKD-MBD). We evaluated the effects of vitamin D therapy on mortality, cardiovascular, bone, and kidney outcomes in adults with CKD. STUDY DESIGN Systematic review of randomized controlled trials (RCT) with highly sensitive searching of MEDLINE, Embase, and CENTRAL, through February 25, 2023. SETTING & STUDY POPULATIONS Adults with stage 3, 4, or 5 CKD, including kidney failure treated with dialysis. Recipients of a kidney transplant were excluded. SELECTION CRITERIA FOR STUDIES RCTs with≥3 months of follow-up evaluating a vitamin D compound. DATA EXTRACTION Data were extracted independently by three investigators. ANALYTICAL APPROACH Treatment estimates were summarized using random effects meta-analysis. Primary review endpoints were all-cause death, cardiovascular death, and fracture. Secondary outcomes were major adverse cardiovascular events, hospitalization, bone mineral density, parathyroidectomy, progression to kidney failure, proteinuria, estimated glomerular filtration rate, hypercalcemia, hyperphosphatemia, biochemical markers of CKD-MBD, and various intermediate outcome measures of cardiovascular disease. Risk of bias was assessed using the Cochrane Risk of Bias (RoB) 2 tool. Evidence certainty was adjudicated using GRADE. RESULTS Overall, 128 studies involving 11,270 participants were included. Compared with placebo, vitamin D therapy probably had no effect on all-cause death (relative risk [RR], 1.04; 95% CI, 0.84-1.24); and uncertain effects on fracture (RR, 0.68; 95% CI, 0.37-1.23) and cardiovascular death (RR, 0.73; 95% CI, 0.31-1.71). Compared with placebo, vitamin D therapy lowered serum parathyroid hormone and alkaline phosphatase, but increased serum calcium. LIMITATIONS Data were limited by trials with short-term follow-up periods, small sample size, and the suboptimal quality. CONCLUSIONS Vitamin D therapy did not reduce the risk of all-cause death in people with CKD. Effects on fracture and cardiovascular and kidney outcomes were uncertain. TRIAL REGISTRATION Registered at PROSPERO with study number CRD42017057691. PLAIN-LANGUAGE SUMMARY Chronic kidney disease (CKD) is associated with increased risk of death, cardiovascular disease, and fractures. This excess risk is thought to be related to changes in bone and mineral metabolism, leading to the development of CKD-mineral and bone disorder (CKD-MBD) which is characterized by vascular calcification and reduced bone quality. Vitamin D is commonly used in the treatment of this condition. We reviewed randomized controlled trials examining the effect of vitamin D therapy in CKD. We found that vitamin D therapy affects serum biomarkers, including an increase in serum calcium. However, it probably has no effect on risk of all-cause death in CKD, and the effects on other clinical bone, cardiovascular, and kidney outcomes are uncertain.
Collapse
Affiliation(s)
- Wing-Chi G Yeung
- Department of Nephrology, Wollongong Hospital, Sydney, Australia; George Institute for Global Health, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Suetonia C Palmer
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Giovanni F M Strippoli
- Sydney School of Public Health, University of Sydney, Sydney, Australia; Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Benjamin Talbot
- George Institute for Global Health, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nasir Shah
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Carmel M Hawley
- Translational Research Institute, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia; Australasian Kidney Trials Network, University of Queensland, Brisbane, Australia
| | - Nigel D Toussaint
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Sunil V Badve
- Department of Nephrology, St George Hospital, Sydney, Australia; George Institute for Global Health, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Jiang K, Greenberg JH, Abraham A, Xu Y, Schelling JR, Feldman HI, Schrauben SJ, Waikar SS, Shlipak MG, Wettersten N, Coca SG, Vasan RS, Gutierrez OM, Ix JH, Warady BA, Kimmel PL, Bonventre JV, Parikh CR, Mitsnefes MM, Denburg MR, Furth S. Associations of Biomarkers of Kidney Tubule Health, Injury, and Inflammation with Left Ventricular Hypertrophy in Children with CKD. KIDNEY360 2023; 4:1039-1047. [PMID: 37303083 PMCID: PMC10476681 DOI: 10.34067/kid.0000000000000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
Key Points Higher plasma and urine kidney injury molecule-1, urine monocyte chemoattractant protein-1, and lower urine alpha-1-microglobulin were associated with left ventricular hypertrophy, even after adjustment for confounders. Biomarkers of tubular injury, dysfunction, and inflammation may indicate the severity of kidney pathology and are associated with left ventricular hypertrophy. Background Left ventricular hypertrophy (LVH) is common in children with CKD and is associated with an increased risk of cardiovascular disease and mortality. We have shown that several plasma and urine biomarkers are associated with increased risk of CKD progression. As CKD is associated with LVH, we sought to investigate the association between the biomarkers and LVH. Methods In the CKD in Children Cohort Study, children aged 6 months to 16 years with an eGFR of 30–90 ml/min per 1.73 m2 were enrolled at 54 centers in the United States and Canada. We measured plasma biomarkers kidney injury molecule-1 (KIM-1), tumor necrosis factor receptor-1, tumor necrosis factor receptor-2, soluble urokinase-type plasminogen activator receptor and urine KIM-1, monocyte chemoattractant protein-1 (MCP-1), YKL-40, alpha-1-microglobulin (alpha-1m), and epidermal growth factor in stored plasma and urine collected 5 months after enrollment. Echocardiograms were performed 1 year after enrollment. We assessed the cross-sectional association between the log2 biomarker levels and LVH (left ventricular mass index greater than or equal to the 95th percentile) using a Poisson regression model, adjusted for age, sex, race, body mass index, hypertension, glomerular diagnosis, urine protein-to-creatinine ratio, and eGFR at study entry. Results Among the 504 children, LVH prevalence was 12% (n =59) 1 year after enrollment. In a multivariable-adjusted model, higher plasma and urine KIM-1 and urine MCP-1 concentrations were associated with a higher prevalence of LVH (plasma KIM-1 prevalence ratio [PR] per log2: 1.27, 95% confidence interval [CI], 1.02 to 1.58; urine KIM-1 PR: 1.21, 95% CI, 1.11 to 1.48; and urine MCP-1 PR: 1.18, 95% CI, 1.04 to 1.34). After multivariable adjustment for covariates, lower urine alpha-1m was also associated with a higher prevalence of LVH (PR: 0.90, 95% CI, 0.82 to 0.99). Conclusions Higher plasma and urine KIM-1, urine MCP-1, and lower urine alpha-1m were each associated with LVH prevalence in children with CKD. These biomarkers may better inform risk and help elucidate the pathophysiology of LVH in pediatric CKD.
Collapse
Affiliation(s)
- Kuan Jiang
- Yale School of Medicine, New Haven, Connecticut
| | | | - Alison Abraham
- University of Colorado, Anschutz Medical Campus, Denver, Colorado
- Johns Hopkins University, Baltimore, Maryland
| | - Yunwen Xu
- Johns Hopkins University, Baltimore, Maryland
| | | | - Harold I. Feldman
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah J. Schrauben
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Steven G. Coca
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Joachim H. Ix
- University of California San Diego, San Diego, California
| | | | | | | | | | | | | | - Susan Furth
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Sharma S, Patel NR, Hanudel MR, Ix JH, Salusky IB, Nguyen KL. Plasma FGF23 is associated with left atrial remodeling in children on hemodialysis. Pediatr Nephrol 2023; 38:2179-2187. [PMID: 36508050 PMCID: PMC10247494 DOI: 10.1007/s00467-022-05812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND FGF23 mediates cardiac fibrosis through the activation of pro-fibrotic factors in in vitro models and is markedly elevated in kidney disease. Left atrial global longitudinal strain (LA GLS) derived by echocardiographic speckle-tracking measures longitudinal shortening of the LA walls, quantifies atrial performance and may enable detection of early LA remodeling in the setting of normal ventricular function. We hypothesized that LA GLS is abnormal in children on hemodialysis (HD) compared to healthy controls of comparable age/sex distribution and that, among HD patients, greater FGF23 levels are associated with abnormal LA GLS. METHODS Clinical and echocardiographic data from 29 children receiving HD and 13 healthy controls were collected in a cross-sectional single-center study. Plasma FGF23 concentrations were measured using ELISA. The primary outcome was LA GLS measured using 2D speckle-tracking strain analysis. Linear regression analysis was used to investigate predictors of LA GLS in HD. RESULTS Median dialysis vintage was 1.5 (IQR 0.5-4.3) years. Median intact FGF23 levels were substantially higher in the HD vs. control group (1206 [215, 4707] vs. 51 [43, 66.5] pg/ml; P = 0.0001), and LA GLS was 39.9% SD 11.6 vs. 32.8% SD 5.7 (P = 0.04). Among HD patients, higher FGF23 was associated with lower LA GLS (β per unit Ln-FGF23: - 2.7; 95% CI slope - 5.4, - 0.1; P = 0.04 after adjustment for age, body size, and HD vintage. FGF23 was not associated with LA phasic reservoir, conduit, or contractile strain. CONCLUSIONS In children on HD and preserved left ventricular ejection fraction, greater FGF23 is associated with lower LA GLS (indicative of impaired atrial performance). A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Shilpa Sharma
- Division of Nephrology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Room 6030, Los Angeles, CA, 90073, USA.
