1
|
Jung YY, Mohan CD, Rangappa S, Um JY, Chinnathambi A, Alharbi SA, Rangappa KS, Ahn KS. Brucein D imparts a growth inhibitory effect in multiple myeloma cells by abrogating the Akt-driven signaling pathway. IUBMB Life 2023; 75:149-160. [PMID: 36262053 DOI: 10.1002/iub.2684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 02/02/2023]
Abstract
The Akt signaling pathway is an oncogenic cascade activated in the bone marrow microenvironment of multiple myeloma (MM) cells and contributes to their uncontrolled proliferation. Abrogation of Akt signaling has been presented as one of the prime therapeutic targets in the treatment of MM. In the present report, we have investigated the effect of Brucein D (BD) on Akt-driven signaling events in MM cells. BD (300 nM) substantially inhibited cell viability and imparted growth-inhibitory effects in U266 cells as evidenced by cell viability assays and flow cytometric analysis. Effect of BD on cell viability was evaluated by MTT assay. Apoptotic cells and cell cycle arrest by BD were analyzed by flow cytometer. The results of the TUNEL assay and western blotting showed that BD induces apoptosis of MM cells by activating caspase-8 and 9 with subsequent reduction in the expression of antiapoptotic proteins (Bcl-2, Bcl-xl, survivin, cyclin D1, COX-2, VEGF, MMP-9). Analysis of activated kinases by Phospho-Kinase Array Kit revealed that Akt, p70S6K, HSP60, p53, and WNK1 were strongly expressed in untreated cells and BD treatment reversed this effect. Using transfection experiments, AKT depletion led to a decrease in phosphorylation of Akt, mTOR, p70S6K, and WNK. However, Akt overexpression led to increase in phosphorylation of these proteins. Depletion of Akt potentiated the apoptosis-inducing effect of BD whereas overexpression displayed resistance to BD-induced apoptosis suggesting the role of Akt in chemoresistance. Taken together, BD mitigates Akt-dependent signaling pathways in MM cells to impart its anticancer activity.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, India
| | - Jae-Young Um
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhou Y, Hong Z, Jin K, Lin C, Xiang J, Ge H, Zheng Z, Shen J, Deng S. Resibufogenin inhibits the malignant characteristics of multiple myeloma cells by blocking the PI3K/Akt signaling pathway. Exp Ther Med 2022; 24:441. [PMID: 35720619 PMCID: PMC9185807 DOI: 10.3892/etm.2022.11368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Resibufogenin (RBG) is an active ingredient of toad venom that also has antitumor potential. The present study aimed to investigate the role of RBG in multiple myeloma (MM) and the underlying action mechanism involving the PI3K/Akt signaling pathway. A human MM cell line, RPMI8226, was treated with RBG and/or insulin-like growth factor 1 (IGF-1; an activator of the PI3K/AKT signaling pathway). Cell viability and apoptosis were detected using Cell Counting Kit-8 and flow cytometry, respectively. Cell migration and invasion were detected using a Transwell assay. In addition, the epithelial-mesenchymal transition (EMT)-associated proteins (E-cadherin, N-cadherin and Vimentin) and the PI3K/AKT pathway-associated proteins [AKT, phosphorylated (p)-AKT, PI3K and p-PI3K] were measured using western blotting. RBG inhibited the viability, migration and invasion, and promoted the apoptosis of RPMI8226 cells in a dose-dependent manner. RBG at concentrations of 4 and 8 µM upregulated E-cadherin, and downregulated N-cadherin and Vimentin in RPMI8226 cells. RBG also decreased the protein expression of p-AKT and p-PI3K in a dose-dependent manner. In addition, the intervention of IGF-1 weakened the inhibitory effects of RBG on the malignant characteristics of MM cells. RBG-induced inhibition of EMT and the PI3K/AKT pathway were also weakened by IGF-1 treatment. In conclusion, RBG inhibited viability, migration, invasion and EMT, and promoted the apoptosis of MM cells by blocking the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Hematology, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zirui Hong
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Keting Jin
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chenjun Lin
- The First Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jingjing Xiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhiyin Zheng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shu Deng
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
3
|
Akhtar S, Ali TA, Faiyaz A, Khan OS, Raza SS, Kulinski M, Omri HE, Bhat AA, Uddin S. Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:5002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host's immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Tayyiba A. Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Ammara Faiyaz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Omar S. Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow 226003, India;
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
| | - Halima El Omri
- National Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Ajaz A. Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.A.); (T.A.A.); (A.F.); (M.K.)
- Dermatology Institute, Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
4
|
Richardson PG, Nagler A, Ben‐Yehuda D, Badros A, Hari PN, Hajek R, Spicka I, Kaya H, LeBlanc R, Yoon S, Kim K, Martinez‐Lopez J, Mittelman M, Shpilberg O, Blake P, Hideshima T, Colson K, Laubach JP, Ghobrial IM, Leiba M, Gatt ME, Sportelli P, Chen M, Anderson KC. Randomized, placebo-controlled, phase 3 study of perifosine combined with bortezomib and dexamethasone in patients with relapsed, refractory multiple myeloma previously treated with bortezomib. EJHAEM 2020; 1:94-102. [PMID: 35847734 PMCID: PMC9175725 DOI: 10.1002/jha2.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022]
Abstract
Perifosine, an investigational, oral, synthetic alkylphospholipid, inhibits signal transduction pathways of relevance in multiple myeloma (MM) including PI3K/Akt. Perifosine demonstrated anti-MM activity in preclinical studies and encouraging early-phase clinical activity in combination with bortezomib. A randomized, double-blind, placebo-controlled phase 3 study was conducted to evaluate addition of perifosine to bortezomib-dexamethasone in MM patients with one to four prior therapies who had relapsed following previous bortezomib-based therapy. The primary endpoint was progression-free survival (PFS). The study was discontinued at planned interim analysis, with 135 patients enrolled. Median PFS was 22.7 weeks (95% confidence interval 16·0-45·4) in the perifosine arm and 39.0 weeks (18.3-50.1) in the placebo arm (hazard ratio 1.269 [0.817-1.969]; P = .287); overall response rates were 20% and 27%, respectively. Conversely, median overall survival (OS) was 141.9 weeks and 83.3 weeks (hazard ratio 0.734 [0.380-1.419]; P = .356). Overall, 61% and 55% of patients in the perifosine and placebo arms reported grade 3/4 adverse events, including thrombocytopenia (26% vs 14%), anemia (7% vs 8%), hyponatremia (6% vs 8%), and pneumonia (9% vs 3%). These findings demonstrate no PFS benefit from the addition of perifosine to bortezomib-dexamethasone in this study of relapsed/refractory MM, but comparable safety and OS.
