1
|
Sherman JH, Bobak A, Arsiwala T, Lockman P, Aulakh S. Targeting drug resistance in glioblastoma (Review). Int J Oncol 2024; 65:80. [PMID: 38994761 PMCID: PMC11251740 DOI: 10.3892/ijo.2024.5668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. The current standard of care includes surgery, radiation therapy, temozolomide; and tumor‑treating fields leads to dismal overall survival. There are far limited treatments upon recurrence. Therapies to date are ineffective as a result of several factors, including the presence of the blood‑brain barrier, blood tumor barrier, glioma stem‑like cells and genetic heterogeneity in GBM. In the present review, the potential mechanisms that lead to treatment resistance in GBM and the measures which have been taken so far to attempt to overcome the resistance were discussed. The complex biology of GBM and lack of comprehensive understanding of the development of therapeutic resistance in GBM demands discovery of novel antigens that are targetable and provide effective therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan H. Sherman
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Martinsburg, WV 25401, USA
| | - Adam Bobak
- Department of Biology, Seton Hill University, Greensburg, PA 15601, USA
| | - Tasneem Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Paul Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Sonikpreet Aulakh
- Section of Hematology/Oncology, Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Campos-Sandoval JA, Gómez-García MC, Santos-Jiménez JDL, Matés JM, Alonso FJ, Márquez J. Antioxidant responses related to temozolomide resistance in glioblastoma. Neurochem Int 2021; 149:105136. [PMID: 34274381 DOI: 10.1016/j.neuint.2021.105136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains one of the most challenging and devastating cancers, with only a very small proportion of patients achieving 5-year survival. The current standard of care consists of surgery, followed by radiation therapy with concurrent and maintenance chemotherapy with the alkylating agent temozolomide. To date, this drug is the only one that provides a significant survival benefit, albeit modest, as patients end up acquiring resistance to this drug. As a result, tumor progression and recurrence inevitably occur, leading to death. Several factors have been proposed to explain this resistance, including an upregulated antioxidant system to keep the elevated intracellular ROS levels, a hallmark of cancer cells, under control. In this review, we discuss the mechanisms of chemoresistance -including the important role of glioblastoma stem cells-with emphasis on antioxidant defenses and how agents that impair redox balance (i.e.: sulfasalazine, erastin, CB-839, withaferin, resveratrol, curcumin, chloroquine, and hydroxychloroquine) might be advantageous in combined therapies against this type of cancer.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - María C Gómez-García
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José M Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Alonso
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
3
|
Liu L, Yi X, Lu C, Wang Y, Xiao Q, Zhang L, Pang Y, Guan X. Study Progression of Apelin/APJ Signaling and Apela in Different Types of Cancer. Front Oncol 2021; 11:658253. [PMID: 33912466 PMCID: PMC8075258 DOI: 10.3389/fonc.2021.658253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Apelin is an endogenous ligand that binds to the G protein-coupled receptor angiotensin-like-receptor 1 (APJ). Apelin and APJ are widely distributed in organs and tissues and are involved in multiple physiological and pathological processes including cardiovascular regulation, neuroendocrine stress response, energy metabolism, etc. Additionally, apelin/APJ axis was found to play an important role in cancer development and progression. Apela is a newly identified endogenous ligand for APJ. Several studies have revealed the potential role of Apela in cancers. In this article, we review the current studies focusing on the role of apelin/APJ signaling and Apela in different cancers. Potential mechanisms by which apelin/APJ and Apela mediate the regulation of cancer development and progression were also mentioned. The Apelin/APJ signaling and Apela may serve as potential therapeutic candidates for treatment of cancer.
