1
|
Chen A, Yu Q, Zheng L, Yi J, Tang Z, Ge H, Ning Y, Yin N, Xie Y, Chen S, Shi W, She X, Xiang J, Tang J. Dose-dependent M2 macrophage polarization induced by Talaromyces marneffei promotes lung cancer cell growth via arginine-ornithine-cycle activation. Med Microbiol Immunol 2025; 214:11. [PMID: 39948184 DOI: 10.1007/s00430-025-00819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2025] [Indexed: 05/09/2025]
Abstract
It is now widely accepted that lungs are colonized by diverse microbes. Dysbiosis of the lung microbiota has been found to affect the progression of lung cancer. Fungi are a major component of the lung microbiota. However, the causal links between the mycobiome or specific species and lung cancer remain unclear. To address this, we conducted a study examining the composition of lung mycobiota in Non-Small-Cell Lung Cancer (NSCLC) patients using shotgun metagenomics. The differential taxa between NSCLC patients and non-cancer controls were defined by the Wilcoxon rank-sum test. Nested PCR was used to measure the abundance of specific fungal species. Metabolomics analysis was performed to investigate the metabolic reprogramming of macrophages triggered by intracellular infection of specific fungal species. In vitro and in vivo assays were conducted to examine the effect of the specific fungus on cancer cell growth. Our findings showed that Ascomycota, Microsporidia and Mucoromycota were the dominant fungal taxa in the lungs. Talaromyces marneffei (T.marneffei) was the most significantly differential fungus between lung cancer patients and non-cancer controls, with its abundance positively correlated with lung cancer. The lung cancer animal model demonstrated that T.marneffei promotes lung cancer growth. Our study also demonstrated that T.marneffei promotes lung cancer cell growth by inducing dose-dependent M2 macrophage polarization through arginine-ornithine-cycle activation. Furthermore, inhibition of arginase can reduce M2 polarization of macrophages and the survival of T. marneffei inside macrophages. In summary, our study reveals that the increased abundance of T. marneffei in the lungs affects lung cancer cell growth by triggering arginine-induced M2 polarization of macrophages. These findings provide potential drug targets for the development of therapies aimed at targeting the survival of fungi inside macrophages in the fight against cancer.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Yu
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Leliang Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junqi Yi
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ziying Tang
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Huabo Ge
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yue Ning
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Na Yin
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaohuan Xie
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shengnan Chen
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wenhua Shi
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jingqun Tang
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Wangsanut T, Amsri A, Kalawil T, Sukantamala P, Jeenkeawpieam J, Andrianopoulos A, Pongpom M. AcuM and AcuK: The global regulators controlling multiple cellular metabolisms in a dimorphic fungus Talaromyces marneffei. PLoS Negl Trop Dis 2024; 18:e0012145. [PMID: 39231117 PMCID: PMC11373862 DOI: 10.1371/journal.pntd.0012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Talaromycosis is a fungal infection caused by an opportunistic dimorphic fungus Talaromyces marneffei. During infection, T. marneffei resides inside phagosomes of human host macrophages where the fungus encounters nutrient scarcities and host-derived oxidative stressors. Previously, we showed that the deletion of acuK, a gene encoding Zn(2)Cys(6) transcription factor, caused a decreased ability for T. marneffei to defend against macrophages, as well as a growth impairment in T. marneffei on both low iron-containing medium and gluconeogenic substrate-containing medium. In this study, a paralogous gene acuM was deleted and characterized. The ΔacuM mutant showed similar defects with the ΔacuK mutant, suggesting their common role in gluconeogenesis and iron homeostasis. Unlike the pathogenic mold Aspergillus fumigatus, the ΔacuK and ΔacuM mutants unexpectedly exhibited normal siderophore production and did not show lower expression levels of genes involved in iron uptake and siderophore synthesis. To identify additional target genes of AcuK and AcuM, RNA-sequencing analysis was performed in the ΔacuK and ΔacuM strains growing in a synthetic dextrose medium with 1% glucose at 25 °C for 36 hours. Downregulated genes in both mutants participated in iron-consuming processes, especially in mitochondrial metabolism and anti-oxidative stress. Importantly, the ΔacuM mutant was sensitive to the oxidative stressors menadione and hydrogen peroxide while the ΔacuK mutant was sensitive to only hydrogen peroxide. The yeast form of both mutants demonstrated a more severe defect in antioxidant properties than the mold form. Moreover, ribosomal and ribosomal biogenesis genes were expressed at significantly lower levels in both mutants, suggesting that AcuK and AcuM could affect the protein translation process in T. marneffei. Our study highlighted the role of AcuK and AcuM as global regulators that control multiple cellular adaptations under various harsh environmental conditions during host infection. These transcription factors could be potentially exploited as therapeutic targets for the treatment of this neglected infectious disease.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Alex Andrianopoulos
- Molecular, Cellular, and Developmental Biology, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Wangsanut T, Sukantamala P, Pongpom M. Identification of glutathione metabolic genes from a dimorphic fungus Talaromyces marneffei and their gene expression patterns under different environmental conditions. Sci Rep 2023; 13:13888. [PMID: 37620377 PMCID: PMC10449922 DOI: 10.1038/s41598-023-40932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Talaromyces marneffei is a human fungal pathogen that causes endemic opportunistic infections, especially in Southeast Asia. The key virulence factors of T. marneffei are the ability to survive host-derived heat and oxidative stress, and the ability to convert morphology from environmental mold to fission yeast forms during infection. Glutathione metabolism plays an essential role in stress response and cellular development in multiple organisms. However, the role of the glutathione system in T. marneffei is elusive. Here, we identified the genes encoding principal enzymes associated with glutathione metabolism in T. marneffei, including glutathione biosynthetic enzymes (Gcs1 and Gcs2), glutathione peroxidase (Gpx1), glutathione reductase (Glr1), and a family of glutathione S-transferase (Gst). Sequence homology search revealed an extended family of the TmGst proteins, consisting of 20 TmGsts that could be divided into several classes. Expression analysis revealed that cells in conidia, mold, and yeast phases exhibited distinct expression profiles of glutathione-related genes. Also, TmGst genes were highly upregulated in response to hydrogen peroxide and xenobiotic exposure. Altogether, our findings suggest that T. marneffei transcriptionally regulates the glutathione genes under stress conditions in a cell-type-specific manner. This study could aid in understanding the role of glutathione in thermal-induced dimorphism and stress response.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panwarit Sukantamala
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Ji G, Feng S, Ren H, Chen W, Chen R. Exosomes released from macrophages infected with Talaromyces marneffei activate the innate immune responses and decrease the replication. Immun Inflamm Dis 2023; 11:e881. [PMID: 37382272 PMCID: PMC10266176 DOI: 10.1002/iid3.881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
INTRODUCTION Recent studies have demonstrated that exosomes play roles in pathogenesis and in the treatment of various diseases. We explored the influence of exosomes released from Talaromyces marneffei (T. marneffei)-infected macrophages on human macrophages to determine whether they play a role in the pathogenesis of T. marneffei infection. METHODS Exosomes derived from macrophages infected with T. marneffei were extracted and characterized by transmission electron microscopy and western blot. Moreover, we examined exosomes that modulated IL-10 and TNF-α secretion and activation of p42 and p44 extracellular signal-regulated kinase 1 and 2 (ERK1/2) and activation of autophagy. RESULTS We found that exosomes promoted activation of ERK1/2 and autophagy, IL-10 and TNF-α secretion in human macrophages. Further, exosomes decreased the multiplication of T. marneffei in T. marneffei-infected human macrophages. Interestingly, exosomes isolated from T. marneffei-infected but not from uninfected macrophages can stimulate innate immune responses in resting macrophages. CONCLUSION Our studies are the first to demonstrate that exosomes isolated from T. marneffei-infected macrophages can modulate the immune system to control inflammation, and we hypothesize that exosomes play significant roles in activation of ERK1/2 and autophagy, the replication of T. marneffei and cytokine production during T. marneffei infection.