Collapse
Affiliation(s)
- Paul G. Richardson
- Jerome Lipper Center for Multiple Myeloma ResearchDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | | | - Ashraf Badros
- Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMarylandUSA
| | - Parameswaran N. Hari
- Department of Hematology/OncologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Roman Hajek
- Department of HematooncologyUniversity Hospital, Ostrava, and Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Ivan Spicka
- First Department of Medicine, Department of HematologyFirst Faculty of MedicineCharles University and General Hospital in PraguePragueCzech Republic
| | - Hakan Kaya
- Cancer Care NorthwestSpokaneWashingtonUSA
| | - Richard LeBlanc
- CIUSSS de l'est de l’île de MontréalUniversity of MontrealMontrealCanada
| | - Sung‐Soo Yoon
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Kihyun Kim
- Sungkyunkwan University School of Medicine Samsung Medical CenterSeoulSouth Korea
| | | | | | - Ofer Shpilberg
- Institute of HematologyAssuta Medical CentersTel Aviv and Ariel UniversityArielIsrael
| | | | - Teru Hideshima
- Jerome Lipper Center for Multiple Myeloma ResearchDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Kathleen Colson
- Jerome Lipper Center for Multiple Myeloma ResearchDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Jacob P. Laubach
- Jerome Lipper Center for Multiple Myeloma ResearchDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Irene M. Ghobrial
- Jerome Lipper Center for Multiple Myeloma ResearchDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Merav Leiba
- Assuta Ashdod University HospitalFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShebaIsrael
| | | | | | | | - Kenneth C. Anderson
- Jerome Lipper Center for Multiple Myeloma ResearchDana‐Farber Cancer InstituteBostonMassachusettsUSA
| |
Collapse
|
5
|
Herrero AB, Quwaider D, Corchete LA, Mateos MV, García-Sanz R, Gutiérrez NC. FAM46C controls antibody production by the polyadenylation of immunoglobulin mRNAs and inhibits cell migration in multiple myeloma. J Cell Mol Med 2020; 24:4171-4182. [PMID: 32141701 PMCID: PMC7171423 DOI: 10.1111/jcmm.15078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
FAM46C, frequently mutated in multiple myeloma (MM), has recently been shown to encode a non‐canonical poly(A) polymerase (ncPAP). However, its target mRNAs and its role in MM pathogenesis remain mostly unknown. Using CRISPR‐Cas9 technology and gene expression analysis, we found that the inactivation of FAM46C in MM down‐regulates immunoglobulins (Igs) and several mRNAs encoding ER‐resident proteins, including some involved in unfolded protein response and others that affect glycosylation. Interestingly, we show that FAM46C expression is induced during plasma cell (PC) differentiation and that Ig mRNAs encoding heavy and light chains are substrates of the ncPAP, as revealed by poly(A) tail‐length determination assays. The absence of the ncPAP results in Ig mRNA poly(A) tail‐shortening, leading to a reduction in mRNA and protein abundance. On the other hand, loss of FAM46C up‐regulates metastasis‐associated lncRNA MALAT1 and results in a sharp increase in the migration ability. This phenotype depends mainly on the activation of PI3K/Rac1 signalling, which might have significant therapeutic implications. In conclusion, our results identify Ig mRNAs as targets of FAM46C, reveal an important function of this protein during PC maturation to increase antibody production and suggest that its role as a tumour suppressor might be related to the inhibition of myeloma cell migration.
Collapse
Affiliation(s)
- Ana Belén Herrero
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Dalia Quwaider
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Luis Antonio Corchete
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Maria Victoria Mateos
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ramón García-Sanz
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Norma C Gutiérrez
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| |
Collapse
|
6
|
Argueta C, Kashyap T, Klebanov B, Unger TJ, Guo C, Harrington S, Baloglu E, Lee M, Senapedis W, Shacham S, Landesman Y. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget 2018; 9:25529-25544. [PMID: 29876006 PMCID: PMC5986633 DOI: 10.18632/oncotarget.25368] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that results in over 11,000 deaths in the United States annually. The backbone therapy for the treatment of MM patients almost always includes combinations with corticosteroids such as dexamethasone (DEX). We found that DEX in combination with selinexor, an inhibitor of exportin-1 (XPO1) activity, synergistically inhibits the mTOR pathway and subsequently promotes cell death in MM cells. Specifically, we show that selinexor induces the expression of the glucocorticoid receptor (GR) and when combined with dexamethasone increases GR transcriptional activity. Moreover, we found that key downstream targets of the mTOR pathway are deregulated by the combination and identified a mechanism in which GR enhances the expression of REDD1 in GR positive cells while suppressing mTOR activity and cell viability. While the single agent activity of selinexor in MM cells appears to be GR-independent, synergy with DEX depends on GR expression. These data suggest that patients with tumor cells that are GR positive will benefit substantially from the combination. The current findings are consistent with the beneficial therapeutic outcome in patients with MM when treated with the combination of selinexor and DEX. In addition, they provide a rationale for testing GR and REDD1 as predictive and prognostic markers of response, respectively, for patients treated with this beneficial combination.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Guo
- Karyopharm Therapeutics Inc, Newton, MA 02459, USA
| | | | | | - Margaret Lee
- Karyopharm Therapeutics Inc, Newton, MA 02459, USA
| | | | | | | |
Collapse
|
7
|
Malek E, Driscoll JJ. High throughput chemical library screening identifies a novel p110-δ inhibitor that potentiates the anti-myeloma effect of bortezomib. Oncotarget 2018; 7:38523-38538. [PMID: 27229530 PMCID: PMC5122408 DOI: 10.18632/oncotarget.9568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable plasma cell malignancy and drug resistance persists as the major cause of treatment failure leading to fatal outcomes. The phosphatidyl-inositol-3-kinase (PI3K) pathway is constitutively hyperactivated in MM to promote disease progression and drug resistance. While inhibiting PI3K induces apoptosis in MM and is predicted to increase tumor susceptibility to anticancer therapy, early-generation pan-PI3K inhibitors display poor clinical efficacy as well as intolerable side effects. Here, we found that PI3K activity is significantly upregulated in MM cell lines and patient tumor cells resistant to bortezomib and that the majority of PI3K activity in MM cells is dependent upon the p110-δ isoform. Genetic or pharmacologic inhibition of p110-δ substantially reduced myeloma viability and enhanced cellular sensitivity to bortezomib. Chemical library screens then identified a novel compound, DT97, that potently inhibited p110-δ kinase activity and induced apoptosis in MM cells. DT97 was evaluated in the NCI-60 panel of human cancer cell types and anticancer activity was greatest against MM, leukemia and lymphoma cells. Co-treatment with DT97 and bortezomib synergistically induced apoptosis in MM patient cells and overcame bortezomib-resistance. Although bone marrow stromal cells (BMSCs) promote MM growth, the pro-survival effects of BMSCs were significantly reduced by DT97 treatment. Co-treatment with bortezomib and DT97 reduced the growth of myeloma xenotransplants in murine models and prolonged host survival. Taken together, the results provide the basis for further clinical evaluation of p110-δ inhibitors, as monotherapy or in synergistic combinations, for the benefit of MM patients.
Collapse
Affiliation(s)
- Ehsan Malek
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| |
Collapse
|
8
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Targeting signaling pathways in multiple myeloma: Pathogenesis and implication for treatments. Cancer Lett 2018; 414:214-221. [DOI: 10.1016/j.canlet.2017.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
|
10
|
Abdi J, Jian H, Chang H. Role of micro-RNAs in drug resistance of multiple myeloma. Oncotarget 2018; 7:60723-60735. [PMID: 27494872 PMCID: PMC5312415 DOI: 10.18632/oncotarget.11032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
While novel therapeutic approaches have profoundly improved survival of multiple myeloma (MM) patients, drug resistance and treatment refractoriness still persists. This obstacle highly demands thorough investigation into the root and underlying molecular mechanisms to develop more effective strategies. The advent of micro-RNAs (miRNAs) in the study of cancer biology and pathogenesis in recent years has revolutionized therapy in this field and particularly opened new windows to further understanding of tumor drug resistance. However; in spite of the fact that miRNAs involvement in MM pathogenesis and progression has been substantially evidenced, miRNA investigation in MM drug resistance is still in its infancy. Our knowledge of the potential role of miRNAs in MM drug resistance comes from few recent reports confirming that some miRNAs including miR-137/197, miR-21 and miR-221/222 could negatively modulate drug sensitivity of MM cells. Further continuous researches are required to exploit miRNAs to elucidate the critical mechanisms controlling drug resistance in MM. In this review, we will highlight the most recent observations on the role of miRNAs in MM drug resistance. Moreover, approaches and insights into clinical application of miRNAs to overcome MM drug resistance will be discussed.
Collapse
Affiliation(s)
- Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hou Jian
- Department of Hematology, Shanghai Chang Zheng Hospital, Shanghai, China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Uematsu A, Kido K, Manabe E, Takeda H, Takahashi H, Hayashi M, Imai Y, Sawasaki T. DANFIN functions as an inhibitor of transcription factor NF-κB and potentiates the antitumor effect of bortezomib in multiple myeloma. Biochem Biophys Res Commun 2017; 495:2289-2295. [PMID: 29284118 DOI: 10.1016/j.bbrc.2017.12.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023]
Abstract
Nuclear factor-κB (NF-κB) proteins are transcription factors that play key roles in regulating most immune responses and cell death. Constitutively active NF-κB has been shown to exhibit chemoresistance by inducing anti-apoptosis in tumor cells. Multiple myeloma is known as a constitutive NF-κB activating disease, and the proteasome inhibitor bortezomib is used to treat multiple myeloma and mantle cell lymphoma. We demonstrate here that DANFIN (N,N'-bis-(2,4-dimethyl-phenyl)-ethane-1,2-diamine) functions as an inhibitor of the p65 family proteins and induces chemosensitization to bortezomib in multiple myeloma. DANFIN was found to be an inhibitor of interactions between p65 and IκBα without the inhibition of the DNA binding activity of the p65 protein. In addition, DANFIN affected the IκBα binding region in Rel Homology Domain (RHD) and suppressed the nuclear translocalization of the p65 protein in cells. Furthermore, in multiple myeloma cells, DANFIN suppressed the expression level of NF-κB target genes and induced apoptosis. The combination therapy of DANFIN with bortezomib dramatically enhanced the apoptosis of multiple myeloma cells and indicated a remarkable anti-tumor effect in a multiple-myeloma xenograft mouse model.
