1
|
Dirven L, Machingura A, van den Bent MJ, Coens C, Bottomley A, Brandes AA, Domont J, Idbaih A, Koekkoek JAF, Reijneveld JC, Platten M, Wick W, Taphoorn MJB. Health-related quality of life in patients with progressive glioblastoma treated with combined bevacizumab and lomustine versus lomustine only: Secondary outcome of the randomized phase III EORTC 26101 study. Neurooncol Pract 2025; 12:209-218. [PMID: 40110057 PMCID: PMC11913650 DOI: 10.1093/nop/npae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background Progression-free survival, but not overall survival, was prolonged with bevacizumab and lomustine compared to lomustine only in the randomized phase 3 European Organization for Research and Treatment of Cancer (EORTC) 26101 study. Objective To evaluate the impact of treatment on health-related quality of life (HRQoL) in progressive glioblastoma patients participating in the EORTC 26101 study. Methods Patients with progressive glioblastoma, after standard radio-chemotherapy, were 2:1 randomized to either BEV/LOM or LOM. HRQoL was a secondary trial outcome and assessed using the EORTC QLQ-C30 and QLQ-BN20 questionnaires at baseline, and subsequently every 12 weeks. Predefined scales for analysis were global health status (GH), physical functioning, social functioning (SF), motor dysfunction, and communication deficit. The primary endpoint was HRQoL during the last assessment up to week 36. Moreover, time to HRQoL deterioration (TTD) and HRQoL deterioration-free survival (DFS) were calculated. Results Out of 437 patients, 402 (92%) patients had a baseline HRQoL assessment, which dropped to 66% at week 36. During the last assessment up to week 36, no differences were observed for predefined scales, apart from SF being clinically relevant lower in the combination arm (mean 66.0 versus 81.0, p = .001). Of note, the baseline SF score was 66.4 for patients in the combination arm, showing stable SF. Median DFS was significantly longer in the combination arm (12.4 weeks) compared to lomustine alone (6.7 weeks), reflecting the difference in time to progression between arms. TTD, not including progression as an event, was not different between treatment arms (median 13.0 versus 12.9 weeks). Conclusion The addition of bevacizumab to lomustine did not negatively affect HRQoL during the progression-free period.
Collapse
Affiliation(s)
- Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abigirl Machingura
- Quality of Life Department, European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | | | - Corneel Coens
- Quality of Life Department, European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Andrew Bottomley
- Quality of Life Department, European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Alba A Brandes
- Department of Medical Oncology, AUSL-IRCCS Scienze Neurologiche, Bologna, Italy
| | | | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-Oncologie, F-75013, Paris, France
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap C Reijneveld
- Department of Neurology and Brain Tumour Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Michael Platten
- UMM, Mannheim, Heidelberg University and CCU Neuroimmunology, Heidelberg, Germany
| | - Wolfgang Wick
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
- Neurology Clinic and National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Margulies A, Sahki N, Rech F, Vogin G, Blonski M, Peiffert D, Taillandier L, Lesanne G, Demogeot N. Pattern of recurrence after fractionated stereotactic reirradiation in adult glioblastoma. Radiat Oncol 2025; 20:28. [PMID: 40022217 PMCID: PMC11871646 DOI: 10.1186/s13014-025-02611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/23/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Glioblastomas all eventually relapse after initial treatment, and an option to treat these recurrences is fractionated stereotactic reirradiation (fSRT). The location of recurrences following reirradiation has not been studied for fSRT delivered by a dedicated stereotactic device. We aimed to analyze these locations to better elucidate safety margins, dose and fractionation regimens. METHODS We retrospectively analyzed the data of patients with glioblastoma recurrence that had been reirradiated by fSRT in October 2010-December 2020, in 25 Gy in 5 fractions delivered by a CyberKnife® at Institut de Cancérologie de Lorraine. We matched the images of the post-fSRT relapse with the stereotactic radiation treatment planning scan to determine the relapse location. RESULTS The location of recurrences after fSRT was "out-field" in 43.5%, "marginal" in 40.3%, and "in-field" in 16.1% of patients (N = 62). A GTV-PTV margin of 1 mm (versus 2-3 mm, HR = 0.38 [0.15-0.95], p = 0.037) and a PTV volume of ≥ 36 cc (HR = 5.18 [1.06-25.3], p = 0.042) were significantly associated with the "marginal" recurrences. Being ≥ 60 years old at initial treatment (HR = 3.06 [1.17-8.01], p = 0.023) and having one or more previous recurrences (HR = 5.29 [1.70-16.5], p = 0.004) were significantly associated with "out-field" recurrences. The median PFS from fSRT was 3.4 months, and OS from diagnosis and from fSRT were 25.7 and 10.8 months respectively. CONCLUSION Reirradiation of glioblastoma recurrence by fSRT with 25 Gy in 5 fractions provides good local control.
Collapse
Affiliation(s)
- Agathe Margulies
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France.
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France.
- Institut de Cancérologie de Lorraine - Alexis-Vautrin Cancer Center - Unicancer Academic Department of Radiation Therapy & Brachytherapy, 6 avenue de Bourgogne - CS 30 519, Vandoeuvre-lès-Nancy, cedex F-54 511, France.
| | - Nassim Sahki
- Biostatistic Unit, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
| | - Fabien Rech
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
- Department of Neurosurgery, CHRU-Nancy, Nancy, 54000, France
| | - Guillaume Vogin
- Department of Radiotherapy, Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Marie Blonski
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
- Department of Neurology, CHRU-Nancy, Nancy, 54000, France
| | - Didier Peiffert
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
| | - Luc Taillandier
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
- Department of Neurology, CHRU-Nancy, Nancy, 54000, France
| | - Grégory Lesanne
- Department of Radiology, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
| | - Nicolas Demogeot
- Department of Radiotherapy, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, 54519, France
- Faculté de Médecine de Nancy, Université de Lorraine, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
| |
Collapse
|
3
|
Zhong W, Mao J, Wu D, Peng J, Ye W. The efficacy of stereotactic radiotherapy followed by bevacizumab and temozolomide in the treatment of recurrent glioblastoma: a case report. Front Pharmacol 2024; 15:1401000. [PMID: 39295944 PMCID: PMC11408163 DOI: 10.3389/fphar.2024.1401000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor among adults. Despite advancements in multimodality therapy for GBM, the overall prognosis remains poor, with an extremely high risk of recurrence. Currently, there is no established consensus on the optimal treatment option for recurrent GBM, which may include reoperation, reirradiation, chemotherapy, or a combination of the above. Bevacizumab is considered a first-line treatment option for recurrent GBM, as is temozolomide. However, in recurrent GBM, it is necessary to balance the risks and benefits of reirradiation in combination with bevacizumab and temozolomide. Herein, we report the case of a patient with recurrent GBM after standard treatment who benefited from stereotactic radiotherapy followed by bevacizumab and temozolomide maintenance therapy. Following 16 months of concurrent chemoradiotherapy (CCRT), the patient was diagnosed with recurrent GBM by a 3-T contrast-enhanced magnetic resonance imaging (MRI). The addition of localized radiotherapy to the ongoing treatment regimen of bevacizumab, in combination with temozolomide therapy, prolonged the patient's disease-free survival to over 2 years, achieving a significant long-term outcome, with no notable adverse effects observed. This clinical case may provide a promising new option for patients with recurrent GBM.
Collapse
Affiliation(s)
- Wangyan Zhong
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiwei Mao
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianghua Peng
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Wanli Ye
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
4
|
Jiang MQ, Yu SP, Estaba T, Choi E, Berglund K, Gu X, Wei L. Reprogramming Glioblastoma Cells into Non-Cancerous Neuronal Cells as a Novel Anti-Cancer Strategy. Cells 2024; 13:897. [PMID: 38891029 PMCID: PMC11171681 DOI: 10.3390/cells13110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell's fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors.