Collapse
Affiliation(s)
- Guangquan Ji
- Department of TechnologyLianyungang Clinical College of Nanjing Medical UniversityLianyungangChina
- Department of TechnologyThe First Affiliated Hospital of Kangda College of Nanjing Medical UniversityLianyungangChina
| | - Shan Feng
- Department of TechnologyLianyungang Clinical College of Nanjing Medical UniversityLianyungangChina
- Department of TechnologyThe First Affiliated Hospital of Kangda College of Nanjing Medical UniversityLianyungangChina
| | - Hong Ren
- Department of DermatologyThe First Affiliated Hospital of Kangda College of Nanjing Medical UniversityLianyungangChina
- Department of DermatologyAffiliated Lianyungang Hospital of Xuzhou Medical UniversityLianyungangChina
| | - Wenhao Chen
- Department of DermatologyThe First Affiliated Hospital of Kangda College of Nanjing Medical UniversityLianyungangChina
- Department of DermatologyAffiliated Lianyungang Hospital of Xuzhou Medical UniversityLianyungangChina
| | - Renqiong Chen
- Department of DermatologyThe First Affiliated Hospital of Kangda College of Nanjing Medical UniversityLianyungangChina
- Department of DermatologyAffiliated Lianyungang Hospital of Xuzhou Medical UniversityLianyungangChina
| |
Collapse
|
5
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
6
|
Pruksaphon K, Nosanchuk JD, Thammasit P, Pongpom M, Youngchim S. Interaction of Talaromyces marneffei with free living soil amoeba as a model of fungal pathogenesis. Front Cell Infect Microbiol 2022; 12:1023067. [PMID: 36262181 PMCID: PMC9574045 DOI: 10.3389/fcimb.2022.1023067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Talaromyces (Penicillium) marneffei is an important dimorphic mycosis endemic in Southeast Asia and Southern China, but the origin and maintenance of virulence traits in this organism remains obscure. Several pathogenic fungi, including Cryptococcus neoformans, Aspergillus fumigatus, Blastomyces dermatitidis, Sporothrix schenckii, Histoplasma capsulatum and Paracoccidioides spp. interact with free living soil amoebae and data suggests that fungal pathogenic strategies may emerge from environmental interactions of these fungi with ubiquitous phagocytic microorganisms. In this study, we examined the interactions of T. marneffei with the soil amoeba Acanthamoeba castellanii. T. marneffei was rapidly ingested by A. castellanii and phagocytosis of fungal cells resulted in amoeba death after 24 h of contact. Co-culture also resulted in a rapid transition for conidia to the fission-yeast form. In addition, well-established virulence factors such as melanin and a yeast specific mannoprotein of T. marneffei were expressed during interaction with A. castellanii at 37°C. Our findings support the assumption that soil amoebae environmental predators play a role in the selection and maintenance of particular features in T. marneffei that impart virulence to this clinically important dimorphic fungus in mammalian hosts.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Departments of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Sirida Youngchim,
| |
Collapse
|
7
|
Xie Y, Zhou X, Zhang J, Yu H, Song Z. Immunomodulatory responses of differentially polarized macrophages to fungal infections. Int Immunopharmacol 2022; 111:109089. [PMID: 35964406 DOI: 10.1016/j.intimp.2022.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Macrophages, the first line of defense against invasive fungi in the innate immune system, are widely distributed in the blood and tissues of the body. In response to various internal and external stimulators, macrophages can polarize into classically activated macrophages (M1) and alternatively activated macrophages (M2). These two types of polarized macrophages play different roles in antifungal activity and in maintaining the steady-state balance between inflammation and tissue repair. However, the antifungal mechanisms of M1- and M2-type macrophages have not been fully described. In this review, the immune regulatory mechanisms against pathogenic fungi of these two classical types of macrophages in various tissues are summarized. The effects of antifungal factors on macrophage differentiation are also highlighted. The description of these data, on the one hand provides valuable insight for future investigations and also highlights new strategies for the treatment of pathogenic fungal infections.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, PR China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
8
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
9
|
Feng J, He L, Xiao X, Chen Z, Chen C, Chu J, Lu S, Li X, Mylonakis E, Xi L. Methylcitrate cycle gene MCD is essential for the virulence of Talaromyces marneffei. Med Mycol 2020; 58:351-361. [PMID: 31290549 DOI: 10.1093/mmy/myz063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
Talaromyces marneffei (T. marneffei), which used to be known as Penicillium marneffei, is the causative agent of the fatal systemic mycosis known as talaromycosis. For the purpose of understanding the role of methylcitrate cycle in the virulence of T. marneffei, we generated MCD deletion (ΔMCD) and complementation (ΔMCD+) mutants of T. marneffei. Growth in different carbon sources showed that ΔMCD cannot grow on propionate media and grew slowly on the valerate, valine, methionine, isoleucine, cholesterol, and YNB (carbon free) media. The macrophage killing assay showed that ΔMCD was attenuated in macrophages of mice in vitro, especially at the presence of propionate. Finally, virulence studies in a murine infection experiment revealed attenuated virulence of the ΔMCD, which indicates MCD is essential for T. marneffei virulence in the host. This experiment laid the foundation for the further study of the specific mechanisms underlying the methylcitrate cycle of T. marneffei and may provide suitable targets for new antifungals.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Liya He
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Xiao
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwen Chen
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunmei Chen
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieming Chu
- Johns Hopkins University Bloomberg School of Public Health, Wolfe Street, Baltimore, MD, USA
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiqing Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Liyan Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Iwanicki NS, Júnior ID, Eilenberg J, De Fine Licht HH. Comparative RNAseq Analysis of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Specific Transcriptome Signatures of Filamentous and Yeast-Like Development. G3 (BETHESDA, MD.) 2020; 10:2141-2157. [PMID: 32354703 PMCID: PMC7341153 DOI: 10.1534/g3.120.401040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/24/2020] [Indexed: 11/18/2022]
Abstract
The fungus Metarhizium anisopliae is a facultative insect pathogen used as biological control agent of several agricultural pests worldwide. It is a dimorphic fungus that is able to display two growth morphologies, a filamentous phase with formation of hyphae and a yeast-like phase with formation of single-celled blastospores. Blastospores play an important role for M. anisopliae pathogenicity during disease development. They are formed solely in the hemolymph of infected insects as a fungal strategy to quickly multiply and colonize the insect's body. Here, we use comparative genome-wide transcriptome analyses to determine changes in gene expression between the filamentous and blastospore growth phases in vitro to characterize physiological changes and metabolic signatures associated with M. anisopliae dimorphism. Our results show a clear molecular distinction between the blastospore and mycelial phases. In total 6.4% (n = 696) out of 10,981 predicted genes in M. anisopliae were differentially expressed between the two phases with a fold-change > 4. The main physiological processes associated with up-regulated gene content in the single-celled yeast-like blastospores during liquid fermentation were oxidative stress, amino acid metabolism (catabolism and anabolism), respiration processes, transmembrane transport and production of secondary metabolites. In contrast, the up-regulated gene content in hyphae were associated with increased growth, metabolism and cell wall re-organization, which underlines the specific functions and altered growth morphology of M. anisopliae blastospores and hyphae, respectively. Our study revealed significant transcriptomic differences between the metabolism of blastospores and hyphae. These findings illustrate important aspects of fungal morphogenesis in M. anisopliae and highlight the main metabolic activities of each propagule under in vitro growth conditions.
