1
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
3
|
Massoud A, Derbalah A, El-Mehasseb I, Allah MS, Ahmed MS, Albrakati A, Elmahallawy EK. Photocatalytic Detoxification of Some Insecticides in Aqueous Media Using TiO 2 Nanocatalyst. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9278. [PMID: 34501865 PMCID: PMC8431621 DOI: 10.3390/ijerph18179278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022]
Abstract
The present study was performed to fabricate a titanium dioxide (TiO2) nanocatalyst with proper characteristics for the removal of some insecticides (dimethoate and methomyl) from aqueous media. A TiO2 catalyst of regular (TiO2-commercial-/H2O2/UV) or nano (TiO2-synthesized-/H2O2/UV) size was employed as an advanced oxidation process by combining it with H2O2 under light. Moreover, the total detoxification of insecticides after treatment with the most effective system (TiO2(s)/H2O2/UV) was also investigated through exploring the biochemical alterations and histopathological changes in the liver and kidneys of the treated rats. Interestingly, the present study reported that degradation rates of the examined insecticides were faster using the TiO2 catalyst of nano size. Complete degradation of the tested insecticides (100%) was achieved under the TiO2(s)/H2O2/UV system after 320 min of irradiation. The half-life values of the tested insecticides under H2O2/TiO2(c)/UV were 43.86 and 36.28 for dimethoate and methomyl, respectively, whereas under the H2O2/TiO2(c)/UV system, the half-life values were 27.72 and 19.52 min for dimethoate and methomyl, respectively. On the other hand, no significant changes were observed in the biochemical and histopathological parameters of rats administrated with water treated with TiO2(s)/H2O2/UV compared to the control, indicating low toxicity of the TiO2 nanocatalyst-. Altogether, the advanced oxidation processes using TiO2 nanocatalyst can be considered as a promising and effective remediation technology for the complete detoxification of methomyl and dimethoate in water. However, further future research is needed to identify the possible breakdown products and to verify the safety of the used nanomaterials.
Collapse
Affiliation(s)
- Ahmed Massoud
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.M.); (A.D.); (M.S.A.)
| | - Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.M.); (A.D.); (M.S.A.)
| | - Ibrahim El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Moustafa Saad Allah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.M.); (A.D.); (M.S.A.)
| | - Mohamed S. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ehab Kotb Elmahallawy
- Department of Biomedical Sciences, University of Leon, 24004 Leon, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
4
|
Braakhuis HM, Murphy F, Ma-Hock L, Dekkers S, Keller J, Oomen AG, Stone V. An Integrated Approach to Testing and Assessment to Support Grouping and Read-Across of Nanomaterials After Inhalation Exposure. ACTA ACUST UNITED AC 2021; 7:112-128. [PMID: 34746334 PMCID: PMC8567336 DOI: 10.1089/aivt.2021.0009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Here, we describe the generation of hypotheses for grouping nanoforms (NFs) after inhalation exposure and the tailored Integrated Approaches to Testing and Assessment (IATA) with which each specific hypothesis can be tested. This is part of a state-of-the-art framework to support the hypothesis-driven grouping and read-across of NFs, as developed by the EU-funded Horizon 2020 project GRACIOUS. Development of Grouping Hypotheses and IATA: Respirable NFs, depending on their physicochemical properties, may dissolve either in lung lining fluid or in acidic lysosomal fluid after uptake by cells. Alternatively, NFs may also persist in particulate form. Dissolution in the lung is, therefore, a decisive factor for the toxicokinetics of NFs. This has led to the development of four hypotheses, broadly grouping NFs as instantaneous, quickly, gradually, and very slowly dissolving NFs. For instantaneously dissolving NFs, hazard information can be derived by read-across from the ions. For quickly dissolving particles, as accumulation of particles is not expected, ion toxicity will drive the toxic profile. However, the particle aspect influences the location of the ion release. For gradually dissolving and very slowly dissolving NFs, particle-driven toxicity is of concern. These NFs may be grouped by their reactivity and inflammation potency. The hypotheses are substantiated by a tailored IATA, which describes the minimum information and laboratory assessments of NFs under investigation required to justify grouping. Conclusion: The GRACIOUS hypotheses and tailored IATA for respiratory toxicity of inhaled NFs can be used to support decision making regarding Safe(r)-by-Design product development or adoption of precautionary measures to mitigate potential risks. It can also be used to support read-across of adverse effects such as pulmonary inflammation and subsequent downstream effects such as lung fibrosis and lung tumor formation after long-term exposure.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona Murphy
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Susan Dekkers
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Johannes Keller
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Agnes G Oomen
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vicki Stone
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Green synthesis of gold nanoparticles using extracellular metabolites of fish gut microbes and their antimicrobial properties. Braz J Microbiol 2020; 51:957-967. [PMID: 32424714 DOI: 10.1007/s42770-020-00263-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022] Open
Abstract
In the present study, we synthesis nanoparticles using biosynthesis methods because of the eco-friendly approach. Gold nanoparticles were synthesized using extracellular metabolites of marine bacteria (Rastrelliger kanagurta, Selachimorpha sp., and Panna microdon). After the synthesis gold nanoparticles checked their antibacterial and antimycobacterial activities. Here we have few techniques that have been used for characterizing the gold nanoparticles followed by ultraviolet (UV)-visible spectrophotometer analysis, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM). We observed the formation of gold nanoparticles using UV-Vis spectroscopy (UV-Vis). FT-IR spectroscopy results of the extracellular metabolites showed that different characteristic functional groups are responsible for the bioreduction of gold ions. In the recent years, we used zebrafish for an animal model to estimate nanoparticle toxicity and biocompatibility. We tested toxicity of the gold nanoparticle using the zebrafish larvae that are growing exponentially. Sample 1 showed a good antimicrobial activity, and sample 5 showed a good antimycobacterial activity. Based on the UV spectrophotometer, sample 1 is used for further studies. Color change and UV spectrum confirmed gold nanoparticles. Based on the TEM and SEM particles, size was measured and ranged between 80 and 45 nm, and most of the particles are spherical and are in rod shape. XRD result showed the gold nanoparticles with crystalline nature. Toxicity studies in the zebrafish larvae showed that 50 μg ml-1 showed less toxicity. Based on the studies, gold nanoparticle has good antibacterial and antimycobacterial activities. The present was concluded that gold nanoparticles have potential biocompatibility and less toxicity. Gold nanoparticles will be used as a drug molecule in pharmaceutical company and biomedicine application.
