1
|
Shen Q, Yang K, Li Q, Qin T, Yu Y, Hong H, Yao H, Xu X. Nanoparticles (NPs)-mediated silencing of GSTP1 expression to reverse chemoresistance for effective breast cancer therapy. J Colloid Interface Sci 2025; 685:38-48. [PMID: 39827759 DOI: 10.1016/j.jcis.2025.01.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy remains the primary treatment modality for breast cancer (BCa) patients. However, chemoresistance commonly arises in clinical settings, contributing to poor prognosis. The development of chemoresistance is a dynamic and complex process involving the activation of oncogenes and inactivation of tumor suppressor genes. In this work, we utilized the RNA-sequencing (RNA-seq) technology to analyze the gene expression profiles of primary and recurrent tumor samples from BCa patients received the postoperative standard chemotherapy with doxorubicin (DOX), and identified glutathione S-transferase P1 (GSTP1) as a key factor in regulating chemoresistance. Molecular mechanistic studies revealed that high GSTP1 expression could not only impair the cytotoxicity of DOX by catalyzing the conjugation of reductive glutathione (GSH) with DOX, but also block the c-Jun NH2-terminal kinase (JNK) pathway to promote the proliferation via up-regulating anti-apoptotic B-cell lymphoma-2 (Bcl-2) expression. Given the severe side effects of DOX and the potential of RNA interference (RNAi) technology to silence target gene expression, we developed an endosomal pH-responsive nanoparticle (NP) platform for systemic co-delivery of DOX and GSTP1 siRNA (siGSTP1), and demonstrated its efficacy in reversing chemoresistance and suppressing the growth of DOX-resistant BCa tumors.
Collapse
Affiliation(s)
- Qian Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Ke Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Qingjian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Huangming Hong
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, PR China.
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| |
Collapse
|
2
|
Abbasfard Z, Behzad-Behbahani A, Rastegari B, Naeimi S, Moghanibashi M, Safari F. SiRNA-mediated Knockdown of ABCB1 Enhances the Efficacy of Doxorubicin and Vinorelbine in Breast Cancer Cells. Curr Pharm Biotechnol 2025; 26:716-727. [PMID: 38616741 DOI: 10.2174/0113892010284774240328144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Breast cancer remains a leading cause of cancer-related deaths among women, primarily attributed to the formidable challenge of multidrug resistance, often driven by the overexpression of the ABCB1 gene. OBJECTIVE This study aimed to assess the synergistic effects of siRNA, doxorubicin, and vinorelbine on ABCB1 gene expression and cell viability in doxorubicin-resistant MCF-7/ADR breast cancer cells, with siRNA targeting ABCB1 to reduce its expression and doxorubicin/ vinorelbine to eradicate cancer cells. METHODS Our methodology involved culturing MCF-7 and MCF-7/ADR cells in standard cell culture conditions. The synthesized siRNA sequences transfected cells with siRNA at final concentrations of 10, 20, and 30 nM and assessed cell viability using the MTT assay was performed. Real-time PCR was employed to quantify ABCB1 mRNA expression levels. RESULTS Results indicated that MCF-7/ADR cells exhibited substantial resistance to vinorelbine and doxorubicin compared to MCF-7 cells, displaying resistance at 12.50 μM and 25.00 μM for vinorelbine and 6.25 μM and 25.00 μM for doxorubicin. Remarkably, siRNA treatment effectively reversed drug resistance in MCF-7/ADR cells across all concentrations of vinorelbine and doxorubicin tested. When combined, siRNA, doxorubicin, and vinorelbine yielded a significantly greater reduction in cell viability compared to individual drug treatments, particularly at a 20 μM siRNA concentration. This combination therapy also significantly suppressed ABCB1 gene expression by a factor of 41.48 in MCF-7 cells relative to MCF-7/ADR cells. CONCLUSION these findings suggest that combining siRNA, doxorubicin, and vinorelbine holds promise as a therapeutic strategy to overcome ABCB1-mediated multidrug resistance in breast cancer. Further investigations and clinical trials are warranted to evaluate its clinical efficacy rigorously.
Collapse
Affiliation(s)
- Zahra Abbasfard
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sirous Naeimi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
4
|
Garbuzenko OB, Sapiezynski J, Girda E, Rodriguez-Rodriguez L, Minko T. Personalized Versus Precision Nanomedicine for Treatment of Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307462. [PMID: 38342698 PMCID: PMC11316847 DOI: 10.1002/smll.202307462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
The response to treatment is substantially varied between individual patients with ovarian cancer. However, chemotherapy treatment plans rarely pay sufficient attention to the mentioned factors. Instead, standardized treatment protocols are usually employed for most ovarian cancer patients. Variations in an individual's sensitivity to drugs significantly limit the effectiveness of treatment in some patients and lead to severe toxicities in others. In the present investigation, a nanotechnology-based approach for personalized treatment of ovarian carcinoma (the most lethal type of gynecological cancer) constructed on the individual genetic profile of the patient's tumor is developed and validated. The expression of predefined genes and proteins is analyzed for each patient sample. Finally, a mixture of the complex nanocarrier-based targeted delivery system containing drug(s)/siRNA(s)/targeted peptide is selected from the pre-synthesized bank and tested in vivo on murine cancer model using cancer cells isolated from tumors of each patient. Based on the results of the present study, an innovative approach and protocol for personalized treatment of ovarian cancer are suggested and evaluated. The results of the present study clearly show the advantages and perspectives of the proposed individual treatment approach.