| | - Nisha R Patel
- Stritch School of Medicine, Loyola University Chicago, IL, Maywood, USA
| | - Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
16
|
Zhang Y, Han H, Qian Y, Wang Q, Jiang M. Advanced glycation end products promote the progression of chronic kidney diseases by targeting calpain 6. Amino Acids 2023:10.1007/s00726-023-03282-5. [PMID: 37243758 DOI: 10.1007/s00726-023-03282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Advanced glycation end products (AGEs) are produced by glycosylation or oxidation of proteins and lipids and are tightly involved in the chronic kidney disease (CKD) process. Calpain 6 (CAPN6) is a non-classical calpain that has been reported to be overexpressed in CKD. This study aimed to explore the effects of AGEs in CKD progress and their correlation with CAPN6. AGEs production was measured using ELISA. The CCK-8 assay was used to test cell proliferation. mRNA and protein levels were tested using qRT-PCR and western blot. The progress of glycolysis was tested by calculating the ATP and ECAR content in HK-2 cells. The expression of AGEs and CAPN6 was significantly increased in patients with CKD3, CKD4, and CKD5. AGEs treatment inhibited cell proliferation and glycolysis and accelerated apoptosis. Additionally, CAPN6 knockdown effectively reversed the effects of AGEs in HK-2 cells. In addition, overexpressed CAPN6 played similar role to AGEs, which suppressed cell proliferation and glycolysis and facilitated apoptosis. Moreover, the administration of 2-DG, a glycolysis inhibitor, counteracted the effects of CAPN6 silencing in HK-2 cells. Mechanistically, CAPN6 interacts with NF-κB and PDTC reduced CAPN6 expression in HK-2 cells. This investigation revealed that AGEs facilitate CKD development in vitro by modulating the expression of CAPN6.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of TCM, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Haiqiong Han
- Shanghai Jiading District Jiangqiao Town Community Health Service Center, Rehabilitation Medicine Department, Jinyao Rd No. 100, Jiangqiao Town, Jiading District, Shanghai, China
| | - Yu Qian
- Department of Urology, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Qiong Wang
- Department of Out-Patient Emergency, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China
| | - Minmin Jiang
- Geriatric Department, Shanghai YangPu District KongJiang Hospital, ShuangYang Rd No. 480, YangPu District, Shanghai, 200093, China.
| |
Collapse
|
17
|
Pons-Belda OD, Alonso-Álvarez MA, González-Rodríguez JD, Mantecón-Fernández L, Santos-Rodríguez F. Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23. Int J Mol Sci 2023; 24:ijms24076661. [PMID: 37047636 PMCID: PMC10094813 DOI: 10.3390/ijms24076661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) was identified at the turn of the century as the long-sought circulating phosphatonin in human pathology. Since then, several clinical and experimental studies have investigated the metabolism of FGF23 and revealed its relevant pathogenic role in various diseases. Most of these studies have been performed in adult individuals. However, the mineral metabolism of the child is, to a large extent, different from that of the adult because, in addition to bone remodeling, the child undergoes a specific process of endochondral ossification responsible for adequate mineralization of long bones’ metaphysis and growth in height. Vitamin D metabolism is known to be deeply involved in these processes. FGF23 might have an influence on bones’ growth as well as on the high and age-dependent serum phosphate concentrations found in infancy and childhood. However, the interaction between FGF23 and vitamin D in children is largely unknown. Thus, this review focuses on the following aspects of FGF23 metabolism in the pediatric age: circulating concentrations’ reference values, as well as those of other major variables involved in mineral homeostasis, and the relationship with vitamin D metabolism in the neonatal period, in vitamin D deficiency, in chronic kidney disease (CKD) and in hypophosphatemic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Santos-Rodríguez
- Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Faculty of Medicine, University of Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
18
|
Zhang L, Qin W. Research progress of fibroblast growth factor 23 in acute kidney injury. Pediatr Nephrol 2022:10.1007/s00467-022-05791-z. [PMID: 36416954 DOI: 10.1007/s00467-022-05791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is primarily produced in bones and mainly regulates calcium and phosphorus metabolism. The level of circulating FGF23 increases rapidly in the early stage of acute kidney injury (AKI). Recent studies have shown that FGF23 may serve as a biomarker for the diagnosis and poor prognosis of AKI. The mechanism of increased FGF23 in AKI may include increased production of FGF23, decreased renal clearance of FGF23, and some new regulatory factors, such as inflammation and glycerol 3-phosphate. However, the biological effects of elevated FGF23 in AKI are still unclear. It is also not known whether reducing the level of circulating FGF23 could alleviate AKI or its poor prognosis. Here, we review the pathophysiological mechanism and possible regulation of FGF23 in AKI and discuss the possibility of using FGF23 as a therapeutic target.
Collapse
Affiliation(s)
- Lina Zhang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.,Division of Nephrology, Henan Key Laboratory for Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
A review of ferric citrate clinical studies, and the rationale and design of the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) trial. Pediatr Nephrol 2022; 37:2547-2557. [PMID: 35237863 PMCID: PMC9437144 DOI: 10.1007/s00467-022-05492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022]
Abstract
Pediatric chronic kidney disease (CKD) is characterized by many co-morbidities, including impaired growth and development, CKD-mineral and bone disorder, anemia, dysregulated iron metabolism, and cardiovascular disease. In pediatric CKD cohorts, higher circulating concentrations of fibroblast growth factor 23 (FGF23) are associated with some of these adverse clinical outcomes, including CKD progression and left ventricular hypertrophy. It is hypothesized that lowering FGF23 levels will reduce the risk of these events and improve clinical outcomes. Reducing FGF23 levels in CKD may be accomplished by targeting two key stimuli of FGF23 production-dietary phosphate absorption and iron deficiency. Ferric citrate is approved for use as an enteral phosphate binder and iron replacement product in adults with CKD. Clinical trials in adult CKD cohorts have also demonstrated that ferric citrate decreases circulating FGF23 concentrations. This review outlines the possible deleterious effects of excess FGF23 in CKD, summarizes data from the adult CKD clinical trials of ferric citrate, and presents the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) study, a randomized, placebo-controlled trial to evaluate the effects of ferric citrate on FGF23 in pediatric patients with CKD stages 3-4 (ClinicalTrials.gov Identifier NCT04741646).