Collapse
|
6
|
Pathan SI, Chundawat NS, Chauhan NPS, Singh GP. A review on synthetic approaches of heterocycles via insertion-cyclization reaction. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1712609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | | | - Girdhar Pal Singh
- Department of Chemistry, Bhupal Nobles’ University, Udaipur, Rajasthan, India
| |
Collapse
|
7
|
Hante NK, Medina C, Santos-Martinez MJ. Effect on Platelet Function of Metal-Based Nanoparticles Developed for Medical Applications. Front Cardiovasc Med 2019; 6:139. [PMID: 31620449 PMCID: PMC6759469 DOI: 10.3389/fcvm.2019.00139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have been recently introduced as potential diagnostic and therapeutic tools in the medical field. One of the main concerns in relation to the use of nanomaterials in humans is their potential toxicity profile and blood compatibility. In fact, and due to their small size, NPs can translocate into the systemic circulation even after dermal contact, inhalation, or oral ingestion. Once in the blood stream, nanoparticles become in contact with the different components of the blood and can potentially interfere with normal platelet function leading to bleeding or thrombosis. Metallic NPs have been already used for diagnosis and treatment purposes due to their unique characteristics. However, the potential interactions between metallic NPs and platelets has not been widely studied and reported. This review focuses on the factors that can affect platelet activation and aggregation by metal NPs and the nature of such interactions, providing a summary of the effect of various metal NPs on platelet function available in the literature.
Collapse
Affiliation(s)
- Nadhim Kamil Hante
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Carlos Medina
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Maria Jose Santos-Martinez
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
8
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Engin AB, Engin A. Nanoparticles and neurotoxicity: Dual response of glutamatergic receptors. PROGRESS IN BRAIN RESEARCH 2019; 245:281-303. [PMID: 30961871 DOI: 10.1016/bs.pbr.2019.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the use of nanoparticles for neuro-diagnostic and neurotherapeutic purposes provides superior benefits than the conventional approaches, it may be potentially toxic in central nervous system. In this respect, nanotechnological research focuses on nanoneurotoxicity-nanoneurosafety concepts. Despite these efforts, nanoparticles (NPs) may cause neurotoxicity, neuroinflammation, and neurodegeneration by penetrating the brain-olfactory route and blood-brain barrier (BBB). Indeed, due to their unique structures nanomaterials can easily cross biological barriers, thus avoid drug delivery problems. Despite the advancement of nanotechnology for designing therapeutic agents, toxicity of these nanomaterials is still a concern. Activation of neurons by astrocytic glutamate is a result of NPs-mediated astrocyte-neuron crosstalk. Increased extracellular glutamate levels due to enhanced synthesis and reduced reuptake may induce neuronal damage by abnormal activation of extrasynaptic N-methyl d-aspartate receptor (NMDAR) subunits. NMDAR is the key factor that mediates the disturbances in intracellular calcium homeostasis, mitochondrial dysfunction and generation of reactive oxygen species in NPs exposed neurons. While some NPs cause neuronal death by inducing NMDARs, others may be neurotoxic through the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors or protect the neurons via blocking NMDARs. However, mechanisms of dual effects of NPs, neurotoxicity or neuroprotection are not precisely known. Some NPs present neuroprotective effect either by selectively inhibiting extrasynaptic subunit of NMDARs or by attenuating oxidative stress. NPs-related proinflammatory activation of microglia contributes to the dysfunction and cytotoxicity in neurons. Therefore, investigation of the interaction of NPs with the neuronal signaling molecules and neuronal receptors is necessary for the better understanding of the neurotoxicity or neurosafety of nanomaterials.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Abstract
Transcription factor Nrf2, nuclear factor (erythroid-derived 2)-like 2, is considered a master regulator of redox homeostasis and plays a central role in antioxidant and anti-inflammatory defence. It has been largely reported that oxidative stress is implicated in nanoparticle-induced toxicity with the involvement of Nrf2. Several basic methods for Nrf2 evaluation with exposure to nanoparticles are described in this chapter including real-time reverse transcription-polymerase chain reaction (RT-PCR), western blotting, immunofluorescence staining, electrophoretic mobility shift assay, DNase I footprinting, dimethylsulfate footprinting, protein pulse-chase analysis, and tert-butylhydroquinone treatment.
Collapse
Affiliation(s)
- Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, P. R. China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, P. R. China
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, P. R. China.
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, P. R. China.
| |
Collapse
|
11
|
Buchtelova H, Strmiska V, Skubalova Z, Dostalova S, Michalek P, Krizkova S, Hynek D, Kalina L, Richtera L, Moulick A, Adam V, Heger Z. Improving cytocompatibility of CdTe quantum dots by Schiff-base-coordinated lanthanides surface doping. J Nanobiotechnology 2018; 16:43. [PMID: 29673366 PMCID: PMC5907456 DOI: 10.1186/s12951-018-0369-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background Suitable fluorophores are the core of fluorescence imaging. Among the most exciting, yet controversial, labels are quantum dots (QDs) with their unique optical and chemical properties, but also considerable toxicity. This hinders QDs applicability in living systems. Surface chemistry has a profound impact on biological behavior of QDs. This study describes a two-step synthesis of QDs formed by CdTe core doped with Schiff base ligand for lanthanides [Ln (Yb3+, Tb3+ and Gd3+)] as novel cytocompatible fluorophores. Results Microwave-assisted synthesis resulted in water-soluble nanocrystals with high colloidal and fluorescence stability with quantum yields of 40.9–58.0%. Despite induction of endocytosis and cytoplasm accumulation of Yb- and TbQDs, surface doping resulted in significant enhancement in cytocompatibility when compared to the un-doped CdTe QDs. Furthermore, only negligible antimigratory properties without triggering formation of reactive oxygen species were found, particularly for TbQDs. Ln-doped QDs did not cause observable hemolysis, adsorbed only a low degree of plasma proteins onto their surface and did not possess significant genotoxicity. To validate the applicability of Ln-doped QDs for in vitro visualization of receptor status of living cells, we performed a site-directed conjugation of antibodies towards immuno-labeling of clinically relevant target—human norepinephrine transporter (hNET), over-expressed in neuroendocrine tumors like neuroblastoma. Immuno-performance of modified TbQDs was successfully tested in distinct types of cells varying in hNET expression and also in neuroblastoma cells with hNET expression up-regulated by vorinostat. Conclusion For the first time we show that Ln-doping of CdTe QDs can significantly alleviate their cytotoxic effects. The obtained results imply great potential of Ln-doped QDs as cytocompatible and stable fluorophores for various bio-labeling applications.