Collapse
Affiliation(s)
- Natasha Sant'Anna Iwanicki
- Department of Entomology and Acarology, ESALQ- University of São Paulo, Av Padua Dias, 11-P.O. Box 9-13418-900, Piracicaba, SP, Brazil and
| | - Italo Delalibera Júnior
- Department of Entomology and Acarology, ESALQ- University of São Paulo, Av Padua Dias, 11-P.O. Box 9-13418-900, Piracicaba, SP, Brazil and
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Hu Y, Lu S, Xi L. Murine Macrophage Requires CD11b to Recognize Talaromyces marneffei. Infect Drug Resist 2020; 13:911-920. [PMID: 32273736 PMCID: PMC7108879 DOI: 10.2147/idr.s237401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Talaromyces marneffei (T. marneffei) is an emerging pathogenic fungus. Macrophage-1 antigen (Mac-1, CR3, CD11b/CD18) is an important receptor on innate immune cells and can recognize pathogens. However, the importance of CR3 in phagocytosis of T. marneffei by macrophages and their responses to T. marneffei have not been clarified. Methods We show that interaction of mouse peritoneal macrophages (pMacs) or RAW264.7 macrophages with T. marneffei of its conidia spores and yeast cells enhances CR3 expression on macrophages. The phagocytosis rate was determined using flow cytometry, RT-PCR and Western blotting were used to detect CD11b expression, and the levels of IFN-γ, TNF-α, IL-2, IL-4, IL-6 and IL-10 in the co-culture supernatants were determined by ELISA. Results Incubation of mouse macrophages with T. marneffei promoted phagocytosis of T. marneffei, which was dramatically mitigated by pretreatment with anti-CD11b antibody or knockdown of CR3 expression on macrophages. Then, interferon γ, tumor necrosis factor α, IL-4, IL-10 and IL-12 production in macrophages incubation with heat-killed T. marneffei was detected. CD11b expression on mouse macrophages was upregulated by T. marneffei. Incubation of T. marneffei promoted phagocytosis of T. marneffei by macrophages and high levels of pro-inflammatory and anti-inflammatory cytokine production by macrophages, which were mitigated and abrogated by pre-treatment with anti-CD11b or knockdown of CD11b expression. Conclusion These data indicated that murine macrophage requires CD11b to recognize Talaromyces marneffei and their cytokine responses to heat-killed T. marneffei in vitro.
Collapse
Affiliation(s)
- Yongxuan Hu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, People's Republic of China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liyan Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Lee PP, Lao-Araya M, Yang J, Chan KW, Ma H, Pei LC, Kui L, Mao H, Yang W, Zhao X, Trakultivakorn M, Lau YL. Application of Flow Cytometry in the Diagnostics Pipeline of Primary Immunodeficiencies Underlying Disseminated Talaromyces marneffei Infection in HIV-Negative Children. Front Immunol 2019; 10:2189. [PMID: 31572394 PMCID: PMC6753679 DOI: 10.3389/fimmu.2019.02189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Talaromyces (Penicillium) marneffei is an AIDS-defining infection in Southeast Asia and is associated with high mortality. It is rare in non-immunosuppressed individuals, especially children. Little is known about host immune response and genetic susceptibility to this endemic fungus. Genetic defects in the interferon-gamma (IFN-γ)/STAT1 signaling pathway, CD40/CD40 ligand- and IL12/IL12-receptor-mediated crosstalk between phagocytes and T-cells, and STAT3-mediated Th17 differentiation have been reported in HIV-negative children with talaromycosis and other endemic mycoses such as histoplasmosis, coccidioidomycosis, and paracoccidioidomycosis. There is a need to design a diagnostic algorithm to evaluate such patients. In this article, we review a cohort of pediatric patients with disseminated talaromycosis referred to the Asian Primary Immunodeficiency Network for genetic diagnosis of PID. Using these illustrative cases, we propose a diagnostics pipeline that begins with immunoglobulin pattern (IgG, IgA, IgM, and IgE) and enumeration of lymphocyte subpopulations (T-, B-, and NK-cells). The former could provide clues for hyper-IgM syndrome and hyper-IgE syndrome. Flow cytometric evaluation of CD40L expression should be performed for patients suspected to have X-linked hyper-IgM syndrome. Defects in interferon-mediated JAK-STAT signaling are evaluated by STAT1 phosphorylation studies by flow cytometry. STAT1 hyperphosphorylation in response to IFN-α or IFN-γ and delayed dephosphorylation is diagnostic for gain-of-function STAT1 disorder, while absent STAT1 phosphorylation in response to IFN-γ but normal response to IFN-α is suggestive of IFN-γ receptor deficiency. This simple and rapid diagnostic algorithm will be useful in guiding genetic studies for patients with disseminated talaromycosis requiring immunological investigations.
Collapse
Affiliation(s)
- Pamela P Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Mongkol Lao-Araya
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiyan Ma
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lim-Cho Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Kui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huawei Mao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Muthita Trakultivakorn
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Au-Yeung RKH, Cai JP, Chong KTK, Sze KH, Kao RY, Hao Q, Yuen KY. Mp1p homologues as virulence factors in Aspergillus fumigatus. Med Mycol 2019; 56:350-360. [PMID: 28992243 DOI: 10.1093/mmy/myx052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, we showed that Mp1p is an important virulence factor of Talaromyces marneffei, a dimorphic fungus phylogenetically closely related to Aspergillus fumigatus. In this study, we investigated the virulence properties of the four Mp1p homologues (Afmp1p, Afmp2p, Afmp3p, and Afmp4p) in A. fumigatus using a mouse model. All mice died 7 days after challenge with wild-type A. fumigatus QC5096, AFMP1 knockdown mutant, AFMP2 knockdown mutant and AFMP3 knockdown mutant and 28 days after challenge with AFMP4 knockdown mutant (P<.0001). Only 11% of mice died 30 days after challenge with AFMP1-4 knockdown mutant (P<.0001). For mice challenge with AFMP1-4 knockdown mutant, lower abundance of fungal elements was observed in brains, kidneys, and spleens compared to mice challenge with QC5096 at day 4 post-infection. Fungal counts in brains of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.01 and P<.05). Fungal counts in kidneys of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.001 and P<.001) and those of mice challenge with QC5096 were significantly higher than those challenge with AFMP4 knockdown mutant (P<.05). There is no difference among the survival rates of wild-type A. fumigatus, AFMP4 knockdown mutant and AFMP1-4 knockdown mutant, suggesting that Mp1p homologues in A. fumigatus do not mediate its virulence via improving its survival in macrophage as in the case in T. marneffei. Afmp1p, Afmp2p, Afmp3p, and Afmp4p in combination are important virulence factors of A. fumigatus.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Edward T K Tung
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, The University of Hong -Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ken T K Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Talaromyces marneffei Mp1 Protein, a Novel Virulence Factor, Carries Two Arachidonic Acid-Binding Domains To Suppress Inflammatory Responses in Hosts. Infect Immun 2019; 87:IAI.00679-18. [PMID: 30670555 DOI: 10.1128/iai.00679-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Talaromyces marneffei infection causes talaromycosis (previously known as penicilliosis), a very important opportunistic systematic mycosis in immunocompromised patients. Different virulence mechanisms in T. marneffei have been proposed and investigated. In the sera of patients with talaromycosis, Mp1 protein (Mp1p), a secretory galactomannoprotein antigen with two tandem ligand-binding domains (Mp1p-LBD1 and Mp1p-LBD2), was found to be abundant. Mp1p-LBD2 was reported to possess a hydrophobic cavity to bind copurified palmitic acid (PLM). It was hypothesized that capturing of lipids from human hosts by expressing a large quantity of Mp1p is a virulence mechanism of T. marneffei It was shown that expression of Mp1p enhanced the intracellular survival of T. marneffei by suppressing proinflammatory responses. Mechanistic study of Mp1p-LBD2 suggested that arachidonic acid (AA), a precursor of paracrine signaling molecules for regulation of inflammatory responses, is the major physiological target of Mp1p-LBD2. In this study, we use crystallographic and biochemical techniques to further demonstrate that Mp1p-LBD1, the previously unsolved first lipid binding domain of Mp1p, is also a strong AA-binding domain in Mp1p. These studies on Mp1p-LBD1 support the idea that the highly expressed Mp1p is an effective AA-capturing protein. Each Mp1p can bind up to 4 AA molecules. The crystal structure of Mp1p-LBD1-LBD2 has also been solved, showing that both LBDs are likely to function independently with a flexible linker between them. T. marneffei and potentially other pathogens highly expressing and secreting proteins similar to Mp1p can severely disturb host signaling cascades during proinflammatory responses by reducing the availabilities of important paracrine signaling molecules.