Collapse
Affiliation(s)
- Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30033, USA; (M.Q.J.); (T.E.); (E.C.); (X.G.)
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30033, USA; (M.Q.J.); (T.E.); (E.C.); (X.G.)
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Takira Estaba
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30033, USA; (M.Q.J.); (T.E.); (E.C.); (X.G.)
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30033, USA; (M.Q.J.); (T.E.); (E.C.); (X.G.)
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30033, USA; (M.Q.J.); (T.E.); (E.C.); (X.G.)
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30033, USA; (M.Q.J.); (T.E.); (E.C.); (X.G.)
| |
Collapse
|
5
|
Hu S, Xie L, Zhang Y. Surgical treatment of small recurrent gliomas based on MR imaging examination. Med Eng Phys 2024; 126:104139. [PMID: 38621837 DOI: 10.1016/j.medengphy.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
Microrecurrent glioma is a common neurological tumor, and the key to its surgical treatment is to accurately evaluate the size, location and degree of recurrence of the lesion. The purpose of this study was to explore the surgical treatment of microrecurrent glioma based on MR Imaging, and to provide accurate and reliable basis for clinical decision-making. Before surgery, detailed MR Imaging tests were performed for each patient to accurately locate and evaluate the characteristics of the lesions. Multimodal imaging examination were arranged to accurate the pre-operation diagnosis. Neuro-navigation is necessary for the operation design and tumor confirmation. Function monitor and intraoperation MR were prepared when necessary.Mini was defined by the size, location and symptoms. In all 5 cases requiring reoperation, total resection was achieved. No systemic and local complications occurred. No permeant neurological dysfunction remained. The average stay time after the operation is days. All patients survived in the recent follow-up. Reoperation of mini recurrent glioma is a good treatment choice. We made little injury to patients, which wouldn't affect their conditions and next therapies. Through MR Imaging, the diagnosis and location of microrecurrent glioma, as well as the relationship with surrounding tissues and the degree of infiltration, provide important information for surgeons to evaluate the resectable lesion. By combining MR And functional imaging results, the blood supply and functional area of the lesion can be monitored in real time during surgery, thereby reducing surgical risk and maximizing the protection of surrounding healthy tissue.
Collapse
Affiliation(s)
- Shukun Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Neurosurgical Institute of Fudan University, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, 12 Wulumuqi Middle Road, Shanghai 200042, PR China
| | - Liqian Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Neurosurgical Institute of Fudan University, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, 12 Wulumuqi Middle Road, Shanghai 200042, PR China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Neurosurgical Institute of Fudan University, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Shanghai Clinical Medical Center of Neurosurgery, 12 Wulumuqi Middle Road, Shanghai 200042, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, 12 Wulumuqi Middle Road, Shanghai 200042, PR China.
| |
Collapse
|
6
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
7
|
Christ SM, Youssef G, Tanguturi SK, Cagney D, Shi D, McFaline-Figueroa JR, Chukwueke U, Lee EQ, Hertler C, Andratschke N, Weller M, Reardon DA, Haas-Kogan D, Guckenberger M, Wen PY, Rahman R. Re-irradiation of recurrent IDH-wildtype glioblastoma in the bevacizumab and immunotherapy era: Target delineation, outcomes and patterns of recurrence. Clin Transl Radiat Oncol 2024; 44:100697. [PMID: 38046107 PMCID: PMC10689476 DOI: 10.1016/j.ctro.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction and background While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence. Materials and methods Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis. Results One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01). Conclusion Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality.
Collapse
Affiliation(s)
- Sebastian M. Christ
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shyam K. Tanguturi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Cagney
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Diana Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eudocia Q. Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline Hertler
- Competence Center Palliative Care, University Hospital and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Domena JB, Ferreira BCLB, Cilingir EK, Zhou Y, Chen J, Johnson QR, Chauhan BPS, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. Advancing glioblastoma imaging: Exploring the potential of organic fluorophore-based red emissive carbon dots. J Colloid Interface Sci 2023; 650:1619-1637. [PMID: 37494859 DOI: 10.1016/j.jcis.2023.07.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Over time, the interest in developing stable photosensitizers (PS) which both absorb and emit light in the red region (650 and 950 nm) has gained noticeable interest. Recently, carbon dots (CDs) have become the material of focus to act as a PS due to their high extinction coefficient, low cytotoxicity, and both high photo and thermal stability. In this work, a Federal and Drug Association (FDA) approved Near Infra-Red (NIR) organic fluorophore used for photo-imaging, indocyanine green (ICG), has been explored as a precursor to develop water-soluble red emissive CDs which possess red emission at 697 nm. Furthermore, our material was found to yield favorable red-imaging capabilities of glioblastoma stem-like cells (GSCs) meanwhile boasting low toxicity. Additionally with post modifications, our CDs have been found to have selectivity towards tumors over healthy tissue as well as crossing the blood-brain barrier (BBB) in zebrafish models.
Collapse
Affiliation(s)
- Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Emel K Cilingir
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Qiaxian R Johnson
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - Bhanu P S Chauhan
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - M Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - A Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Steven Vanni
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; HCA Florida University Hospital, 3476 S University Dr, Davie, FL 33328, USA; Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Regina M Graham
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136, USA; Dr. Kiran C. Patel College of Allopathic Medicine, Ft. Lauderdale, FL 33328, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
9
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
Affiliation(s)
- Aran Merati
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spandana Kotian
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin Smithberger
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail K. Shelton
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C. Ryan Miller
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Fu M, Zhou Z, Huang X, Chen Z, Zhang L, Zhang J, Hua W, Mao Y. Use of Bevacizumab in recurrent glioblastoma: a scoping review and evidence map. BMC Cancer 2023; 23:544. [PMID: 37316802 PMCID: PMC10265794 DOI: 10.1186/s12885-023-11043-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant primary tumor in the brain, with poor prognosis and limited effective therapies. Although Bevacizumab (BEV) has shown promise in extending progression-free survival (PFS) treating GBM, there is no evidence for its ability to prolong overall survival (OS). Given the uncertainty surrounding BEV treatment strategies, we aimed to provide an evidence map associated with BEV therapy for recurrent GBM (rGBM). METHODS PubMed, Embase, and the Cochrane Library were searched for the period from January 1, 1970, to March 1, 2022, for studies reporting the prognoses of patients with rGBM receiving BEV. The primary endpoints were overall survival (OS) and quality of life (QoL). The secondary endpoints were PFS, steroid use reduction, and risk of adverse effects. A scoping review and an evidence map were conducted to explore the optimal BEV treatment (including combination regimen, dosage, and window of opportunity). RESULTS Patients with rGBM could gain benefits in PFS, palliative, and cognitive advantages from BEV treatment, although the OS benefits could not be verified with high-quality evidence. Furthermore, BEV combined therapy (especially with lomustine and radiotherapy) showed higher efficacy than BEV monotherapy in the survival of patients with rGBM. Specific molecular alterations (IDH mutation status) and clinical features (large tumor burden and double-positive sign) could predict better responses to BEV administration. A low dosage of BEV showed equal efficacy to the recommended dose, but the optimal opportunity window for BEV administration remains unclear. CONCLUSIONS Although OS benefits from BEV-containing regimens could not be verified in this scoping review, the PFS benefits and side effects control supported BEV application in rGBM. Combining BEV with novel treatments like tumor-treating field (TTF) and administration at first recurrence may optimize the therapeutic efficacy. rGBM with a low apparent diffusion coefficient (ADCL), large tumor burden, or IDH mutation is more likely to benefit from BEV treatment. High-quality studies are warranted to explore the combination modality and identify BEV-response subpopulations to maximize benefits.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Huang
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
11
|
Mahase SS, Roytman M, Roth O'Brien D, Ivanidze J, Schwartz TH, Pannullo SC, Ramakrishna R, Magge RS, Williams N, Fine HA, Chiang GCY, Knisely JPS. Concurrent immunotherapy and re-irradiation utilizing stereotactic body radiotherapy for recurrent high-grade gliomas. Cancer Rep (Hoboken) 2023:e1788. [PMID: 36750401 PMCID: PMC10363830 DOI: 10.1002/cnr2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Clinical trials evaluating immune checkpoint inhibition (ICI) in recurrent high-grade gliomas (rHGG) report 7%-20% 6-month progression-free survival (PFS), while re-irradiation demonstrates 28%-39% 6-month PFS. AIMS We evaluate outcomes of patients treated with ICI and concurrent re-irradiation utilizing stereotactic body radiotherapy/fractionated stereotactic radiosurgery (SBRT) compared to ICI monotherapy. METHODS AND RESULTS Patients ≥18-years-old with rHGG (WHO grade III and IV) receiving ICI + SBRT or ICI monotherapy between January 1, 2016 and January 1, 2019 were included. Adverse events, 6-month PFS and overall survival (OS) were assessed. Log-rank tests were used to evaluate PFS and OS. Histogram analyses of apparent diffusion coefficient maps and dynamic contrast-enhanced magnetic resonance perfusion metrics were performed. Twenty-one patients with rHGG (ICI + SBRT: 16; ICI: 5) were included. The ICI + SBRT and ICI groups received a mean 7.25 and 6.2 ICI cycles, respectively. There were five grade 1, one grade 2 and no grade 3-5 AEs in the ICI + SBRT group, and four grade 1 and no grade 2-5 AEs in the ICI group. Median PFS was 2.85 and 1 month for the ICI + SBRT and ICI groups; median OS was 7 and 6 months among ICI + SBRT and ICI groups, respectively. There were significant differences in pre and posttreatment tumor volume in the cohort (12.35 vs. 20.51; p = .03), but not between treatment groups. CONCLUSIONS In this heavily pretreated cohort, ICI with re-irradiation utilizing SBRT was well tolerated. Prospective studies are warranted to evaluate potential therapeutic benefits to re-irradiation with ICI + SBRT in rHGG.