Collapse
Affiliation(s)
- Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Eugenia Girda
- Department of Gynecology Oncology, Robert Wood Johnson School of Medicine, Rutgers the State University of New Jersey, New Brunswick, NJ USA 08901
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| |
Collapse
|
5
|
Lee D, Shen AM, Garbuzenko OB, Minko T. Liposomal Formulations of Anti-Alzheimer Drugs and siRNA for Nose-to-Brain Delivery: Design, Safety and Efficacy In Vitro. AAPS J 2024; 26:99. [PMID: 39231845 DOI: 10.1208/s12248-024-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
β-site amyloid precursor protein cleaving enzyme (BACE1) represents a key target for Alzheimer's disease (AD) therapy because it is essential for producing the toxic amyloid β (Aβ) peptide that plays a crucial role in the disease's development. BACE1 inhibitors are a promising approach to reducing Aβ levels in the brain and preventing AD progression. However, systemic delivery of such inhibitors to the brain demonstrates limited efficacy because of the presence of the blood-brain barrier (BBB). Nose-to-brain (NtB) delivery has the potential to overcome this obstacle. Liposomal drug delivery systems offer several advantages over traditional methods for delivering drugs and nucleic acids from the nose to the brain. The current study aims to prepare, characterize, and evaluate in vitro liposomal forms of donepezil, memantine, BACE-1 siRNA, and their combination for possible treatment of AD via NtB delivery. All the liposomal formulations were prepared using the rotary evaporation method. Their cellular internalization, cytotoxicity, and the suppression of beta-amyloid plaque and other pro-inflammatory cytokine expressions were studied. The Calu-3 Transwell model was used as an in vitro system for mimicking the anatomical and physiological conditions of the nasal epithelium and studying the suitability of the proposed formulations for possible NtB delivery. The investigation results show that liposomes provided the effective intracellular delivery of therapeutics, the potential to overcome tight junctions in BBB, reduced beta-amyloid plaque accumulation and pro-inflammatory cytokine expression, supporting the therapeutic potential of our approach.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Science Institute, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
7
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
8
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
9
|
Gu X, Majumder J, Taratula O, Kuzmov A, Garbuzenko O, Pogrebnyak N, Minko T. Nanotechnology-Based Strategy for Enhancing Therapeutic Efficacy in Pancreatic Cancer: Receptor-Targeted Drug Delivery by Somatostatin Analog. Int J Mol Sci 2024; 25:5545. [PMID: 38791582 PMCID: PMC11122428 DOI: 10.3390/ijms25105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Andriy Kuzmov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, Alibolandi M. Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Appl Biochem Biotechnol 2024; 196:1685-1711. [PMID: 37402038 DOI: 10.1007/s12010-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Conventional cancer therapies with chemodrugs suffer from various disadvantages, such as irreversible side effects on the skin, heart, liver, and nerves with even fatal consequences. RNA-based therapeutic is a novel technology which offers great potential as non-toxic, non-infectious, and well-tolerable platform. Herein, we introduce different RNA-based platforms with a special focus on siRNA, miRNA, and mRNA applications in cancer treatment in order to better understand the details of their therapeutic effects. Of note, the co-delivery of RNAs with other distinct RNA or drugs has provided safe, efficient, and novel treatment modalities for cancer treatment.
Collapse
Affiliation(s)
- Hamed Tabasi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Fazeli
- Biomedicine Department, Aarhus University, Aarhus, Denmark
| | - Khalil Abnus
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Safaei M, Khalighi F, Behabadi FA, Abpeikar Z, Goodarzi A, Kouhpayeh SA, Najafipour S, Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine (Lond) 2023; 18:1745-1768. [PMID: 37965906 DOI: 10.2217/nnm-2023-0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This review discusses the application of nanoliposomes containing siRNA/drug to overcome multidrug resistance for all types of cancer treatments. As drug resistance-associated factors are overexpressed in many cancer cell types, pumping chemotherapy drugs out of the cytoplasm leads to an inadequate therapeutic response. The siRNA/drug-loaded nanoliposomes are a promising approach to treating multidrug-resistant cancer, as they can effectively transmit a small-molecule drug into the target cytoplasm, ensuring that the drug binds efficiently. Moreover, nanoliposome-based therapeutics with advances in nanotechnology can effectively deliver siRNA to cancer cells. Overall, nanoliposomes have the potential to effectively deliver siRNA and small-molecule drugs in a targeted manner and are thus a promising tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Fatemeh Khalighi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Fatemeh Akhavan Behabadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| |
Collapse
|
13
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
14
|
Sanati M, Afshari AR, Kesharwani P, Sahebkar A. Recent advances in codelivery of curcumin and siRNA as anticancer therapeutics. Eur Polym J 2023; 198:112444. [DOI: 10.1016/j.eurpolymj.2023.112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
15
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Li K, Cai X, Fan Y, Jin M, Xie Y, Jing Z, Zang X, Han Y. Codelivery of Que and BCL-2 siRNA with Lipid-Copolymer Hybrid Nanocomplexes for Efficient Tumor Regression. ACS Biomater Sci Eng 2023; 9:4805-4820. [PMID: 37463126 DOI: 10.1021/acsbiomaterials.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The efficacy of chemotherapy is often reduced due to the chemotherapy resistance of tumor cells, which is usually caused by abnormal gene overexpression. Herein, multifunctional nanocomplexes (Que/siBCL2@BioMICs) were developed to deliver quercetin (Que) and BCL-2 siRNA (siBCL2) to synergistically inhibit tumor growth. The nanocomplexes were composed of an amphiphilic triblock copolymer of poly(ethylene glycol) methyl ether methacrylate-poly[2-(dimethylamino) ethyl acrylate]-polycaprolactone (PEGMA-PDMAEA-PCL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-biotin (DSPE-PEG-biotin). Que was encapsulated into the cores through hydrophobic interactions, while negatively charged siBCL2 was loaded through electrostatic interactions. The nanocomplexes could effectively facilitate cellular uptake via biotin-mediated active targeting and cytosolic release of cargos by the "proton sponge effect" of PDMAEA. Que/siBCL2@BioMICs achieved enhanced cytotoxicity and anti-metastasis activity due to a synergistic effect of Que and siBCL2 in vitro. More importantly, superior anti-tumor efficacy was observed in orthotopic 4T1 tumor-bearing mice with reduced primary tumor burden and lung metastatic nodules, while no obvious side effects to major organs were observed. In conclusion, the biotin-targeted nanocomplexes with chemotherapeutic and nucleotide agent entrapment provide a promising strategy for efficient triple-negative breast cancer (TNBC) therapy.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xiaohua Cai