Collapse
|
20
|
Tain YL, Hsu CN. Cardiovascular Risks of Hypertension: Lessons from Children with Chronic Kidney Disease. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1650. [PMID: 36360378 PMCID: PMC9688449 DOI: 10.3390/children9111650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023]
Abstract
Hypertension is the most common complication of chronic kidney disease (CKD) in children, having a strong association with subsequential cardiovascular disease (CVD). In pediatric CKD, a considerable percentage of children with hypertension are undiagnosed or undertreated. Prior research has evaluated structural and functional markers of subclinical CVD and biomarkers in adults with CKD, while ideal biomarkers in pediatrics are still insufficiently studied. The ultimate goal of this review is to summarize what is currently known about state of hypertension, cardiovascular risk factors, and potential CVD markers/biomarkers in children with pre-dialysis CKD. We discuss omics-related biomarkers and the pathophysiologic processes of endothelial dysfunction, kidney injury, oxidative stress and inflammation that are classified by specific biomarkers. Moreover, we illustrate the existing challenges and highlight the paucity of pediatric CKD research to evaluate these CVD biomarkers for future clinical pediatric practice. Thus, achieving clinical utility of CVD biomarkers for use in pediatric CKD remains a significant challenge requiring additional efforts.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
21
|
Singh G, Mishra OP, Abhinay A, Agarwal V, Mishra SP, Dwivedi AD, Singh A, Prasad R, Mishra RN. Fibroblast Growth Factor 23 Level and Cardiovascular Parameters in Children with Chronic Kidney Disease. Indian J Pediatr 2022; 89:865-871. [PMID: 34767187 DOI: 10.1007/s12098-021-03927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/09/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To find out the serum fibroblast growth factor 23 (FGF-23) levels in different grades of CKD, and the prevalence of abnormal left ventricular mass index (LVMI), carotid intima-medial thickness (cIMT), and central pulse wave velocity (cPWV) and the risk factors including FGF-23 for these abnormalities. METHODS Fifty-nine patients of CKD with G2 to G5, aged 2-18 y were included. The LVMI, cIMT, and cPWV were measured using standard techniques, and serum intact FGF-23 levels were estimated at enrollment. RESULTS Median FGF-23 levels were significantly raised in all the grades of CKD than controls (p < 0.001), and also in G4 and G5 in comparison to G2&3 and in G5D than G5. Increased LVMI in 42 (71.2%), elevated cIMT in 30 (57.7%), and cPWV in 14 (26.9%) patients were found. The FGF-23 showed significant negative correlation with eGFRcr and positive with serum iPTH, phosphate and alkaline phosphatase levels, but had no correlations with LVMI, cIMT SDS, and cPWV SDS. Only systolic BP SDS (odds ratio 1.5, 95% CI 1.008-2.231, p = 0.046) was observed as a significant predictor for increased cIMT, while no variables had any association with abnormal LVMI and cPWV. CONCLUSIONS Serum FGF-23 showed higher levels with increasing grades of CKD, but no significant association with cardiovascular parameters. Systolic BP SDS was found as a significant risk factor for increased cIMT in children with CKD.
Collapse
Affiliation(s)
- Gaurav Singh
- Division of Pediatric Nephrology, Department of Pediatrics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Om P Mishra
- Division of Pediatric Nephrology, Department of Pediatrics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Abhishek Abhinay
- Division of Pediatric Nephrology, Department of Pediatrics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vikas Agarwal
- Department of Cardiology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surendra P Mishra
- Department of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amitnandan D Dwivedi
- Department of Radiodiagnosis and Imaging, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Singh
- Division of Pediatric Nephrology, Department of Pediatrics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rajniti Prasad
- Division of Pediatric Nephrology, Department of Pediatrics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rabindra N Mishra
- Center of Biostatistics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
22
|
Ferraro S, Biganzoli G, Calcaterra V, Zuccotti G, Biganzoli EM, Plebani M. Fibroblast growth factor 23: translating analytical improvement into clinical effectiveness for tertiary prevention in chronic kidney disease. Clin Chem Lab Med 2022; 60:1694-1705. [PMID: 36008874 DOI: 10.1515/cclm-2022-0635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Fibroblast growth factor 23 (FGF23) plays a key role in the pathophysiology of chronic kidney disease (CKD) and of the associated cardiovascular diseases, ranking on the crossroads of several evolving areas with a relevant impact on the health-care system (ageing, treatment of CKD and prevention from cardiovascular and renal events). In this review, we will critically appraise the overall issues concerning the clinical usefulness of FGF23 determination in CKD, focusing on the analytical performances of the methods, aiming to assess whether and how the clinical introduction of FGF23 may promote cost-effective health care policies in these patients. CONTENT Our comprehensive critical appraisal of the literature revealed that we are currently unable to establish the clinical usefulness of FGF23 measured by ELISA in CKD, as stability issues and suboptimal analytical performances are the major responsible for the release of misleading results. The meta-analytical approach has failed to report unambiguous evidence in face of the wide heterogeneity of the results from single studies. SUMMARY AND OUTLOOK Our review has largely demonstrated that the clinical usefulness depends on a thorough analytical validation of the assay. The recent introduction of chemiluminescent intact-FGF23 (iFGF23) assays licensed for clinical use, after passing a robust analytical validation, has allowed the actual assessment of preliminary risk thresholds for cardiovascular and renal events and is promising to capture the iFGF23 clinically relevant changes as a result of a therapeutic modulation. In this perspective, the analytical optimization of FGF23 determination may allow a marriage between physiology and epidemiology and a merging towards clinical outcomes.
Collapse
Affiliation(s)
- Simona Ferraro
- Endocrinology Laboratory Unit, "Luigi Sacco" University Hospital, Milan, Italy
| | - Giacomo Biganzoli
- Medical Statistics Unit, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, Pavia, Italy.,Pediatric Department, "V. Buzzi" Children's Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, "V. Buzzi" Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Elia Mario Biganzoli
- Medical Statistics Unit, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, Milan, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Castellano-Martinez A, Acuñas-Soto S, Roldan-Cano V, Rodriguez-Gonzalez M. Left Ventricular Hypertrophy in Patients with X-Linked Hypophosphataemia. J Clin Res Pediatr Endocrinol 2022; 14:344-349. [PMID: 33783172 PMCID: PMC9422913 DOI: 10.4274/jcrpe.galenos.2021.2020.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/21/2021] [Indexed: 12/01/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare genetic disorder with X-linked dominant inheritance. Mutations in the PHEX gene increase fibroblast growth factor 23 (FGF23) concentrations, causing loss of phosphorus at the proximal tubule. Most pediatric patients debut in the first two years with short stature and bowed legs. Conventional treatment consists of oral supplements with phosphorus and calcitriol. Since 2018, burosumab has been approved as a novel therapeutic option for XLH, with promising results. The purpose of this study was to share our experience with two cases of XLH treated with burosumab. These patients presented with a broad phenotypical differences. One had the most severe radiological phenotype and developed left ventricular hypertrophy (LVH) and left ventricular dysfunction with preserved ejection fraction. Treatment with burosumab was well-tolerated and was followed by radiological stability and a striking improvement in both blood biochemistry and quality of life. The LVH was stable and left ventricular function normalized in the patient with cardiac involvement. In recent years many studies have been carried out to explain the role of FGF23 in cardiovascular damage, but the exact pathophysiological mechanisms are as yet unclear. The most intensively studied populations are patients with XLH or chronic kidney disease, as both are associated with high levels of FGF23. To date, cardiovascular involvement in XLH has been described in patients treated with conventional treatment, so it would be of interest to investigate if early use of burosumab at the time of diagnosis of XLH would prevent the occurrence of cardiovascular manifestations.
Collapse
Affiliation(s)
| | - Silvia Acuñas-Soto
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain
| | - Virginia Roldan-Cano
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain
| | | |
Collapse
|
24
|
McKay AM, Teoh CW. Sex differences in cardiovascular disease burden in children with chronic kidney disease. Kidney Int 2022; 101:462-464. [DOI: 10.1016/j.kint.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
|
25
|
Okamoto K, Fujii H, Watanabe K, Goto S, Kono K, Nishi S. Changes of FGF23 and the Renin-Angiotensin-System in Male Mouse Models of Chronic Kidney Disease and Cardiac Hypertrophy. J Endocr Soc 2022; 6:bvab187. [PMID: 35047715 PMCID: PMC8758403 DOI: 10.1210/jendso/bvab187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Serum fibroblast growth factor 23 (FGF23) levels and the renin-angiotensin-aldosterone system (RAAS) are elevated in chronic kidney disease (CKD) patients, and their association with left ventricular hypertrophy (LVH) has been reported. However, whether the FGF23 elevation is the cause or result of LVH remains unclear. At 10 weeks, male C57BL/6J mice were divided into 4 groups: sham, CKD (5/6 nephrectomy), LVH (transaortic constriction), and CKD/LVH group. At 16 weeks, the mice were euthanized, and blood and urine, cardiac expressions of FGF23 and RAAS-related factors, and cardiac histological analyses were performed. Heart weight, serum FGF23 levels, and cardiac expression of FGF23 and RAAS-related factors, except for angiotensin-converting enzyme 2, were more increased in the CKD/LVH group compared to the other groups. A significant correlation between LVH and cardiac expressions of FGF23 and RAAS-related factors was observed. Furthermore, there was a significantly close correlation of the cardiac expression of FGF23 with LVH and RAAS-related factors. The coexisting CKD and LVH increased serum and cardiac FGF23 and RAAS-related factors, and there was a significant correlation between them. A close correlation of cardiac, but not serum FGF23, with LVH and RAAS suggests that local FGF23 levels may be associated with LVH and RAAS activation.