Collapse
Affiliation(s)
- Atsushi Uematsu
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Japan
| | - Kohki Kido
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Japan
| | - Erika Manabe
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, PROS, Ehime University, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Japan
| | - Minoru Hayashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, PROS, Ehime University, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Japan.
| |
Collapse
|
12
|
Cheng Q, Liu L, Fu Y, Zhang Y, Yang Y, Liu J. RhPDCD5 combined with dexamethasone increases antitumor activity in multiple myeloma partially via inhibiting the Wnt signalling pathway. Clin Exp Pharmacol Physiol 2017; 45:140-145. [PMID: 28945941 DOI: 10.1111/1440-1681.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is one of the most common hematological malignancies and characterized by the clonal accumulation of malignant plasma cells. Significant progress has been made in MM treatment recently, while MM still remains incurable. Our previous studies showed that the recombined human programmed cell death 5 (rhPDCD5) can promote MM apoptosis induced by dexamethasone (Dex). Here, we expanded the findings by showing that the rhPDCD5 alone could not induce an obvious growth inhibition of U266 cells (a MM cell line). Of note, with the combination of dexamethasone (Dex), the growth of MM cells was significantly inhibited and accompanied with the cell cycle arrest in G0/G1. For mechanism study, we found that the combination treatment of rhPDCD5 plus Dex downregulated the mRNA and protein expressions of Wnt effectors including β-catenin, β-catenin (Ser675), TCF4, survivin and c-Myc when compared to Dex only. Moreover, the activation of WNT pathway induced by LiCl can also be inhibited by this combination treatment. Taken together, our study demonstrated that the combination of rhPDCD5 and Dex can suppress the proliferation of multiple myeloma cells partially via inhibiting the WNT signalling pathway.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liping Liu
- Department of General Surgery, the Affiliated Zhuzhou Hospital, Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Yunfeng Fu
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanan Zhang
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ye Yang
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Bai D, Cong S, Zhu LP. Attenuation of Focal Adhesion Kinase Reduces Lipopolysaccharide-Induced Inflammation Injury through Inactivation of the Wnt and NF-κB Pathways in A549 Cells. BIOCHEMISTRY (MOSCOW) 2017; 82:446-453. [PMID: 28371601 DOI: 10.1134/s0006297917040058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overall analysis and understanding of mechanisms are of great importance for treatment of infantile pneumonia due to its high morbidity and mortality worldwide. In this study, we preliminarily explored the function and mechanism of focal adhesion kinase (FAK) in regulation of inflammatory response induced by lipopolysaccharides in A549 cells. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis were used to explore the correlation of FAK expression with cell apoptosis, viability, and the inflammatory cytokine activity in A549 cells. The results showed that knockdown of FAK enhanced cell viability, suppressed apoptosis, and decreased inflammatory cytokine activity. In addition, downregulation of FAK could activate the Wnt and nuclear factor κB signaling pathways. These findings suggest that FAK might be involved in progression of infantile pneumonia and could be a new therapeutic target for this disease.
Collapse
Affiliation(s)
- D Bai
- Jining No. 1 People's Hospital, Department of Pediatrics, Jining, 272011, China.
| | | | | |
Collapse
|
14
|
Ding JH, Yuan LY, Chen GA. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT. Oncol Lett 2017; 13:647-654. [PMID: 28356941 PMCID: PMC5351279 DOI: 10.3892/ol.2016.5472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM.
Collapse
Affiliation(s)
- Jiang-Hua Ding
- Hematology and Oncology Department, The No. 171st Hospital of PLA, Jiujiang, Jiangxi 332000, P.R. China
| | - Li-Ya Yuan
- Hematology Department, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, P.R. China
| | - Guo-An Chen
- Hematology Department, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Kikuchi J, Koyama D, Wada T, Izumi T, Hofgaard PO, Bogen B, Furukawa Y. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J Clin Invest 2015; 125:4375-90. [PMID: 26517694 DOI: 10.1172/jci80325] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3-lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion-mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion-dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug-induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index.
Collapse
|
16
|
Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc Natl Acad Sci U S A 2015; 112:7689-94. [PMID: 26056298 DOI: 10.1073/pnas.1418577112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multiple myeloma (MM), a malignancy of plasma cells, is characterized by widespread genomic heterogeneity and, consequently, differences in disease progression and drug response. Although recent large-scale sequencing studies have greatly improved our understanding of MM genomes, our knowledge about genomic structural variation in MM is attenuated due to the limitations of commonly used sequencing approaches. In this study, we present the application of optical mapping, a single-molecule, whole-genome analysis system, to discover new structural variants in a primary MM genome. Through our analysis, we have identified and characterized widespread structural variation in this tumor genome. Additionally, we describe our efforts toward comprehensive characterization of genome structure and variation by integrating our findings from optical mapping with those from DNA sequencing-based genomic analysis. Finally, by studying this MM genome at two time points during tumor progression, we have demonstrated an increase in mutational burden with tumor progression at all length scales of variation.
Collapse
|
17
|
Zhang W, Qiao L, Wang X, Senthilkumar R, Wang F, Chen B. Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells. Int J Nanomedicine 2015; 10:3275-89. [PMID: 25995634 PMCID: PMC4425315 DOI: 10.2147/ijn.s80795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to determine the potential benefits of combination therapy using dimercaptosuccinic acid modified iron oxide (DMSA-Fe3O4) magnetic nanoparticles (MNPs) combined with nontoxic concentration of bortezomib (BTZ) and gambogic acid (GA) on multiple myeloma (MM) RPMI-8226 cells and possible underlying mechanisms. The effects of BTZ-GA-loaded MNP-Fe3O4 (BTZ-GA/MNPs) on cell proliferation were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,4,-diphenyltetrazolium bromide (MTT) method. Cell cycle and apoptosis were detected using the terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM). Furthermore, DMSA-Fe3O4 MNPs were characterized in terms of distribution, apoptotic morphology, and cellular uptake by transmission electron microscopy (TEM) and 4,6-diamidino-2-phenylindole (DAPI) staining. Subsequently, the effect of BTZ-GA/MNPs combination on PI3K/Akt activation and apoptotic-related protein were appraised by Western blotting. MTT assay and hematoxylin and eosin (HE) staining were applied to elevate the functions of BTZ-GA/MNPs combination on the tumor xenograft model and tumor necrosis. The results of this study revealed that the majority of MNPs were quasi-spherical and the MNPs taken up by cells were located in the endosome vesicles of cytoplasm. Nontoxic concentration of BTZ-GA/MNPs increased G2/M phase cell cycle arrest and induced apoptosis in RPMI-8226 cells. Furthermore, the combination of BTZ-GA/MNPs activated phosphorylated Akt levels, Caspase-3, and Bax expression, and down-regulated the PI3K and Bcl-2 levels significantly. Meanwhile, the in vivo tumor xenograft model indicated that the treatment of BTZ-GA/MNPs decreased the tumor growth and volume and induced cell apoptosis and necrosis. These findings suggest that chemotherapeutic agents polymerized MNPs-Fe3O4 with GA could serve as a better alternative for targeted therapeutic approaches to treat multiple myeloma.