- Department of Pharmacy, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Yong Fan
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao 266032, China
| | - Meng Jin
- Department of Positron Emission Tomography-Computed Tomography (PET-CT) Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Zhenghui Jing
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road, Qingdao 266071, PR China
| |
Collapse
|
17
|
Kashapov R, Razuvayeva Y, Kashapova N, Ziganshina A, Salnikov V, Sapunova A, Voloshina A, Zakharova L. Emergence of Nanoscale Drug Carriers through Supramolecular Self-Assembly of RNA with Calixarene. Int J Mol Sci 2023; 24:ijms24097911. [PMID: 37175618 PMCID: PMC10178118 DOI: 10.3390/ijms24097911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Supramolecular self-assembly is a powerful tool for the development of polymolecular assemblies that can form the basis of useful nanomaterials. Given the increasing popularity of RNA therapy, the extension of this concept of self-assembly to RNA is limited. Herein, a simple method for the creation of nanosized particles through the supramolecular self-assembly of RNA with a three-dimensional macrocycle from the calixarene family was reported for the first time. This self-assembly into nanoparticles was realized using cooperative supramolecular interactions under mild conditions. The obtained nanoparticles are able to bind various hydrophobic (quercetin, oleic acid) and hydrophilic (doxorubicin) drugs, as a result of which their cytotoxic properties are enhanced. This work demonstrates that intermolecular interactions between flexible RNA and rigid calixarene is a promising route to bottom-up assembly of novel supramolecular soft matter, expanding the design possibilities of nanoscale drug carriers.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18, Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
18
|
Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023; 15:937. [PMID: 36986798 PMCID: PMC10057931 DOI: 10.3390/pharmaceutics15030937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The most important limitations of chemotherapeutic agents are severe side effects and the development of multi-drug resistance. Recently, the clinical successes achieved with immunotherapy have revolutionized the treatment of several advanced-stage malignancies, but most patients do not respond and many of them develop immune-related adverse events. Loading synergistic combinations of different anti-tumor drugs in nanocarriers may enhance their efficacy and reduce life-threatening toxicities. Thereafter, nanomedicines may synergize with pharmacological, immunological, and physical combined treatments, and should be increasingly integrated in multimodal combination therapy regimens. The goal of this manuscript is to provide better understanding and key considerations for developing new combined nanomedicines and nanotheranostics. We will clarify the potential of combined nanomedicine strategies that are designed to target different steps of the cancer growth as well as its microenvironment and immunity interactions. Moreover, we will describe relevant experiments in animal models and discuss issues raised by translation in the human setting.
Collapse
Affiliation(s)
- Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Deepika Pantham
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Sacchetti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Roberta Rolla
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
- Centro Interdipartimentale Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| |
Collapse
|
19
|
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023; 68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.
Collapse
Affiliation(s)
- Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Nicola D'Avanzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy; Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy
| | - Christian Celia
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Nano-Enabled Strategies for the Treatment of Lung Cancer: Potential Bottlenecks and Future Perspectives. Biomedicines 2023; 11:biomedicines11020473. [PMID: 36831009 PMCID: PMC9952953 DOI: 10.3390/biomedicines11020473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
On a global scale, lung cancer is acknowledged to be the major driver of cancer death attributable to treatment challenges and poor prognosis. Classical cancer treatment regimens, such as chemotherapy or radiotherapy, can be used to treat lung cancer, but the appended adverse effects limit them. Because of the numerous side effects associated with these treatment modalities, it is crucial to strive to develop novel and better strategies for managing lung cancer. Attributes such as enhanced bioavailability, better in vivo stability, intestinal absorption pattern, solubility, prolonged and targeted distribution, and the superior therapeutic effectiveness of numerous anticancer drugs have all been boosted with the emergence of nano-based therapeutic systems. Lipid-based polymeric and inorganic nano-formulations are now being explored for the targeted delivery of chemotherapeutics for lung cancer treatment. Nano-based approaches are pioneering the route for primary and metastatic lung cancer diagnosis and treatment. The implementation and development of innovative nanocarriers for drug administration, particularly for developing cancer therapies, is an intriguing and challenging task in the scientific domain. The current article provides an overview of the delivery methods, such as passive and active targeting for chemotherapeutics to treat lung cancer. Combinatorial drug therapy and techniques to overcome drug resistance in lung cancer cells, as potential ways to increase treatment effectiveness, are also discussed. In addition, the clinical studies of the potential therapies at different stages and the associated challenges are also presented. A summary of patent literature has also been included to keep readers aware of the new and innovative nanotechnology-based ways to treat lung cancer.