Collapse
Affiliation(s)
- Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Guan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Tung B, Ma D, Wang S, Oyinlade O, Laterra J, Ying M, Lv SQ, Wei S, Xia S. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer 2018; 18:1025. [PMID: 30348136 PMCID: PMC6198521 DOI: 10.1186/s12885-018-4874-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022] Open
Abstract
Background The dismal prognosis of patients with glioblastoma (GBM) is attributed to a rare subset of cancer stem cells that display characteristics of tumor initiation, growth, and resistance to aggressive treatment involving chemotherapy and concomitant radiation. Recent research on the substantial role of epigenetic mechanisms in the pathogenesis of cancers has prompted the investigation of the enzymatic modifications of histone proteins for therapeutic drug targeting. In this work, we have examined the function of Krüppel-like factor 9 (KLF9), a transcription factor, in chemotherapy sensitization to histone deacetylase inhibitors (HDAC inhibitors). Methods Since GBM neurosphere cultures from patient-derived gliomas are enriched for GBM stem-like cells (GSCs) and form highly invasive and proliferative xenografts that recapitulate the features demonstrated in human patients diagnosed with GBM, we established inducible KLF9 expression systems in these GBM neurosphere cells and investigated cell death in the presence of epigenetic modulators such as histone deacetylase (HDAC) inhibitors. Results We demonstrated that KLF9 expression combined with HDAC inhibitor panobinostat (LBH589) dramatically induced glioma stem cell death via both apoptosis and necroptosis in a synergistic manner. The combination of KLF9 expression and LBH589 treatment affected cell cycle by substantially decreasing the percentage of cells at S-phase. This phenomenon is further corroborated by the upregulation of cell cycle inhibitors p21 and p27. Further, we determined that KLF9 and LBH589 regulated the expression of pro- and anti- apoptotic proteins, suggesting a mechanism that involves the caspase-dependent apoptotic pathway. In addition, we demonstrated that apoptosis and necrosis inhibitors conferred minimal protective effects against cell death, while inhibitors of the necroptosis pathway significantly blocked cell death. Conclusions Our findings suggest a detailed understanding of how KLF9 expression in cancer cells with epigenetic modulators like HDAC inhibitors may promote synergistic cell death through a mechanism involving both apoptosis and necroptosis that will benefit novel combinatory antitumor strategies to treat malignant brain tumors.
Collapse
Affiliation(s)
- Brian Tung
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA
| | - Ding Ma
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shuyan Wang
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olutobi Oyinlade
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, The Johns Hopkins School of Medicine, 707 N. Broadway, Room 400K, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Hira VV, Aderetti DA, van Noorden CJ. Glioma Stem Cell Niches in Human Glioblastoma Are Periarteriolar. J Histochem Cytochem 2018; 66:349-358. [PMID: 29328867 PMCID: PMC5958355 DOI: 10.1369/0022155417752676] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Survival of primary brain tumor (glioblastoma) patients is seriously hampered by glioma stem cells (GSCs) that are distinct therapy-resistant self-replicating pluripotent cancer cells. GSCs reside in GSC niches, which are specific protective microenvironments in glioblastoma tumors. We have recently found that GSC niches are hypoxic periarteriolar, whereas in most studies, GSC niches are identified as hypoxic perivascular. The aim of this review is to critically evaluate the literature on perivascular GSC niches to establish whether these are periarteriolar, pericapillary, perivenular, and/or perilymphatic. We found six publications showing images of human glioblastoma tissue containing perivascular GSC niches without any specification of the vessel type. However, it is frequently assumed that these vessels are capillaries which are exchange vessels, whereas arterioles and venules are transport vessels. Closer inspection of the figures of these publications showed vessels that were not capillaries. Whether these vessels were arterioles or venules was difficult to determine in one case, but in the other cases, these were clearly arterioles and their perivascular niches were similar to the periarteriolar niches we have found. Therefore, we conclude that in human glioblastoma tumors, GSC niches are hypoxic periarteriolar and are structurally and functionally look-alikes of hematopoietic stem cell niches in the bone marrow.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana A. Aderetti
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J.F. van Noorden
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Aderetti DA, Hira VVV, Molenaar RJ, van Noorden CJF. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma. Biochim Biophys Acta Rev Cancer 2018; 1869:346-354. [PMID: 29684521 DOI: 10.1016/j.bbcan.2018.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies.
Collapse
Affiliation(s)
- Diana A Aderetti
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Medical Oncology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Abstract
Glioblastoma multiforme are mortifying brain tumors that contain a subpopulation of tumor cells with stem-like properties, termed as glioblastoma stem-like cells (GSCs). These GSCs constitute an autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. A new therapeutic strategy would consist of targeting the GSC population. The GSCs are situated in perivascular niches, closely associated with brain microvascular endothelial cells thereby involved in bidirectional molecular and cellular interactions. In this scenario, the endothelium not only supplies oxygen and necessary nutrients but also seeds a protective microenvironment for tumor growth. Although GSC fate, plasticity, and survival are regulated by external cues emanating from endothelial cells, the nature of such angiocrine signals remains unknown. Our laboratory conclusively demonstrated that brain endothelial cells positively control the expansion of GSCs.1 Notably, we found that GSCs are addicted to the hormonal peptide apelin (APLN) secreted by surrounding endothelial cells, and identified the APLN/APLNR nexus as a promising druggable network in glioblastoma.