Collapse
Affiliation(s)
- Wei Zhang
- Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lixing Qiao
- Department of Pediatrics, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xinchao Wang
- Department of Thyroid and Breast, the Fourth Central Hospital, Tianjin, People's Republic of China
| | | | - Fei Wang
- Medical School, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Medical School, Southeast University, Nanjing, People's Republic of China ; Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Tang J, Zhu J, Yu Y, Zhang Z, Chen G, Zhou X, Qiao C, Hou T, Mao X. A virtual screen identified C96 as a novel inhibitor of phosphatidylinositol 3-kinase that displays potent preclinical activity against multiple myeloma in vitro and in vivo. Oncotarget 2015; 5:3836-48. [PMID: 25003534 PMCID: PMC4116524 DOI: 10.18632/oncotarget.1657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is emerging as a promising therapeutic target for multiple myeloma (MM). In the present study, we performed a virtual screen against 800,000 of small molecule compounds by targeting PI3Kγ. C96, one of such compounds, inhibited PI3K activated by insulin-like growth factor-1 (IGF-1), but did not suppress IGF-1R activation. The cell-free assay revealed that C96 preferred to inhibit PI3Kα and δ, but was not active against AKT1, 2, 3 or mTOR. C96 inhibited PI3K activation in a time- and concentration-dependent manner. Consistent with its inhibition on PI3K/AKT, C96 downregulated the activation of mTOR, p70S6K, 4E-BP1, but did not suppress other kinases such as ERK and c-Src. Inhibition of the PI3K/AKT signaling pathway by C96 led to MM cell apoptosis which was demonstrated by Annexin V staining and activation of the pro-apoptotic signals. Furthermore, C96 displayed potent anti-myeloma activity in a MM xenograft model in nude mice. Oral administration of 100 mg/kg bodyweight almost fully suppressed tumor growth within 16 days, but without gross toxicity. Importantly, AKT activation was suppressed in tumor tissues from C96-treated mice, which was consistent with delayed tumor growth. Thus, we identified a novel PI3K inhibitor with a great potential for MM therapy.
Collapse
Affiliation(s)
- Juan Tang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China;Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | - Xinliang Mao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China;Collaborative Innovation Center of Hematology, Suzhou, China
| |
Collapse
|
19
|
Bianchi G, Anderson KC. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J Clin 2014; 64:422-44. [PMID: 25266555 DOI: 10.3322/caac.21252] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma (MM) is a cancer of antibody-producing plasma cells. The pathognomonic laboratory finding is a monoclonal immunoglobulin or free light chain in the serum and/or urine in association with bone marrow infiltration by malignant plasma cells. MM develops from a premalignant condition, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage termed smoldering multiple myeloma (SMM), which differs from active myeloma by the absence of disease-related end-organ damage. Unlike MGUS and SMM, active MM requires therapy. Over the past 6 decades, major advancements in the care of MM patients have occurred, in particular, the introduction of novel agents (ie, proteasome inhibitors, immunomodulatory agents) and the implementation of hematopoietic stem cell transplantation in suitable candidates. The effectiveness and good tolerability of novel agents allowed for their combined use in induction, consolidation, and maintenance therapy, resulting in deeper and more sustained clinical response and extended progression-free and overall survival. Previously a rapidly lethal cancer with few therapeutic options, MM is the hematologic cancer with the most novel US Food and Drug Administration-approved drugs in the past 15 years. These advances have resulted in more frequent long-term remissions, transforming MM into a chronic illness for many patients.
Collapse
Affiliation(s)
- Giada Bianchi
- Hematology Oncology Fellow, Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
20
|
Sahin I, Azab F, Mishima Y, Moschetta M, Tsang B, Glavey SV, Manier S, Zhang Y, Sacco A, Roccaro AM, Azab AK, Ghobrial IM. Targeting survival and cell trafficking in multiple myeloma and Waldenstrom macroglobulinemia using pan-class I PI3K inhibitor, buparlisib. Am J Hematol 2014; 89:1030-6. [PMID: 25060991 DOI: 10.1002/ajh.23814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023]
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway is activated in multiple myeloma (MM) and Waldenstrom Macroglobulenima (WM), and plays a crucial role in tumor progression and drug resistance. In this study, we characterized the role of pan-class I PI3K inhibition on cell trafficking and survival of MM and WM cells. We tested the effect of pan-class I PI3K inhibition by siRNA silencing or pharmacologic inhibition with buparlisib on MM cell survival, apoptosis and cell cycle in vitro and tumor growth and mobilization of MM cells in vivo. We then evaluated buparlisib-dependent mechanisms of induced MM cell mobilization. Moreover, the effect of buparlisib on cell survival, apoptosis, and adhesion of WM cells to bone marrow stromal cells (BMSCs) has been evaluated. We showed that buparlisib induced toxicity in MM cells, supported by induction of apoptosis and cell cycle arrest. Buparlisib was also found to reduce tumor progression in vivo. Importantly, buparlisib enhanced MM cell mobilization in vivo which was driven by decreased adhesion of MM cells to BMSCs and increased chemotaxis via up-regulation of CXCR4 expression. Similar to its effects on MM cells, buparlisib also induced cell survival and apoptosis, and decreased adhesion in WM cells. These data highlight the critical contribution of class I PI3K signaling to the regulation of survival and cell dissemination in B-cell malignancies.
Collapse
Affiliation(s)
- Ilyas Sahin
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Feda Azab
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine; Washington University in St. Louis; St. Louis Missouri
| | - Yuji Mishima
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Michele Moschetta
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Brian Tsang
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Siobhan V. Glavey
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Salomon Manier
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Yu Zhang
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Antonio Sacco
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Aldo M. Roccaro
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Abdel Kareem Azab
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine; Washington University in St. Louis; St. Louis Missouri
| | - Irene M. Ghobrial
- Department of Medical Oncology; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
21
|
Destabilization of akt promotes the death of myeloma cell lines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:190629. [PMID: 25243120 PMCID: PMC4163362 DOI: 10.1155/2014/190629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022]
Abstract
Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM) of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG). Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.
Collapse
|
22
|
Oriol A, Motlló C. Nuevos fármacos en el tratamiento del mieloma múltiple. Med Clin (Barc) 2014; 143:268-74. [DOI: 10.1016/j.medcli.2013.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 10/25/2022]
|
23
|
An J, Wang X, Guo P, Zhong Y, Zhang X, Yu Z. Hexabromocyclododecane and polychlorinated biphenyls increase resistance of hepatocellular carcinoma cells to cisplatin through the phosphatidylinositol 3-kinase/protein kinase B pathway. Toxicol Lett 2014; 229:265-72. [PMID: 24960055 DOI: 10.1016/j.toxlet.2014.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in China with high mortality, high chemotherapy resistance incidence, and poor prognosis. This study aimed to investigate the influence of polychlorinated biphenyls (PCBs) and hexabromocyclododecane (HBCD) on chemoresistance of HCC cells (HepG2, MHCC97H, and MHCC97L) to cisplatin and to explore the potential molecular mechanism. Cell viability, DNA damage, the expression level and activity of nuclear factor-κB (NF-κB), p53/Mdm4, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway were measured. The results showed that HBCD and PCBs could significantly reduce the chemosensitivity of HCC cells to cisplatin, increasing the cell viability and decreasing DNA damage. Moreover, HBCD and PCBs could induce the transcriptional activity of NF-κb and suppress the p53 expression in HepG2 and MHCC97H cells. In MHCC97L cells, however, opposite changes for NF-κB protein expression, NF-κB transcriptional activity, and p53/Mdm4 expression were observed after HBCD and PCBs exposure. Further investigation revealed that HBCD and PCBs exposure significantly increased the expression level of p-Akt and mammalian target of rapamycin (mTOR) in HepG2 and MHCC97H cells, but reduced that in MHCC97L cells. PI3K inhibitor LY294002 could relieve the influence of HBCD and PCBs on chemoresistance in HepG2 and MHCC97H cells. Taken together, HBCD and PCBs at low concentrations could increase the resistance of HCC cells to cisplatin through modulation on NF-κB pathway activation and p53 function, which is associated with the activity of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China.
| | - Xiu Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Panpan Guo
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
24
|
Salvage therapy of multiple myeloma: the new generation drugs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:456037. [PMID: 24967371 PMCID: PMC4055245 DOI: 10.1155/2014/456037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022]
Abstract
During the past decade, overall results of treatment of multiple myeloma (MM) have been improved and survival curves are now significantly better with respect to those obtained with historical treatment. These improvements are linked to a deeper knowledge of the biology of disease and to the introduction in clinical practice of drugs with different mechanism of action such as proteasome inhibitors and immunomodulatory drugs (IMiDs). However, MM remains in most cases an incurable disease. For patients who relapse after treatment with novel agents, the prognosis is dismal and new drugs and therapeutic strategies are required for continued disease control. In this review, we summarize new insights in salvage therapy for relapsed/refractory MM as emerging from recent clinical trials exploring the activity of bendamustine, new generation proteasome inhibitors, novel IMiDs, monoclonal antibodies, and drugs interfering with growth pathways.