Collapse
|
21
|
Nanotechnology-Based RNA Vaccines: Fundamentals, Advantages and Challenges. Pharmaceutics 2023; 15:pharmaceutics15010194. [PMID: 36678823 PMCID: PMC9864317 DOI: 10.3390/pharmaceutics15010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Over the past decades, many drugs based on the use of nanotechnology and nucleic acids have been developed. However, until recently, most of them remained at the stage of pre-clinical development and testing and did not find their way to the clinic. In our opinion, the main reason for this situation lies in the enormous complexity of the development and industrial production of such formulations leading to their high cost. The development of nanotechnology-based drugs requires the participation of scientists from many and completely different specialties including Pharmaceutical Sciences, Medicine, Engineering, Drug Delivery, Chemistry, Molecular Biology, Physiology and so on. Nevertheless, emergence of coronavirus and new vaccines based on nanotechnology has shown the high efficiency of this approach. Effective development of vaccines based on the use of nucleic acids and nanomedicine requires an understanding of a wide range of principles including mechanisms of immune responses, nucleic acid functions, nanotechnology and vaccinations. In this regard, the purpose of the current review is to recall the basic principles of the work of the immune system, vaccination, nanotechnology and drug delivery in terms of the development and production of vaccines based on both nanotechnology and the use of nucleic acids.
Collapse
|
22
|
Qiu C, Wu Y, Shi Q, Guo Q, Zhang J, Meng Y, Wang C, Xia F, Wang J, Xu C. Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy. Int J Biol Sci 2023; 19:789-810. [PMID: 36778126 PMCID: PMC9910002 DOI: 10.7150/ijbs.79328] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Cancer has been considered as complex malignant consequence of genetic mutations that control the cellular proliferation, differentiation and homeostasis, thus making tumor treatment extremely challenging. To date, a variety of cargo molecules, including nucleic acids drugs (pDNA, miRNA and siRNA), therapeutic drugs (doxorubicin, paclitaxel, daunomycin and gefitinib) and imaging agents (radioisotopes, fluorescence dyes, and MRI contrast agents) have been regarded as the potential medicines in clinical application. However, non-single therapeutic drug could induce the satisfied clinical results because of tumor heterogeneity and multiple drug resistance and the nanotechnology-based combined therapy is becoming an advanced important mode for enhanced anticancer effects. The review gathers the current advanced development to co-deliver small-molecular drugs and nucleic acids for the anticancer therapy with nanomedicine-based combination. Furthermore, the superiority is definitely presented and the barriers are detail discussed to surmount the clinical challenges. In final, future perspectives in rational direction for combined tumor therapy of drugs and nucleic acids are exhibited.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
23
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Wang J, Zhang Y, Liu C, Zha W, Dong S, Xing H, Li X. Multifunctional Lipid Nanoparticles for Protein Kinase N3 shRNA Delivery and Prostate Cancer Therapy. Mol Pharm 2022; 19:4588-4600. [PMID: 35731922 DOI: 10.1021/acs.molpharmaceut.2c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinase N3 (PKN3), by virtue of its abnormal expression in prostate cells, has been widely used as a target of RNAi (shRNA, siRNA, miRNA) therapy. The major challenges of PKN3 RNAi therapy lie in how to design effective interference sequences and delivery systems. Herein, new PKN3 shRNA sequences (shPKN3-2459 and shPKN3-3357) were designed, and bioreducible, biodegradable, ionizable lipid-based nanoparticles were developed for shPKN3 delivery. First, an ionizable lipid (DDA-SS-DMA) bridged with disulfide bond and ester bonds was synthesized by a three-step reaction and confirmed by MS, 1H NMR, and 13C NMR. The ionizable lipid was mixed with cholesterol, DSPC, PEG-lipid, and shPKN3 by a microfluidic mixer to prepare lipid nanoparticles (LNP-shPKN3) which were characterized by DLS and TEM. Afterward, the pH and glutathione (GSH)-responsiveness of the DDA-SS-DMA based LNP delivery system were investigated by lysosome escape and gel electrophoresis assays. Compared with the commercial transfection reagent Lipo2000, the DDA-SS-DMA based delivery system showed higher transfection efficiency and lower toxicity. Western blot analysis, invasion tests, and migration assays were performed to evaluate the silencing effect of shPKN3 in vitro. In in vivo studies, high tumor suppression (65.8%) and treatment safety were evident in the LNP-shPKN3-2459 treatment group. Taken together, the DDA-SS-DMA based delivery system encapsulating shPKN3-2459 showed significant antitumor efficacy and might be a promising formulation for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| | - Wenhui Zha
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| | - Shuo Dong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| | - Hanlei Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 214122, PR China
| |
Collapse
|
25
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
26
|
Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14081620. [PMID: 36015246 PMCID: PMC9416290 DOI: 10.3390/pharmaceutics14081620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/22/2023] Open
Abstract
Globally, cancer is amongst the most deadly diseases due to the low efficiency of the conventional and obsolete chemotherapeutic methodologies and their many downsides. The poor aqueous solubility of most anticancer medications and their low biocompatibility make them ineligible candidates for the design of delivery systems. A significant drawback associated with chemotherapy is that there are no advanced solutions to multidrug resistance, which poses a major obstacle in cancer management. Since RNA interference (RNAi) can repress the expression of genes, it is viewed as a novel tool for advanced drug delivery. this is being explored as a promising drug targeting strategy for the treatment of multiple diseases, including cancer. However, there are many obstructions that hinder the clinical uses of siRNA drugs due to their low permeation into cells, off-target impacts, and possible unwanted immune responses under physiological circumstances. Thus, in this article, we review the design measures for siRNA conveyance frameworks and potential siRNA and miRNA drug delivery systems for malignant growth treatment, including the use of liposomes, dendrimers, and micelle-based nanovectors and functional polymer-drug delivery systems. This article sums up the advancements and challenges in the use of nanocarriers for siRNA delivery and remarkably centers around the most critical modification strategies for nanocarriers to build multifunctional siRNA and miRNA delivery vectors. In short, we hope this review will throw light on the dark areas of RNA interference, which will further open novel research arenas in the development of RNAi drugs for cancer.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Rakesh Pemmada