Collapse
|
15
|
Jiang J, Qin F, Meng S, Nehl EJ, Huang J, Liu Y, Zou J, Dong W, Huang J, Chen H, Zang N, Liang B, Ning C, Liao Y, Luo C, Liu H, Liu X, Wang J, Zhou O, Le T, Ye L, Wu F, Liang H. Effects of cotrimoxazole prophylaxis on Talaromyces marneffei infection in HIV/AIDS patients receiving antiretroviral therapy: a retrospective cohort study. Emerg Microbes Infect 2019; 8:367-376. [PMID: 31851879 PMCID: PMC6455230 DOI: 10.1080/22221751.2019.1588078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dimorphic fungus Talaromyces marneffei (TM) is a common cause of HIV-associated opportunistic infections in Southeast Asia. Cotrimoxazole (CTX) inhibits folic acid synthesis which is important for the survival of many bacteria, protozoa, and fungi and has been used to prevent several opportunistic infections among HIV/AIDS patients. We question whether CTX is effective in preventing TM infection. To investigate this question, we conducted an 11-year (2005-2016) retrospective observational cohort study of all patients on the Chinese national antiretroviral therapy (ART) programme in Guangxi, a province with high HIV and TM burden in China. Survival analysis was conducted to investigate TM cumulative incidence, and Cox regression and propensity score matching (PSM) were used to evaluate the effect of CTX on TM incidence. Of the 3359 eligible individuals contributing 10,504.66 person-years of follow-up, 81.81% received CTX within 6 months after ART initiation, and 4.73% developed TM infection, contributing 15.14/1,000 person-year TM incidence rate. CTX patients had a significantly lower incidence of TM infection than non-CTX patients (4.11% vs. 7.53%; adjusted hazard ratio (aHR) = 0.50, 95% CI 0.35-0.73). CTX reduced TM incidence in all CD4+ cell subgroups (<50 cells/μL, 50-99 cells/μL, 100-199 cells/μL), with the highest reduction observed in patients with a baseline CD4+ cell count <50 cells/μL in both Cox regression and the PSM analyses. In conclusion, in addition to preventing other HIV-associated opportunistic infections, CTX prophylaxis has the potential to prevent TM infection in HIV/AIDS patients receiving ART.
Collapse
Affiliation(s)
- Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Fengxiang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Sirun Meng
- Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Eric J. Nehl
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jinping Huang
- Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Yanfen Liu
- Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Jun Zou
- Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Wenyi Dong
- Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Ning Zang
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Chuanyi Ning
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yanyan Liao
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China
| | - Chaolian Luo
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China
| | - Huifang Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xin Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China
| | - Jian Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Oulu Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Thuy Le
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China, Li Ye Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Fengyao Wu
- Fourth People’s Hospital of Nanning, Nanning, People’s Republic of China,Fengyao Wu Fourth People’s Hospital of Nanning, Nanning, Guangxi530021, People’s Republic of China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, People’s Republic of China,Hao Liang Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
16
|
Brunet K, Alanio A, Lortholary O, Rammaert B. Reactivation of dormant/latent fungal infection. J Infect 2018; 77:463-468. [DOI: 10.1016/j.jinf.2018.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
17
|
Wang Q, Du M, Wang S, Liu L, Xiao L, Wang L, Li T, Zhuang H, Yang E. MADS-Box Transcription Factor MadsA Regulates Dimorphic Transition, Conidiation, and Germination of Talaromyces marneffei. Front Microbiol 2018; 9:1781. [PMID: 30131782 PMCID: PMC6090077 DOI: 10.3389/fmicb.2018.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
The opportunistic human pathogen Talaromyces marneffei exhibits a temperature-dependent dimorphic transition, which is closely related with its pathogenicity. This species grows as multinucleate mycelia that produce infectious conidia at 25°C, while undergoes a dimorphic transition to generate uninucleate yeast form cells at 37°C. The mechanisms of phenotype switching are not fully understood. The transcription factor madsA gene is a member of the MADS-box gene family. Previously, it was found that overexpression of madsA gene resulted in mycelial growth instead of yeast form at 37°C. In the current study, the madsA deletion mutant (ΔmadsA) and complemented strain (CMA) were constructed by genetic manipulation. We compared the phenotypes, growth, conidiation, conidial germination and susceptibility to stresses (including osmotic and oxidative) of the ΔmadsA with the wild-type (WT) and CMA strains. The results showed that the ΔmadsA displayed a faster process of the yeast-to-mycelium transition than the WT and CMA. In addition, the deletion of madsA led to a delay in conidia production and conidial germination. The tolerance of ΔmadsA conidia to hydrogen peroxide was better than that of the WT and CMA strains. Then, RNA-seq was performed to identify differences in gene expression between the ΔmadsA mutant and WT strain during the yeast phase, mycelium phase, yeast-to-mycelium transition and mycelium-to-yeast transition, respectively. Gene ontology functional enrichment analyses indicated that some important processes such as transmembrane transport, oxidation-reduction process, protein catabolic process and response to oxidative stress were affected by the madsA deletion. Together, our results suggest that madsA functions as a global regulator involved in the conidiation and germination, especially in the dimorphic transition of T. marneffei. Its roles in the survival, pathogenicity and transmission of T. marneffei require further investigation.
Collapse
Affiliation(s)
- Qiangyi Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Liming Xiao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tong Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Adaptation to macrophage killing by Talaromyces marneffei. Future Sci OA 2017; 3:FSO215. [PMID: 28884011 PMCID: PMC5583664 DOI: 10.4155/fsoa-2017-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an important opportunistic fungal pathogen. It causes disseminated infection in immunocompromised patients especially in Southeast Asian countries. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the macrophage. Major stresses inside the phagosome of macrophages are heat, oxidative substances and nutrient deprivation. The coping strategies of this pathogen with these stresses are under investigation. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. These include molecules in the MAP signal transduction cascade, heat shock proteins, antioxidant enzymes and enzymes responsible in nutrient retrieval. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity. Talaromyces marneffei is an important dimorphic fungus that causes disease in immunocompromised patients. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the host macrophage cells. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity.
