1
|
Panta W, Imsoonthornruksa S, Yoisungnern T, Suksaweang S, Ketudat-Cairns M, Parnpai R. Enhanced Hepatogenic Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells by Using Three-Step Protocol. Int J Mol Sci 2019; 20:ijms20123016. [PMID: 31226809 PMCID: PMC6627410 DOI: 10.3390/ijms20123016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) are an attractive source of stem cells for cell-based therapy, owing to their ability to undergo self-renewal and differentiate into all mesodermal, some neuroectodermal, and endodermal progenies, including hepatocytes. Herein, this study aimed to investigate the effects of sodium butyrate (NaBu), an epigenetic regulator that directly inhibits histone deacetylase, on hepatic endodermal lineage differentiation of hWJ-MSCs. NaBu, at 1 mM, optimally promoted endodermal differentiation of hWJ-MSCs, along with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) supplementation. CXCR4, HNF3β, SOX17 (endodermal), and GATA6 (mesendodermal) mRNAs were also up-regulated (p < 0.001). Immunocytochemistry and a Western blot analysis of SOX17 and HNF3β confirmed that the 1 mM NaBu along with EGF and bFGF supplementation condition was appropriately pre-treated with hWJ-MSCs before hepatogenic differentiation. Furthermore, the hepatic differentiation medium with NaBu pre-treatment up-regulated hepatoblast (AFP and HNF3β) and hepatic (CK18 and ALB) markers, and increased the proportion of mature hepatocyte functions, including G6P, C/EBPα, and CYP2B6 mRNAs, glycogen storage and urea secretion. The hepatic differentiation medium with NaBu in the pre-treatment step can induce hWJ-MSC differentiation toward endodermal, hepatoblastic, and hepatic lineages. Therefore, the hepatic differentiation medium with NaBu pre-treatment for differentiating hWJ-MSCs could represent an alternative protocol for cell-based therapy and drug screening in clinical applications.
Collapse
Affiliation(s)
- Wachira Panta
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Ton Yoisungnern
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Sanong Suksaweang
- School of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Zhang C, Caldwell TA, Mirbolooki MR, Duong D, Park EJ, Chi NW, Chessler SD. Extracellular CADM1 interactions influence insulin secretion by rat and human islet β-cells and promote clustering of syntaxin-1. Am J Physiol Endocrinol Metab 2016; 310:E874-85. [PMID: 27072493 PMCID: PMC4935136 DOI: 10.1152/ajpendo.00318.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
Abstract
Contact between β-cells is necessary for their normal function. Identification of the proteins mediating the effects of β-cell-to-β-cell contact is a necessary step toward gaining a full understanding of the determinants of β-cell function and insulin secretion. The secretory machinery of the β-cells is nearly identical to that of central nervous system (CNS) synapses, and we hypothesize that the transcellular protein interactions that drive maturation of the two secretory machineries upon contact of one cell (or neural process) with another are also highly similar. Two such transcellular interactions, important for both synaptic and β-cell function, have been identified: EphA/ephrin-A and neuroligin/neurexin. Here, we tested the role of another synaptic cleft protein, CADM1, in insulinoma cells and in rat and human islet β-cells. We found that CADM1 is a predominant CADM isoform in β-cells. In INS-1 cells and primary β-cells, CADM1 constrains insulin secretion, and its expression decreases after prolonged glucose stimulation. Using a coculture model, we found that CADM1 also influences insulin secretion in a transcellular manner. We asked whether extracellular CADM1 interactions exert their influence via the same mechanisms by which they influence neurotransmitter exocytosis. Our results suggest that, as in the CNS, CADM1 interactions drive exocytic site assembly and promote actin network formation. These results support the broader hypothesis that the effects of cell-cell contact on β-cell maturation and function are mediated by the same extracellular protein interactions that drive the formation of the presynaptic exocytic machinery. These interactions may be therapeutic targets for reversing β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Thomas A Caldwell