Collapse
Affiliation(s)
- Sean S Mahase
- Department of Radiation Oncology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA.,Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Michelle Roytman
- Department of Radiology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Diana Roth O'Brien
- Department of Radiation Oncology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Jana Ivanidze
- Department of Radiology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Susan C Pannullo
- Department of Neurosurgery, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Rohan Ramakrishna
- Department of Neurosurgery, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Rajiv S Magge
- Department of Neurology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Nicholas Williams
- Department of Healthcare Policy & Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Howard A Fine
- Department of Neurology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Gloria Chia-Yi Chiang
- Department of Radiology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Targeted nano-delivery of chemotherapy via intranasal route suppresses in vivo glioblastoma growth and prolongs survival in the intracranial mouse model. Drug Deliv Transl Res 2023; 13:608-626. [PMID: 36245060 DOI: 10.1007/s13346-022-01220-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 12/30/2022]
Abstract
Nanotechnology-based drug delivery platforms have shown great potential in overcoming the limitations of conventional therapy for glioblastoma (GBM). However, permeation across the blood-brain barrier (BBB), physiological complexity of the brain, and glioma targeting strategies cannot entirely meet the challenging requirements of distinctive therapeutic delivery stages. The objective of this research is to fabricate lipid nanoparticles (LNPs) for the co-delivery of paclitaxel (PTX) and miltefosine (HePc) a proapoptotic agent decorated with transferrin (Tf-PTX-LNPs) and investigate its anti-glioma activity both in vitro and in vivo orthotopic NOD/SCID GBM mouse model. The present study demonstrates the anti-glioma effect of the dual drug combination of PTX and proapoptotic HePc lipid-based transferrin receptor (TfR) targeted alternative delivery (direct nose to brain transportation) of the nanoparticulate system (Tf-PTX-LNPs, 364 ± 5 nm, -43 ± 9 mV) to overcome the O6-methylguanine-DNA methyltransferase induce drug-resistant for improving the effectiveness of GBM therapy. The resulting nasally targeted LNPs present good biocompatibility, stability, high BBB transcytosis through selective TfR-mediated uptake by tumor cells, and effective tumor penetration in the brain of GBM induced mice. We observed markedly enhanced anti-proliferative efficacy of the targeted LNPs in U87MG cells compared to free drug. Nasal targeted LNPs had shown significantly improved brain concentration (Cmax fivefold and AUC0-24 4.9 fold) with early tmax (0.5 h) than the free drug. In vivo intracranial GBM-bearing targeted LNPs treated mice exhibited significantly prolonged survival with improved anti-tumor efficacy accompanied by reduced toxicity compared to systemic Taxol® and nasal free drug. These findings indicate that the nasal delivery of targeted synergistic nanocarrier holds great promise as a non-invasive adjuvant chemotherapy therapy of GBM.
Collapse
|
13
|
Aissani N, Sebai H. Potent anti-glioblastoma effect of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus and antioxidant activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nadhem Aissani
- Laboratory of Functional Physiology and Valorization of Bioresources, High Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bioresources, High Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
14
|
Chiocca EA, Gelb AB, Chen CC, Rao G, Reardon DA, Wen PY, Bi WL, Peruzzi P, Amidei C, Triggs D, Seften L, Park G, Grant J, Truman K, Buck JY, Hadar N, Demars N, Miao J, Estupinan T, Loewy J, Chadha K, Tringali J, Cooper L, Lukas RV. Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: An open-label, multi-institutional phase I trial. Neuro Oncol 2022; 24:951-963. [PMID: 34850166 PMCID: PMC9159462 DOI: 10.1093/neuonc/noab271] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Veledimex (VDX)-regulatable interleukin-12 (IL-12) gene therapy in recurrent glioblastoma (rGBM) was reported to show tumor infiltration of CD8+ T cells, encouraging survival, but also up-regulation of immune checkpoint signaling, providing the rationale for a combination trial with immune checkpoint inhibition. METHODS An open-label, multi-institutional, dose-escalation phase I trial in rGBM subjects (NCT03636477) accrued 21 subjects in 3 dose-escalating cohorts: (1) neoadjuvant then ongoing nivolumab (1mg/kg) and VDX (10 mg) (n = 3); (2) neoadjuvant then ongoing nivolumab (3 mg/kg) and VDX (10 mg) (n = 3); and (3) neoadjuvant then ongoing nivolumab (3 mg/kg) and VDX (20 mg) (n = 15). Nivolumab was administered 7 (±3) days before resection of the rGBM followed by peritumoral injection of IL-12 gene therapy. VDX was administered 3 hours before and then for 14 days after surgery. Nivolumab was administered every two weeks after surgery. RESULTS Toxicities of the combination were comparable to IL-12 gene monotherapy and were predictable, dose-related, and reversible upon withholding doses of VDX and/or nivolumab. VDX plasma pharmacokinetics demonstrate a dose-response relationship with effective brain tumor tissue VDX penetration and production of IL-12. IL-12 levels in serum peaked in all subjects at about Day 3 after surgery. Tumor IFNγ increased in post-treatment biopsies. Median overall survival (mOS) for VDX 10 mg with nivolumab was 16.9 months and for all subjects was 9.8 months. CONCLUSION The safety of this combination immunotherapy was established and has led to an ongoing phase II clinical trial of immune checkpoint blockade with controlled IL-12 gene therapy (NCT04006119).