Collapse
Affiliation(s)
- Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Zuzana Skubalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Lukas Kalina
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Kim EM, Oh PS, Jeong HJ, Lim ST, Sohn MH. α v β 3 mediated tumor imaging using 99m Tc labeled NAD/monosaccharide coated ferrihydrite nanoparticles. J Labelled Comp Radiopharm 2017; 61:18-29. [PMID: 28948648 DOI: 10.1002/jlcr.3565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023]
Abstract
This study describes the synthesis of highly water-soluble, non-toxic, and biocompatible nicotinamide adenine dinucleotide (NAD)/glucosamine (=Nga1Fh) and NAD/glucosamine/gluconic acid coated ferrihydrite nanoparticles (=Nga2Fh) and their possible uses to target tumors in living animals via 99m Tc and 125 I radioisotope labeling. The structural properties were investigated using DLS, zeta potential, TEM, FT-IR, XRD, and Raman spectroscopy. The cell toxicity in CT26 cancer cells and in vivo tumor targetability in U87MG and CT26 tumor-bearing mice was further evaluated using cRGDyK-tagged and cRGDfK-tagged ferrihydrite nanoparticles. The average diameters of the resulting Nga1Fh and Nga2Fh nanoparticles were <5 to 7 and <3 nm, respectively. The Nga2Fh nanoparticles did not show cell toxicity until 0.1 mg/mL. Using gamma camera imaging, 99m Tc-cRGDfK-Nga2Fh showed the highest tumor uptake in a U87MG tumor-bearing mouse when compared with that of 99m Tc-cRGDyK-Nga2Fh and 99m Tc-Nga2Fh. The image-based tumor-to-muscle ratio by time for 99m Tc-cRGDfK-Nga2Fh was 3.8 ± 1.7, 4.2 ± 2.0, 7 ± 1.5, 13 ± 2.0, 8 ± 3.7, and 2 ± 1.6 at 5 and 30 minutes, 1, 2, 4, and 24 hours, respectively. Although further studies are needed, the NAD/monosaccharide coated ferrihydrite nanoparticles could be presented as an interesting material for a drug delivery system.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Chonbuk, Republic of Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Chonbuk, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Chonbuk, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Chonbuk, Republic of Korea
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Chonbuk, Republic of Korea
| |
Collapse
|
13
|
Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Tran NBNN, Knorr F, Mak WC, Cheung KY, Richter H, Meinke M, Lademann J, Patzelt A. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin. Eur J Pharm Biopharm 2017; 116:12-16. [DOI: 10.1016/j.ejpb.2016.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/30/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
|
15
|
Châtel A, Mouneyrac C. Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:61-70. [PMID: 28344012 DOI: 10.1016/j.cbpc.2017.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Environmental risk assessment of engineered nanomaterials (ENMs) is an emergent field since nanotechnology industry is rapidly growing due to the interesting physicochemical properties of nanomaterials. Metal-based nanomaterials are among the most rapidly commercialized materials and their toxicity towards aquatic animals has been investigated at different levels of the biological organization. The objective of this synthesis review is to give an overview of the signaling molecules that have a key role in metal-based NM mediated cytotoxicity in both marine and freshwater organisms. Since toxicity of metal-based NMs could be (partly) due to metal dissolution, this review only highlights studies that showed a specific nano-effect. From this bibliographic study, three mechanisms (detoxification, immunomodulation and genotoxicity) have been selected as they represent the major cell defense mechanisms and the most studied ones following ENM exposure. This better understanding of NM-mediated cytotoxicity may provide a sound basis for designing environmentally safer nanomaterials.
Collapse
Affiliation(s)
- Amélie Châtel
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France.
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France
| |
Collapse
|
16
|
Mandler WK, Nurkiewicz TR, Porter DW, Olfert IM. Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. Nanotoxicology 2017; 11:112-122. [PMID: 28024456 DOI: 10.1080/17435390.2016.1277275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) has been shown to disrupt endothelium-dependent arteriolar dilation in the peripheral microcirculation. The molecular mechanisms behind these arteriolar disruptions have yet to be fully elucidated. The secreted matricellular matrix protein thrombospondin-1 (TSP-1) is capable of moderating arteriolar vasodilation by inhibiting soluble guanylate cyclase activity. We hypothesized that TSP-1 may be a link between nanomaterial exposure and observed peripheral microvascular dysfunction. To test this hypothesis, wild-type C57B6J (WT) and TSP-1 knockout (KO) mice were exposed via lung aspiration to 50 μg MWCNT or a Sham dispersion medium control. Following exposure (24 h), arteriolar characteristics and reactivity were measured in the gluteus maximus muscle using intravital microscopy (IVM) coupled with microiontophoretic delivery of acetylcholine (ACh) or sodium nitroprusside (SNP). In WT mice exposed to MWCNT, skeletal muscle TSP-1 protein increased > fivefold compared to Sham exposed, and exhibited a 39% and 47% decrease in endothelium-dependent and -independent vasodilation, respectively. In contrast, TSP-1 protein was not increased following MWCNT exposure in KO mice and exhibited no loss in dilatory capacity. Microvascular leukocyte-endothelium interactions were measured by assessing leukocyte adhesion and rolling activity in third order venules. The WT + MWCNT group demonstrated 223% higher leukocyte rolling compared to the WT + Sham controls. TSP-1 KO animals exposed to MWCNT showed no differences from the WT + Sham control. These data provide evidence that TSP-1 is likely a central mediator of the systemic microvascular dysfunction that follows pulmonary MWCNT exposure.
Collapse
Affiliation(s)
- W Kyle Mandler
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- b Department of Physiology and Pharmacology , West Virginia University School of Medicine , Morgantown , WV , USA.,c Center for Cardiovascular & Respiratory Sciences , West Virginia University, Robert C. Byrd Health Sciences Center , Morgantown , WV , USA
| | - Dale W Porter
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - I Mark Olfert
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,c Center for Cardiovascular & Respiratory Sciences , West Virginia University, Robert C. Byrd Health Sciences Center , Morgantown , WV , USA
| |
Collapse
|
17
|
Wang D, Wu LP. Nanomaterials for delivery of nucleic acid to the central nervous system (CNS). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1039-1046. [PMID: 27772703 DOI: 10.1016/j.msec.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 11/08/2022]
|
18
|
Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol Neurobiol 2016; 52:913-26. [PMID: 26099304 DOI: 10.1007/s12035-015-9259-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Various iron-oxide nanoparticles have been in use for a long time as therapeutic and imaging agents and for supplemental delivery in cases of iron-deficiency. While all of these products have a specified size range of ∼ 40 nm and above, efforts are underway to produce smaller particles, down to ∼ 1 nm. Here, we show that after a 24-h exposure of SHSY-5Y human neuroblastoma cells to 10 μg/ml of 10 and 30 nm ferric oxide nanoparticles (Fe-NPs), cellular dopamine content was depleted by 68 and 52 %, respectively. Increases in activated tyrosine kinase c-Abl, a molecular switch induced by oxidative stress, and neuronal α-synuclein expression, a protein marker associated with neuronal injury, were also observed (55 and 38 % percent increases, respectively). Inhibition of cell-proliferation, significant reductions in the number of active mitochondria, and a dose-dependent increase in reactive oxygen species (ROS) were observed in neuronal cells. Additionally, using a rat in vitro blood-brain barrier (BBB) model, a dose-dependent increase in ROS accompanied by increased fluorescein efflux demonstrated compromised BBB integrity. To assess translational implications, in vivo Fe-NP-induced neurotoxicity was determined using in vivo MRI and post-mortem neurochemical and neuropathological correlates in adult male rats after exposure to 50 mg/kg of 10 nm Fe-NPs. Significant decrease in T 2 values was observed. Dynamic observations suggested transfer and retention of Fe-NPs from brain vasculature into brain ventricles. A significant decrease in striatal dopamine and its metabolites was also observed, and neuropathological correlates provided additional evidence of significant nerve cell body and dopaminergic terminal damage as well as damage to neuronal vasculature after exposure to 10 nm Fe-NPs. These data demonstrate a neurotoxic potential of very small size iron nanoparticles and suggest that use of these ferric oxide nanoparticles may result in neurotoxicity, thereby limiting their clinical application.