Collapse
|
25
|
Wu S, Yu W, Qu X, Wang R, Xu J, Zhang Q, Xu J, Li J, Chen L. Argonaute 2 promotes myeloma angiogenesis via microRNA dysregulation. J Hematol Oncol 2014; 7:40. [PMID: 24886719 PMCID: PMC4108130 DOI: 10.1186/1756-8722-7-40] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dysregulated microRNA (miRNA) expression contributes to cancer cell proliferation, apoptosis and angiogenesis. Angiogenesis is a hallmark of multiple myeloma (MM) development and progression. Argonaute 2 (AGO2) protein, a core component of the RNA-induced silencing complex (RISC), can directly bind to miRNAs and mediate target messenger RNA (mRNA) degradation. A previous study showed that AGO2 knockdown suppressed human umbilical vein endothelial cell (HUVEC) growth and tube formation. However, the roles and molecular mechanisms of AGO2-induced myeloma angiogenesis are not yet fully understood. The aim of this study was to characterize these roles and effects and their associated mechanisms. RESULTS Supernatants from AGO2-overexpressing MM lines induced HUVEC migration and accelerated tube formation. Conversely, supernatants from AGO2-knockdown MM lines suppressed HUVEC cell migration and tube formation. Moreover, a chick chorioallantoic membrane (CAM) assay was used to demonstrate that AGO2 could drive neovessel formation in MM lines in vivo. Using an miRNA microarray, we observed that 25 miRNAs were upregulated and 7 were downregulated in response to AGO2. Most let-7 family members and 2 miR-17/92 cluster members (miR-17a and miR-92-1), all known pro-angiogenic miRNAs, were positively regulated by AGO2 whereas anti-angiogenic miRNAs such as miR-145 and miR-361 were negatively regulated by AGO2. CONCLUSIONS We conclude that AGO2 can drive neovessel formation in vitro and in vivo by dysregulating the expression of some angiogenic miRNAs. The pro-angiogenic miRNAs of the let-7 family and the miR-17/92 cluster, along with the anti-angiogenic miRNA miR-145, play crucial roles in AGO2-mediated angiogenesis by targeting angiogenesis-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lijuan Chen
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
26
|
Distinct roles of class I PI3K isoforms in multiple myeloma cell survival and dissemination. Blood Cancer J 2014; 4:e204. [PMID: 24769645 PMCID: PMC4003418 DOI: 10.1038/bcj.2014.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
27
|
Ocio EM, Mitsiades CS, Orlowski RZ, Anderson KC. Future agents and treatment directions in multiple myeloma. Expert Rev Hematol 2014; 7:127-41. [PMID: 24350987 PMCID: PMC4157182 DOI: 10.1586/17474086.2014.858595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of bortezomib and immunomodulatory agents resulted in a revolution in the treatment of multiple myeloma (MM). Moreover, second-generation proteasome inhibitors (carfilzomib) and immunomodulatory agents (pomalidomide) have recently been approved. Nevertheless, the incurability of this disease requires other drugs with different mechanisms of action to either prolong the survival of patients refractory to current therapies, or achieve cure. Active research has been done exploring the pathogenesis of MM and searching for novel, druggable targets. In this regard, some of these novel agents seem promising, such as monoclonal antibodies (anti-CD38 - daratumumab or anti-CS1 - elotuzumab) or the kinesin protein inhibitor Arry-520. Other agents under investigation are kinase inhibitors, signaling pathways inhibitors or deacetylase inhibitors. With so many novel agents under investigation, future therapy in MM will probably involve the combined use of the already approved drugs with some of those newly discovered.
Collapse
Affiliation(s)
- Enrique M Ocio
- Department of Hematology, University Hospital of Salamanca-IBSAL, IBMCC (USAL-CSIC),University Hospital & Cancer Research Center, P. San Vicente, 58-182, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
28
|
Simmons JK, Patel J, Michalowski A, Zhang S, Wei BR, Sullivan P, Gamache B, Felsenstein K, Kuehl WM, Simpson RM, Zingone A, Landgren O, Mock BA. TORC1 and class I HDAC inhibitors synergize to suppress mature B cell neoplasms. Mol Oncol 2013; 8:261-72. [PMID: 24429254 DOI: 10.1016/j.molonc.2013.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/12/2022] Open
Abstract
Enhanced proliferative signaling and loss of cell cycle regulation are essential for cancer progression. Increased mitogenic signaling through activation of the mTOR pathway, coupled with deregulation of the Cyclin D/retinoblastoma (Rb) pathway is a common feature of lymphoid malignancies, including plasmacytoma (PCT), multiple myeloma (MM), Burkitt's lymphoma (BL), and mantle cell lymphoma (MCL). Here we evaluate the synergy of pharmacologically affecting both of these critical pathways using the mTOR inhibitor sirolimus and the histone deacetylase inhibitor entinostat. A dose-matrix screening approach found this combination to be highly active and synergistic in a panel of genetically diverse human MM cell lines. Synergy and activity was observed in mouse PCT and human BL and MCL cell lines tested in vitro, as well as in freshly isolated primary MM patient samples tested ex vivo. This combination had minimal effects on healthy donor cells and retained activity when tested in a co-culture system simulating the protective interaction of cancer cells with the tumor microenvironment. Combining sirolimus with entinostat enhanced cell cycle arrest and apoptosis. At the molecular level, entinostat increased the expression of cell cycle negative regulators including CDKN1A (p21) and CDKN2A (p16), while the combination decreased critical growth and survival effectors including Cyclin D, BCL-XL, BIRC5, and activated MAPK.
Collapse
Affiliation(s)
- John K Simmons
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Jyoti Patel
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Aleksandra Michalowski
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Patrick Sullivan
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Ben Gamache
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Kenneth Felsenstein
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - W Michael Kuehl
- Genetics Branch, National Cancer Institute, National Institutes of Health, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA
| | - Adriana Zingone
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Ola Landgren
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, USA.
| |
Collapse
|
29
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
30
|
Morelli MB, Offidani M, Alesiani F, Discepoli G, Liberati S, Olivieri A, Santoni M, Santoni G, Leoni P, Nabissi M. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2. Int J Cancer 2013; 134:2534-46. [DOI: 10.1002/ijc.28591] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Beatrice Morelli
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| | - Massimo Offidani
- Clinica di Ematologia, Azienda Ospedaliero - Universitaria Ospedali Riuniti di Ancona; Ancona Italy
| | - Francesco Alesiani
- Unità di Oncoematologia, Ospedale di San Severino; San Severino Marche Italy
| | - Giancarlo Discepoli
- Laboratorio di Genetica Medica, Clinica di Pediatria, Ospedali Riuniti di Ancona; Ancona Italy
| | - Sonia Liberati
- Department of Molecular Medicine; Sapienza University; Rome Italy
| | - Attilio Olivieri
- Clinica di Ematologia, Azienda Ospedaliero - Universitaria Ospedali Riuniti di Ancona; Ancona Italy
| | - Matteo Santoni
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| | - Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| | - Pietro Leoni
- Clinica di Ematologia, Azienda Ospedaliero - Universitaria Ospedali Riuniti di Ancona; Ancona Italy
| | - Massimo Nabissi
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| |
Collapse
|
31
|
Huang X, Wang Y, Nan X, He S, Xu X, Zhu X, Tang J, Yang X, Yao L, Wang X, Cheng C. The role of the orphan G protein-coupled receptor 37 (GPR37) in multiple myeloma cells. Leuk Res 2013; 38:225-35. [PMID: 24290813 DOI: 10.1016/j.leukres.2013.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 01/14/2023]
Abstract
The orphan G protein-coupled receptor 37 (GPR37) is homologous to endothelin (ETB-R) and bombesin (GRP-R, NMB-R) receptors. The present study was undertaken to determine the expression and functional significance of GPR37 in human multiple myeloma (MM). We found that GPR37 was lowly expressed in MM cell adhesion model and highly expressed in proliferating cells. In vitro, meddling with the expression of GPR37 affected the CAM-DR by regulating the ability of cell adhesion and the activity of Akt and ERK in MM cells. Further studies indicated the positive role of GPR37 in the proliferation of MM cells.