Collapse
Affiliation(s)
- E Antonio Chiocca
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Clark C Chen
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - Patrick Y Wen
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Pierpaolo Peruzzi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Dan Triggs
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Leah Seften
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Grace Park
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James Grant
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kyla Truman
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jill Y Buck
- Ziopharm Oncology, Inc., Boston, Massachusetts, USA
| | - Nira Hadar
- Ziopharm Oncology, Inc., Boston, Massachusetts, USA
| | | | - John Miao
- Ziopharm Oncology, Inc., Boston, Massachusetts, USA
| | | | - John Loewy
- Ziopharm Oncology, Inc., Boston, Massachusetts, USA
| | - Kamal Chadha
- Ziopharm Oncology, Inc., Boston, Massachusetts, USA
| | | | | | - Rimas V Lukas
- Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
15
|
Goodman AL, Velázquez Vega JE, Glenn C, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of neuropathology in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:179-224. [PMID: 35648306 DOI: 10.1007/s11060-022-04005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with progressive or recurrent glioblastoma (GBM). QUESTION For adult patients with progressive glioblastoma does testing for Isocitrate Dehydrogenase (IDH) 1 or 2 mutations provide new additional management or prognostic information beyond that derived from the tumor at initial presentation? RECOMMENDATION Level III: Repeat IDH mutation testing is not necessary if the tumor is histologically similar to the primary tumor and the patient's clinical course is as expected. QUESTION For adult patients with progressive glioblastoma does repeat testing for MGMT promoter methylation provide new or additional management or prognostic information beyond that derived from the tumor at initial presentation and what methods of detection are optimal? RECOMMENDATION Level III: Repeat MGMT promoter methylation is not recommended. QUESTION For adult patients with progressive glioblastoma does EGFR amplification or mutation testing provide management or prognostic information beyond that provided by histologic analysis and if performed on previous tissue samples, does it need to be repeated? RECOMMENDATION Level III: In cases that are difficult to classify as glioblastoma on histologic features EGFR amplification testing may help in classification. If a previous EGFR amplification was detected, repeat testing is not necessary. Repeat EGFR amplification or mutational testing may be recommended in patients in which target therapy is being considered. QUESTION For adult patients with progressive glioblastoma does large panel or whole genome sequencing provide management or prognostic information beyond that derived from histologic analysis? RECOMMENDATION Level III: Primary or repeat large panel or whole genome sequencing may be considered in patients who are eligible or interested in molecularly guided therapy or clinical trials. QUESTION For adult patients with progressive glioblastoma should immune checkpoint biomarker testing be performed to provide management and prognostic information beyond that obtained from histologic analysis? RECOMMENDATION Level III: The current evidence does not support making PD-L1 or mismatch repair (MMR) enzyme activity a component of standard testing. QUESTION For adult patients with progressive glioblastoma are there meaningful biomarkers for bevacizumab responsiveness and does their assessment provide additional information for tumor management and prognosis beyond that learned by standard histologic analysis? RECOMMENDATION Level III: No established Bevacizumab biomarkers are currently available based upon the inclusion criteria of this guideline.
Collapse
Affiliation(s)
- Abigail L Goodman
- Carolinas Pathology, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
| | - José E Velázquez Vega
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Chad Glenn
- Department of Neurosurgery, Stephenson Cancer Center, The University of Oklahoma, Oklahoma City, OK, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Hashemi M, abbasiazam A, Oraee-Yazdani S, Lenzer J. Response of human glioblastoma cells to hyperthermia: Cellular apoptosis and molecular events. Tissue Cell 2022; 75:101751. [DOI: 10.1016/j.tice.2022.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
17
|
Kobayashi T, Nitta M, Shimizu K, Saito T, Tsuzuki S, Fukui A, Koriyama S, Kuwano A, Komori T, Masui K, Maehara T, Kawamata T, Muragaki Y. Therapeutic Options for Recurrent Glioblastoma—Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14020353. [PMID: 35214085 PMCID: PMC8879869 DOI: 10.3390/pharmaceutics14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Recurrent glioblastoma (GBM) remains one of the most challenging clinical issues, with no standard treatment and effective treatment options. To evaluate the efficacy of talaporfin sodium (TS) mediated photodynamic therapy (PDT) as a new treatment for this condition, we retrospectively analyzed 70 patients who underwent surgery with PDT (PDT group) for recurrent GBM and 38 patients who underwent surgery alone (control group). The median progression-free survival (PFS) in the PDT and control groups after second surgery was 5.7 and 2.2 months, respectively (p = 0.0043). The median overall survival (OS) after the second surgery was 16.0 and 12.8 months, respectively (p = 0.031). Both univariate and multivariate analyses indicated that surgery with PDT and a preoperative Karnofsky Performance Scale were significant independent prognostic factors for PFS and OS. In the PDT group, there was no significant difference regarding PFS and OS between patients whose previous pathology before recurrence was already GBM and those who had malignant transformation to GBM from lower grade glioma. There was also no significant difference in TS accumulation in the tumor between these two groups. According to these results, additional PDT treatment for recurrent GBM could have potential survival benefits and its efficacy is independent of the pre-recurrence pathology.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Correspondence:
| | - Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA;
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Taiichi Saito
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Kuwano
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu-shi, Tokyo 183-0042, Japan;
| | - Kenta Masui
- Department of Pathology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
18
|
Hennessy MA, Coyne ZL, O'Halloran PJ, Mullally W, Dablouk M, MacNally S, Morris PG. Prognostic factors influencing survival following re-resection for isocitrate dehydrogenase (IDH) -wildtype glioblastoma multiforme - Data from a national neuro-oncology registry. J Clin Neurosci 2021; 95:142-150. [PMID: 34929638 DOI: 10.1016/j.jocn.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
The role of surgical resection in recurrent Glioblastoma Multiforme (GBM) remains unclear. We aimed to investigate survival outcomes and associated prognostic factors in patients undergoing surgical re-resection for recurrent IDH-wildtype GBM in a national neuro-oncology center. We evaluated all patients who underwent re-resection for recurrent GBM following adjuvant treatment between 2015 and 2018. 32 patients were eligible for inclusion. 19 (59%) were male,median age at re-resection was 53. Median time from initial surgery to re-resection was 13.5 months. Median overall survival (OS) was 28.6 months from initial surgery and 9.5 months from re-resection. MGMT methylation was significantly associated with improved OS from initial surgery, 40 months versus 19.1 months, (p = 0.004), and from re-resection, 9.47 months versus 6.93 months, (p = 0.028). A late re-resection was associated with improved OS compared to an early re-resection, 44.1 months versus 15.7 months, (p = 0.002). There was a trend for improved outcomes in younger patients, median OS from initial surgery 44.1 months for <53 years compared to 21.7 months for patients ≥53, (p = 0.099). Higher Karnofsky Performance Status (KPS) at re-resection was associated with improved median OS, 9.5 months versus 4.1 months for KPS ≥70 and <70 respectively, (p = 0.013). Furthermore, there was a trend for improved OS with greater extent of re-resection, however this did not reach statistical significance, possibly due to small sample size. Re-resection for recurrent GBM was associated with improved OS in those with good performance status and could be considered in carefully selected cases.