Collapse
|
19
|
Kalantar M, Rezaei M, Moghimipour E, Bavarsad N, Kalantari H, Varnaseri G, Forouzan A. Evaluation of Apoptosis Induced by Celecoxib Loaded Liposomes in Isolated Rat Hepatocytes. Jundishapur J Nat Pharm Prod 2015. [DOI: 10.17795/jjnpp-25421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015; 41:1922-34. [PMID: 26057769 DOI: 10.3109/03639045.2015.1052081] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood-brain barrier (BBB), thus impeding treatment of these conditions. OBJECTIVE Attention has turned to developing novel and effective delivery systems to provide good bioavailability in the brain. METHODS Intranasal administration is a non-invasive method of drug delivery that may bypass the BBB, allowing therapeutic substances direct access to the brain. However, intranasal administration produces quite low drug concentrations in the brain due limited nasal mucosal permeability and the harsh nasal cavity environment. Pre-clinical studies using encapsulation of drugs in nanoparticulate systems improved the nose to brain targeting and bioavailability in brain. However, the toxic effects of nanoparticles on brain function are unknown. RESULT AND CONCLUSION This review highlights the understanding of several brain diseases and the important pathophysiological mechanisms involved. The review discusses the role of nanotherapeutics in treating brain disorders via nose to brain delivery, the mechanisms of drug absorption across nasal mucosa to the brain, strategies to overcome the blood brain barrier, nanoformulation strategies for enhanced brain targeting via nasal route and neurotoxicity issues of nanoparticles.
Collapse
Affiliation(s)
- Shadab Md
- a Department of Pharmaceutical Technology , School of Pharmacy, International Medical University (IMU) , Kuala Lumpur , Malaysia
| | - Gulam Mustafa
- b College of Pharmacy, Al-Dawadmi Campus, Shaqra University , Riyadh , Kingdom of Saudi Arabia , and.,c Faculty of Pharmacy, Department of Pharmaceutics , Jamia Hamdard, New Delhi , India
| | - Sanjula Baboota
- c Faculty of Pharmacy, Department of Pharmaceutics , Jamia Hamdard, New Delhi , India
| | - Javed Ali
- c Faculty of Pharmacy, Department of Pharmaceutics , Jamia Hamdard, New Delhi , India
| |
Collapse
|
21
|
Minarchick VC, Stapleton PA, Porter DW, Wolfarth MG, Çiftyürek E, Barger M, Sabolsky EM, Nurkiewicz TR. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol 2014; 13:323-37. [PMID: 23645470 DOI: 10.1007/s12012-013-9213-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) are an engineered nanomaterial (ENM) that possesses unique catalytic, oxidative, and reductive properties. Currently, CeO2 NPs are being used as a fuel catalyst but these properties are also utilized in the development of potential drug treatments for radiation and stroke protection. These uses of CeO2 NPs present a risk for human exposure; however, to date, no studies have investigated the effects of CeO2 NPs on the microcirculation following pulmonary exposure. Previous studies in our laboratory with other nanomaterials have shown impairments in normal microvascular function after pulmonary exposures. Therefore, we predicted that CeO2 NP exposure would cause microvascular dysfunction that is dependent on the tissue bed and dose. Twenty-four-hour post-exposure to CeO2 NPs (0-400 μg), mesenteric, and coronary arterioles was isolated and microvascular function was assessed. Our results provided evidence that pulmonary CeO2 NP exposure impairs endothelium-dependent and endothelium-independent arteriolar dilation in a dose-dependent manner. The CeO2 NP exposure dose which causes a 50 % impairment in arteriolar function (EC50) was calculated and ranged from 15 to 100 μg depending on the chemical agonist and microvascular bed. Microvascular assessments with acetylcholine revealed a 33-75 % reduction in function following exposure. Additionally, there was a greater sensitivity to CeO2 NP exposure in the mesenteric microvasculature due to the 40 % decrease in the calculated EC50 compared to the coronary microvasculature EC50. CeO2 NP exposure increased mean arterial pressure in some groups. Taken together, these observed microvascular changes may likely have detrimental effects on local blood flow regulation and contribute to cardiovascular dysfunction associated with particle exposure.
Collapse
Affiliation(s)
- Valerie C Minarchick
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, PO Box 9105, Morgantown, WV, 26506-9105, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
You J, Zhou J, Zhou M, Liu Y, Robertson JD, Liang D, Van Pelt C, Li C. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part Fibre Toxicol 2014; 11:26. [PMID: 24886070 PMCID: PMC4082425 DOI: 10.1186/1743-8977-11-26] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/03/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Gold nanoparticles have attracted enormous interest as potential theranostic agents. However, little is known about the long-term elimination and systemic toxicity of gold nanoparticles in the literature. Hollow gold nanospheres (HAuNS) is a class of photothermal conducting agent that have shown promises in photoacoustic imaging, photothermal ablation therapy, and drug delivery. It's very necessary to make clear the biosafety of HAuNS for its further application. METHODS We investigated the cytotoxicity, complement activation, and platelet aggregation of polyethylene glycol (PEG)-coated HAuNS (PEG-HAuNS, average diameter of 63 nm) in vitro and their pharmacokinetics, biodistribution, organ elimination, hematology, clinical chemistry, acute toxicity, and chronic toxicity in mice. RESULTS PEG-HAuNS did not induce detectable activation of the complement system and did not induce detectable platelet aggregation. The blood half-life of PEG-HAuNS in mice was 8.19 ± 1.4 hr. The single effective dose of PEG-HAuNS in photothermal ablation therapy was determined to be 12.5 mg/kg. PEG-HAuNS caused no adverse effects after 10 daily intravenous injections over a 2-week period at a dose of 12.5 mg/kg per injection (accumulated dose: 125 mg/kg). Quantitative analysis of the muscle, liver, spleen, and kidney revealed that the levels of Au decreased 45.2%, 28.6%, 41.7%, and 40.8%, respectively, from day 14 to day 90 after the first intravenous injection, indicating that PEG-HAuNS was slowly cleared from these organs in mice. CONCLUSION Our data support the use of PEG-HAuNS as a promising photothermal conducting agent.