Collapse
Affiliation(s)
- Xianting Huang
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yuchan Wang
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xun Nan
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Song He
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaohong Xu
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinghua Zhu
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Jie Tang
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaojing Yang
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Li Yao
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinxiu Wang
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Chun Cheng
- Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
32
|
Li J, Cao B, Zhou S, Zhu J, Zhang Z, Hou T, Mao X. Cyproheptadine-induced myeloma cell apoptosis is associated with inhibition of the PI3K/AKT signaling. Eur J Haematol 2013; 91:514-21. [PMID: 24033664 DOI: 10.1111/ejh.12193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2013] [Indexed: 01/05/2023]
Abstract
Recent studies revealed that the anti-allergic cyproheptadine displays anti-blood cancer activity. However, its mechanism is still elusive. In this study, cyproheptadine was found to decrease the expression of anti-apoptotic proteins, including Bcl-2, Mcl-1, and XIAP. More importantly, cyproheptadine-induced apoptosis was accompanied by suppressing AKT activation in myeloma cells. In the subsequent study, cyproheptadine was found to inhibit insulin-like growth factor 1-triggered AKT activation in a time- and concentration-dependent manner. Specifically, cyproheptadine blocked AKT translocation from nuclei for phosphorylation. This inhibition led to suppressed activation of p70S6K and 4EBP1, two key downstream signaling proteins in the PI3K/AKT pathway. However, cyproheptadine did not display inhibition on activation of IGF-1R or STAT3, possible upstream signals of AKT activation. These results further demonstrated that cyproheptadine suppresses the PI3K/AKT signaling pathway, which is probably critical for cyproheptadine-induced MM cell apoptosis.
Collapse
Affiliation(s)
- Jie Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Arora H, Qureshi R, Park WY. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One 2013; 8:e64273. [PMID: 23717581 PMCID: PMC3661463 DOI: 10.1371/journal.pone.0064273] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/09/2013] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important parameter related to breast cancer survival. Among several microRNAs predicted to target EMT-related genes, miR-506 is a novel miRNA found to be significantly related to breast cancer patient survival in a meta-analysis. miR-506 suppressed the expression of mesenchymal genes such as Vimentin, Snai2, and CD151 in MDA-MB-231 human breast cancer cell line. Moreover, NF-κB bound to the upstream promoter region of miR-506 to suppress transcription. Overexpression of miR-506 inhibited TGFβ-induced EMT and suppressed adhesion, invasion, and migration of MDA-MB-231 cells. From these results, we concluded that miR-506 plays a key role in the process of EMT through posttranslational control of EMT-related genes.
Collapse
Affiliation(s)
- Himanshu Arora
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Rehana Qureshi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
34
|
Sun B, Xu H, Zhang G, Zhu Y, Sun H, Hou G. Basic fibroblast growth factor upregulates survivin expression in hepatocellular carcinoma cells via a protein kinase B-dependent pathway. Oncol Rep 2013; 30:385-90. [PMID: 23677479 DOI: 10.3892/or.2013.2479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/21/2013] [Indexed: 01/14/2023] Open
Abstract
Basic fibroblast growth factor (bFGF) plays an important role in tumor angiogenesis. Several studies have reported that bFGF may influence cell apoptosis through different signaling pathways. The aim of the present investigation was to study the effect of bFGF on the activities of protein kinase B (PKB)/survivin and cell apoptosis in hepatocellular carcinoma cells (Bel-7402). We treated Bel-7402 cells with bFGF and wortmannin [phosphatidylinositol 3-kinase (PI3K)-specific inhibitor] separately to observe the expression of PKB and survivin detected with RT-PCR and western blotting. The cell cycle and apoptosis were assayed with flow cytometry. We found a significant increase in PKB expression in the group treated with 25 ng/ml bFGF for 10 min (P<0.05), and this effect was significantly inhibited by pretreatment with wortmannin (200 nM) for 1 h. After treatment with 10 ng/ml bFGF, the expression of survivin mRNA in Bel-7402 cells increased significantly, and reached the peak at 16 h (P<0.05); however, this effect could be significantly inhibited by pretreatment with wortmannin (200 mM) in a time-dependent manner. Following incubation with 25 ng/ml bFGF for 10 min, the apoptosis rate and M phase were significantly decreased and S phase cells increased compared with the wortmannin (200 nM)-treated group. When this group was pretreated with wortmannin (200 nM) for 1 h, the apoptosis rate and S phase were significantly increased, M phase cells decreased. The results revealed that wortmannin could induce high apoptosis rates in hepatocellular carcinoma cells, and bFGF could inhibit the cell apoptosis induced by wortmannin. These findings indicate that bFGF could rapidly activate the PKB activities, enhance the expression of survivin and the proliferation of hepatocellular carcinoma cells via the PI3K pathway, thus it may serve as a novel molecule for early targeting therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bo Sun
- Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | | | | | | | | | | |
Collapse
|
35
|
Boyd KD, Pawlyn C, Morgan GJ, Davies FE. Understanding the molecular biology of myeloma and its therapeutic implications. Expert Rev Hematol 2013; 5:603-17. [PMID: 23216592 DOI: 10.1586/ehm.12.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myeloma develops due to the accumulation of multiple pathological genetic events, many of which have been defined. Hyperdiploidy and reciprocal translocations centered on the immunoglobulin heavy chain variable region constitute primary genetic lesions. These primary lesions co-operate with secondary genetic events including chromosomal deletions and gains, gene mutations and epigenetic modifiers such as DNA methylation to produce the malignant phenotype of myeloma. Some of these events have been linked with distinct clinical outcome and can be used to define patient groups. This review explores the molecular biology of myeloma and identifies how genetic lesions can be used to define high- and low-risk patient groups, and also defines potential targets for therapy. The authors also explore how this information can be used to guide therapeutic decision-making and the design and interpretation of clinical trials, both now and in the future.
Collapse
Affiliation(s)
- Kevin D Boyd
- The Institute of Cancer Research, Brookes Lawley Building, 15 Cotswold Road, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
36
|
The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma. Oncogene 2013; 33:316-25. [PMID: 23318440 DOI: 10.1038/onc.2012.594] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/31/2012] [Accepted: 11/04/2012] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3'-kinase (PI3K) pathway is dysregulated in multiple myeloma (MM); we therefore tested a highly selective class I PI3K inhibitor, GDC-0941, for anti-myeloma activity. Functional and mechanistic studies were first performed in MM cell lines, then extended to primary MM patient samples cultured in vitro. GDC-0941 was then assessed as a single agent and in various combinations in myeloma tumor xenograft models. We show p110 α and β are the predominant PI3K catalytic subunits in MM and that a highly selective class I PI3K inhibitor, GDC-0941, has robust activity as a single agent to induce cell cycle arrest and apoptosis of both MM cell lines and patient myeloma cells. Mechanistic studies revealed an induction of cell cycle arrest at G0/G1, with decreased phospho-FoxO1/3a levels, decreased cyclin D1 and c-myc expression, and an increase in the cell cycle inhibitor, p27kip. Induction of apoptosis correlated with increased expression of the pro-apoptotic BH3-only protein BIM, cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP). In vitro, GDC-0941 synergized with dexamethasone (Dex) and lenalidomide (combination index values of 0.3-0.4 and 0.4-0.8, respectively); in vivo GDC-0941 has anti-myeloma activity and significantly increases the activity of the standard of care agents in several murine xenograft tumor models (additional tumor growth inhibition of 37-53% (Dex) and 22-72% (lenalidomide)). These data provide a clear therapeutic hypothesis for the inhibition of PI3K and provide a rationale for clinical development of GDC-0941 in myeloma.