Collapse
Affiliation(s)
- Maeve A Hennessy
- Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland; Dept. of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Zachary L Coyne
- Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland; Dept. of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Philip J O'Halloran
- Dept. of Neurosurgery, Beaumont Hospital, Dublin, Ireland; Royal College of Surgeons in Ireland, Dublin, Ireland
| | - William Mullally
- Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland; Dept. of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | | | | | - Patrick G Morris
- Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland; Dept. of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
19
|
Cebula H, Garnon J, Todeschi J, Noel G, Lhermitte B, Mallereau CH, Chibbaro S, Burckel H, Schott R, de Mathelin M, Gangi A, Proust F. Interventional magnetic-resonance-guided cryotherapy combined with microsurgery for recurrent glioblastoma: An innovative treatment? Neurochirurgie 2021; 68:267-272. [PMID: 34906554 DOI: 10.1016/j.neuchi.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Glioblastoma invariably recurs after primary Stupp tumor therapy and portends a poor prognosis. Cryoablation is a well-established treatment strategy for extra-cranial tumors. The safety and efficacy of interventional MR-guided cryoablation (iMRgC) has not been explored in recurrent glioblastoma. METHODS A retrospective analysis of data collected over a period of 24 months was performed. The inclusion criteria were: (I) recurrent glioblastoma despite Stupp protocol; (II) MRI followed by histological confirmation of recurrent glioblastoma; (III) location allowing iMRgC followed by microsurgical resection; and (IV) patient's consent. The primary objective was to assess feasibility in terms of complications. The secondary objective was to analyze progression-free survival (PFS), post-iMRgC survival and overall survival (OS). RESULTS The study included 6 patients, with a mean age of 67±7.6 years [range, 54-70 years]. No major complications were observed. Median PFS was 7.5 months [IQR 3.75-9.75] and 6-month PFS was 50%. Median post-iMRgC survival was 9 months [IQR 7.5-15.25] and 6-month post-iMRgC survival was 80%. Median OS was 22.5 months [IQR 21.75-30]. CONCLUSION iMRgC for recurrent glioblastoma demonstrated a good safety profile, with no major complications. Our data suggest improved PFS and OS. TRIAL REGISTRATION NUMBER No. IRB00011687 retrospectively registred on July 7th 2021.
Collapse
Affiliation(s)
- H Cebula
- Department of Neurosurgery, University Hospital of Strasbourg, Strasbourg, France.
| | - J Garnon
- Department of Interventional Radiology, University Hospital of Strasbourg, Strasbourg, France
| | - J Todeschi
- Department of Neurosurgery, University Hospital of Strasbourg, Strasbourg, France
| | - G Noel
- Department of Radiation Therapy, ICANS, Strasbourg, France
| | - B Lhermitte
- Department of Histology, University Hospital of Strasbourg, Strasbourg, France
| | - C-H Mallereau
- Department of Neurosurgery, University Hospital of Strasbourg, Strasbourg, France
| | - S Chibbaro
- Department of Neurosurgery, University Hospital of Strasbourg, Strasbourg, France
| | - H Burckel
- Department of Medical Oncology, ICANS, Strasbourg, France
| | - R Schott
- Department of Medical Oncology, ICANS, Strasbourg, France
| | | | - A Gangi
- Department of Interventional Radiology, University Hospital of Strasbourg, Strasbourg, France
| | - F Proust
- Department of Neurosurgery, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Han Z, Zhuang X, Yang B, Jin L, Hong P, Xue J, Chen S, Tian Z. SYDE1 Acts as an Oncogene in Glioma and has Diagnostic and Prognostic Values. Front Mol Biosci 2021; 8:714203. [PMID: 34722629 PMCID: PMC8552071 DOI: 10.3389/fmolb.2021.714203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: Gliomas remain one of serious public health problems worldwide which demand further and deeper investigation. The aim of this study was to explore the association between synapse defective protein 1 homolog 1 (SYDE1) and gliomas via public database analysis and in vitro validation to determine the potential diagnostic and prognostic values. Methods and Results: Compared with healthy brain tissues, there was a significant increase in SYDE1 expression in glioma tissues. Additionally, SYDE1 exhibited higher expression levels in glioma patients with unfavorable clinicopathological factors. In vitro knockdown of SYDE1 in glioma cell lines A172 inhibited their migrative and invasive ability but not the proliferative ability. GO and KEGG pathway analysis of the top 100 genes coexpressed with SYDE1 showed enrichments of tumor-associated terms. Further bioinformatic analysis revealed that the SNHG16/hsa-miR-520e/SYDE1 axis might be involved in glioma development. Conclusions: SYDE1 is expressed at higher levels in gliomas than in healthy brains, and can promote metastasis and invasion but not proliferation of gliomas. Furthermore, SYDE1 has values in the diagnosis and prognosis prediction of gliomas.
Collapse
Affiliation(s)
- Zhenyuan Han
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Xiaodong Zhuang
- Department of Stomatology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Lihui Jin
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengjie Hong
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Junqing Xue
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital Affiliated to Tongji Universtiy, Shanghai, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Mansfield AS, Hong DS, Hann CL, Farago AF, Beltran H, Waqar SN, Hendifar AE, Anthony LB, Taylor MH, Bryce AH, Tagawa ST, Lewis K, Niu J, Chung CH, Cleary JM, Rossi M, Ludwig C, Valenzuela R, Luo Y, Aggarwal R. A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol 2021; 5:74. [PMID: 34354225 PMCID: PMC8342450 DOI: 10.1038/s41698-021-00214-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Delta-like protein 3 (DLL3) is highly expressed in solid tumors, including neuroendocrine carcinomas/neuroendocrine tumors (NEC/NET). Rovalpituzumab tesirine (Rova-T) is a DLL3-targeting antibody-drug conjugate. Patients with NECs and other advanced DLL3-expressing tumors were enrolled in this phase I/II study (NCT02709889). The primary endpoint was safety. Two hundred patients were enrolled: 101 with NEC/NET (large-cell NEC, gastroenteropancreatic NEC, neuroendocrine prostate cancer, and other NEC/NET) and 99 with other solid tumors (melanoma, medullary thyroid cancer [MTC], glioblastoma, and other). The recommended phase II dose (RP2D) was 0.3 mg/kg every 6 weeks (q6w) for two cycles. At the RP2D, grade 3/4 adverse events included anemia (17%), thrombocytopenia (15%), and elevated aspartate aminotransferase (8%). Responses were confirmed in 15/145 patients (10%) treated at 0.3 mg/kg, including 9/69 patients (13%) with NEC/NET. Rova-T at 0.3 mg/kg q6w had manageable toxicity, with antitumor activity observed in patients with NEC/NET, melanoma, MTC, and glioblastoma.
Collapse
Affiliation(s)
| | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine L Hann
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | | | | | - Saiama N Waqar
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Lowell B Anthony
- University of Kentucky Chandler Medical Center, Lexington, KY, USA
| | - Matthew H Taylor
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | | | - Karl Lewis
- University of Colorado Denver, Aurora, CO, USA
| | - Jiaxin Niu
- Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | | | | | | | | | | | - Yan Luo
- AbbVie, Inc, North Chicago, IL, USA
| | - Rahul Aggarwal
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
22
|
Syafruddin SE, Nazarie WFWM, Moidu NA, Soon BH, Mohtar MA. Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature. BMC Cancer 2021; 21:850. [PMID: 34301218 PMCID: PMC8306276 DOI: 10.1186/s12885-021-08591-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly lethal, stage IV brain tumour with a prevalence of approximately 2 per 10,000 people globally. The cell surface proteins or surfaceome serve as information gateway in many oncogenic signalling pathways and are important in modulating cancer phenotypes. Dysregulation in surfaceome expression and activity have been shown to promote tumorigenesis. The expression of GBM surfaceome is a case in point; OMICS screening in a cell-based system identified that this sub-proteome is largely perturbed in GBM. Additionally, since these cell surface proteins have ‘direct’ access to drugs, they are appealing targets for cancer therapy. However, a comprehensive GBM surfaceome landscape has not been fully defined yet. Thus, this study aimed to define GBM-associated surfaceome genes and identify key cell-surface genes that could potentially be developed as novel GBM biomarkers for therapeutic purposes. Methods We integrated the RNA-Seq data from TCGA GBM (n = 166) and GTEx normal brain cortex (n = 408) databases to identify the significantly dysregulated surfaceome in GBM. This was followed by an integrative analysis that combines transcriptomics, proteomics and protein-protein interaction network data to prioritize the high-confidence GBM surfaceome signature. Results Of the 2381 significantly dysregulated genes in GBM, 395 genes were classified as surfaceome. Via the integrative analysis, we identified 6 high-confidence GBM molecular signature, HLA-DRA, CD44, SLC1A5, EGFR, ITGB2, PTPRJ, which were significantly upregulated in GBM. The expression of these genes was validated in an independent transcriptomics database, which confirmed their upregulated expression in GBM. Importantly, high expression of CD44, PTPRJ and HLA-DRA is significantly associated with poor disease-free survival. Last, using the Drugbank database, we identified several clinically-approved drugs targeting the GBM molecular signature suggesting potential drug repurposing. Conclusions In summary, we identified and highlighted the key GBM surface-enriched repertoires that could be biologically relevant in supporting GBM pathogenesis. These genes could be further interrogated experimentally in future studies that could lead to efficient diagnostic/prognostic markers or potential treatment options for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08591-0.