Collapse
Affiliation(s)
- Kohei Okamoto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Kentaro Watanabe
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
26
|
Printza N, Dotis J, Sinha MD, Leifheit-Nestler M. Editorial: Mineral and Bone Disorder in CKD. Front Pediatr 2022; 10:856656. [PMID: 35252071 PMCID: PMC8894607 DOI: 10.3389/fped.2022.856656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nikoleta Printza
- Pediatric Nephrology Unit, 1st Pediatric Department, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece
| | - John Dotis
- Pediatric Nephrology Unit, 1st Pediatric Department, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece
| | - Manish D Sinha
- Department of Paediatric Nephrology, King's College London, Evelina London Childrens Hospital, London, United Kingdom
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hanover, Germany
| |
Collapse
|
27
|
Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol 2021; 36:3007-3022. [PMID: 33230698 PMCID: PMC7682775 DOI: 10.1007/s00467-020-04843-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) and chronic kidney disease (CKD) are increasingly recognized in pediatric patients and represent risk factors for cardiovascular morbidity and mortality later in life. In CKD, enhanced tubular sodium reabsorption is a leading cause of HTN due to augmented extracellular fluid volume expansion. The renin-angiotensin-aldosterone system (RAAS) upregulates various tubular sodium cotransporters that are also targets of the hormone fibroblast growth factor 23 (FGF23) and its co-receptor Klotho. FGF23 inhibits the activation of 1,25-dihydroxyvitamin D that is a potent suppressor of renin biosynthesis. Here we review the complex interactions and disturbances of the FGF23-Klotho axis, vitamin D, and the RAAS relevant to blood pressure regulation and discuss the therapeutic strategies aimed at mitigating their pathophysiologic contributions to HTN.
Collapse
Affiliation(s)
- Michael Freundlich
- Department of Pediatrics, Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
28
|
Leifheit-Nestler M, Haffner D. How FGF23 shapes multiple organs in chronic kidney disease. Mol Cell Pediatr 2021; 8:12. [PMID: 34536161 PMCID: PMC8449753 DOI: 10.1186/s40348-021-00123-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with distinct alterations in mineral metabolism in children and adults resulting in multiple organ dysfunctions. Children with advanced CKD often suffer from impaired bone mineralization, bone deformities and fractures, growth failure, muscle weakness, and vascular and soft tissue calcification, a complex which was recently termed CKD-mineral and bone disorder (CKD-MBD). The latter is a major contributor to the enhanced cardiovascular disease comorbidity and mortality in these patients. Elevated circulating levels of the endocrine-acting phosphaturic hormone fibroblast growth factor (FGF) 23 are the first detectable alteration of mineral metabolism and thus CKD-MBD. FGF23 is expressed and secreted from osteocytes and osteoblasts and rises, most likely due to increased phosphate load, progressively as kidney function declines in order to maintain phosphate homeostasis. Although not measured in clinical routine yet, CKD-mediated increased circulating levels of FGF23 in children are associated with pathological cardiac remodeling, vascular alterations, and increased cognitive risk. Clinical and experimental studies addressing other FGF23-mediated complications of kidney failure, such as hypertension and impaired bone mineralization, show partly conflicting results, and the causal relationships are not always entirely clear. This short review summarizes regulators of FGF23 synthesis altered in CKD and the main CKD-mediated organ dysfunctions related to high FGF23 levels.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School Children's Hospital, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School Children's Hospital, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
29
|
Abstract
Over the past 2 decades, cardiovascular (CV) disease has been recognized as one of the most important complications of chronic kidney disease (CKD) and one of the leading causes of death in children with advanced CKD and in young adults who developed CKD during childhood. CV abnormalities develop early and progress during the course of CKD in children. Characterization of the prevalence and evolution of CV disease risk factors in progressive CKD is one of the primary aims of the Chronic Kidney Disease in Children study. In this review, we summarize up-to-date findings from the Chronic Kidney Disease in Children study with a focus on traditional and CKD-related CV risk factors and early subclinical markers of cardiac and vascular structure and function. We also discuss the effect of CV risk factors on progression of CKD.
Collapse
Affiliation(s)
- Mark M Mitsnefes
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
30
|
Abstract
Serum creatinine and level of proteinuria, as biomarkers of chronic kidney disease (CKD) progression, inadequately explain the variability of glomerular filtration rate decline, and are late markers of glomerular filtration rate decline. Recent studies have identified plasma and urine biomarkers at higher levels in children with CKD and also associate independently with CKD progression, even after adjustment for serum creatinine and proteinuria. These novel biomarkers represent diverse biologic pathways of tubular injury, tubular dysfunction, inflammation, and tubular health, and can be used as a liquid biopsy to better characterize CKD in children. In this review, we highlight the biomarker findings from the Chronic Kidney Disease in Children cohort, a large longitudinal study of children with CKD, and compare results with those from other pediatric CKD cohorts. The biomarkers in focus in this review include plasma kidney injury molecule-1, monocyte chemoattractant protein-1, fibroblast growth factor-23, tumor necrosis factor receptor-1, tumor necrosis factor receptor-2, soluble urokinase plasminogen activator receptor, and chitinase-3-like protein 1, as well as urine epidermal growth factor, α-1 microglobulin, kidney injury molecule-1, monocyte chemoattractant protein-1, and chitinase-3-like protein 1. Blood and urine biomarkers improve our ability to prognosticate CKD progression and may improve our understanding of CKD pathophysiology. Further research is required to establish how these biomarkers can be used in the clinical setting to improve the clinical management of CKD.
Collapse
Affiliation(s)
- Ibrahim Sandokji
- Section of Nephrology, Clinical and Translational Research Accelerator, Department of Pediatrics, Yale University School of Medicine, New Haven, CT; Department of Pediatrics, Taibah University College of Medicine, Medina, Saudi Arabia
| | - Jason H Greenberg
- Section of Nephrology, Clinical and Translational Research Accelerator, Department of Pediatrics, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
31
|
Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Res 2021; 9:35. [PMID: 34334787 PMCID: PMC8326281 DOI: 10.1038/s41413-021-00154-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bone-produced fibroblast growth factor 23 (FGF23) increases in response to inflammation and iron deficiency and contributes to cardiovascular mortality in chronic kidney disease (CKD). Neutrophil gelatinase-associated lipocalin (NGAL or lipocalin 2; LCN2 the murine homolog) is a pro-inflammatory and iron-shuttling molecule that is secreted in response to kidney injury and may promote CKD progression. We investigated bone FGF23 regulation by circulating LCN2. At 23 weeks, Col4a3KO mice showed impaired kidney function, increased levels of kidney and serum LCN2, increased bone and serum FGF23, anemia, and left ventricular hypertrophy (LVH). Deletion of Lcn2 in CKD mice did not improve kidney function or anemia but prevented the development of LVH and improved survival in association with marked reductions in serum FGF23. Lcn2 deletion specifically prevented FGF23 elevations in response to inflammation, but not iron deficiency or phosphate, and administration of LCN2 increased serum FGF23 in healthy and CKD mice by stimulating Fgf23 transcription via activation of cAMP-mediated signaling in bone cells. These results show that kidney-produced LCN2 is an important mediator of increased FGF23 production by bone in response to inflammation and in CKD. LCN2 inhibition might represent a potential therapeutic approach to lower FGF23 and improve outcomes in CKD.