Collapse
|
37
|
Gentile M, Recchia AG, Mazzone C, Morabito F. Emerging biological insights and novel treatment strategies in multiple myeloma. Expert Opin Emerg Drugs 2013; 17:407-38. [PMID: 22920042 DOI: 10.1517/14728214.2012.713345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Survival in multiple myeloma (MM) has improved significantly in the past 10 years due to new treatments, such as thalidomide and lenalidomide (immunomodulatory drugs or IMiDs) bortezomib and advances in supportive care. Nevertheless, almost all MM patients show disease relapse and develop drug resistance. AREAS COVERED The authors review the therapeutic approach for untreated MM patients. Furthermore, the prognostic stratification of patients and the proposed risk-adapted strategy are discussed. Finally, preclinical and clinical data regarding newer antimyeloma agents, currently undergoing examination such as proteasome inhibitors (PIs, carfilzomib), IMiDs (pomalidomide), epigenetic agents (histone deacetylase inhibitors vorinostat and panobinostat), humanized monoclonal antibodies (elotuzumab and MOR03087) and targeted therapies (inhibitors of NF-κB, MAPK, HSP90 and AKT) are reported. EXPERT OPINION MM patient outcome has remarkably improved due to the use of three to four drug combination therapies including PIs and IMiDs, which target the tumor in its bone marrow microenvironment, however MM treatment remains challenging. The use of high-throughput techniques has allowed to discover new insights into MM biology. The identification of candidate therapeutic targets and availability of respective investigative agents will allow for a substantial progress in the development and implementation of personalized medicine in MM.
Collapse
Affiliation(s)
- Massimo Gentile
- Unità Operativa Complessa di Ematologia, Dipartimento Oncoematologico, Azienda Ospedaliera di Cosenza, Viale della Repubblica, 87100 Cosenza, Italy
| | | | | | | |
Collapse
|
38
|
PI3K/Akt/FoxO: a novel participant in signal transduction in bone cells under mechanical stimulation. Cell Biol Int 2013; 36:923-6. [PMID: 22716317 DOI: 10.1042/cbi20120078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
FoxO (forkhead box O) transcription factors, one of the main downstream mediators of PI3K (phosphatidylinositol-3 kinase)/Akt [also known as PKB (protein kinase B)] signal transduction pathway, play an important role in modulating cellular homoeostasis. Recent studies have revealed the significance of FoxO in bone, the interaction of FoxO with β-catenin, along with mechanical stress-induced inactivation of FoxO via PI3K/Akt. We hypothesize that FoxO is a novel participant in mechanotransduction of bone cells in a PI3K/Akt-dependent way. After describing downstream targets of FoxO, we speculate that FoxO would be involved in the positive effects of mechanical stimulation on bone cells directly through its target genes. We have also concisely represented the cross-talk between ROS (reactive oxygen species) and Wnt/β-catenin pathway, which leads us to hypothesize that the inhibition of FoxO caused by mechanical stress acts at the cross-roads between ROS and Wnt/β-catenin to regulate indirectly bone metabolism.
Collapse
|
39
|
Dolloff NG, Talamo G. Targeted Therapy of Multiple Myeloma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 779:197-221. [DOI: 10.1007/978-1-4614-6176-0_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Bianchi G, Ghobrial IM. Molecular mechanisms of effectiveness of novel therapies in multiple myeloma. Leuk Lymphoma 2012; 54:229-41. [DOI: 10.3109/10428194.2012.706287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Oberbach A, Schlichting N, Heinrich M, Till H, Stolzenburg JU, Neuhaus J. Free fatty acid palmitate impairs the vitality and function of cultured human bladder smooth muscle cells. PLoS One 2012; 7:e41026. [PMID: 22808290 PMCID: PMC3396599 DOI: 10.1371/journal.pone.0041026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/16/2012] [Indexed: 01/03/2023] Open
Abstract
Background Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6) in cultured human bladder smooth muscle cells (hBSMC). Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. Methodology/Principal Findings HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i) palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii) direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii) in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv) further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v) increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. Conclusions/Significance Saturated free fatty acids (e.g., palmitate) cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby, certain cytokines might counteract the palmitate-induced downregulation of cell proliferation and vitality. This could be an important link to clinical findings of increased risk of metabolic related bladder diseases such as overactive bladder (OAB) and bladder pain syndrome/interstitial cystitis (BPS/IC).
Collapse
Affiliation(s)
- Andreas Oberbach
- Department of Pediatric Surgery, University Hospital of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Nadine Schlichting
- Department of Pediatric Surgery, University Hospital of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Marco Heinrich
- Department of Pediatric Surgery, University Hospital of Leipzig, Leipzig, Germany
- Department of Urology, University of Leipzig, Leipzig, Germany
| | - Holger Till
- Department of Pediatric Surgery, University Hospital of Leipzig, Leipzig, Germany
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | | | - Jochen Neuhaus
- Department of Urology, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
42
|
Wang Q, Wang Y, Ji Z, Chen X, Pan Y, Gao G, Gu H, Yang Y, Choi BCK, Yan Y. Risk factors for multiple myeloma: a hospital-based case-control study in Northwest China. Cancer Epidemiol 2012; 36:439-44. [PMID: 22673750 DOI: 10.1016/j.canep.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/04/2023]
Abstract
BACKGROUND The distinctive racial/ethnic and geographic distribution of multiple myeloma (MM) suggests that both family history and environmental factors may contribute to its development. METHODS A hospital-based case-control study consisting of 220 confirmed MM cases and 220 individually matched patient controls, by sex, age and hospital was carried out at 5 major hospitals in Northwest China. A questionnaire was used to obtain information on demographics, family history, and the frequency of food items consumed. RESULTS Based on multivariate analysis, a significant association between the risk of MM and family history of cancers in first degree relatives was observed (OR=4.03, 95% CI: 2.50-6.52). Fried food, cured/smoked food, black tea, and fish were not significantly associated with the risk of MM. Intake of shallot and garlic (OR=0.60, 95% CI: 0.43-0.85), soy food (OR=0.52, 95% CI: 0.36-0.75) and green tea (OR=0.38, 95% CI: 0.27-0.53) was significantly associated with a reduced risk of MM. In contrast, intake of brined vegetables and pickle was significantly associated with an increased risk (OR=2.03, 95% CI: 1.41-2.93). A more than multiplicative interaction on the decreased risk of MM was found between shallot/garlic and soy food. CONCLUSION Our study in Northwest China found an increased risk of MM with a family history of cancer, a diet characterized by low consumption of garlic, green tea and soy foods, and high consumption of pickled vegetables. The effect of green tea in reducing the risk of MM is an interesting new finding which should be further confirmed.
Collapse
Affiliation(s)
- Qixia Wang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fuhler GM, Brooks R, Toms B, Iyer S, Gengo EA, Park MY, Gumbleton M, Viernes DR, Chisholm JD, Kerr WG. Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer. Mol Med 2012; 18:65-75. [PMID: 22033675 DOI: 10.2119/molmed.2011.00178] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.
Collapse
Affiliation(s)
- Gwenny M Fuhler
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zheng Y, Yang J, Qian J, Zhang L, Lu Y, Li H, Lin H, Lan Y, Liu Z, He J, Hong S, Thomas S, Shah J, Baladandayuthapani V, Kwak LW, Yi Q. Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. J Mol Med (Berl) 2011; 90:695-706. [PMID: 22207485 DOI: 10.1007/s00109-011-0849-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/22/2011] [Accepted: 12/15/2011] [Indexed: 01/04/2023]
Abstract
NVP-BKM120 is a novel phosphatidylinositol 3-kinase (PI3K) inhibitor and is currently being investigated in phase I clinical trials in solid tumors. This study aimed to evaluate the therapeutic efficacy of BKM120 in multiple myeloma (MM). BKM120 induces cell growth inhibition and apoptosis in both MM cell lines and freshly isolated primary MM cells. However, BKM120 only shows limited cytotoxicity toward normal lymphocytes. The presence of MM bone marrow stromal cells, insulin-like growth factor, or interleukin-6 does not affect BKM120-induced tumor cell apoptosis. More importantly, BKM120 treatment significantly inhibits tumor growth in vivo and prolongs the survival of myeloma-bearing mice. In addition, BKM120 shows synergistic cytotoxicity with dexamethasone in dexamethasone-sensitive MM cells. Low doses of BKM120 and dexamethasone, each of which alone has limited cytotoxicity, induce significant cell apoptosis in MM.1S and ARP-1. Mechanistic study shows that BKM120 exposure causes cell cycle arrest by upregulating p27 (Kip1) and downregulating cyclin D1 and induces caspase-dependent apoptosis by downregulating antiapoptotic XIAP and upregulating expression of cytotoxic small isoform of Bim, BimS. In summary, our findings demonstrate the in vitro and in vivo anti-MM activity of BKM120 and suggest that BKM120 alone or together with other MM chemotherapeutics, particularly dexamethasone, may be a promising treatment for MM.