Collapse
Affiliation(s)
- Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | | | - Nurshahirah Ashikin Moidu
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Bee Hong Soon
- Department of Surgery, Neurosurgery Division, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Tsidulko AY, Shevelev OB, Khotskina AS, Kolpakova MA, Suhovskih AV, Kazanskaya GM, Volkov AM, Aidagulova SV, Zavyalov EL, Grigorieva EV. Chemotherapy-Induced Degradation of Glycosylated Components of the Brain Extracellular Matrix Promotes Glioblastoma Relapse Development in an Animal Model. Front Oncol 2021; 11:713139. [PMID: 34350124 PMCID: PMC8327169 DOI: 10.3389/fonc.2021.713139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Adjuvant chemotherapy with temozolomide (TMZ) is an intrinsic part of glioblastoma multiforme (GBM) therapy targeted to eliminate residual GBM cells. Despite the intensive treatment, a GBM relapse develops in the majority of cases resulting in poor outcome of the disease. Here, we investigated off-target negative effects of the systemic chemotherapy on glycosylated components of the brain extracellular matrix (ECM) and their functional significance. Using an elaborated GBM relapse animal model, we demonstrated that healthy brain tissue resists GBM cell proliferation and invasion, thereby restricting tumor development. TMZ-induced [especially in combination with dexamethasone (DXM)] changes in composition and content of brain ECM proteoglycans (PGs) resulted in the accelerated adhesion, proliferation, and invasion of GBM cells into brain organotypic slices ex vivo and more active growth and invasion of experimental xenograft GBM tumors in SCID mouse brain in vivo. These changes occurred both at core proteins and polysaccharide chain levels, and degradation of chondroitin sulfate (CS) was identified as a key event responsible for the observed functional effects. Collectively, our findings demonstrate that chemotherapy-induced changes in glycosylated components of brain ECM can impact the fate of residual GBM cells and GBM relapse development. ECM-targeted supportive therapy might be a useful strategy to mitigate the negative off-target effects of the adjuvant GBM treatment and increase the relapse-free survival of GBM patients.
Collapse
Affiliation(s)
- Alexandra Y Tsidulko
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna S Khotskina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Mariia A Kolpakova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Anastasia V Suhovskih
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander M Volkov
- Meshalkin National Medical Research Center, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
| | - Svetlana V Aidagulova
- Novosibirsk State Medical University, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia
| | - Evgenii L Zavyalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
24
|
Lara-Velazquez M, Shireman JM, Lehrer EJ, Bowman KM, Ruiz-Garcia H, Paukner MJ, Chappell RJ, Dey M. A Comparison Between Chemo-Radiotherapy Combined With Immunotherapy and Chemo-Radiotherapy Alone for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:662302. [PMID: 34046356 PMCID: PMC8144702 DOI: 10.3389/fonc.2021.662302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Immunotherapy for GBM is an emerging field which is increasingly being investigated in combination with standard of care treatment options with variable reported success rates. Objective To perform a systematic review of the available data to evaluate the safety and efficacy of combining immunotherapy with standard of care chemo-radiotherapy following surgical resection for the treatment of newly diagnosed GBM. Methods A literature search was performed for published clinical trials evaluating immunotherapy for GBM from January 1, 2000, to October 1, 2020, in PubMed and Cochrane using PICOS/PRISMA/MOOSE guidelines. Only clinical trials with two arms (combined therapy vs. control therapy) were included. Outcomes were then pooled using weighted random effects model for meta-analysis and compared using the Wald-type test. Primary outcomes included 1-year overall survival (OS) and progression-free survival (PFS), secondary outcomes included severe adverse events (SAE) grade 3 or higher. Results Nine randomized phase II and/or III clinical trials were included in the analysis, totaling 1,239 patients. The meta-analysis revealed no statistically significant differences in group’s 1-year OS [80.6% (95% CI: 68.6%–90.2%) vs. 72.6% (95% CI: 65.7%–78.9%), p = 0.15] or in 1-year PFS [37% (95% CI: 26.4%–48.2%) vs. 30.4% (95% CI: 25.4%–35.6%) p = 0.17] when the immunotherapy in combination with the standard of care group (combined therapy) was compared to the standard of care group alone (control). Severe adverse events grade 3 to 5 were more common in the immunotherapy and standard of care group than in the standard of care group (47.3%, 95% CI: 20.8–74.6%, vs 43.8%, 95% CI: 8.7–83.1, p = 0.81), but this effect also failed to reach statistical significance. Conclusion Our results suggests that immunotherapy can be safely combined with standard of care chemo-radiotherapy without significant increase in grade 3 to 5 SAE; however, there is no statistically significant increase in overall survival or progression free survival with the combination therapy.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kelsey M Bowman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Henry Ruiz-Garcia
- Department of Neurosurgery and Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitchell J Paukner
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Richard J Chappell
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
25
|
Shuford S, Lipinski L, Abad A, Smith AM, Rayner M, O'Donnell L, Stuart J, Mechtler LL, Fabiano AJ, Edenfield J, Kanos C, Gardner S, Hodge P, Lynn M, Butowski NA, Han SJ, Redjal N, Crosswell HE, Vibat CRT, Holmes L, Gevaert M, Fenstermaker RA, DesRochers TM. Prospective prediction of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay. Neurooncol Adv 2021; 3:vdab065. [PMID: 34142085 PMCID: PMC8207705 DOI: 10.1093/noajnl/vdab065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Clinical outcomes in high-grade glioma (HGG) have remained relatively unchanged over the last 3 decades with only modest increases in overall survival. Despite the validation of biomarkers to classify treatment response, most newly diagnosed (ND) patients receive the same treatment regimen. This study aimed to determine whether a prospective functional assay that provides a direct, live tumor cell-based drug response prediction specific for each patient could accurately predict clinical drug response prior to treatment. Methods A modified 3D cell culture assay was validated to establish baseline parameters including drug concentrations, timing, and reproducibility. Live tumor tissue from HGG patients were tested in the assay to establish response parameters. Clinical correlation was determined between prospective ex vivo response and clinical response in ND HGG patients enrolled in 3D-PREDICT (ClinicalTrials.gov Identifier: NCT03561207). Clinical case studies were examined for relapsed HGG patients enrolled on 3D-PREDICT, prospectively assayed for ex vivo drug response, and monitored for follow-up. Results Absent biomarker stratification, the test accurately predicted clinical response/nonresponse to temozolomide in 17/20 (85%, P = .007) ND patients within 7 days of their surgery, prior to treatment initiation. Test-predicted responders had a median overall survival post-surgery of 11.6 months compared to 5.9 months for test-predicted nonresponders (P = .0376). Case studies provided examples of the clinical utility of the assay predictions and their impact upon treatment decisions resulting in positive clinical outcomes. Conclusion This study both validates the developed assay analytically and clinically and provides case studies of its implementation in clinical practice.