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - M Reza Mirbolooki
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Diana Duong
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California; and
| | - Eun Jee Park
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Nai-Wen Chi
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Steven D Chessler
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California;
| |
Collapse
|
3
|
An SY, Han J, Lim HJ, Park SY, Kim JH, Do BR, Kim JH. Valproic acid promotes differentiation of hepatocyte-like cells from whole human umbilical cord-derived mesenchymal stem cells. Tissue Cell 2013; 46:127-35. [PMID: 24472423 DOI: 10.1016/j.tice.2013.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are mesoderm-derived cells that are considered a good source of somatic cells for treatment of many degenerative diseases. Previous studies have reported the differentiation of mesodermal MSCs into endodermal and ectodermal cell types beyond their embryonic lineages, including hepatocytes and neurons. However, the molecular pathways responsible for the direct or indirect cell type conversion and the functional ability of the differentiated cells remain unclear and need further research. In the present study, we demonstrated that valproic acid (VPA), which is a histone deacetylase inhibitor, induced an increase in the expression of endodermal genes including CXCR4, SOX17, FOXA1, FOXA2, GSC, c-MET, EOMES, and HNF-1β in human umbilical cord derived MSCs (hUCMSCs). In addition, we found that VPA is able to increase these endodermal genes in hUCMSCs by activating signal transduction of AKT and ERK. VPA pretreatment increased hepatic differentiation at the expense of adipogenic differentiation. The effects of VPA on modulating hUCMSCs fate were diminished by blocking AKT and ERK activation using specific signaling inhibitors. Together, our results suggest that VPA contributes to the lineage conversion of hUCMSCs to hepatic cell fate by upregulating the expression of endodermal genes through AKT and ERK activation.
Collapse
Affiliation(s)
- Su Yeon An
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jiyou Han
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Hee-Joung Lim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Seo-Young Park
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Ji Hyang Kim
- Biotechnology Research Institute, HurimBioCell Inc., Seoul 157-793, Republic of Korea
| | - Byung-Rok Do
- Biotechnology Research Institute, HurimBioCell Inc., Seoul 157-793, Republic of Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
4
|
Kayali AG, Lopez AD, Hao E, Hinton A, Hayek A, King CC. The SDF-1α/CXCR4 axis is required for proliferation and maturation of human fetal pancreatic endocrine progenitor cells. PLoS One 2012; 7:e38721. [PMID: 22761699 PMCID: PMC3382144 DOI: 10.1371/journal.pone.0038721] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
The chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3), a key transcription factor for endocrine specification in the pancreas. Treatment of islet like clusters (ICCs) derived from human fetal pancreas with SDF-1α resulted in increased proliferation of epithelial cells in ICCs without a concomitant increase in total insulin expression. Exposure of ICCs in vitro to AMD3100, a pharmacological inhibitor of CXCR4, did not alter expression of endocrine hormones insulin and glucagon, or the pancreatic endocrine transcription factors PDX1, Nkx6.1, Ngn3 and PAX4. However, a strong inhibition of β cell genesis was observed when in vitro AMD3100 treatment of ICCs was followed by two weeks of in vivo treatment with AMD3100 after ICC transplantation into mice. Analysis of the grafts for human C-peptide found that inhibition of CXCR4 activity profoundly inhibits islet development. Subsequently, a model pancreatic epithelial cell system (CFPAC-1) was employed to study the signals that regulate proliferation and apoptosis by the SDF-1α/CXCR4 axis. From a selected panel of inhibitors tested, both the PI 3-kinase and MAPK pathways were identified as critical regulators of CFPAC-1 proliferation. SDF-1α stimulated Akt phosphorylation, but failed to increase phosphorylation of Erk above the high basal levels observed. Taken together, these results indicate that SDF-1α/CXCR4 axis plays a critical regulatory role in the genesis of human islets.