Collapse
Affiliation(s)
- Yuhuan Zheng
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Renninger JP, Murphy DJ, Morel DW. A selective Akt inhibitor produces hypotension and bradycardia in conscious rats due to inhibition of the autonomic nervous system. Toxicol Sci 2011; 125:578-85. [PMID: 22094455 DOI: 10.1093/toxsci/kfr316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Akt is a serine-threonine kinase that is amplified in a variety of human cancers, and as with other anticancer agents, some Akt inhibitors have produced functional cardiovascular effects such as marked hypotension that may limit their clinical benefit. Although identified in preclinical studies, the mechanism(s) responsible for these effects are often not fully characterized; potential targets include Akt signaling disruption in cardiac tissue, vascular smooth muscle, and/or autonomic system signaling. A selective Akt inhibitor was found to produce a rapid and marked hypotension and bradycardia in conscious rats. Isolated right atrial tissue and isolated thoracic aortic rings were used to examine direct effects of Akt inhibition on cardiac and vascular tissues, respectively. In addition, rats surgically prepared with telemetry units for monitoring blood pressure and heart rate were used to investigate potential effects on the autonomic nervous system (ANS). Whereas this Akt inhibitor did not produce any significant effect on atrial tissue, it did cause vasorelaxation of aortic rings. More significantly, in conscious rats, the Akt inhibitor inhibited the neural pressor response to the known nicotinic acetylcholine receptor (nAchR) agonist dimethylphenylpiperazinium (DMPP). In fact, the response observed was comparable to the response observed with the known ganglionic blocker hexamethonium. Thus, the hypotension and bradycardia produced by the Akt inhibitor is primarily due to blockade of nAchRs in autonomic ganglia. This finding highlights the importance of evaluating the ANS for cardiovascular effects associated with new chemical entities as well as suggesting a novel direct effect of an Akt inhibitor on nAchRs.
Collapse
Affiliation(s)
- Jonathan P Renninger
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
46
|
Abstract
Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment to regulate multiple cellular processes. Rapamycin and its analogs have not shown significant activity in multiple myeloma (MM), likely because of the lack of inhibition of TORC2. In the present study, we investigated the baseline activity of the PI3K/Akt/mTOR pathway TORC1/2 in MM cell lines with different genetic abnormalities. TORC1/2 knock-down led to significant inhibition of the proliferation of MM cells, even in the presence of BM stromal cells. We also tested INK128, a dual TORC1/2 inhibitor, as a new therapeutic agent against these MM cell lines. We showed that dual TORC1/2 inhibition is much more active than TORC1 inhibition alone (rapamycin), even in the presence of cytokines or stromal cells. In vitro and in vivo studies showed that p-4EBP1 and p-Akt inhibition could be predictive markers of TORC2 inhibition in MM cell lines. Dual TORC1/2 inhibition showed better inhibition of adhesion to BM microenvironmental cells and inhibition of homing in vivo. These studies form the basis for further clinical testing of TORC1/2 inhibitors in MM.
Collapse
|
47
|
Abstract
Myeloma therapy has undergone significant advances in recent years resulting in a marked improvement in survival. Knowledge of the active pathways involved in myeloma pathogenesis has led to the discovery of novel agents and greatly expanded the potential armamentarium available for treatment. This better understanding of the disease and resistance mechanisms has resulted in new agent classes that are being evaluated in preclinical and early clinical studies. In addition, dosing for existing agents is being optimized, and they are being given in new combinations. In this article, we review experimental agents that are showing promise in multiple myeloma treatment. New biological agents in clinical trials hold the promise of efficacy through novel mechanisms of action, with a significant reduction of dose-limiting toxicities compared with classic cytotoxic chemotherapeutics. Second-generation proteasome inhibitors and immunomodulatory agents are furthest along in clinical development, and histone deacetylase inhibitors, heat shock protein 90 inhibitors, Akt inhibitors and monoclonal antibodies are some of the other agents entering later-phase clinical trials. We also review developments in targeting the myeloma stem cell as an exciting new treatment direction.
Collapse
Affiliation(s)
- Saad A. Khan
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Adam D. Cohen
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
48
|
Lonial S, Mitsiades CS, Richardson PG. Treatment options for relapsed and refractory multiple myeloma. Clin Cancer Res 2011; 17:1264-77. [PMID: 21411442 DOI: 10.1158/1078-0432.ccr-10-1805] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment options for patients with relapsed myeloma have benefited from the development of new targeted agents. The use of bortezomib, thalidomide, and lenalidomide have dramatically changed outcomes for patients with relapsed myeloma. New agents are also in development, on the basis of preclinical rationale, as well as combinations of conventional and novel agents. Together each of these treatment approaches are being tested in phase I, II, and III clinical trials, with the goal of prolonged duration of remission and, ultimately, improved overall survival.
Collapse
Affiliation(s)
- Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
49
|
Wen G, Hong M, Li B, Liao W, Cheng SK, Hu B, Calaf GM, Lu P, Partridge MA, Tong J, Hei TK. Transforming growth factor-β-induced protein (TGFBI) suppresses mesothelioma progression through the Akt/mTOR pathway. Int J Oncol 2011; 39:1001-9. [PMID: 21701776 DOI: 10.3892/ijo.2011.1097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/09/2011] [Indexed: 11/05/2022] Open
Abstract
As an uncommon cancer, mesothelioma is very hard to treat with a low average survival rate owing to its usual late detection and being highly invasive. The link between asbestos exposure and the development of mesothelioma in humans is unequivocal. TGFBI, a secreted protein that is induced by transforming growth factor-β in various human cell types, has been shown to be associated with tumorigenesis in various types of tumors. It has been demonstrated that TGFBI expression is markedly suppressed in asbestos-induced tumorigenic cells, while an ectopic expression of TGFBI significantly suppresses tumorigenicity and progression in human bronchial epithelial cells. In order to delineate a potential role of TGFBI in mediating the molecular events that occur in mesothelioma tumorigenesis, we generated stable TGFBI knockdown mutants from the mesothelium cell line Met-5A by using an shRNA approach, and secondly created ectopic TGFBI overexpression mutants from the mesothelioma cell line H28 in which TGFBI is absent. We observed that in the absence of TGFBI, the knockdown mesothelial and mesothelioma cell lines exhibited an elevated proliferation rate, enhanced plating efficiency, increased anchorage-independent growth, as well as an increased cellular protein synthesis rate as compared with their respective controls. Furthermore, cell cycle regulatory proteins c-myc/cyclin D1/phosphor-Rb were upregulated; a more active PI3K/Akt/mTOR signaling pathway was also detected in TGFBI-depleted cell lines. These findings suggest that TGFBI may repress mesothelioma tumorigenesis and progression via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Gengyun Wen
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shain KH, Dalton WS. Environmental-mediated drug resistance: a target for multiple myeloma therapy. Expert Rev Hematol 2011; 2:649-62. [PMID: 21082957 DOI: 10.1586/ehm.09.55] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple myeloma is an incurable malignancy of mature clonal B cells. The refractory nature of this disease has long been attributed to the acquisition of drug resistance. Traditionally, mechanisms of drug resistance have been defined by genetic, acquired changes in the expression or function of specific genes products. However, over the past 10 years a large body of evidence has emerged demonstrating that in addition to mechanisms of drug resistance intrinsic to the cancer cell, there exist dynamic, de novo mechanisms coordinated by the tumor microenvironment resulting in a environmental-mediated drug resistance (EM-DR). Within this review we will provide an overview of some of these mechanisms of drug resistance and how they contribute to minimal residual disease and subsequent treatment failure. By understanding mechanisms of EM-DR, therapeutic targets can be identified and interventions designed to reduce minimal residual disease and improve clinical outcomes.
Collapse
Affiliation(s)
- Kenneth H Shain
- Departments of Experimental Therapeutics and Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | |
Collapse
|