Collapse
|
32
|
Palupi-Baroto R, Hermawan K, Murni IK, Nurlitasari T, Prihastuti Y, Sekali DRK, Ambarsari CG. High Fibroblast Growth Factor 23 as a Biomarker for Severe Cardiac Impairment in Children with Chronic Kidney Disease: A Single Tertiary Center Study. Int J Nephrol Renovasc Dis 2021; 14:165-171. [PMID: 34135617 PMCID: PMC8197584 DOI: 10.2147/ijnrd.s304143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Left ventricular hypertrophy (LVH) is the most common cardiac abnormality in chronic kidney disease (CKD). Changes in cardiac geometry and functions may occur in an early stage and worsen as CKD progresses. Recently, the role of fibroblast growth factor 23 (FGF23) is being highlighted and investigated in CKD-related cardiomyopathy. However, only a few studies have reviewed the utilization of FGF23 as a diagnostic biomarker in the pediatric CKD population. PURPOSE This study aimed to identify the role of FGF23 as a biomarker in assessing cardiac changes in children with CKD. PATIENTS AND METHODS We conducted a cross-sectional study that involved children aged 2 to 18 years old with CKD stages 2 to 5D in Dr. Sardjito General Hospital, Yogyakarta, Indonesia. The level of FGF23 was measured using an immunometric enzyme-linked immunosorbent assay. LVMI, RWT, and left ventricular ejection fraction (LVEF) were assessed with echocardiography. Receiver-operating characteristic (ROC) analyses were conducted to assess the diagnostic performance of FGF23 in detecting LVH with impaired contractility. RESULTS A total of 43 children with CKD stages 2 to 5D were included, among whom the prevalence of LVH diagnosis was 95.35%. The area under the curve (AUC) of FGF23 to assess LVH and systolic dysfunction was 0.82 (95% CI 0.62-1.0), and the optimal cutoff point was 1413 RU/mL (sensitivity 80%, specificity 78.95%). The median concentration of FGF23 increased with the decreasing eGFR and the increasing LVMI although the systolic and diastolic functions were preserved. CONCLUSION FGF23 might be used as an early biomarker to detect cardiac changes in pediatric CKD patients, particularly for LVH and impaired systolic function among children with CKD stage 2 and higher.
Collapse
Affiliation(s)
- Retno Palupi-Baroto
- Department of Child Health, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Kristia Hermawan
- Department of Child Health, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Indah Kartika Murni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Tiara Nurlitasari
- Department of Child Health, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Yuli Prihastuti
- Department of Child Health, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Debora Roselita Karo Sekali
- Department of Child Health, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Cahyani Gita Ambarsari
- Department of Child Health, Faculty of Medicine Universitas Indonesia – Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
33
|
Memmos E, Papagianni A. New Insights into the Role of FGF-23 and Klotho in Cardiovascular Disease in Chronic Kidney Disease Patients. Curr Vasc Pharmacol 2021; 19:55-62. [PMID: 32310050 DOI: 10.2174/1570161118666200420102100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
Alterations of fibroblast growth factor 23 (FGF-23) and Klotho levels are considered to be the earliest biochemical abnormality of chronic kidney disease - mineral and bone disease (CKDMBD) syndrome. Moreover, emerging data suggests that the dysregulated FGF-23 and Klotho axis has many effects on the cardiovascular (CV) system and contributes significantly to the increased CV morbidity and mortality rates of CKD patients. This review examines recent evidence on the role of FGF-23 and Klotho in the development and progression of CV complications of uremia namely cardiac hypertrophy, uremic cardiomyopathy, and atherosclerotic and arteriosclerotic vascular lesions. Moreover, the available evidence on their associations with adverse clinical outcomes are summarized. Undoubtedly, more studies are needed to further elucidate the effects of FGF-23 and Klotho on the heart and vessels and to gain insights into their prognostic value as CV risk factors. Finally, large prospective studies are required to test the hypothesis that modification of their levels would have a favourable impact on the unacceptably high mortality rates of these patient populations.
Collapse
Affiliation(s)
- Evangelos Memmos
- Department of Nephrology, Aristotle University of Thessaloniki, General Hospital "Hippokratio", Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, General Hospital "Hippokratio", Thessaloniki, Greece
| |
Collapse
|
34
|
Schön A, Leifheit-Nestler M, Deppe J, Fischer DC, Bayazit AK, Obrycki L, Canpolat N, Bulut IK, Azukaitis K, Yilmaz A, Mir S, Yalcinkaya F, Soylemezoglu O, Melk A, Stangl GI, Behnisch R, Shroff R, Bacchetta J, Querfeld U, Schaefer F, Haffner D. Active vitamin D is cardioprotective in experimental uraemia but not in children with CKD Stages 3-5. Nephrol Dial Transplant 2021; 36:442-451. [PMID: 33241290 DOI: 10.1093/ndt/gfaa227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Uraemic cardiac remodelling is associated with vitamin D and Klotho deficiency, elevated fibroblast growth factor 23 (FGF23) and activation of the renin-angiotensin system (RAS). The cardioprotective properties of active vitamin D analogues in this setting are unclear. METHODS In rats with 5/6 nephrectomy (5/6Nx) treated with calcitriol, the cardiac phenotype and local RAS activation were investigated compared with controls. A nested case-control study was performed within the Cardiovascular Comorbidity in Children with Chronic Kidney Disease (4C) study, including children with chronic kidney disease (CKD) Stages 3-5 [estimated glomerular filtration rate (eGFR) 25 mL/min/1.73 m2] treated with and without active vitamin D. Echocardiograms, plasma FGF23 and soluble Klotho (sKlotho) were assessed at baseline and after 9 months. RESULTS In rats with 5/6Nx, left ventricular (LV) hypertrophy, LV fibrosis and upregulated cardiac RAS were dose-dependently attenuated by calcitriol. Calcitriol further stimulated FGF23 synthesis in bone but not in the heart, and normalized suppressed renal Klotho expression. In the 4C study cohort, treatment over a mean period of 9 months with active vitamin D was associated with increased FGF23 and phosphate and decreased sKlotho and eGFR compared with vitamin D naïve controls, whereas LV mass index did not differ between groups. CONCLUSIONS Active vitamin D ameliorates cardiac remodelling and normalizes renal Klotho expression in 5/6Nx rats but does not improve the cardiac phenotype in children with CKD Stages 3-5. This discrepancy may be due to further enhancement of circulating FGF23 and faster progression of CKD associated with reduced sKlotho and higher serum phosphate in vitamin D-treated patients.
Collapse
Affiliation(s)
- Anne Schön
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | - Jennifer Deppe
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | | | - Aysun K Bayazit
- Department of Pediatric Nephrology, Cukurova University School of Medicine, Adana, Turkey
| | - Lukasz Obrycki
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children`s Memorial Health Institute, Warszawa, Poland
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Faculty of Medicine, Istanbul, Turkey
| | - Ipek Kaplan Bulut
- Division of Pediatric Nephrology, Department of Pediatrics, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Karolis Azukaitis
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Alev Yilmaz
- Department of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevgi Mir
- Department of Pediatric Nephrology, Ege University, Izmir, Turkey
| | - Fatos Yalcinkaya
- Department of Pediatrics, Ankara University Medical School, Ankara, Turkey
| | - Oguz Soylemezoglu
- Department of Pediatric Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, University Heidelberg, Heidelberg, Germany
| | - Rukshana Shroff
- Department of Pediatric Nephrology, UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphate, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Uwe Querfeld
- Department of Pediatrics, Division of Gastroenterology, Nephrology, and Metabolic Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hannover, Germany
| | | |
Collapse
|
35
|
Kruger R, Gafane-Matemane LF, Kagura J. Racial differences of early vascular aging in children and adolescents. Pediatr Nephrol 2021; 36:1087-1108. [PMID: 32444927 DOI: 10.1007/s00467-020-04593-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
The prevalence of non-communicable disease (NCDs) is rising globally, with a large burden recorded in sub-Saharan countries and populations of black race/ethnicity. Accelerated vascular deterioration, otherwise known as early vascular aging (EVA), is the underlying factor for highly prevalent NCDs such as hypertension. The etiology of EVA is multifactorial with a central component being arterial stiffness with subsequent development of hypertension and cardiovascular complications. Although arterial stiffness develops with increasing age, many children and adolescents are subjected to the premature development of arterial stiffness, due to genetic or epigenetic predispositions, lifestyle and behavioral risk factors, and early life programming. Race/ethnic differences in pediatric populations have also been reported with higher aortic stiffness in black (African American) compared with age-matched white (European American) counterparts independent of blood pressure, body mass index, or socioeconomic status. With known evidence of race/ethnic differences in EVA, the pathophysiological mechanisms underlying graded differences in the programming of EVA are still sparse and rarely explored. This educational review aims to address the early life determinants of EVA in children and adolescents with a particular focus on racial or ethnic differences.