Collapse
Affiliation(s)
- Ayse G. Kayali
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Ana D. Lopez
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Ergeng Hao
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Andrew Hinton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Alberto Hayek
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
| | - Charles C. King
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Stutchfield BM, Forbes SJ, Wigmore SJ. Prospects for stem cell transplantation in the treatment of hepatic disease. Liver Transpl 2010; 16:827-36. [PMID: 20583084 DOI: 10.1002/lt.22083] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has the potential to provide a valuable adjunct to the management of hepatic disease. Preclinical studies have demonstrated a range of endogenous repair processes that can be exploited through stem cell therapy. Initial translational studies have been encouraging and have suggested improved liver function in advanced chronic liver disease and enhanced liver regeneration after portal vein embolization. This article reviews the potential for stem cell therapies to enhance hepatic regeneration in acute and chronic hepatic disease and is based on a MEDLINE and PubMed search for English language articles investigating mechanisms of hepatic regeneration and delivery of cell therapies. Two main mechanisms of potential stem cell therapy delivery have emerged: (1) a direct contribution to the functional hepatocyte population with embryonic, induced pluripotent, or adult stem cells and (2) the promotion of endogenous regenerative processes with bone marrow-derived stem cells. Bioartificial hepatic support systems may be proven to be an effective method of using ex vivo differentiated hepatocytes and be indicated as a bridging therapy to definitive surgery in acute liver failure. The administration of bone marrow-derived stem cells may enhance liver regeneration in chronic liver disease after portal vein embolization and could facilitate regeneration after partial hepatic resection. Ultimately, the most appropriate hepatic disease targets for stem cell therapies will become apparent as mechanisms of stem involvement in hepatic regeneration are further elucidated.
Collapse
|
6
|
BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers as inductor of differentiation of human embryonic stem cells. PLoS One 2010; 5:e11167. [PMID: 20567515 PMCID: PMC2887366 DOI: 10.1371/journal.pone.0011167] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/25/2010] [Indexed: 12/22/2022] Open
Abstract
Background Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells. Methodology/Principal Findings We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system. When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days, expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6 exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4, AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for inducing hES cell differentiation. Conclusions/Significance Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance.
Collapse
|
7
|
King CC. Culture and preparation of human embryonic stem cells for proteomics-based applications. Methods Mol Biol 2010; 584:151-77. [PMID: 19907977 DOI: 10.1007/978-1-60761-369-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
New challenges will arise as research into human embryonic stem (hES) cell differentiation moves from optimization and overcoming technical hurdles to mechanistic considerations. An immediate need will be to culture hES cells in the absence of contaminating feeder layers and allow for the preparation of purified DNA, RNA, and proteins to analyze changes in microRNA levels, gene expression, protein expression, and signal transduction. Purified, uniform populations of hES cells will allow researchers to better explore the biochemical mechanisms by which differentiation occurs.Much recent work has focused upon genetic analysis of different stem cell populations. Expected variabilities between pluripotent hES cells, mesoderm, ectoderm, and definitive endoderm have been observed in microarray profiles (1-7). Interestingly, there also appears to be significant heterogeneity in mRNA expressed in different hES cell lines (8, 9). One approach to better understand how changes in mRNA levels in differentiating stem cells and individual hES cell lines relate to cell function is to study changes in signal transduction and global changes in protein expression. This chapter describes the methods routinely employed to prepare cells for analysis by traditional biochemistry (fractionation and western blotting) and proteomic analysis (2D electrophoresis/mass spectrometry and free-flow isoelectric focusing).
Collapse
Affiliation(s)
- Charles C King
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Seifinejad A, Taei A, Totonchi M, Vazirinasab H, Hassani SN, Aghdami N, Shahbazi E, Yazdi RS, Salekdeh GH, Baharvand H. Generation of human induced pluripotent stem cells from a Bombay individual: moving towards "universal-donor" red blood cells. Biochem Biophys Res Commun 2010; 391:329-34. [PMID: 19912985 DOI: 10.1016/j.bbrc.2009.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 11/09/2009] [Indexed: 01/22/2023]
Abstract
Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, alpha-globulin, and gamma-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.
Collapse
Affiliation(s)
- Ali Seifinejad
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, PO Box 19395-4644, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
MitrecÌicÌ D, GajovicÌ S, Pochet R. Toward the Treatments with Neural Stem Cells: Experiences from Amyotrophic Lateral Sclerosis. Anat Rec (Hoboken) 2009; 292:1962-7. [DOI: 10.1002/ar.20971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res 2009; 3:73-87. [DOI: 10.1016/j.scr.2009.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/01/2009] [Accepted: 08/18/2009] [Indexed: 12/21/2022] Open
|