Collapse
|
19
|
Talaromyces marneffei Mp1p Is a Virulence Factor that Binds and Sequesters a Key Proinflammatory Lipid to Dampen Host Innate Immune Response. Cell Chem Biol 2017; 24:182-194. [PMID: 28111099 DOI: 10.1016/j.chembiol.2016.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/19/2016] [Accepted: 12/21/2016] [Indexed: 11/21/2022]
Abstract
Talaromyces (Penicillium) marneffei is one of the leading causes of systemic mycosis in immunosuppressed or AIDS patients in Southeast Asia. How this intracellular pathogen evades the host immune defense remains unclear. We provide evidence that T. marneffei depletes levels of a key proinflammatory lipid mediator arachidonic acid (AA) to evade the host innate immune defense. Mechanistically, an abundant secretory mannoprotein Mp1p, shown previously to be a virulence factor, does so by binding AA with high affinity via a long hydrophobic central cavity found in the LBD2 domain. This sequesters a critical proinflammatory signaling lipid, and we see evidence that AA, AA's downstream metabolites, and the cytokines interleukin-6 and tumor necrosis factor α are downregulated in T. marneffei-infected J774 macrophages. Given that Mp1p-LBD2 homologs are identified in other fungal pathogens, we expect that this novel class of fatty-acid-binding proteins sequestering key proinflammatory lipid mediators represents a general virulence mechanism of pathogenic fungi.
Collapse
|
20
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Chong KTK, Yang F, Zhang H, Lo RKC, Cai JP, Au-Yeung RKH, Ng WF, Tse H, Wong SSY, Xu S, Lam WH, Tse MK, Sze KH, Kao RY, Reiner NE, Hao Q, Yuen KY. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei. PLoS Negl Trop Dis 2016; 10:e0004907. [PMID: 27560160 PMCID: PMC4999278 DOI: 10.1371/journal.pntd.0004907] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei in macrophages. Talaromyces (Penicillium) marneffei is an opportunistic thermal dimorphic fungus most prevalent in Southeast Asia. Our team has previously shown that Mp1p, a protein encoded by the MP1 gene, is an immunogenic surface and secretory protein of T. marneffei. In this study, we showed that mice challenged with T. marneffei with the MP1 gene died but those challenged with T. marneffei without the MP1 gene did not die. There was also significantly higher fungal load and more necrosis in organs of mice challenged with T. marneffei with the MP1 gene than T. marneffei without the MP1 gene. Furthermore, T. marneffei with the MP1 gene survived better in macrophages than T. marneffei without the MP1 gene and Pichia pastoris with the MP1 gene survived in mice better than P. pastoris without the MP1 gene. Our data support that Mp1p is a key virulence factor of T. marneffei and Mp1p mediates virulence by improving the survival of T. marneffei in macrophages.
Collapse
Affiliation(s)
- Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Susanna K. P. Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Candy C. Y. Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Ken T. K. Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Fengjuan Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Hongmin Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Raymond K. C. Lo
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Wing-Fung Ng
- Department of Pathology, United Christian Hospital and Tseung Kwan O Hospital, Hong Kong
| | - Herman Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Samson S. Y. Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Simin Xu
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Wai Hei Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Man-Kit Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y. Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Neil E. Reiner
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
21
|
Dankai W, Pongpom M, Vanittanakom N. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei. J Microbiol Methods 2015; 118:42-50. [DOI: 10.1016/j.mimet.2015.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/22/2015] [Accepted: 08/23/2015] [Indexed: 01/03/2023]
|
22
|
The in vitro fungicidal activity of human macrophages against Penicillium marneffei is suppressed by dexamethasone. Microb Pathog 2015; 86:26-31. [PMID: 26145314 DOI: 10.1016/j.micpath.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/03/2015] [Accepted: 07/01/2015] [Indexed: 11/21/2022]
Abstract
Penicillium marneffei (P. marneffei) is a pathogenic fungus that can persist in macrophages and cause a life-threatening systemic mycosis in immunocompromised hosts. To elucidate the mechanisms underlying this opportunistic fungal infection, we established the co-culture system of P. marneffei conidia and human monocyte-derived macrophages (MDM) for investigating the interactions between them. And, we impaired the immune state of MDM by the addition of dexamethasone (DEX). Compared with immunocompetent MDM without DEX treatment in response to P. marneffei, DEX could damage MDM function in initiating the innate immune response through decreasing TNF-α production and the proportion of P. marneffei conidia in mature phagolysosomes, while the red pigment secretion by P. marneffei conidia was promoted by DEX following MDM lysis. Our data provide the evidence that DEX-treated MDM have a low fungicidal activity against P. marneffei that causes penicilliosis in immunocompromised hosts.
Collapse
|
23
|
Sapmak A, Boyce KJ, Andrianopoulos A, Vanittanakom N. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS One 2015; 10:e0122728. [PMID: 25866870 PMCID: PMC4395095 DOI: 10.1371/journal.pone.0122728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/15/2015] [Indexed: 11/19/2022] Open
Abstract
Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type.
Collapse
Affiliation(s)
- Ariya Sapmak
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kylie J Boyce
- Department of Genetics, Faculty of Science, University of Melbourne, Victoria, Australia
| | - Alex Andrianopoulos
- Department of Genetics, Faculty of Science, University of Melbourne, Victoria, Australia
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
24
|
Neglected fungal zoonoses: hidden threats to man and animals. Clin Microbiol Infect 2015; 21:416-25. [PMID: 25769429 DOI: 10.1016/j.cmi.2015.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/24/2022]
Abstract
Zoonotic fungi can be naturally transmitted between animals and humans, and in some cases cause significant public health problems. A number of mycoses associated with zoonotic transmission are among the group of the most common fungal diseases, worldwide. It is, however, notable that some fungal diseases with zoonotic potential have lacked adequate attention in international public health efforts, leading to insufficient attention on their preventive strategies. This review aims to highlight some mycoses whose zoonotic potential received less attention, including infections caused by Talaromyces (Penicillium) marneffei, Lacazia loboi, Emmonsia spp., Basidiobolus ranarum, Conidiobolus spp. and Paracoccidioides brasiliensis.