Collapse
Affiliation(s)
- Elizabeth Harford-Wright
- CRCINA, Team SOAP, Inserm, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Julie Gavard
- CRCINA, Team SOAP, Inserm, CNRS, Université de Nantes, Université d'Angers, Nantes, France.,Institut de Cancerologie de l'Ouest, Rene Gauducheau, Saint-Herblain, France
| |
Collapse
|
8
|
β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability. Oncotarget 2018; 7:66865-66879. [PMID: 27589691 PMCID: PMC5341843 DOI: 10.18632/oncotarget.11784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM.
Collapse
|
9
|
Chen C, Yu G, Xiao W, Xing M, Ni J, Wan R, Hu G. Thalidomide inhibits proliferation and epithelial-mesenchymal transition by modulating CD133 expression in pancreatic cancer cells. Oncol Lett 2018; 14:8206-8212. [PMID: 29344263 DOI: 10.3892/ol.2017.7213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a solid malignancy with a high mortality rate, on account of the high incidence of metastasis at the time of detection. The aggressiveness of pancreatic cancer may be partly driven by cancer stem cells (CSCs), which are characterized by the ability to self-renew and recapitulate tumors in the ectopic setting. However, although a number of drugs targeting CSCs are currently under clinical investigation, few effective drugs have been developed. The present study demonstrated that thalidomide inhibited cell proliferation and metastasis in pancreatic cancer cell lines through the inhibition of epithelial mesenchymal transition. The effect of thalidomide was more pronounced in cluster of differentiation 133 (CD133)+ SW1990 cells than in Capan-2 cells, in which CD133 expression was almost undetectable. The results revealed that CD133 is likely to serve a role in the antitumor effect of thalidomide and indicated that thalidomide could be developed as a CSC-specific adjuvant chemotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Ge Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Miao Xing
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
10
|
Harford-Wright E, Andre-Gregoire G, Jacobs KA, Treps L, Le Gonidec S, Leclair HM, Gonzalez-Diest S, Roux Q, Guillonneau F, Loussouarn D, Oliver L, Vallette FM, Foufelle F, Valet P, Davenport AP, Glen RC, Bidere N, Gavard J. Pharmacological targeting of apelin impairs glioblastoma growth. Brain 2017; 140:2939-2954. [PMID: 29053791 PMCID: PMC5841205 DOI: 10.1093/brain/awx253] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma are highly aggressive brain tumours that are associated with an extremely poor prognosis. Within these tumours exists a subpopulation of highly plastic self-renewing cancer cells that retain the ability to expand ex vivo as tumourspheres, induce tumour growth in mice, and have been implicated in radio- and chemo-resistance. Although their identity and fate are regulated by external cues emanating from endothelial cells, the nature of such signals remains unknown. Here, we used a mass spectrometry proteomic approach to characterize the factors released by brain endothelial cells. We report the identification of the vasoactive peptide apelin as a central regulator for endothelial-mediated maintenance of glioblastoma patient-derived cells with stem-like properties. Genetic and pharmacological targeting of apelin cognate receptor abrogates apelin- and endothelial-mediated expansion of glioblastoma patient-derived cells with stem-like properties in vitro and suppresses tumour growth in vivo. Functionally, selective competitive antagonists of apelin receptor were shown to be safe and effective in reducing tumour expansion and lengthening the survival of intracranially xenografted mice. Therefore, the apelin/apelin receptor signalling nexus may operate as a paracrine signal that sustains tumour cell expansion and progression, suggesting that apelin is a druggable factor in glioblastoma.