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: (M.M.); (V.T.)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
| | | | - James M. Donahue
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Vinoy Thomas
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), Center for Clinical and Translational Science (CCTS), University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Correspondence: (M.M.); (V.T.)
| |
Collapse
|
27
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
28
|
Xiao J, Lu Y, Lu D, Chen W, Hu W, Zhao Y, Chen S. Co‐delivery of paclitaxel and
CXCL1 shRNA
via cationic polymeric micelles for synergistic therapy against ovarian cancer. POLYM INT 2022. [DOI: 10.1002/pi.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Xiao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yingying Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Deng Lu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai 200433 PR China
| | - Weiguo Hu
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Yuqing Zhao
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| | - Shouzhen Chen
- Obstetrics and gynecology hospital, Shanghai Medical college Fudan University Shen Yang road, No 128 Shanghai 200090 PR China
| |
Collapse
|
29
|
Li Y, Jiang Y, Zheng Z, Du N, Guan S, Guo W, Tang X, Cui J, Zhang L, Liu K, Yu Q, Gan Z. Co-Delivery of Precisely Prescribed Multi-Prodrug Combination by an Engineered Nanocarrier enables Efficient Individualized Cancer Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110490. [PMID: 35044690 DOI: 10.1002/adma.202110490] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The limited anticancer drug library and the frequent occurrence of drug resistance have driven monotherapy-based cancer therapy into a difficult situation. Considering the formidable process of new drug discovery, combination therapy using currently available drugs is a potential alternative. Nevertheless, the barrier between in vitro combination screening and precise in vivo delivery remains insurmountable in the current free-drug- or nanoparticle (NP)-based combination therapy, which substantially hinders the application of combination therapy. Herein, a novel, precise drug delivery strategy to realize efficient and individualized combination therapy is proposed. Nanomedicine (NM) is engineered using a microfluidics-based mixer by combining rationally designed polymeric prodrugs of three commercial chemotherapeutics and a cascade-responsive block copolymer; the NM possesses ratiometric drug loading and synchronized drug release. In addition to quantitative drug loading and precisely controlled drug combination, consistent nanoproperties of these NPs make their in vivo fate predictable. Consequently, tumor growth and metastasis can be effectively inhibited by precisely prescribed NPs derived from in vitro combination screening. This proof-of-concept study clearly reveals the feasibility of overcoming the current drug-library limitations through precise delivery of any predetermined drug combination, facilitating translational research of individualized combination therapy.
Collapse
Affiliation(s)
- Yuqiang Li
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Jiang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyan Zheng
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nan Du
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuli Guan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxuan Guo
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohu Tang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiajunzi Cui
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lanqiong Zhang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kunpeng Liu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
31
|
|
32
|
Kumar K, Rani V, Mishra M, Chawla R. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100103. [PMID: 35586474 PMCID: PMC9108887 DOI: 10.1016/j.crphar.2022.100103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutics drugs play a pivotal role in the treatment of cancer. However, many issues generate by chemotherapy drugs, including unfavorable harm to healthy cells and multidrug resistance (MDR), persist and have a negative impact on therapeutic outcomes. When compared to monotherapy, combination cancer therapy has many advantages, like improving efficacy through synergistic effects and overcoming drug resistance. Combination treatment may comprise several chemotherapeutics drugs and combinations of chemotherapeutic drugs with some other therapeutic options such as surgery or radiation. Cancer treatment that utilizes co-delivery strategies with siRNA and chemotherapeutic drugs has been shown to have highly effective antitumor effects in the treatment of many cancers. However, the highly complex mechanisms of chemotherapeutic drugs-siRNA pairs during the co-delivery process have received little attention. The ideal combination of chemotherapeutic drugs with siRNA is very crucial for producing the desirable anticancer effects that would greatly enhance therapeutic efficiency. This review puts an emphasis on the logic for choosing suitable chemotherapeutic drug-siRNA combinations, which may open the way for the co-delivery of chemotherapeutic drugs and siRNA for treating cancer in the clinic. This review summarizes recent breakthrough in the area of diverse mechanism-based chemotherapeutic drugs-siRNA combinations in cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ruchi Chawla
- Corresponding author. Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, U.P., India.