Collapse
Affiliation(s)
- Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 388, Hangzhou 310058, People’s Republic of China
| | - Jialin Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 388, Hangzhou 310058, People’s Republic of China
| | - Min Zhou
- Department of Cancer Systems Imaging, Unit 59, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Cancer Systems Imaging, Unit 59, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J David Robertson
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Dong Liang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Carolyn Van Pelt
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Chun Li
- Department of Cancer Systems Imaging, Unit 59, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Juillerat-Jeanneret L, Dusinska M, Fjellsbø LM, Collins AR, Handy RD, Riediker M. Biological impact assessment of nanomaterial used in nanomedicine. introduction to the NanoTEST project. Nanotoxicology 2013; 9 Suppl 1:5-12. [PMID: 23875681 DOI: 10.3109/17435390.2013.826743] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Therapeutic nanoparticles (NPs) are used in nanomedicine as drug carriers or imaging agents, providing increased selectivity/specificity for diseased tissues. The first NPs in nanomedicine were developed for increasing the efficacy of known drugs displaying dose-limiting toxicity and poor bioavailability and for enhancing disease detection. Nanotechnologies have gained much interest owing to their huge potential for applications in industry and medicine. It is necessary to ensure and control the biocompatibility of the components of therapeutic NPs to guarantee that intrinsic toxicity does not overtake the benefits. In addition to monitoring their toxicity in vitro, in vivo and in silico, it is also necessary to understand their distribution in the human body, their biodegradation and excretion routes and dispersion in the environment. Therefore, a deep understanding of their interactions with living tissues and of their possible effects in the human (and animal) body is required for the safe use of nanoparticulate formulations. Obtaining this information was the main aim of the NanoTEST project, and the goals of the reports collected together in this special issue are to summarise the observations and results obtained by the participating research teams and to provide methodological tools for evaluating the biological impact of NPs.
Collapse
|
24
|
Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, Raftis J, Shah A, Shaw CA, Newby DE. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 2013; 8:403-23. [PMID: 23477334 DOI: 10.2217/nnm.13.16] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease. NPs are also manufactured from a large range of materials for industrial use in a vast array of products including for use as novel imaging agents for medical use. There is currently little information available on the impacts of manufactured NPs in humans, but experimental studies demonstrate similarities to the detrimental cardiovascular actions of CDNPs. This review describes the evidence for these cardiovascular effects and attempts to resolve the paradox between the adverse effects of the unintentional exposure of CDNPs and the intentional delivery of manufactured NPs for medical purposes.
Collapse
Affiliation(s)
- Ken Donaldson
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol 2013; 209:227.e1-11. [PMID: 23643573 DOI: 10.1016/j.ajog.2013.04.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/01/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. Although the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding "special" circulations is the enhanced maternal system to support fetal development. The Barker hypothesis proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity. Therefore, the objective of this study was 2-fold: (1) to determine whether maternal ENM exposure alters uterine and/or fetal microvascular function and (2) test the Barker hypothesis at the microvascular level. STUDY DESIGN Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (11.3 ± 0.039 mg/m(3)/hr, 5 hr/d, 8.2 ± 0.85 days) to evaluate the maternal and fetal microvascular consequences of maternal exposure. Microvascular tissue isolation (gestation day 20) and arteriolar reactivity studies (<150 μm passive diameter) of the uterine premyometrial and fetal tail arteries were conducted. RESULTS ENM exposures led to significant maternal and fetal microvascular dysfunction, which was seen as robustly compromised endothelium-dependent and -independent reactivity to pharmacologic and mechanical stimuli. Isolated maternal uterine arteriolar reactivity was consistent with a metabolically impaired profile and hostile gestational environment that impacted fetal weight. The fetal microvessels that were isolated from exposed dams demonstrated significant impairments to signals of vasodilation specific to mechanistic signaling and shear stress. CONCLUSION To our knowledge, this is the first report to provide evidence that maternal ENM inhalation is capable of influencing fetal health and that the Barker hypothesis is applicable at the microvascular level.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506-9105, USA
| | | | | | | | | | | |
Collapse
|
26
|
Aalapati S, Ganapathy S, Manapuram S, Anumolu G, Prakya BM. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology 2013; 8:786-98. [PMID: 23914771 DOI: 10.3109/17435390.2013.829877] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Male CD1 mice were subjected to nose-inhalation exposure of CeO2 nanoparticles (NPs) for 0, 7, 14 or 28 days with 14 or 28 days of recovery time at an aerosol concentration of 2 mg/m(3). Markers of lung injury and pro-inflammatory cytokines (interleukin-1beta, tumour necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein-2) in bronchoalveolar lavage fluid (BALF), oxidative stress in lungs, bio-accumulation, and histopathology of pulmonary and extrapulmonary tissues were assessed. BALF analysis revealed the induction of pulmonary inflammation, as evident by an increase in the influx of neutrophils with a significant secretion of pro-inflammatory cytokines that lead to generation of oxidative stress and cytotoxicity, as is evident by induction of lipid peroxidation, depletion of glutathione and increased BALF lactate dehydrogenase and protein. The histopathological examination revealed that these inhaled CeO2 NPs were located all over the pulmonary parenchyma, inducing a severe, chronic, active inflammatory response characterised by necrosis, proteinosis, fibrosis and well-formed discrete granulomas in the pulmonary tissue and tubular degeneration leading to coagulative necrosis in kidneys. Inductively coupled plasma optical emission spectrometer results showed a significant bio-accumulation of these particles in the pulmonary and extrapulmonary tissues, even after one month of post-inhalation exposure. Together, these findings suggest that inhalation exposure of CeO2 NPs can induce pulmonary and extrapulmonary toxicity.
Collapse
Affiliation(s)
- Srinivas Aalapati
- Department of Toxicology, International Institute of Biotechnology and Toxicology [IIBAT] , Chennai , India
| | | | | | | | | |
Collapse
|
27
|
Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR. Potential environmental implications of nano-enabled medical applications: critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:123-144. [PMID: 24592432 DOI: 10.1039/c2em30640a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The application of nanotechnology and nanoscience for medical purposes is anticipated to make significant contributions to enhance human health in the coming decades. However, the possible future mass production and use of these medical innovations exhibiting novel and multifunctional properties will very likely lead to discharges into the environment giving rise to potentially new environmental hazards and risks. To date, the sources, the release form and environmental fate and exposure of nano-enabled medical products have not been investigated and little or no data exists, although there are a small number of currently approved medical applications and a number in clinical trials. This paper discusses the current technological and regulatory landscape and potential hazards and risks to the environment of nano-enabled medical products, data gaps and gives tentative suggestions relating to possible environmental hotspots.
Collapse
|
28
|
Abstract
Among beneficial applications of nanotechnology, nanomedicine offers perhaps the greatest potential for improving human conditions and quality of life. Engineered nanomaterials (ENMs), with their unique properties, have potential to improve therapy of many human disorders. The properties that make ENMs so useful could also lead to unintentional adverse health effects. Challenges arising from physicochemical properties of ENMs, their characterization, exposure, and hazard assessment and other key issues of ENM safety are discussed. There is still scant knowledge about ENM cellular uptake, transport across biological barriers, distribution within the body, and possible mechanisms of toxicity. The safety of ENMs should be tested to minimize possible risk before the application. However, existing toxicity tests need to be adapted to fit to the unique features related to the nanosized material and appropriate controls and reference material should be considered.