Collapse
|
25
|
Nimmanee P, Woo PCY, Kummasook A, Vanittanakom N. Characterization of sakA gene from pathogenic dimorphic fungus Penicillium marneffei. Int J Med Microbiol 2014; 305:65-74. [PMID: 25466206 DOI: 10.1016/j.ijmm.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes utilize stress activated protein kinase (SAPK) pathways to adapt to environmental stress, including heat, osmotic, oxidative or nutrient stresses. Penicillium marneffei (Talaromyces marneffei), the dimorphic pathogenic fungus that can cause disseminated mycosis in HIV-infected patients, has to encounter various types of stresses both outside and inside host cells. However, the strategies used by this fungus in response to these stresses are still unclear. In this report, the stress-activated kinase (sakA) gene of P. marneffei was characterized and the roles of this gene on various stress conditions were studied. The sakA gene deletion mutant was constructed using the split marker method. The phenotypes and sensitivities to varieties of stresses, including osmotic, oxidative, heat and cell wall stresses of the deletion mutant were compared with the wild type and the sakA complemented strains. Results demonstrated that the P. marneffei sakA gene encoded a putative protein containing TXY phosphorylation lip found in the stress high osmolarity glycerol 1 (Hog1)/Spc1/p38 MAPK family, and that this gene was involved not only in tolerance against oxidative and heat stresses, but also played a role in asexual development, chitin deposition, yeast cell generation in vitro and survival inside mouse and human macrophages.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Aksarakorn Kummasook
- Division of Clinical Microbiology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
26
|
Nimmanee P, Woo PCY, Vanittanakom P, Youngchim S, Vanittanakom N. Functional analysis of atfA gene to stress response in pathogenic thermal dimorphic fungus Penicillium marneffei. PLoS One 2014; 9:e111200. [PMID: 25365258 PMCID: PMC4218842 DOI: 10.1371/journal.pone.0111200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/20/2014] [Indexed: 12/15/2022] Open
Abstract
Penicillium marneffei, the pathogenic thermal dimorphic fungus is a causative agent of a fatal systemic disease, penicilliosis marneffei, in immunocompromised patients especially HIV patients. For growth and survival, this fungus has to adapt to environmental stresses outside and inside host cells and this adaptation requires stress signaling pathways and regulation of gene expression under various kinds of stresses. In this report, P. marneffei activating transcription factor (atfA) gene encoding bZip-type transcription factor was characterized. To determine functions of this gene, atfA isogenic mutant strain was constructed using the modified split marker recombination method. The phenotypes and susceptibility to varieties of stresses including osmotic, oxidative, heat, UV, cell wall and cell membrane stresses of the mutant strain were compared with the wild type and the atfA complemented strains. Results demonstrated that the mRNA expression level of P. marneffei atfA gene increased under heat stress at 42°C. The atfA mutant was more sensitive to sodium dodecyl sulphate, amphotericin B and tert-butyl hydroperoxide than the wild type and complemented strains but not hydrogen peroxide, menadione, NaCl, sorbitol, calcofluor white, itraconazole, UV stresses and heat stress at 39°C. In addition, recovery of atfA mutant conidia after mouse and human macrophage infections was significantly decreased compared to those of wild type and complemented strains. These results indicated that the atfA gene was required by P. marneffei under specific stress conditions and might be necessary for fighting against host immune cells during the initiation of infection.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | | | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Yang E, Chow WN, Wang G, Woo PCY, Lau SKP, Yuen KY, Lin X, Cai JJ. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei. PLoS Genet 2014; 10:e1004662. [PMID: 25330172 PMCID: PMC4199489 DOI: 10.1371/journal.pgen.1004662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022] Open
Abstract
Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition in P. marneffei, providing a powerful foundation for identifying molecular targets for mechanism-based interventions. Penicillium marneffei is a significant dimorphic fungal pathogen capable of causing lethal systemic infections. It grows in a yeast-like form at mammalian body temperature and a mold-like form at ambient temperature. The thermal dimorphism of P. marneffei is closely related to its virulence. In the present study, we re-sequenced the genome of P. marneffei using Illumina and PacBio sequencing technologies, and simultaneously assembled these newly sequenced reads in different lengths with previously obtained Sanger sequences. This hybrid assembly greatly improved the quality of the genome sequences. Next, we used RNA-seq to measure the global gene expression of P. marneffei at different phases and during dimorphic phase transitions. We found that 27% of genes showed signature expression patterns, suggesting that these genes function at different stages in the life cycle of P. marneffei. Moreover, genes with same expression patterns tend to be clustered together as neighbors to each other in the genome, suggesting an orchestrated transcriptional regulation for multiple neighboring genes. Over-expression of the MADS-box transcription factor, madsA, located in one of these clusters, confirms the function of this gene in driving the yeast-to-mycelia phase transition irrespective of the temperature cues. Our data also implies diverse roles of secreted proteins and non-coding RNAs in dimorphic transition in P. marneffei.
Collapse
Affiliation(s)
- Ence Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Wang-Ngai Chow
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Patrick C. Y. Woo
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Suwunnakorn S, Cooper CR, Kummasook A, Vanittanakom N. Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei. Microbiology (Reading) 2014; 160:1929-1939. [DOI: 10.1099/mic.0.080689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Penicillium marneffei is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, P. marneffei grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, P. marneffei grows as a yeast that divides by binary fission. Previously, an Agrobacterium-mediated transformation system was used to randomly mutagenize P. marneffei, resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as yakA. In the current study, we demonstrate that the yakA mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the yakA gene resulted in early conidial germination and perturbation of cell wall integrity. The yakA mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the yakA mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, chsB and chsG. Moreover, the expression of yakA was induced during post-exponential-phase growth as well as by heat shock. Thus, yakA is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate chs expression and heat stress response in P. marneffei.
Collapse
Affiliation(s)
- Sumanun Suwunnakorn
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chester R. Cooper
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| | - Aksarakorn Kummasook
- Division of Clinical Microbiology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
29
|
Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3-GENES GENOMES GENETICS 2013; 3:1997-2014. [PMID: 24062530 PMCID: PMC3815061 DOI: 10.1534/g3.113.006809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify "phase or cell-state-specific" gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase-encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity.
Collapse
|
30
|
Qin Y, Bao L, Gao M, Chen M, Lei Y, Liu G, Qu Y. Penicillium decumbens BrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes. Appl Microbiol Biotechnol 2013; 97:10453-67. [PMID: 24113825 DOI: 10.1007/s00253-013-5273-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
Penicillium decumbens has been used in the industrial production of lignocellulolytic enzymes in China for more than 15 years. Conidiation is essential for most industrial fungi because conidia are used as starters in the first step of fermentation. To investigate the mechanism of conidiation in P. decumbens, we generated mutants defective in two central regulators of conidiation, FluG and BrlA. Deletion of fluG resulted in neither "fluffy" phenotype nor alteration in conidiation, indicating possible different upstream mechanisms activating brlA between P. decumbens and Aspergillus nidulans. Deletion of brlA completely blocked conidiation. Further investigation of brlA expression in different media (nutrient-rich or nutrient-poor) and different culture states (liquid or solid) showed that brlA expression is required but not sufficient for conidiation. The brlA deletion strain exhibited altered hyphal morphology with more branches. Genome-wide expression profiling identified BrlA-dependent genes in P. decumbens, including genes previously reported to be involved in conidiation as well as previously reported chitin synthase genes and acid protease gene (pepB). The expression levels of seven secondary metabolism gene clusters (from a total of 28 clusters) were drastically regulated in the brlA deletion strain, including a downregulated cluster putatively involved in the biosynthesis of the mycotoxins roquefortine C and meleagrin. In addition, the expression levels of most cellulase genes were upregulated in the brlA deletion strain detected by real-time quantitative PCR. The brlA deletion strain also exhibited an 89.1 % increase in cellulase activity compared with the wild-type strain. The results showed that BrlA in P. decumbens not only has a key role in regulating conidiation, but it also regulates secondary metabolism extensively as well as the expression of cellulase genes.