Collapse
Affiliation(s)
- Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| | - Lebo Francina Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Juliana Kagura
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Bogdanova E, Beresneva O, Galkina O, Zubina I, Ivanova G, Parastaeva M, Semenova N, Dobronravov V. Myocardial Hypertrophy and Fibrosis Are Associated with Cardiomyocyte Beta-Catenin and TRPC6/Calcineurin/NFAT Signaling in Spontaneously Hypertensive Rats with 5/6 Nephrectomy. Int J Mol Sci 2021; 22:4645. [PMID: 33924991 PMCID: PMC8124394 DOI: 10.3390/ijms22094645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Arterial hypertension (AH) is associated with heart and chronic kidney disease (CKD). However, the precise mechanisms of myocardial remodeling (MR) in the settings of CKD remain elusive. We hypothesized that TRPC6, calcineurin/NFAT, and Wnt/β-catenin signaling pathways are involved in the development of MR in the background of CKD and AH. METHODS Early CKD was induced by performing a 5/6 nephrectomy (5/6NE) in spontaneously hypertensive rats (SHR-NE). Sham-operated (SO) SHR (SHR-SO) and Wistar Kyoto (WKY-SO) rats served as controls. Systolic blood pressure (SBP), heart rate, myocardial mass index (MMI), serum creatinine, cardiomyocyte diameter (dCM), myocardial fibrosis (MF), serum and kidney α-Klotho levels, myocardial expression of calcineurin (CaN), TRPC6, and β-catenin were measured two months after 5/6NE or SO. RESULTS NE-induced kidney dysfunction corresponded to mild-to-moderate human CKD and was associated with an increase in FGF23 and a decrease in renal α-Klotho. The levels of SBP, MMI, dCM, and MF were higher in SHRs compared to WKY-SO as well as in SHR-NE vs. SHR-SO. The MR was associated with increased cardiomyocyte expression of CaN/NFAT and β-catenin along with its intracellular re-distribution. TRPC6 protein levels were substantially elevated in both SHR groups with higher Trpc6 mRNA expression in SHR-NE. CONCLUSIONS The Wnt/β-catenin and TRPC6/CaN/NFAT hypertrophic signaling pathways seem to be involved in myocardial remodeling in the settings of AH and CKD and might be mediated by FGF23 and α-Klotho axis.
Collapse
Affiliation(s)
- Evdokia Bogdanova
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Olga Beresneva
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Olga Galkina
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Irina Zubina
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Galina Ivanova
- Laboratory of Cardiovascular and Lymphatic Systems Physiology, Pavlov Institute of Physiology, Saint Petersburg 199034, Russia;
| | - Marina Parastaeva
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| | - Natalia Semenova
- Research Department of Pathomorphology, Almazov National Medical Research Center, Saint Petersburg 197341, Russia;
- Laboratory of Leukemia Research, Russian Research Institute of Hematology and Transfusiology of FMBA of Russia, Saint Petersburg 191024, Russia
| | - Vladimir Dobronravov
- Research Institute of Nephrology, Pavlov University, Saint Petersburg 197022, Russia; (E.B.); (O.B.); (O.G.); (I.Z.); (M.P.)
| |
Collapse
|
37
|
Hanudel MR, Wong S, Jung G, Qiao B, Gabayan V, Zuk A, Ganz T. Amelioration of chronic kidney disease-associated anemia by vadadustat in mice is not dependent on erythroferrone. Kidney Int 2021; 100:79-89. [PMID: 33811979 DOI: 10.1016/j.kint.2021.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Vadadustat is an investigational hypoxia-inducible factor prolyl hydroxylase inhibitor that increases endogenous erythropoietin production and has been shown to decrease hepcidin levels, ameliorate iron restriction, and increase hemoglobin concentrations in anemic patients with chronic kidney disease (CKD). In studies of physiological responses to other erythropoietic stimuli, erythropoietin induced erythroblast secretion of erythroferrone (ERFE), which acts on the liver to suppress hepcidin production and mobilize iron for erythropoiesis. We therefore investigated whether vadadustat effects on erythropoiesis and iron metabolism are dependent on ERFE. Wild type and ERFE knockout mice with and without CKD were treated with vadadustat or vehicle. In both wild type and ERFE knockout CKD models, vadadustat was similarly effective, as evidenced by normalized hemoglobin concentrations, increased expression of duodenal iron transporters, lower serum hepcidin levels, and decreased tissue iron concentrations. This is consistent with ERFE-independent increased iron mobilization. Vadadustat treatment also lowered serum urea nitrogen and creatinine concentrations and decreased expression of kidney fibrosis markers. Lastly, vadadustat affected fibroblast growth factor 23 (FGF23) profiles: in non-CKD mice, vadadustat increased plasma total FGF23 out of proportion to intact FGF23, consistent with the known effects of hypoxia-inducible factor-1α and erythropoietin on FGF23 production and metabolism. However, in the mice with CKD, vadadustat markedly decreased both total and intact FGF23, effects likely contributed to by the reduced loss of kidney function. Thus, in this CKD model, vadadustat ameliorated anemia independently of ERFE, improved kidney parameters, and decreased FGF23. How vadadustat affects CKD progression in humans warrants future studies.
Collapse
Affiliation(s)
- Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| | - Shirley Wong
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Bo Qiao
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Victoria Gabayan
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Anna Zuk
- Research and Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
38
|
Atkinson MA, Ng DK, Warady BA, Furth SL, Flynn JT. The CKiD study: overview and summary of findings related to kidney disease progression. Pediatr Nephrol 2021; 36:527-538. [PMID: 32016626 PMCID: PMC7396280 DOI: 10.1007/s00467-019-04458-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
The Chronic Kidney Disease in Children (CKiD) cohort study is a North American (USA and Canada) multicenter, prospective study of children with chronic kidney disease (CKD). The original aims of the study were (1) to identify novel risk factors for CKD progression; (2) to measure the impact of kidney function decline on growth, cognition, and behavior; and (3) to characterize the evolution of cardiovascular disease risk factors. CKiD has developed into a national and international resource for the investigation of a variety of factors related to CKD in children. This review highlights notable findings in the area of CKD progression and outlines ongoing opportunities to enhance understanding of CKD progression in children. CKiD's contributions to the clinical care of children with CKD include updated and more accurate glomerular filtration rate estimating equations for children and young adults, and resources designed to help estimate the CKD progression timeline. In addition, results from CKiD have strengthened the evidence that treatment of hypertension and proteinuria should continue as a primary strategy for slowing the rate of disease progression in children.
Collapse
Affiliation(s)
| | - Derek K Ng
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Susan L Furth
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
39
|
Charnaya O, Seifert M. Promoting cardiovascular health post-transplant through early diagnosis and adequate management of hypertension and dyslipidemia. Pediatr Transplant 2021; 25:e13811. [PMID: 32871051 DOI: 10.1111/petr.13811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Despite correction of underlying solid organ failure by transplantation, pediatric transplant recipients still have increased mortality rates compared to the general pediatric population, in part due to increased cardiovascular risk. In particular, pediatric kidney and non-kidney transplant recipients with chronic kidney disease have significant cardiovascular risk that worsens with declining kidney function. Biomarkers associated with future cardiovascular risk such as casual and ambulatory hypertension, dyslipidemia, vascular stiffness and calcification, and left ventricular hypertrophy can be detected throughout the post-transplant period and in patients with stable kidney function. Among these, hypertension and dyslipidemia are two potentially modifiable cardiovascular risk factors that are highly prevalent in kidney and non-kidney pediatric transplant recipients. Standardized approaches to appropriate BP measurement and lipid monitoring are needed to detect and address these risk factors in a timely fashion. To achieve sustained improvement in cardiovascular health, clinicians should partner with patients and their caregivers to address these and other risk factors with a combined approach that integrates pharmacologic with non-pharmacologic approaches. This review outlines the scope and impact of hypertension and dyslipidemia in pediatric transplant recipients, with a particular focus on pediatric kidney transplantation given the high burden of chronic kidney disease-associated cardiovascular risk. We also review the current published guidelines for monitoring and managing abnormalities in blood pressure and lipids, highlighting the important role of therapeutic lifestyle changes in concert with antihypertensive and lipid-lowering medications.