Collapse
|
29
|
Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 2012. [PMID: 23203034 PMCID: PMC3509550 DOI: 10.3390/ijms131113781] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.
Collapse
|
30
|
Setyawati MI, Fang W, Chia SL, Leong DT. Nanotoxicology of common metal oxide based nanomaterials: their ROS-y and non-ROS-y consequences. ASIA-PAC J CHEM ENG 2012. [DOI: 10.1002/apj.1680] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| | - Wanru Fang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| | - Sing Ling Chia
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| |
Collapse
|
31
|
Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0060-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
33
|
Zhang M, Ellis EA, Cisneros-Zevallos L, Akbulut M. Uptake and translocation of polymeric nanoparticulate drug delivery systems into ryegrass. RSC Adv 2012. [DOI: 10.1039/c2ra21469e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Chan J, Ying T, Guang YF, Lin LX, Kai T, Fang ZY, Ting YX, Xing LF, Ji YY. In vitro toxicity evaluation of 25-nm anatase TiO2 nanoparticles in immortalized keratinocyte cells. Biol Trace Elem Res 2011; 144:183-96. [PMID: 21552994 DOI: 10.1007/s12011-011-9064-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Titanium dioxide (TiO(2)) nanoparticles (NPs) are massively fabricated and widely used in daily life, and thus potential risk has been posed to human health. However, the mechanism of the interaction between TiO(2) NPs and cells is still unclear. In this study, the interaction of anatase TiO(2) NPs with HaCaT cells is studied in vitro with multi-techniques. The TiO(2) NPs not only insert into cells through endocytic pathway but also penetrate into the cell. The TiO(2) NPs could produce reactive oxygen species (ROS) after dispersion spontaneously. Furthermore, the interaction between TiO(2) NPs and cellular components might also generate ROS. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense. Cytoskeletal components, particularly the microfilaments and microtubules, cause modifications upon exposure to TiO(2) NPs. With all results, the toxicological effects of TiO(2) NPs on HaCaT cell can be simplified into six events.
Collapse
Affiliation(s)
- Jin Chan
- Institute of Biophysics, The Second Military Medical University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang M, Akbulut M. Adsorption, desorption, and removal of polymeric nanomedicine on and from cellulose surfaces: effect of size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12550-9. [PMID: 21879763 DOI: 10.1021/la202287k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The increased production and commercial use of nanoparticulate drug delivery systems combined with a lack of regulation to govern their disposal may result in their introduction to soils and ultimately into groundwater systems. To better understand how such particles interact with environmentally significant interfaces, we study the adsorption, desorption, and removal behavior of poly(ethylene glycol)-based nanoparticulate drug delivery systems on and from cellulose, which is the most common organic compound on Earth. It is shown that such an adsorption process is only partially reversible, and most of the adsorbate particles do not desorb from the cellulose surface even upon rinsing with a large amount of water. The rate constant of adsorption decreases with increasing particle size. Furthermore, hydrodynamic forces acting parallel to the surfaces are found to be of great importance in the context of particle dynamics near the cellulose surface, and ultimately responsible for the removal of some fraction of particles via rolling or sliding. As the particle size increases, the removal rates of the particles increase for a given hydrodynamical condition.
Collapse
Affiliation(s)
- Ming Zhang
- Artie McFerrin Department of Chemical Engineering, Materials Science and Engineering Program, Texas A&M University, 230 Jack E. Brown Engineering Building, 3122 TAMU, College Station, Texas 77843-3122, USA
| | | |
Collapse
|
36
|
Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci 2011; 12:6267-80. [PMID: 22016657 PMCID: PMC3189781 DOI: 10.3390/ijms12096267] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/12/2011] [Accepted: 09/19/2011] [Indexed: 01/02/2023] Open
Abstract
Humans are exposed to nanoparticles (NPs; diameter < 100 nm) from ambient air and certain workplaces. There are two main types of NPs; combustion-derived NPs (e.g., particulate matters, diesel exhaust particles, welding fumes) and manufactured or engineered NPs (e.g., titanium dioxide, carbon black, carbon nanotubes, silver, zinc oxide, copper oxide). Recently, there have been increasing reports indicating that inhaled NPs can reach the brain and may be associated with neurodegeneration. It is necessary to evaluate the potential toxic effects of NPs on brain because most of the neurobehavioral disorders may be of environmental origin. This review highlights studies on both combustion-derived NP- and manufactured or engineered NP-induced neuroinflammation, oxidative stress, and gene expression, as well as the possible mechanism of these effects in animal models and in humans.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hidekazu Fujimaki
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; E-Mail:
| |
Collapse
|
37
|
Mohamed BM, Verma NK, Prina-Mello A, Williams Y, Davies AM, Bakos G, Tormey L, Edwards C, Hanrahan J, Salvati A, Lynch I, Dawson K, Kelleher D, Volkov Y. Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnology 2011; 9:29. [PMID: 21801388 PMCID: PMC3164618 DOI: 10.1186/1477-3155-9-29] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/29/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nanomaterials such as SiO2 nanoparticles (SiO2NP) are finding increasing applications in the biomedical and biotechnological fields such as disease diagnostics, imaging, drug delivery, food, cosmetics and biosensors development. Thus, a mechanistic and systematic evaluation of the potential biological and toxic effects of SiO2NP becomes crucial in order to assess their complete safe applicability limits. RESULTS In this study, human monocytic leukemia cell line THP-1 and human alveolar epithelial cell line A549 were exposed to a range of amorphous SiO2NP of various sizes and concentrations (0.01, 0.1 and 0.5 mg/ml). Key biological indicators of cellular functions including cell population density, cellular morphology, membrane permeability, lysosomal mass/pH and activation of transcription factor-2 (ATF-2) were evaluated utilizing quantitative high content screening (HCS) approach and biochemical techniques. Despite the use of extremely high nanoparticle concentrations, our findings showed a low degree of cytotoxicity within the panel of SiO2NP investigated. However, at these concentrations, we observed the onset of stress-related cellular response induced by SiO2NP. Interestingly, cells exposed to alumina-coated SiO2NP showed low level, and in some cases complete absence, of stress response and this was consistent up to the highest dose of 0.5 mg/ml. CONCLUSIONS The present study demonstrates and highlights the importance of subtle biological changes downstream of primary membrane and endocytosis-associated phenomena resulting from high dose SiO2NP exposure. Increased activation of transcription factors, such as ATF-2, was quantitatively assessed as a function of i) human cell line specific stress-response, ii) SiO2NP size and iii) concentration. Despite the low level of cytotoxicity detected for the amorphous SiO2NP investigated, these findings prompt an in-depth focus for future SiO2NP-cell/tissue investigations based on the combined analysis of more subtle signalling pathways associated with accumulation mechanisms, which is essential for establishing the bio-safety of existing and new nanomaterials.