Collapse
Affiliation(s)
- Elizabeth Harford-Wright
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France.,Institut Cochin, Team SOAP, Inserm, CNRS, Universite Paris Descartes, Paris, France
| | | | - Kathryn A Jacobs
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France
| | - Lucas Treps
- Institut Cochin, Team SOAP, Inserm, CNRS, Universite Paris Descartes, Paris, France
| | | | - Heloise M Leclair
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France.,Institut Cochin, Team SOAP, Inserm, CNRS, Universite Paris Descartes, Paris, France
| | - Sara Gonzalez-Diest
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France.,Institut Cochin, Team SOAP, Inserm, CNRS, Universite Paris Descartes, Paris, France
| | - Quentin Roux
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France
| | | | - Delphine Loussouarn
- Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, Inserm, Universite de Nantes, Nantes, France
| | - Lisa Oliver
- Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, Inserm, Universite de Nantes, Nantes, France
| | - François M Vallette
- CRCINA, Inserm, Universite de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, René Gauducheau, St Herblain, France
| | - Fabienne Foufelle
- Centre de Recherches des Cordeliers, Inserm, Universite Paris Descartes, Paris, France
| | - Philippe Valet
- I2MC, Inserm, Universite Paul Sabatier, Toulouse, France
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Robert C Glen
- The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.,Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Nicolas Bidere
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France.,Institut Cochin, Team SOAP, Inserm, CNRS, Universite Paris Descartes, Paris, France
| | - Julie Gavard
- CRCINA, Inserm, Team SOAP, CNRS, Universite de Nantes, Nantes, France.,Institut Cochin, Team SOAP, Inserm, CNRS, Universite Paris Descartes, Paris, France
| |
Collapse
|
11
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Irradiating the Subventricular Zone in Glioblastoma Patients: Is there a Case for a Clinical Trial? Clin Oncol (R Coll Radiol) 2016; 29:26-33. [PMID: 27729188 DOI: 10.1016/j.clon.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive adult brain tumour. Over the last 10 years it has emerged that the subventricular zone (SVZ), the largest adult neural stem cell niche, has an important role in the disease. Converging evidence has implicated transformation of adult neural stems in gliomagenesis and the permissive stem cell niche in disease recurrence. Concurrently, clinical studies have suggested that SVZ involvement is a negative prognostic marker. It would follow that irradiating the SVZ may improve outcomes in glioblastoma by directly targeting this putative sanctuary site. To investigate this potential strategy, 11 retrospective studies and 1 prospective study examined the relationship between dose to the SVZ and survival outcomes in glioblastoma patients. This review summarises the theoretical underpinning of this strategy, provides a critical evaluation of the existing evidence and discusses the rationale for a clinical trial.
Collapse
|
13
|
Turaga SM, Lathia JD. Adhering towards tumorigenicity: altered adhesion mechanisms in glioblastoma cancer stem cells. CNS Oncol 2016; 5:251-9. [PMID: 27616054 DOI: 10.2217/cns-2016-0015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults with a high recurrence and mortality rate. GBM tumors contain a high degree of cellular heterogeneity, with cells exhibiting stem-like properties (cancer stem cells; CSCs) that are highly efficient at tumor initiation and are resistant to conventional therapies. CSCs interact with their tumor microenvironment by a large group of diverse cell adhesion molecules (CAMs) that participate in intercellular, intracellular and cell-extracellular matrix interactions. Despite the initial description of CAMs as tumor suppressors, recent work has highlighted specific CAMs that are essential for CSC maintenance and tumor progression. This review will highlight recent findings that provide support for a context-specific role of CAMs in CSC function and GBM progression.
Collapse
Affiliation(s)
- Soumya M Turaga
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin D Lathia
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Jones NM, Rowe MR, Shepherd PR, McConnell MJ. Targeted inhibition of dominant PI3-kinase catalytic isoforms increase expression of stem cell genes in glioblastoma cancer stem cell models. Int J Oncol 2016; 49:207-16. [PMID: 27176780 DOI: 10.3892/ijo.2016.3510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSC) exhibit therapy resistance and drive self-renewal of the tumour, making cancer stem cells an important target for therapy. The PI3K signalling pathway has been the focus of considerable research effort, including in glioblastoma (GBM), a cancer that is notoriously resistant to conventional therapy. Different isoforms of the catalytic sub-unit have been associated with proliferation, migration and differentiation in stem cells and cancer stem cells. Blocking these processes in CSC would improve patient outcome. We examined the effect of isoform specific PI3K inhibitors in two models of GBM CSC, an established GBM stem cell line 08/04 and a neurosphere formation model. We identified the dominant catalytic PI3K isoform for each model, and inhibition of the dominant isoform blocked AKT phosphorylation, as did pan-PI3K/mTOR inhibition. Analysis of SOX2, OCT4 and MSI1 expression revealed that inhibition of the dominant p110 subunit increased expression of cancer stem cell genes, while pan-PI3K/mTOR inhibition caused a similar, though not identical, increase in cancer stem cell gene expression. This suggested that PI3K inhibition enhanced, rather than blocked, CSC activity. Careful analysis of the response to specific isoform inhibition will be necessary before specific subunit inhibitors can be successfully deployed against GBM CSC.