| |
Collapse
|
33
|
Development of a dry powder for inhalation of nanoparticles codelivering cisplatin and ABCC3 siRNA in lung cancer. Ther Deliv 2021; 12:651-670. [PMID: 34374565 DOI: 10.4155/tde-2020-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The current study sought to formulate a dry powder inhalant (DPI) for pulmonary delivery of lipopolymeric nanoparticles (LPNs) consisting of cisplatin and siRNA for multidrug-resistant lung cancer. siRNA against ABCC3 gene was used to silence drug efflux promoter. Results & discussion: The formulation was optimized through the quality by design system by nanoparticle size and cisplatin entrapment. The lipid concentration, polymer concentration and lipid molar ratio were selected as variables. The DPI was characterized by in vitro deposition study using the Anderson cascade impactor. DPI formulation showed improved pulmonary pharmacokinetic parameters of cisplatin with higher residence time in lungs. Conclusion: Local delivery of siRNA and cisplatin to the lung tissue resulted into an enhanced therapeutic effectiveness in combating drug resistance.
Collapse
|
34
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
35
|
Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, Saqallah FG, Wahab HA. Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals (Basel) 2021; 14:725. [PMID: 34451824 PMCID: PMC8400724 DOI: 10.3390/ph14080725] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths, responsible for approximately 18.4% of all cancer mortalities in both sexes combined. The use of systemic therapeutics remains one of the primary treatments for LC. However, the therapeutic efficacy of these agents is limited due to their associated severe adverse effects, systemic toxicity and poor selectivity. In contrast, pulmonary delivery of anticancer drugs can provide many advantages over conventional routes. The inhalation route allows the direct delivery of chemotherapeutic agents to the target LC cells with high local concertation that may enhance the antitumor activity and lead to lower dosing and fewer systemic toxicities. Nevertheless, this route faces by many physiological barriers and technological challenges that may significantly affect the lung deposition, retention, and efficacy of anticancer drugs. The use of lipid-based nanocarriers could potentially overcome these problems owing to their unique characteristics, such as the ability to entrap drugs with various physicochemical properties, and their enhanced permeability and retention (EPR) effect for passive targeting. Besides, they can be functionalized with different targeting moieties for active targeting. This article highlights the physiological, physicochemical, and technological considerations for efficient inhalable anticancer delivery using lipid-based nanocarriers and their cutting-edge role in LC treatment.
Collapse
Affiliation(s)
- Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
- College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark;
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Fadi G. Saqallah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (I.M.A.); (R.A.A.); (N.M.); (T.P.); (F.G.S.)
| |
Collapse
|
36
|
Wang Z, Liu Z, Mei J, Xu S, Liu Y. The next generation therapy for lung cancer: taking medicine by inhalation. NANOTECHNOLOGY 2021; 32:392002. [PMID: 34167099 DOI: 10.1088/1361-6528/ac0e68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The inhalation administration method which has been applied to treat respiratory diseases has the characteristics of painlessness high efficiency and non-invasiveness, and the drug can also be targeted at the organ level first to reduce the loss of drug during circulation. Therefore, delivering medicine by inhalation administration has brought a new turnaround for lung cancer treatment. Herein from the perspective of combining traditional drug delivery design strategies with new drug delivery methods how to improve lung targeting efficiency and treatment efficacy is discussed. We also discuss the comparative advantages of inhaled drug delivery and traditional administration in the treatment of lung cancer such as intravenous injection. And the researches are divided into different forms of inhalation administration studied in the treatment of lung cancer in recent years, such as single-component loaded and multi-component loaded systems and their advantages. Finally, the obstacles of the application of carrier materials for inhalation administration and the prospects for improvement of lung cancer treatment methods are presented.