Collapse
Affiliation(s)
- Bashir Mustafa Mohamed
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Navin Kumar Verma
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Adriele Prina-Mello
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Naughton Institute, Trinity College Dublin, Dublin2, Ireland
| | - Yvonne Williams
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Anthony M Davies
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Gabor Bakos
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Laragh Tormey
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Connla Edwards
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - John Hanrahan
- Glantreo Ltd., Environmental Research Institute (ERI) Building, Lee Road, Cork, Ireland
| | - Anna Salvati
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin4, Ireland
| | - Iseult Lynch
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin4, Ireland
| | - Kenneth Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin4, Ireland
| | - Dermot Kelleher
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Yuri Volkov
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Naughton Institute, Trinity College Dublin, Dublin2, Ireland
| |
Collapse
|
38
|
Krug HF, Wick P. Nanotoxicology: An Interdisciplinary Challenge. Angew Chem Int Ed Engl 2011; 50:1260-78. [DOI: 10.1002/anie.201001037] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/10/2010] [Indexed: 11/11/2022]
|
39
|
Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, Ding H, Patil R, Portilla-Arias JA, Modo M, Moore DF, Farahani K, Okun MS, Prakash N, Neman J, Ahdoot D, Grundfest W, Nikzad S, Heiss JD. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 2011; 54 Suppl 1:S106-24. [PMID: 20149882 PMCID: PMC3524337 DOI: 10.1016/j.neuroimage.2010.01.105] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 01/29/2023] Open
Abstract
Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such advancements and contribute to the translation of nanotechnology across medical disciplines.
Collapse
Affiliation(s)
- Babak Kateb
- Brain Mapping Foundation, West Hollywood, CA 90046, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:563-601. [PMID: 22093229 DOI: 10.1016/b978-0-12-416020-0.00014-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanomedicine seeks to manufacture drugs and other biologically relevant molecules that are packaged into nanoscale systems for improved delivery. This includes known drugs, proteins, enzymes, and antibodies that have limited clinical efficacy based on delivery, circulating half-lives, or toxicity profiles. The <100 nm nanoscale physical properties afford them a unique biologic potential for biomedical applications. Hence they are attractive systems for treatment of cancer, heart and lung, blood, inflammatory, and infectious diseases. Proposed clinical applications include tissue regeneration, cochlear and retinal implants, cartilage and joint repair, skin regeneration, antimicrobial therapy, correction of metabolic disorders, and targeted drug delivery to diseased sites including the central nervous system. The potential for cell and immune side effects has necessitated new methods for determining formulation toxicities. To realize the potential of nanomedicine from the bench to the patient bedside, our laboratories have embarked on developing cell-based carriage of drug nanoparticles to improve clinical outcomes in infectious and degenerative diseases. The past half decade has seen the development and use of cells of mononuclear phagocyte lineage, including dendritic cells, monocytes, and macrophages, as Trojan horses for carriage of anti-inflammatory and anti-infective medicines. The promise of this new technology and the perils in translating it for clinical use are developed and discussed in this chapter.
Collapse
Affiliation(s)
- JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
41
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
42
|
Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S. Nanoparticles: molecular targets and cell signalling. Arch Toxicol 2010; 85:733-41. [PMID: 20502881 DOI: 10.1007/s00204-010-0546-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/19/2010] [Indexed: 12/15/2022]
Abstract
Increasing evidence linking nanoparticles (NPs) with different cellular outcomes necessitate an urgent need for the better understanding of cellular signalling pathways triggered by NPs. Oxidative stress has largely been reported to be implicated in NP-induced toxicity. It could activate a wide variety of cellular events such as cell cycle arrest, apoptosis, inflammation and induction of antioxidant enzymes. These responses occur after the activation of different cellular pathways. In this context, three groups of MAP kinase cascades [ERK (extracellular signal-regulated kinases), p38 mitogen-activated protein kinase and JNK (c-Jun N-terminal kinases)] as well as redox-sensitive transcription factors such as NFκB and Nrf-2 were specially investigated. The ability of NPs to interact with these signalling pathways could partially explain their cytotoxicity. The induction of apoptosis is also closely related to the modulation of signalling pathways induced by NPs. Newly emerged scientific areas of research are the studies on interactions between NPs and biological molecules in body fluids, cellular microenvironment, intracellular components or secreted cellular proteins such as cytokines, growth factors and enzymes and use of engineered NPs to target various signal transduction pathways in cancer therapy. Recently published data present the ability of NPs to interact with membrane receptors leading to a possible aggregation of these receptors. These interactions could lead to a sustained modulation of specific signalling in the target cells or paracrine and even "by-stander" effects of the neighbouring cells or tissues. However, oxidative stress is not sufficient to explain specific mechanisms which could be induced by NPs, and these new findings emphasize the need to revise the paradigm of oxidative stress to explain the effects of NPs.
Collapse
Affiliation(s)
- Francelyne Marano
- Unit of Functional and Adaptive Biology CNRS EAC, Laboratory of Molecular and Cellular Responses to Xenobiotics, Université Paris Diderot, Paris, France.
| | | | | | | | | |
Collapse
|
43
|
Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm 2010; 394:115-21. [PMID: 20433914 DOI: 10.1016/j.ijpharm.2010.04.026] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
With the rapid development of nanotechnology, there is a growing interest on the application of nanoparticles in various fields such as photonics, catalysis, magnetics, and biotechnology including cosmetics, pharmaceutics, and medicines. However, little is known about their potential toxicity to human health. Owing to their special properties, nanoparticles have the capacity to bypass the blood-brain barrier (BBB). However, the toxic effects of nanoparticles on central nervous system (CNS) function are still lacking. And the interactions of nanoparticles with the cells and tissues in CNS are poorly understood. Thus, neurotoxicity induced by nanoparticles is still a new topic that requires more attention. In this review, we summarized the pathways by which the nanoparticles could enter into the CNS and the recent investigations on the neurotoxicity of nanoparticles both in vitro and in vivo, as well as the potential mechanisms. Furthermore, the future direction in the neurotoxicity studies of nanoparticles is also discussed.
Collapse
Affiliation(s)
- Yu-Lan Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | | |
Collapse
|
44
|
Hobson DW. Commercialization of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:189-202. [PMID: 20049790 DOI: 10.1002/wnan.28] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization.