Collapse
Affiliation(s)
- Nicole M Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Matthew R Rowe
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
15
|
Ricklefs F, Mineo M, Rooj AK, Nakano I, Charest A, Weissleder R, Breakefield XO, Chiocca EA, Godlewski J, Bronisz A. Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Res 2016; 76:2876-81. [PMID: 27013191 DOI: 10.1158/0008-5472.can-15-3432] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
A lack of experimental models of tumor heterogeneity limits our knowledge of the complex subpopulation dynamics within the tumor ecosystem. In high-grade gliomas (HGG), distinct hierarchical cell populations arise from different glioma stem-like cell (GSC) subpopulations. Extracellular vesicles (EV) shed by cells may serve as conduits of genetic and signaling communications; however, little is known about how HGG heterogeneity may impact EV content and activity. In this study, we performed a proteomic analysis of EVs isolated from patient-derived GSC of either proneural or mesenchymal subtypes. EV signatures were heterogeneous, but reflected the molecular make-up of the GSC and consistently clustered into the two subtypes. EV-borne protein cargos transferred between proneural and mesenchymal GSC increased protumorigenic behaviors in vitro and in vivo Clinically, analyses of HGG patient data from the The Cancer Genome Atlas database revealed that proneural tumors with mesenchymal EV signatures or mesenchymal tumors with proneural EV signatures were both associated with worse outcomes, suggesting influences by the proportion of tumor cells of varying subtypes in tumors. Collectively, our findings illuminate the heterogeneity among tumor EVs and the complexity of HGG heterogeneity, which these EVs help to maintain. Cancer Res; 76(10); 2876-81. ©2016 AACR.
Collapse
Affiliation(s)
- Franz Ricklefs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marco Mineo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arun K Rooj
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Al Charest
- Department of Neurosurgery, Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xandra O Breakefield
- Department of Neurology, Neurosurgery and Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Jakub Godlewski
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Agnieszka Bronisz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Podergajs N, Motaln H, Rajčević U, Verbovšek U, Koršič M, Obad N, Espedal H, Vittori M, Herold-Mende C, Miletic H, Bjerkvig R, Turnšek TL. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 2016; 7:593-609. [PMID: 26573230 PMCID: PMC4808020 DOI: 10.18632/oncotarget.5477] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/31/2015] [Indexed: 12/20/2022] Open
Abstract
The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.
Collapse
Affiliation(s)
- Neža Podergajs
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Uroš Rajčević
- Department of Biochemistry, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
| | - Urška Verbovšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Marjan Koršič
- Department of Neurosurgery, University Medical Centre, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Obad
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Miloš Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Centre de Recherche Public de la Santé, 1526 Luxembourg, Luxembourg
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Gupta T, Nair V, Jalali R. Stem cell niche irradiation in glioblastoma: providing a ray of hope? CNS Oncol 2015; 3:367-76. [PMID: 25363009 DOI: 10.2217/cns.14.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioblastomas are organized hierarchically with a small number of glioblastoma stem cells that have unique self-renewal capacity and multilineage potency. The subventricular zone (SVZ) constitutes the largest neural stem cell niche in the adult human brain; it may also act as a reservoir of glioblastoma stem cells that can initiate, promote or repopulate a tumor. Incidental irradiation of SVZ has been shown to potentially influence outcomes suggesting that aggressively targeting the stem cell niche may offer a ray of hope in glioblastoma. The following review provides a summary of the experimental evidence supporting the origin and location of the putative glioblastoma stem cell in the SVZ, and offers a critical appraisal of the growing body of clinical evidence correlating SVZ dosimetry with outcomes in glioblastoma.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | |
Collapse
|
18
|
Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells: new insights in therapeutic strategies. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT Despite notable achievements in glioblastoma diagnosis and treatment, the prognosis of glioblastoma patients remains poor and reflects the failure of current therapeutic modalities. In this context, innovative therapeutic strategies have recently been developed to specifically target glioblastoma stem cells, a subpopulation of tumor cells involved in experimental tumorigenesis and known to be critical for tumor recurrence and therapeutic resistance. The current review summarizes the different trails which make glioblastoma stem cells resistant to treatments, mainly focusing on radio-, chemo- and immunotherapy. This broad overview might actually help to set up new bases for glioblastoma therapy in order to better fight tumor relapses and to improve the patients’ prognosis.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
- Department of Neurology, CHU & University of Liège, Liège, Belgium
- GIGA-Development, Stem Cells & Regenerative Medicine, University of Liège, Liège, Belgium
| |
Collapse
|