Collapse
Affiliation(s)
- Olga Charnaya
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Seifert
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a significant cause of morbidity and mortality in children with chronic kidney disease (CKD). The cause of CVD in children with CKD is multifactorial and there are new and emerging data regarding prevalence and risk factors for CVD in this population. RECENT FINDINGS A number of recent publications from longitudinal cohort studies of children with CKD have greatly increased our knowledge about the prevalence and risk factors for CVD including hypertension, obesity and dyslipidaemia. Masked hypertension and isolated nocturnal hypertension both correlate with surrogate markers of CVD in children. Obesity and adiposity are associated with an increased risk of CVD. Markers other than BMI such as waist to height ratio and fat-free tissue to fat tissue ratio better correlate with the presence of CVD in children. Dyslipidaemia is extremely prevalent in the paediatric CKD population, but there is a lack of consensus on treatment. More data on the relationship between bone mineral disease and CVD continue to emerge including an association between hyperparathyroidism and isolated nocturnal hypertension. SUMMARY Children with CKD have multiple potentially modifiable risk factors for CVD. Research focused on CVD outcomes in children is needed.
Collapse
|
41
|
Grund A, Sinha MD, Haffner D, Leifheit-Nestler M. Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease-A Pediatric Perspective. Front Pediatr 2021; 9:702719. [PMID: 34422725 PMCID: PMC8372151 DOI: 10.3389/fped.2021.702719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) are a hallmark in pediatric patients with chronic kidney disease (CKD) contributing to an enhanced risk of all-cause and CV morbidity and mortality in these patients. The bone-derived phosphaturic hormone fibroblast growth factor (FGF) 23 progressively rises with declining kidney function to maintain phosphate homeostasis, with up to 1,000-fold increase in patients with kidney failure requiring dialysis. FGF23 is associated with the development of left ventricular hypertrophy (LVH) and thereby accounts to be a CVD risk factor in CKD. Experimentally, FGF23 directly induces hypertrophic growth of cardiac myocytes in vitro and LVH in vivo. Further, clinical studies in adult CKD have observed cardiotoxicity associated with FGF23. Data regarding prevalence and determinants of FGF23 excess in children with CKD are limited. This review summarizes current data and discusses whether FGF23 may be a key driver of LVH in pediatric CKD.
Collapse
Affiliation(s)
- Andrea Grund
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Manish D Sinha
- Department of Paediatric Nephrology, King's College London, Evelina London Children's Hospital, London, United Kingdom
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| | - Maren Leifheit-Nestler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School Children's Hospital, Hanover, Germany.,Paediatric Research Centre, Hannover Medical School, Hanover, Germany
| |
Collapse
|
42
|
Kwon YE, Choi HY, Oh HJ, Ahn SY, Ryu DR, Kwon YJ. Vertebral fracture is associated with myocardial infarction in incident hemodialysis patients: a Korean nationwide population-based study. Osteoporos Int 2020; 31:1965-1973. [PMID: 32394062 DOI: 10.1007/s00198-020-05423-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
UNLABELLED Chronic kidney disease (CKD)-mineral and bone disorder suggests that fragile bone and vascular disorder might be connected closely in CKD patients. In this study, fracture event was significantly associated with myocardial infarction (MI) in end-stage renal disease patients on hemodialysis (HD), especially for vertebral fractures. INTRODUCTION CKD-mineral and bone disorder is characterized by biochemical abnormalities, bone disorders, and vascular calcification. We aimed to verify the association between fracture and MI in CKD patients. METHODS Records for incident CKD stage 3 to 5 patients and patients who initiated HD between July 2014 and June 2018 were retrieved from the Korean Health Insurance Review & Assessment Service Database. Fractures were defined using diagnostic codes and were classified into vertebral, femoral, and other site fractures. MI was defined using a combination of MI diagnostic codes and related procedure codes. Multiple logistic regressions and 1:1 propensity score matching analysis were conducted. RESULTS A total of 38,935 patients (HD, 11,379; pre-dialysis CKD, 27,556) were included in this study. A total of 5,057 (13.0%) patients experienced fracture, and 1,431 (3.7%) patients had MI. Multiple logistic regression analysis showed that fracture was significantly associated with MI in the HD group (odds ratio (OR) 1.34, P = 0.024), but not in the pre-dialysis CKD group (OR 1.04, P = 0.701). After propensity score matching for age, gender, and diabetes mellitus between patients with and without fracture, fracture still significantly correlated with MI in HD patients (OR 1.47, P = 0.034) but not in patients with pre-dialysis CKD (OR 1.04, P = 0.751). Subgroup analysis by fracture site found that vertebral fracture was associated with MI in HD patients (OR 2.11, P = 0.024), but femoral or other site fractures were not. CONCLUSION In HD patients, fracture was significantly associated with MI, especially for vertebral fractures patients.
Collapse
Affiliation(s)
- Y E Kwon
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang-si, South Korea
| | - H Y Choi
- The Korean Society of Nephrology, Seoul, South Korea
| | - H J Oh
- Ewha Institute of Convergence Medicine and Research Institute for Human Health Information, Ewha Womans University, Seoul, South Korea
| | - S Y Ahn
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - D-R Ryu
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.
| | - Y J Kwon
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
43
|
Thomas L, Xue J, Tomilin VN, Pochynyuk OM, Dominguez Rieg JA, Rieg T. PF-06869206 is a selective inhibitor of renal P i transport: evidence from in vitro and in vivo studies. Am J Physiol Renal Physiol 2020; 319:F541-F551. [PMID: 32744087 DOI: 10.1152/ajprenal.00146.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 μmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh M Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
44
|
Burosumab in X-linked hypophosphatemia and perspective for chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 29:531-536. [PMID: 32701599 DOI: 10.1097/mnh.0000000000000631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Perturbations in phosphate and vitamin D homeostasis impacts skeletal health in children and adults. Study of inherited and acquired hypophosphatemic syndromes led to the discovery of fibroblast growth factor 23 (FGF23) as a potent regulator of phosphate and vitamin D metabolism, and advanced our understanding of the pathophysiology of mineral and bone disorder in chronic kidney disease (CKD-MBD). Here, we review a recently approved therapy for patients with X-linked hypophosphatemia (XLH) using a novel anti-FGF23 antibody, burosumab, and discuss the implications of such targeted therapy in CKD. RECENT FINDINGS In children and adults with XLH, burosumab treatment significantly increased renal tubular phosphate reabsorption and normalized serum phosphorus concentrations. Prolonged treatment with burosumab showed a favorable safety profile, improved healing of rickets in children, and fractures and pseudofractures in adults. FGF23 excess in CKD is independently associated with left ventricular hypertrophy and cardiovascular mortality. Research strategies to lower FGF23 in animal models of CKD are rapidly advancing and a question that remains to be answered is whether FGF23 blockade will offer a new targeted intervention for disordered mineral metabolism in CKD. SUMMARY Findings from recently concluded clinical trials in adults and children with XLH provide evidence for improved skeletal health with burosumab therapy with normalization of phosphate and vitamin D metabolism. Targeted anti-FGF23 antibody treatment of XLH has emerged as a novel therapeutic strategy to treat an inherited disorder of FGF23 excess.
Collapse
|
45
|
Yokoyama JS, Matsuda-Abedini M, Denburg MR, Kumar J, Warady BA, Furth SL, Hooper SR, Portale AA, Perwad F. Association Between Chronic Kidney Disease-Mineral Bone Disease (CKD-MBD) and Cognition in Children: Chronic Kidney Disease in Children (CKiD) Study. Kidney Med 2020; 2:398-406. [PMID: 32775979 PMCID: PMC7406846 DOI: 10.1016/j.xkme.2020.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rationale & Objective Chronic kidney disease (CKD) in children is associated with cognitive dysfunction that affects school performance and quality of life. The relationship between CKD-mineral and bone disorder and cognitive function in children is unknown. Study Design Observational study. Participants 702 children enrolled in the Chronic Kidney Disease in Children (CKiD) Study. Predictors Plasma fibroblast growth factor 23 (FGF-23), parathyroid hormone (PTH), calcium, phosphorus, 25 hydroxyvitamin D (25[OH]D), and 1,25 dihydroxyvitamin D (1,25[OH]2D). Outcomes Neurocognitive tests of intelligence, academic achievement, and executive functions. Analytical Approach Linear regression models to analyze the cross-sectional associations between log2FGF-23, 25(OH)D, 1,25(OH)2D, PTH, calcium, and phosphorus z scores and the cognitive test scores of interest after adjustment for demographics, blood pressure, proteinuria, and kidney function. Results At baseline, median age was 12 (95% CI, 8.3, 15.2) years and estimated glomerular filtration rate was 54 (40.5, 67.8) mL/min/1.73 m2. In fully adjusted analyses, 25(OH)D, 1,25(OH)2D, PTH, calcium, and phosphorus z scores did not associate with cognitive test scores. In fully adjusted analyses, log2FGF-23 was associated with abnormal test scores for attention regulation (P < 0.05); specifically, Conners' Continuous Performance Test II Errors of Omission (β = 2.3 [1.0, 3.6]), Variability (β=1.4 [0.4, -2.4]), and Hit Reaction Time (β = 1.3 [0.2, 2.4]). Children in the highest FGF-23 tertile group had 7% and 9% greater cognitive risk for Hit Reaction Time and Errors of Omission compared with those in the lowest tertile, respectively. In fully adjusted analyses, higher FGF-23 tertile was associated with increased cognitive risk (P < 0.05) for Errors of Omission (β = 0.4 [0.1, 0.7]) and Hit Reaction Time (β = 0.4 [0.1, 0.7]). Limitations The study does not assess the cumulative effects of FGF-23 excess on cognitive function over time. Within-population stratified analyses were not performed due to limited sample size. Conclusions In children with CKD, higher plasma FGF-23 level is associated with lower performance in targeted tests of executive function, specifically attention regulation, independent of glomerular filtration rate.