Collapse
Affiliation(s)
| | - Lindsay Lipinski
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ajay Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | | | - Laszlo L Mechtler
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Andrew J Fabiano
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jeff Edenfield
- Department of Medicine, Prisma Health Cancer Institute, Greenville, South Carolina, USA
| | - Charles Kanos
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Stephen Gardner
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Philip Hodge
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Michael Lynn
- Deparment of Surgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, South Carolina, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Seunggu J Han
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| | - Navid Redjal
- Department of Neurosurgery, Capital Health Institute for Neurosciences, Pennington, New Jersey, USA
| | | | | | | | | | - Robert A Fenstermaker
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | |
Collapse
|
26
|
Brennan PM, Borchert R, Coulter C, Critchley GR, Hall B, Holliman D, Phang I, Jefferies SJ, Keni S, Lee L, Liaquat I, Marcus HJ, Thomson S, Thorne L, Vintu M, Wiggins AN, Jenkinson MD, Erridge S. Second surgery for progressive glioblastoma: a multi-centre questionnaire and cohort-based review of clinical decision-making and patient outcomes in current practice. J Neurooncol 2021; 153:99-107. [PMID: 33791952 PMCID: PMC8131335 DOI: 10.1007/s11060-021-03748-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma prognosis is poor. Treatment options are limited at progression. Surgery may benefit, but no quality guidelines exist to inform patient selection. We sought to describe variations in surgical management at progression, highlight where further evidence is needed, and build towards a consensus strategy. METHODS Current practice in selection of patients with progressive GBM for second surgery was surveyed online amongst specialists in the UK and Europe. We complemented this with an assessment of practice in a retrospective cohort study from six United Kingdom neurosurgical units. We used descriptive statistics to analyse the data. RESULTS 234 questionnaire responses were received. Maintaining or improving patient quality of life was key to decision making, with variation as to whether patient age, performance status or intended extent of resection was relevant. MGMT methylation status was not important. Half considered no minimum time after first surgery. 288 patients were reported in the cohort analysis. Median time to second surgery from first surgery 390 days. Median overall survival 815 days, with no association between time to second surgery and time to death (p = 0.874). CONCLUSIONS This is the most wide-ranging examination of contemporaneous practice in management of GBM progression. Without evidence-based guidelines, the variation is unsurprising. We propose consensus guidelines for consideration, to reduce heterogeneity in decision making, support data collection and analysis of factors influencing outcomes, and to inform clinical trials to establish whether second surgery improves patient outcomes, or simply selects to patients already performing well.
Collapse
Affiliation(s)
- P M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - R Borchert
- Addenbrookes University Hospital, Cambridge, UK
| | - C Coulter
- Royal Victoria Hospital, Newcastle, UK
| | - G R Critchley
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - B Hall
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | - I Phang
- Lancashire teaching Hospitals, Preston, UK
| | | | - S Keni
- University of Edinburgh medical School, Edinburgh, UK
| | - L Lee
- University of Edinburgh medical School, Edinburgh, UK
| | - I Liaquat
- Department of Clinical Neuroscience, NHS Lothian, Edinburgh, UK
| | - H J Marcus
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - L Thorne
- University College London Hospitals, London, UK
| | - M Vintu
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - A N Wiggins
- Department of Clinical Neuroscience, NHS Lothian, Edinburgh, UK
| | - M D Jenkinson
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - S Erridge
- Department of Clinical Neuroscience, NHS Lothian, Edinburgh, UK
| |
Collapse
|
27
|
Petterson SA, Sørensen MD, Kristensen BW. Expression Profiling of Primary and Recurrent Glioblastomas Reveals a Reduced Level of Pentraxin 3 in Recurrent Glioblastomas. J Neuropathol Exp Neurol 2021; 79:975-985. [PMID: 32791527 DOI: 10.1093/jnen/nlaa088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBM) are highly infiltrative tumors and despite intensive treatment tumor recurrence is inevitable. The immune microenvironment in recurrent GBM is poorly characterized, but it is potentially influenced by therapeutic interventions with surgery, radiotherapy, and chemotherapy. The aim of this study was to obtain a deeper insight in the immune microenvironment in primary and recurrent GBM. Primary and recurrent glioblastoma samples from 18 patients were identified and expression profiling of 770 myeloid innate immune-related markers was performed. Leukemia inhibitory factor and pentraxin 3 were expressed at lower levels in recurrent tumors. Using in silico data and immunohistochemical staining, this was validated for pentraxin 3. Both high leukemia inhibitory factor and pentraxin 3 expression appeared to be associated with shorter survival in primary and recurrent GBM using in silico data. In primary GBM, gene set analysis also showed higher expression of genes involved in metabolism, extracellular matrix remodeling and complement activation, whereas genes involved in T cell activation and checkpoint signaling were expressed at higher levels in recurrent GBM. The reduced level of pentraxin 3 in recurrent glioblastomas and the gene set analysis results suggest an altered microenvironment in recurrent GBM that might be more active.
Collapse
Affiliation(s)
- Stine Asferg Petterson
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Ciernik IF, Gager Y, Renner C, Spieker S, Arndt N, Neumann K. Salvage Radiation Therapy for Patients With Relapsing Glioblastoma Multiforme and the Role of Slow Fractionation. Front Oncol 2020; 10:577443. [PMID: 33364191 PMCID: PMC7753368 DOI: 10.3389/fonc.2020.577443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background Salvage radiation therapy (SRT) can be offered to patients with relapsing glioblastoma multiforme (GBM). Here we report our experience with a schedule extending the treatment time of SRT with the aim to prolong the cytotoxic effect of ionizing radiation while minimizing the cytotoxic hazards for the surrounding brain. Methods and Patients From 2009 until 2017, 124 of 218 patients received radical resection, adjuvant chemo-radiation with photons and temozolomide (TMZ) followed by adjuvant TMZ. Re-irradiation was performed in 26 patients due to local relapse. Treatment schedules varied. Survival and molecular markers were assessed. Results The median survival was respectively 12 months (9-14.5) of the 124 patients treated with tri-modal therapy and 19.2 months (14.9-24.6) for the 26 patients retreated with SRT (p=0.038). Patients who received daily fractions of 1,6 to 1,65 Gy to a total dose of >40 Gy had a median survival time of 24,6 months compared to patients treated with higher daily doses or a total dose of <40 Gy (p= 0.039), consistent with the observation that patients treated with 21-28 fractions had a median survival of 21,9 months compared to 15,8 months of patients who received 5-20 fractions (p=.0.05). Patients with Ki-67 expression of >30% seemed to perform better than patients with expression levels of ≤20% (p=0.03). MGMT methylation status, TERT promoter or ATRX mutations, overexpression of p53, p16, PD-L1, and EGFR were not prognostic. Conclusions Re-irradiation of relapsing GBM is a highly valid treatment option. Our observation challenges hypofractionated stereotactic radiotherapy for retreatment and controlled trials on the fractionation dose for SRT are needed. Robust predictive molecular markers could be beneficial in the selection of patients for SRT.