Collapse
Affiliation(s)
- Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zifan Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- GBA National Institute for Nanotechnology Innovation, Guangdong 510700, People's Republic of China
| |
Collapse
|
37
|
Puluhulawa LE, Joni IM, Mohammed AFA, Arima H, Wathoni N. The Use of Megamolecular Polysaccharide Sacran in Food and Biomedical Applications. Molecules 2021; 26:molecules26113362. [PMID: 34199586 PMCID: PMC8199723 DOI: 10.3390/molecules26113362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Natural polymer is a frequently used polymer in various food applications and pharmaceutical formulations due to its benefits and its biocompatibility compared to synthetic polymers. One of the natural polymer groups (i.e., polysaccharide) does not only function as an additive in pharmaceutical preparations, but also as an active ingredient with pharmacological effects. In addition, several natural polymers offer potential distinct applications in gene delivery and genetic engineering. However, some of these polymers have drawbacks, such as their lack of water retention and elasticity. Sacran, one of the high-molecular-weight natural polysaccharides (megamolecular polysaccharides) derived from Aphanothece sacrum (A. sacrum), has good water retention and elasticity. Historically, sacran has been used as a dietary food. Moreover, sacran can be applied in biomedical fields as an active material, excipient, and genetic engineering material. This article discusses the characteristics, extraction, isolation procedures, and the use of sacran in food and biomedical applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence (FiNder U CoE) Padjadajaran Universitas Padjajaran, Sumedang 45363, Indonesia
| | | | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888888
| |
Collapse
|
38
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021; 9:1208-1237. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocarrier delivery systems have been widely studied to carry unique or dual chemical drugs. The major challenge of chemotherapies is to overcome the multidrug-resistance (MDR) of cells to antineoplastic medicines. In this context, nano-scale technology has allowed researchers to develop biocompatible nano-delivery systems to overcome the limitation of chemical agents. The development of nano-vehicles may also be directed to co-deliver different agents such as drugs and genetic materials. The delivery of nucleic acids targeting specific cells is based on gene therapy principles to replace the defective gene, correct genome errors or knock-down a particular gene. Co-delivery systems are attractive strategies due to the possibility of achieving synergistic therapeutic effects, which are more effective in overcoming the MDR of cancer cells. These combined therapies can provide better outcomes than separate delivery approaches carrying either siRNA, miRNA, pDNA, or drugs. This article reviews the main design features that need to be associated with nano-vehicles to co-deliver drugs, genes, and gene-drug combinations with efficacy. The advantages and disadvantages of co-administration approaches are also overviewed and compared with individual nanocarrier systems. Herein, future trends and perspectives in designing novel nano-scale platforms to co-deliver therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Franciele F Vit
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo, Center for Cell and Molecular Therapy, São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
39
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A, Majidzadeh-A K. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release 2021; 334:164-177. [PMID: 33895200 DOI: 10.1016/j.jconrel.2021.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
The complexity and heterogeneity of the three-dimensional (3D) tumor microenvironment have brought challenges to tumor studies and cancer treatment. The complex functions and interactions of cells involved in tumor microenvironment have led to various multidrug resistance (MDR) and raised challenges for cancer treatment. Traditional tumor models are limited in their ability to simulate the resistance mechanisms and not conducive to the discovery of multidrug resistance and delivery processes. New technologies for making 3D tissue models have shown the potential to simulate the 3D tumor microenvironment and identify mechanisms underlying the MDR. This review overviews the main barriers against multidrug delivery in the tumor microenvironment and highlights the advances in microfluidic-based tumor models with the success in simulating several drug delivery barriers. It also presents the progress in modeling various genetic and epigenetic factors involved in regulating the tumor microenvironment as a noticeable insight in 3D microfluidic tumor models for recognizing multidrug resistance and delivery mechanisms. Further correlation between the results obtained from microfluidic drug resistance tumor models and the clinical MDR data would open up avenues to gain insight into the performance of different multidrug delivery treatment strategies.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohsen Ghasemi
- Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Milad Shamsi
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran; Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran.
| |
Collapse
|
41
|
Zhang H, Bo S, Zeng K, Wang J, Li Y, Yang Z, Zhou X, Chen S, Jiang ZX. Fluorinated porphyrin-based theranostics for dual imaging and chemo-photodynamic therapy. J Mater Chem B 2021; 8:4469-4474. [PMID: 32363372 DOI: 10.1039/d0tb00083c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Convenient strategies to transform regular liposomes or nano-micelles into multifunctional theranostics would be highly valuable in cancer therapy. Herein, we developed an amphiphilic fluorinated porphyrin dendrimer as a multifunctional "add-on" module which would self-assemble onto liposomal drug delivery systems and conveniently transform the liposomes into novel theranostics. Through cancer cells and murine xenograft tumor model assays, the theranostics showed valuable fluorescence/19F magnetic resonance dual modal imaging and highly efficient chemo-photodynamic therapy. The modular strategy facilitates the convenient and standardized preparation of multifunctional theranostics.
Collapse
Affiliation(s)
- Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. and State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shaowei Bo
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kai Zeng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Jie Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yu Li
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
42
|
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021; 599:120413. [PMID: 33667562 DOI: 10.1016/j.ijpharm.2021.120413] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023]
Abstract