Collapse
Affiliation(s)
- Yuqi Qin
- National Glycoengineering Research Center, Shandong University, 27, Shanda South Road, Jinan, Shandong, 250100, China,
| | | | | | | | | | | | | |
Collapse
|
31
|
Chandler JM, Trenary HR, Walker GR, Cooper CR. Capillary electrophoresis for protein profiling of the dimorphic, Pathogenic Fungus, Penicillium marneffei. Methods Mol Biol 2013; 984:275-84. [PMID: 23386351 DOI: 10.1007/978-1-62703-296-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Penicillium marneffei is an endemic, dimorphic fungus that exhibits very significant morbidity among immune compromised persons living or having traveled in Southeast Asia. The dimorphic nature of P. marneffei, which is believed to be a major contributing factor to infection by this fungus, is thermally regulated. At 25 °C, the fungus grows as a mold, but converts to a yeast phase when incubated at 37 °C. Hence, protein profiling of these developing forms will help ascertain the underpinning molecular mechanisms associated with this phase transition, and perhaps provide clues to virulence in this pathogenic fungus. This chapter outlines the basic procedures previously used to demonstrate distinct differences in protein expression between the mold and yeast phases of P. marneffei.
Collapse
Affiliation(s)
- Julie M Chandler
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
32
|
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, Kodira CD, Martin J, Oliver RP, Robbertse B, Schackwitz W, Schwartz DC, Spatafora JW, Turgeon BG, Yandava C, Young S, Zhou S, Zeng Q, Grigoriev IV, Ma LJ, Ciuffetti LM. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (BETHESDA, MD.) 2013; 3:41-63. [PMID: 23316438 PMCID: PMC3538342 DOI: 10.1534/g3.112.004044] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022]
Abstract
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Larry J. Wilhelm
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Carbone/Ferguson Laboratories, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon 97006
| | - Stephen B. Goodwin
- USDA–Agricultural Research Service, Purdue University, West Lafayette, Indiana 47907
| | | | - Melania Figueroa
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- USDA-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, Oregon 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - James K. Hane
- Commonwealth Scientific and Industrial Research Organization−Plant Industry, Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | - Wade H. Holman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Chinnappa D. Kodira
- The Broad Institute, Cambridge, Massachusetts 02142
- Roche 454, Branford, Connecticut 06405
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California 94598
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6845, Australia
| | - Barbara Robbertse
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | | | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14850
| | | | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts 02142
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | | | | | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts 02142
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
33
|
Hu Y, Zhang J, Li X, Yang Y, Zhang Y, Ma J, Xi L. Penicillium marneffei infection: an emerging disease in mainland China. Mycopathologia 2012; 175:57-67. [PMID: 22983901 DOI: 10.1007/s11046-012-9577-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Penicillium marneffei is an emerging pathogenic fungus that can cause a life-threatening systemic mycosis in immunocompromised hosts, especially in patients with AIDS. This infection is endemic in Southeast Asia. With the prevalence of AIDS in this area, the number of patients with systemic penicilliosis marneffei is found to be increasing rapidly in mainland China in recent years. We recently reviewed 668 cases of penicilliosis marneffei in mainland China from January 1984 to December 2009 in cnki, cqvip, CBMdisc and PubMed. We analyzed epidemiological and clinical features, laboratory findings, reaction to therapy and prognosis of the disease. We found that 99.4% of the cases were reported in the southern part of China; among these cases, 42.8% were from Guangxi (286 cases) and 40.6% were from Guangdong province (271 cases). Five hundred and eighty-six cases (87.7%) of penicilliosis marneffei were reported with infection by the human immunodeficiency virus, 25 cases (3.8%) with other immunocompromised diseases, and 57 cases (8.5%) without any documented underlying diseases. Fever, weight loss, anemia, lymphadenopathy, hepatosplenomegaly, respiratory signs and skin lesions were the common clinical manifestations of P. marneffei infections. The 569 cases received antifungal therapy with a mortality of 24.3% (138 cases), 99 cases who had not received antifungal therapy had a mortality of 50.6%. P. marneffei was an emerging pathogenic fungus and become a medical and public health importance in mainland China. The immunocompromised patients should pay more attention to P. marneffei infection in the endemic areas.
Collapse
Affiliation(s)
- Yongxuan Hu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Rd, Guangzhou, 510120, China
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Penicillium marneffei actin expression during phase transition, oxidative stress, and macrophage infection. Mol Biol Rep 2010; 38:2813-9. [PMID: 21088905 DOI: 10.1007/s11033-010-0427-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen that exhibits thermally regulated dimorphism. At 25°C, this fungus grows vegetatively as mycelia, but at 37°C or upon invasion of a host, a fission yeast form is established. Yet, despite increased numbers of molecular studies involving this fungus, the role of P. marneffei stress response-related proteins is not well characterized. Actin is one of the proteins that have been proposed to play a role not only in cell transition, but also in thermo-adaptation. Here, we report the isolation and characterization of the actin encoding gene, actA, from P. marneffei. Examination of the deduced amino acid sequence of the ActA protein revealed that it is closely related to Aspergillus nidulans and Aspergillus clavatus. Northern blot analysis of actin expression during the mycelium to yeast phase transition of P. marneffei showed that the actA transcripts were initially upregulated soon after shifting the incubation temperature from 25°C to 37°C, but subsequently decreased slightly and did not change during further growth or under stress conditions. When cultures were started with conidia, upregulation of actA gene was found to correlate with germ tube production at either 25°C or 37°C. However, the relative expression level of actA transcripts again showed no significant differences in different cell types (conidia, mycelium, and yeast cells) or during macrophage infection. These results suggest that actin may play an important role in the early stages of cellular development, but not in environmental stress responses.
Collapse
|
36
|
Pongpom M, Vanittanakom N. Characterization of an MPLP6, a gene coding for a yeast phase specific, antigenic mannoprotein in Penicillium marneffei. Med Mycol 2010; 49:32-9. [PMID: 20608782 DOI: 10.3109/13693786.2010.496796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A gene encoding an antigenic mannoprotein of Penicillium marneffei, MPLP6, was isolated by an antibody screening approach and characterized. The polypeptide chain containing deduced 220 amino acids has a predicted molecular mass of 24 kDa. It has high similarity to Mp1p, the first mannoprotein antigen isolated from P. marneffei. The polypeptide sequence presents the property of cell wall mannoproteins by containing a putative N-terminal signal peptide and potential O-linked glycosylation sites. However, absence of a GPI-anchored signal sequence suggested that this protein is secreted. The MPLP6 transcript was present specifically in the pathogenic yeast form. The transcript was completely absent in the mold phase and conidia. The fusion protein produced in E. coli was Western immunoblotted with P. marneffei-infected human sera and 95% of the patients' sera were positive in the assay. None of the sera obtained from patients with aspergillosis, tuberculosis, histoplasmosis or cryptococcosis tested positive. These results suggest that Mplp6 can be used as a marker in a serodiagnostic assay.
Collapse
Affiliation(s)
- Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | |
Collapse
|
37
|
Kummasook A, Cooper CR, Vanittanakom N. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei. Med Mycol 2010; 48:1066-74. [PMID: 20465521 DOI: 10.3109/13693781003801219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed an improved Agrobacterium-mediated transformation (AMT) system for the functional genetic analysis of Penicillium marneffei, a thermally dimorphic, human pathogenic fungus. Our AMT protocol included the use of conidia or pre-germinated conidia of P. marneffei as the host recipient for T-DNA from Agrobacterium tumefaciens and co-cultivation at 28°C for 36 hours. Bleomycin-resistant transformants were selected as yeast-like colonies following incubation at 37°C. The efficiency of transformation was approximately 123 ± 3.27 and 239 ± 13.12 transformants per plate when using 5 × 10(4) conidia and pre-germinated conidia as starting materials, respectively. Southern blot analysis demonstrated that 95% of transformants contained single copies of T-DNA. Inverse PCR was employed for identifying flanking sequences at the T-DNA insertion sites. Analysis of these sequences indicated that integration occurred as random recombination events. Among the mutants isolated were previously described stuA and gasC defective strains. These AMT-derived mutants possessed single T-DNA integrations within their particular coding sequences. In addition, other morphological and pigmentation mutants possessing a variety of gene-specific defects were isolated, including two mutants having T-DNA integrations within putative promoter regions. One of the latter integration events was accompanied by the deletion of the entire corresponding gene. Collectively, these results indicated that AMT could be used for large-scale, functional genetic analyses in P. marneffei. Such analyses can potentially facilitate the identification of those genetic elements related to morphogenesis, as well as pathogenesis in this medically important fungus.