Collapse
Affiliation(s)
- Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Mina Matsuda-Abedini
- Division of Nephrology, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle R Denburg
- Children's Hospital of Philadelphia, Division of Nephrology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Juhi Kumar
- Division of Nephrology, Weill Cornell Medical College, New York, NY
| | - Bradley A Warady
- Division of Nephrology, Children's Mercy Kansas City, Kansas City, MO
| | - Susan L Furth
- Children's Hospital of Philadelphia, Division of Nephrology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen R Hooper
- Department of Allied Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anthony A Portale
- Division of Nephrology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Farzana Perwad
- Division of Nephrology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
46
|
Xu H, Hashem A, Witasp A, Mencke R, Goldsmith D, Barany P, Bruchfeld A, Wernerson A, Carrero JJ, Olauson H. Fibroblast growth factor 23 is associated with fractional excretion of sodium in patients with chronic kidney disease. Nephrol Dial Transplant 2020; 34:2051-2057. [PMID: 30312430 DOI: 10.1093/ndt/gfy315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/01/2018] [Accepted: 08/14/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recent studies suggest that the phosphaturic hormone fibroblast growth factor 23 (FGF23) is involved in regulation of renal sodium excretion and blood pressure. There is evidence of both direct effects via regulation of the sodium-chloride symporter (NCC) in the distal tubule, and indirect effects through interactions with the renin-angiotensin-aldosterone system. However, clinical data on the association between FGF23 and renal sodium regulation is lacking. Herein, we investigated the associations of FGF23 with renal sodium handling and blood pressure in non-dialysis CKD patients. METHODS This was a cross-sectional study encompassing 180 CKD patients Stage 1-5, undergoing renal biopsy. Plasma intact FGF23, 24-h urinary sodium excretion, fractional excretion of sodium (FENa) and blood pressure were measured at baseline. The association between FGF23 and renal sodium handling was explored by multivariate regression analysis. RESULTS The median age was 52.8 years, 60.6% were men and the median estimated glomerular filtration rate (eGFR) was 50.6 mL/min/1.73 m2. In univariate analysis, FGF23 was positively associated with FENa (Spearman's rho = 0.47; P < 0.001) and systolic blood pressure (rho = 0.17, P < 0.05), but not with plasma sodium, 24-h urinary sodium excretion or mean arterial blood pressure. The association between FGF23 and FENa remained significant after adjustment for potential confounders (multivariable adjusted β coefficient 0.60, P < 0.001). This association was stronger among the 107 individuals with eGFR <60 mL/min/1.73 m2 (β = 0.47, P = 0.04) and in the 73 individuals on any diuretics (β = 0.88, P < 0.001). Adjustment for measured GFR instead of eGFR did not alter the relationship. CONCLUSIONS FGF23 is independently associated with increased FENa in non-dialysis CKD patients. These data do not support the notion that FGF23 causes clinically significant sodium retention. Further studies are warranted to explore the mechanism underlying this association.
Collapse
Affiliation(s)
- Hong Xu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ali Hashem
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Goldsmith
- Department of Nephrology, Renal, Dialysis and Transplantation Unit, Guy's and St Thomas' Hospital, London, UK
| | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
48
|
Ewendt F, Hirche F, Feger M, Föller M. Peroxisome proliferator-activated receptor α (PPARα)-dependent regulation of fibroblast growth factor 23 (FGF23). Pflugers Arch 2020; 472:503-511. [PMID: 32189072 DOI: 10.1007/s00424-020-02363-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
Bone cells secrete fibroblast growth factor 23 (FGF23), a hormone that inhibits the synthesis of active vitamin D (1,25(OH)2D3) and induces phosphate excretion in the kidney. In addition, it exerts paracrine effects on other cells including hepatocytes, cardiomyocytes, and immune cells. The production of FGF23 is controlled by different factors including parathyroid hormone, 1,25(OH)2D3, alimentary phosphate, insulin, inflammation, and AMP-dependent kinase (AMPK) regulation of store-operated Ca2+ entry (SOCE). Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor with anti-inflammatory properties regulating lipid metabolism. Fibrates, PPARα agonists, are used in the treatment of dyslipidemia and activate AMPK. Here, we tested whether PPARα is a regulator of FGF23. Fgf23 gene expression was analyzed in UMR106 rat osteoblast-like cells by qRT-PCR, AMPK phosphorylation by Western blotting, and SOCE assessed by fluorescence optics. PPARα agonists fenofibrate and WY-14643 suppressed, whereas PPARα antagonist GW6471 and siRNA-mediated knockdown of PPARα induced Fgf23 gene expression. Fenofibrate induced AMPK activity in UMR106 cells and lowered SOCE. AMPK inhibitor compound C abrogated the PPARα effect on FGF23 in large part. Silencing of Orai-1 resulted in failure of PPARα to significantly influence Fgf23 expression. Taken together, PPARα is a potent regulator of FGF23. PPARα agonists down-regulate FGF23 formation at least in part through AMPK-mediated suppression of SOCE.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank Hirche
- Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
49
|
Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12030161. [PMID: 32150864 PMCID: PMC7150902 DOI: 10.3390/toxins12030161] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac remodeling occurs frequently in chronic kidney disease patients and affects quality of life and survival. Current treatment options are highly inadequate. As kidney function declines, numerous metabolic pathways are disturbed. Kidney and heart functions are highly connected by organ crosstalk. Among others, altered volume and pressure status, ischemia, accelerated atherosclerosis and arteriosclerosis, disturbed mineral metabolism, renal anemia, activation of the renin-angiotensin system, uremic toxins, oxidative stress and upregulation of cytokines stress the sensitive interplay between different cardiac cell types. The fatal consequences are left-ventricular hypertrophy, fibrosis and capillary rarefaction, which lead to systolic and/or diastolic left-ventricular failure. Furthermore, fibrosis triggers electric instability and sudden cardiac death. This review focuses on established and potential pathophysiological cardiorenal crosstalk mechanisms that drive uremia-induced senescence and disease progression, including potential known targets and animal models that might help us to better understand the disease and to identify novel therapeutics.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Anne Babler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, 52074 Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
50
|
Abstract
Fibroblast growth factor 23 (FGF23) is a hormone with a central role in the regulation of phosphate homeostasis. This regulation is accomplished by the coordinated modulation of renal phosphate handling, vitamin D metabolism and parathyroid hormone secretion. Patients with kidney disease have increased circulating levels of FGF23 and in other patient populations and in healthy individuals, FGF23 levels also rise following an increase in dietary phosphate intake. Maladaptive increases in FGF23 have a detrimental effect on several organs and tissues and, importantly, these pathological changes most likely contribute to increased morbidity and mortality. For example, in the context of heart disease, FGF23 is involved in the development of pathological hypertrophy that can lead to congestive heart failure. Increased FGF23 concentrations can also lead to microcirculatory changes, in particular reduced vasodilatory capacity, and collectively these cardiovascular changes can compromise tissue perfusion. In addition, FGF23 is associated with inflammation and an increased risk of infection; other potentially detrimental effects of FGF23 are likely to emerge in the future. Most importantly, recent insights demonstrate that FGF23 can be therapeutically targeted, which holds promise for the treatment of many patients in a variety of clinical settings.
Collapse
|