Collapse
|
45
|
Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2009; 1184:154-72. [DOI: 10.1111/j.1749-6632.2009.05108.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Saunders M. Transplacental transport of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:671-84. [DOI: 10.1002/wnan.53] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Mody VV, Nounou MI, Bikram M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev 2009; 61:795-807. [PMID: 19427886 DOI: 10.1016/j.addr.2009.04.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 04/28/2009] [Indexed: 11/16/2022]
Abstract
Gynecological cancers result in significant morbidity and mortality in women despite advances in treatment and diagnosis. This is due to detection of the disease in the late stages following metastatic spread in which treatment options become limited and may not result in positive outcomes. In addition, traditional contrast agents are not very effective in detecting primary metastatic tumors and cells due to a lack of specificity and sensitivity of the diagnostic tools, which limits their effectiveness. Recently, the field of nanomedicine-based contrast agents offers a great opportunity to develop highly sophisticated devices that can overcome many traditional hurdles of contrast agents including solubility, cell-specific targeting, toxicities, and immunological responses. These nanomedicine-based contrast agents including liposomes, micelles, dendrimers, multifunctional magnetic polymeric nanohybrids, fullerenes, and nanotubes represent improvements over their traditional counterparts, which can significantly advance the field of molecular imaging.
Collapse
Affiliation(s)
- Vicky V Mody
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas Medical Center Campus, 1441 Moursund Street, Houston, Texas 77030, USA
| | | | | |
Collapse
|
48
|
Chen YS, Hung YC, Liau I, Huang GS. Assessment of the In Vivo Toxicity of Gold Nanoparticles. NANOSCALE RESEARCH LETTERS 2009; 4:858-864. [PMID: 20596373 PMCID: PMC2894102 DOI: 10.1007/s11671-009-9334-6] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/24/2009] [Indexed: 05/20/2023]
Abstract
The environmental impact of nanoparticles is evident; however, their toxicity due to their nanosize is rarely discussed. Gold nanoparticles (GNPs) may serve as a promising model to address the size-dependent biological response to nanoparticles because they show good biocompatibility and their size can be controlled with great precision during their chemical synthesis. Naked GNPs ranging from 3 to 100 nm were injected intraperitoneally into BALB/C mice at a dose of 8 mg/kg/week. GNPs of 3, 5, 50, and 100 nm did not show harmful effects; however, GNPs ranging from 8 to 37 nm induced severe sickness in mice. Mice injected with GNPs in this range showed fatigue, loss of appetite, change of fur color, and weight loss. Starting from day 14, mice in this group exhibited a camel-like back and crooked spine. The majority of mice in these groups died within 21 days. Injection of 5 and 3 nm GNPs, however, did not induce sickness or lethality in mice. Pathological examination of the major organs of the mice in the diseased groups indicated an increase of Kupffer cells in the liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen. The pathological abnormality was associated with the presence of gold particles at the diseased sites, which were verified by ex vivo Coherent anti-Stoke Raman scattering microscopy. Modifying the surface of the GNPs by incorporating immunogenic peptides ameliorated their toxicity. This reduction in the toxicity is associated with an increase in the ability to induce antibody response. The toxicity of GNPs may be a fundamental determinant of the environmental toxicity of nanoparticles.
Collapse
Affiliation(s)
- Yu-Shiun Chen
- Institute of Nanotechnology, National Chiao Tung University, Hsinchu, Taiwan, ROC
- Department of Material Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Yao-Ching Hung
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, China Medical University and Hospital, 91 Hsueh Shih Rd., Taichung, 404, Taiwan, ROC
| | - Ian Liau
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | - G Steve Huang
- Institute of Nanotechnology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
49
|
Hombach J, Bernkop-Schnürch A. Chitosan solutions and particles: evaluation of their permeation enhancing potential on MDCK cells used as blood brain barrier model. Int J Pharm 2009; 376:104-9. [PMID: 19409469 DOI: 10.1016/j.ijpharm.2009.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/25/2022]
Abstract
It was the aim of the present study to investigate the potential of chitosan of different molecular weight in solution and as particles to enhance the transport into the brain. FITC-dextran 4 (FD4) transport with and without chitosans of different molecular weight across MDCK cell monolayers, a model for the blood brain barrier, was compared. In the following particles of chitosan exhibiting the most appropriate molecular weight were prepared and their particle size and stability were evaluated. Furthermore permeation studies, MDCK cell toxicity test and red blood cell lysis test were performed. The rank order for chitosan for permeation enhancement across MDCK cells was determined to be 20 kDa~150 kDa > 400 kDa~600 kDa. Moreover particles showed a higher permeation enhancement than the corresponding solution and the smaller the particles were the higher the permeation of FD4 was. All particles were stable for 72 h. Particles displayed increased MDCK cell toxicity and red blood cell lysis compared to chitosan in solution. The smaller the particles were, the higher their toxicity was. According to these results chitosan particles are more potent in absorption enhancement than chitosan solutions.
Collapse
Affiliation(s)
- Juliane Hombach
- Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 52, Josef-Möller-Haus, Innsbruck, Austria
| | | |
Collapse
|
50
|
Gomez-Mejiba SE, Zhai Z, Akram H, Pye QN, Hensley K, Kurien BT, Scofield RH, Ramirez DC. Inhalation of environmental stressors & chronic inflammation: autoimmunity and neurodegeneration. Mutat Res 2009; 674:62-72. [PMID: 18977456 PMCID: PMC2676865 DOI: 10.1016/j.mrgentox.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 12/21/2022]
Abstract
Human life expectancy and welfare has decreased because of the increase in environmental stressors in the air. An environmental stressor is a natural or human-made component present in our environment that upon reaching an organic system produces a coordinated response. This response usually involves a modification of the metabolism and physiology of the system. Inhaled environmental stressors damage the airways and lung parenchyma, producing irritation, recruitment of inflammatory cells, and oxidative modification of biomolecules. Oxidatively modified biomolecules, their degradation products, and adducts with other biomolecules can reach the systemic circulation, and when found in higher concentrations than normal they are considered to be biomarkers of systemic oxidative stress and inflammation. We classify them as metabolic stressors because they are not inert compounds; indeed, they amplify the inflammatory response by inducing inflammation in the lung and other organs. Thus the lung is not only the target for environmental stressors, but it is also the source of a number of metabolic stressors that can induce and worsen pre-existing chronic inflammation. Metabolic stressors produced in the lung have a number of effects in tissues other than the lung, such as the brain, and they can also abrogate the mechanisms of immunotolerance. In this review, we discuss recent published evidence that suggests that inflammation in the lung is an important connection between air pollution and chronic inflammatory diseases such as autoimmunity and neurodegeneration, and we highlight the critical role of metabolic stressors produced in the lung. The understanding of this relationship between inhaled environmental pollutants and systemic inflammation will help us to: (1) understand the molecular mechanism of environment-associated diseases, and (2) find new biomarkers that will help us prevent the exposure of susceptible individuals and/or design novel therapies.
Collapse
Affiliation(s)
- Sandra E. Gomez-Mejiba
- Free Radical Biology and Aging Program, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Zili Zhai
- Free Radical Biology and Aging Program, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Hammad Akram
- Free Radical Biology and Aging Program, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Quentin N. Pye
- Free Radical Biology and Aging Program, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Kenneth Hensley
- Free Radical Biology and Aging Program, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Biji T. Kurien
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - R. Hal Scofield
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
- Department of Medicine and Department of Veteran Affairs, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Dario C. Ramirez
- Free Radical Biology and Aging Program, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| |
Collapse
|