Collapse
Affiliation(s)
- Aksarakorn Kummasook
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | |
Collapse
|
38
|
Vanittanakom N, Pongpom M, Praparattanapan J, Cooper CR, Sirisanthana T. Isolation and expression of heat shock protein 30 gene from Penicillium marneffei. Med Mycol 2010; 47:521-6. [PMID: 19274600 DOI: 10.1080/13693780802566358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Penicillium marneffei is a dimorphic fungus that can cause disseminated mycosis, especially in AIDS patients. The role of heat shock proteins and stress response-related proteins in P. marneffei remains unknown. In this study, we isolated a cDNA encoding for heat shock protein 30 (Hsp30) of P. marneffei using an antibody screening method. The DNA sequence and deduced amino acid sequence analysis showed high homology to other fungal hsp30 genes. Expression of P. marneffei hsp30 in response to temperature increase was determined by Northern blot analysis. A high level of hsp30 transcript was detected in yeast cells grown at 37 degrees C, whereas a very low or undetectable transcript level was observed in mycelial cells at 25 degrees C. A recombinant Hsp30 protein was produced and tested preliminarily for its immunoreactivity with sera from P. marneffei-infected AIDS patients using Western blot analysis. The positive immunoblot result, with some serum samples, confirmed the antigenic property of the Hsp30. Collectively, the high response of hsp30 to temperature increase could indicate it may play a role in heat stress response and cell adaptation. This is the first report showing that this small heat shock protein could elicit the human immune response.
Collapse
Affiliation(s)
- Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | |
Collapse
|
39
|
Gifford TD, Cooper CR. Karyotype determination and gene mapping in two clinical isolates ofPenicillium marneffei. Med Mycol 2009; 47:286-95. [DOI: 10.1080/13693780802291437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
40
|
Thirach S, Cooper CR, Vanittanakom N. Molecular analysis of the Penicillium marneffei glyceraldehyde-3-phosphate dehydrogenase-encoding gene (gpdA) and differential expression of gpdA and the isocitrate lyase-encoding gene (acuD) upon internalization by murine macrophages. J Med Microbiol 2008; 57:1322-1328. [PMID: 18927407 DOI: 10.1099/jmm.0.2008/002832-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Penicillium marneffei is an intracellular dimorphic fungus that can cause a fatal disseminated disease in human immunodeficiency virus-infected patients. The factors that affect the pathogenicity of this fungus remain unclear. Here, we report the isolation and characterization of the gpdA cDNA and genomic clones encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in P. marneffei. Phylogenetic analysis of GAPDH amino acid sequences demonstrated the evolutionary relationship of P. marneffei to other fungi, including the intracellular pathogen Ajellomyces capsulatus. To assess the central importance of phagocytic cells in defence against P. marneffei infection, we used Northern blotting to investigate the response of the isocitrate lyase-encoding gene (acuD) and gpdA to nutrient deprivation inside macrophages. The results revealed that after macrophage internalization, the gene involved in the glyoxylate cycle, acuD, showed higher expression levels as early as 2 h from the start of co-incubation, and the differential expression could be observed again at 8 h after infection. In contrast, the expression of gpdA was downregulated in the yeast phase, as well as during macrophage infection after 2, 4 and 8 h of infection. The induction of P. marneffei acuD was shown to be coordinated with the downregulation of the glycolytic gpdA gene, implying that the cytoplasmic environment of macrophages is deficient in glucose and the glyoxylate pathway could be used by this pathogen to allow subsistence on two-carbon compounds within the host cell following its intracellular persistence.
Collapse
Affiliation(s)
- Sophit Thirach
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chester R Cooper
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, USA
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
41
|
Chandler JM, Treece ER, Trenary HR, Brenneman JL, Flickner TJ, Frommelt JL, Oo ZM, Patterson MM, Rundle WT, Valle OV, Kim TD, Walker GR, Cooper CR. Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei. Proteome Sci 2008; 6:17. [PMID: 18533041 PMCID: PMC2478645 DOI: 10.1186/1477-5956-6-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 06/04/2008] [Indexed: 11/30/2022] Open
Abstract
Background Penicillium marneffei is a pathogenic fungus that afflicts immunocompromised individuals having lived or traveled in Southeast Asia. This species is unique in that it is the only dimorphic member of the genus. Dimorphism results from a process, termed phase transition, which is regulated by temperature of incubation. At room temperature, the fungus grows filamentously (mould phase), but at body temperature (37°C), a uninucleate yeast form develops that reproduces by fission. Formation of the yeast phase appears to be a requisite for pathogenicity. To date, no genes have been identified in P. marneffei that strictly induce mould-to-yeast phase conversion. In an effort to help identify potential gene products associated with morphogenesis, protein profiles were generated from the yeast and mould phases of P. marneffei. Results Whole cell proteins from the early stages of mould and yeast development in P. marneffei were resolved by two-dimensional gel electrophoresis. Selected proteins were recovered and sequenced by capillary-liquid chromatography-nanospray tandem mass spectrometry. Putative identifications were derived by searching available databases for homologous fungal sequences. Proteins found common to both mould and yeast phases included the signal transduction proteins cyclophilin and a RACK1-like ortholog, as well as those related to general metabolism, energy production, and protection from oxygen radicals. Many of the mould-specific proteins identified possessed similar functions. By comparison, proteins exhibiting increased expression during development of the parasitic yeast phase comprised those involved in heat-shock responses, general metabolism, and cell-wall biosynthesis, as well as a small GTPase that regulates nuclear membrane transport and mitotic processes in fungi. The cognate gene encoding the latter protein, designated RanA, was subsequently cloned and characterized. The P. marneffei RanA protein sequence, which contained the signature motif of Ran-GTPases, exhibited 90% homology to homologous Aspergillus proteins. Conclusion This study clearly demonstrates the utility of proteomic approaches to studying dimorphism in P. marneffei. Moreover, this strategy complements and extends current genetic methodologies directed towards understanding the molecular mechanisms of phase transition. Finally, the documented increased levels of RanA expression suggest that cellular development in this fungus involves additional signaling mechanisms than have been previously described in P. marneffei.
Collapse
Affiliation(s)
- Julie M Chandler
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Erin R Treece
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, USA.,Department of Chemistry, Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Heather R Trenary
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, USA.,Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Jessica L Brenneman
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Tressa J Flickner
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Jonathan L Frommelt
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Zaw M Oo
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Megan M Patterson
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - William T Rundle
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Olga V Valle
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Thomas D Kim
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555-3663, USA.,Department of Chemistry, Rochester Institute of Technology, One Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Gary R Walker
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| | - Chester R Cooper
- Proteomics Research Group, Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555-3601, USA
| |
Collapse
|