Melanoma is a highly aggressive form of skin cancer with a very poor prognosis and excessive resistance to current conventional treatments. Recently, the application of the liposomal delivery system in the management of skin melanoma has been widely investigated. Liposomal nanocarriers are biocompatible and less toxic to host cells, enabling the efficient and safe delivery of different therapeutic agents into the tumor site and further promoting their antitumor activities. Therefore, the liposomal delivery system effectively increases the success of current melanoma therapies and overcomes resistance. In this review, we present an overview of liposome-based targeted drug delivery methods and highlight recent advances towards the development of liposome-based carriers for therapeutic genes. We also discuss the new insights regarding the efficacy and clinical significance of combinatorial treatment of liposomal formulations with immunotherapy and conventional therapies in melanoma patients for a better understanding and successfully managing cancer.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Sentoukas T, Demetzos C, Pispas S. Chimeric liposomes incorporating functional copolymers: preparation and pH/thermo-responsive behaviour in aqueous solutions. J Liposome Res 2021; 31:279-290. [PMID: 33590785 DOI: 10.1080/08982104.2020.1806873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this study is to prepare stimuli-responsive chimeric liposomes (i.e. hybrid polymer-lipid liposomes) containing functional copolymers and conduct aqueous solution studies in order to determine their properties and potential as drug-delivery nanocarriers. Two random copolymers, composed of the hydrophilic, pH and thermo-responsive 2-(dimethyl amino) ethyl methacrylate (DMAEMA) monomer and the hydrophobic stearyl methacrylate (SMA) monomer, were synthesized via free-radical polymerization and molecularly characterized using SEC, FTIR, and 1H-NMR. The synthesis was followed by aqueous solution studies, utilising dynamic light scattering (DLS) in order to determine their stimuli responsive self-assembly properties. The preparation of chimeric liposomes was mediated by thin film deposition and hydration, followed by aqueous solution studies via DLS, ζ-potential and fluorescence spectroscopy. The drug-loading studies include curcumin loading via a thin film deposition and hydration technique, while aqueous solution properties of the drug-loaded chimeric liposomes were determined utilizing DLS, and UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Theodore Sentoukas
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, Athens, Greece
| | - Costas Demetzos
- Laboratory of Pharmaceutical Nanotechnology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios Pispas
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, Athens, Greece
| |
Collapse
|
44
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
45
|
Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. ADVANCED THERAPEUTICS 2021; 4:2000203. [PMID: 33173809 PMCID: PMC7646027 DOI: 10.1002/adtp.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Systemic delivery of therapeutics for treatment of lung diseases has several limitations including poor organ distribution of delivered payload with relatively low accumulation of active substances in the lungs and severe adverse side effects. In contrast, nanocarrier based therapeutics provide a broad range of opportunities due to their ability to encapsulate substances with different aqueous solubility, transport distinct types of cargo, target therapeutics specifically to the deceased organ, cell, or cellular organelle limiting adverse side effects and increasing the efficacy of therapy. Moreover, many nanotherapeutics can be delivered by inhalation locally to the lungs avoiding systemic circulation. In addition, nanoscale based delivery systems can be multifunctional, simultaneously carrying out several tasks including diagnostics, treatment and suppression of cellular resistance to the treatment. Nanoscale delivery systems improve the clinical efficacy of conventional therapeutics allowing new approaches for the treatment of respiratory diseases which are difficult to treat or possess intrinsic or acquired resistance to treatment. The present review summarizes recent advances in the development of nanocarrier based therapeutics for local and targeted delivery of drugs, nucleic acids and imaging agents for diagnostics and treatment of various diseases such as cancer, cystic fibrosis, and coronavirus.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Tamara Minko
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
46
|
pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111664. [DOI: 10.1016/j.msec.2020.111664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
|
47
|
Ganguly S, Das P, Itzhaki E, Hadad E, Gedanken A, Margel S. Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51940-51951. [PMID: 33156599 DOI: 10.1021/acsami.0c14527] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescent carbon dots (CDs) play a versatile role in materials science. Herein, we have developed alginate-derived nitrogen-doped CDs as a drug carrier and a toughening agent for hydrogels by a microwave-assisted method. In the first phase of work, we carried out covalent conjugation of the drug onto the CD surface for controlled delivery of drug molecules, and in the second phase of work, we demonstrated how CDs could act as a toughening agent as well as a viscosity modifier for poly(acrylic acid-co-methacrylamide) copolymer hydrogels. The hydrogels were evaluated by Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance. The hybrid hydrogels have been tested to be mechanically robust with extraordinary stretchability (∼1200% elongation at break), recoverable to the original position (low permanent set), tunable water uptake, and thixotropic character in dynamic stress. The crosslinked structure has been evaluated through void calculation revealing gradual densification of the network with increasing CD content. Exceptional gel strength (ratio of elastic modulus to loss modulus; G'/G″) has been achieved from analogous crosslinking made by CDs. The delayed network rupturing and superstretchability could make this material a good choice for soft biomaterials and soft robotics.
Collapse
Affiliation(s)
- Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ella Itzhaki
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Elad Hadad
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shlomo Margel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
48
|
Co-delivery of cisplatin and siRNA through hybrid nanocarrier platform for masking resistance to chemotherapy in lung cancer. Drug Deliv Transl Res 2020; 11:2052-2071. [DOI: 10.1007/s13346-020-00867-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
|
49
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
50
|
Jnaidi R, Almeida AJ, Gonçalves LM. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Smart Drug Delivery Systems in the Treatment of Glioblastoma Multiforme. Pharmaceutics 2020; 12:E860. [PMID: 32927610 PMCID: PMC7558650 DOI: 10.3390/pharmaceutics12090860] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor. In fact, tumor recurrence usually appears a few months after surgical resection and chemotherapy, mainly due to many factors that make GBM treatment a real challenge, such as tumor location, heterogeneity, presence of the blood-brain barrier (BBB), and others. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) represent the most promising carriers for therapeutics delivery into the central nervous system (CNS) owing to their inherent ability to cross the BBB. In this review, we present the main challenges in GBM treatment, a description of SLNs and NLCs and their valuable role as drug carriers in GBM treatment, and finally, a detailed description of all modification strategies that aim to change composition of SLNs and NLCs to enhance treatment outcomes. This includes modification of SLNs and NLCs to improve crossing the BBB, reduced GBM cell resistance, target GBM cells selectively minimizing side effects, and modification strategies to enhance SLNs and NLCs nose-to-brain delivery. Finally, future perspectives on their use are also be discussed, to provide insight about all strategies with SLNs and NLCs formulation that could result in drug delivery systems for GBM treatment with highly effective theraputic and minimum undesirable effects.
Collapse
Affiliation(s)
| | | | - Lídia M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.J.); (A.J.A.)
| |
Collapse
|