Collapse
Affiliation(s)
- I Frank Ciernik
- Department of Radiotherapy and Radiation Oncology, City Hospital, Dessau, Germany.,University of Zürich (MeF), Zürich, Switzerland
| | | | | | | | - Nicole Arndt
- General Pathology, Department of Pathology, City Hospital, Dessau, Germany
| | - Karsten Neumann
- Molecular Pathology, Department of Pathology, City Hospital, Dessau, Germany
| |
Collapse
|
29
|
Colapietro A, Yang P, Rossetti A, Mancini A, Vitale F, Martellucci S, Conway TL, Chakraborty S, Marampon F, Mattei V, Gravina GL, Biordi AL, Wei D, Newman RA, Festuccia C. The Botanical Drug PBI-05204, a Supercritical CO 2 Extract of Nerium Oleander, Inhibits Growth of Human Glioblastoma, Reduces Akt/mTOR Activities, and Modulates GSC Cell-Renewal Properties. Front Pharmacol 2020; 11:552428. [PMID: 33013390 PMCID: PMC7516200 DOI: 10.3389/fphar.2020.552428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most common primary glial tumor resulting in very low patient survival despite current extensive therapeutic efforts. Emerging evidence suggests that more effective treatments are required to overcome tumor heterogeneity, drug resistance and a complex tumor-supporting microenvironment. PBI-05204 is a specifically formulated botanical drug consisting of a modified supercritical C02 extract of Nerium oleander that has undergone both phase I and phase II clinical trials in the United States for treatment of patients with a variety of advanced cancers. The present study was designed to investigate the antitumor efficacy of this botanical drug against glioblastoma using both in vitro and in vivo cancer models as well as exploring efficacy against glioblastoma stem cells. All three human GBM cell lines, U87MG, U251, and T98G, were inhibited by PBI-05204 in a concentration dependent manner that was characterized by induction of apoptosis as evidenced by increased ANNEXIN V staining and caspase activities. The expression of proteins associated with both Akt and mTOR pathway was suppressed by PBI-05240 in all treated human GBM cell lines. PBI-05204 significantly suppressed U87 spheroid formation and the expression of important stem cell markers such as SOX2, CD44, and CXCR4. Oral administration of PBI-05204 resulted in a dose-dependent inhibition of U87MG, U251, and T98G xenograft growth. Additionally, PBI-05204–treated mice carrying U87-Luc cells as an orthotropic model exhibited significantly delayed onset of tumor proliferation and significantly increased overall survival. Immunohistochemical staining of xenograft derived tumor sections revealed dose-dependent declines in expression of Ki67 and CD31 positive stained cells but increased TUNEL staining. PBI-05204 represents a novel therapeutic botanical drug approach for treatment of glioblastoma as demonstrated by significant responses with in vivo tumor models. Both in vitro cell culture and immunohistochemical studies of tumor tissue suggest drug induction of tumor cell apoptosis and inhibition of PI3k/mTOR pathways as well as cancer stemness. Given the fact that PBI-05204 has already been examined in phase I and II clinical trials for cancer patients, its efficacy when combined with standard of care chemotherapy and radiotherapy should be explored in future clinical trials of this difficult to treat brain cancer.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Flora Vitale
- Laboratory of Neurophysiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Martellucci
- Laboratory of Cellular Pathology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Laboratory of Experimental Medicine and Environmental Pathology, University Hub "Sabina Universitas", Rieti, Italy
| | - Tara L Conway
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Francesco Marampon
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Mattei
- Laboratory of Neurophysiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Assunta Leda Biordi
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
30
|
Gatson NTN, Bross SP, Odia Y, Mongelluzzo GJ, Hu Y, Lockard L, Manikowski JJ, Mahadevan A, Kazmi SAJ, Lacroix M, Conger AR, Vadakara J, Nayak L, Chi TL, Mehta MP, Puduvalli VK. Early imaging marker of progressing glioblastoma: a window of opportunity. J Neurooncol 2020; 148:629-640. [PMID: 32602020 DOI: 10.1007/s11060-020-03565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Therapeutic intervention at glioblastoma (GBM) progression, as defined by current assessment criteria, is arguably too late as second-line therapies fail to extend survival. Still, most GBM trials target recurrent disease. We propose integration of a novel imaging biomarker to more confidently and promptly define progression and propose a critical timepoint for earlier intervention to extend therapeutic exposure. METHODS A retrospective review of 609 GBM patients between 2006 and 2019 yielded 135 meeting resection, clinical, and imaging inclusion criteria. We qualitatively and quantitatively analyzed 2000+ sequential brain MRIs (initial diagnosis to first progression) for development of T2 FLAIR signal intensity (SI) within the resection cavity (RC) compared to the ventricles (V) for quantitative inter-image normalization. PFS and OS were evaluated using Kaplan-Meier curves stratified by SI. Specificity and sensitivity were determined using a 2 × 2 table and pathology confirmation at progression. Multivariate analysis evaluated SI effect on the hazard rate for death after adjusting for established prognostic covariates. Recursive partitioning determined successive quantifiers and cutoffs associated with outcomes. Neurological deficits correlated with SI. RESULTS Seventy-five percent of patients developed SI on average 3.4 months before RANO-assessed progression with 84% sensitivity. SI-positivity portended neurological decline and significantly poorer outcomes for PFS (median, 10 vs. 15 months) and OS (median, 20 vs. 29 months) compared to SI-negative. RC/V ratio ≥ 4 was the most significant prognostic indicator of death. CONCLUSION Implications of these data are far-reaching, potentially shifting paradigms for glioma treatment response assessment, altering timepoints for salvage therapeutic intervention, and reshaping glioma clinical trial design.
Collapse
Affiliation(s)
- Na Tosha N Gatson
- Neuroscience Institute, Geisinger Health, Danville, PA, 17822, USA. .,Cancer Institute, Geisinger Health, Danville, PA, 17822, USA. .,Geisinger Commonwealth School of Medicine, Scranton, PA, 18509, USA. .,Geisinger Medical Center, Neuroscience Institute MC 14-03, 100 N. Academy Ave, Danville, PA, 17822, USA.
| | - Shane P Bross
- Neuroscience Institute, Geisinger Health, Danville, PA, 17822, USA
| | - Yazmin Odia
- Department of Neuro-Oncology, Miami Cancer Institute/Baptist Health South Florida, Miami, FL, 33176, USA
| | | | - Yirui Hu
- Department of Population Health Sciences, Geisinger Health, Danville, PA, 17822, USA
| | - Laura Lockard
- Geisinger Commonwealth School of Medicine, Scranton, PA, 18509, USA
| | | | - Anand Mahadevan
- Cancer Institute, Geisinger Health, Danville, PA, 17822, USA
| | - Syed A J Kazmi
- Department of Pathology, Geisinger Health, Danville, PA, 17822, USA
| | - Michel Lacroix
- Neuroscience Institute, Geisinger Health, Danville, PA, 17822, USA
| | - Andrew R Conger
- Neuroscience Institute, Geisinger Health, Danville, PA, 17822, USA.,Geisinger Commonwealth School of Medicine, Scranton, PA, 18509, USA
| | - Joseph Vadakara
- Cancer Institute, Geisinger Health, Danville, PA, 17822, USA
| | - Lakshmi Nayak
- Harvard Medical School, Center for Neuro-Oncology,, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - T Linda Chi
- Department of Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute/Baptist Health South Florida, Miami, FL, 33176, USA
| | - Vinay K Puduvalli
- Division of Neuro-Oncology, The OH State University Comprehensive Cancer Center - James and OSU Neurological Institute, Columbus, OH, 43210, USA.,Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM, Ainslie KM. Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. J Control Release 2020; 323:282-292. [PMID: 32335153 DOI: 10.1016/j.jconrel.2020.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/12/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous form of brain cancer. Genotypic and phenotypic heterogeneity drives drug resistance and tumor recurrence. Combination chemotherapy could overcome drug resistance; however, GBM's location behind the blood-brain barrier severely limits chemotherapeutic options. Interstitial therapy, delivery of chemotherapy locally to the tumor site, via a biodegradable polymer implant can overcome the blood-brain barrier and increase the range of drugs available for therapy. Ideal drug candidates for interstitial therapy are those that are potent against GBM and work in combination with both standard-of-care therapy and new precision medicine targets. Herein we evaluated paclitaxel for interstitial therapy, investigating the effect of combination with both temozolomide, a clinical standard-of-care chemotherapy for GBM, and everolimus, a mammalian target of rapamycin (mTOR) inhibitor that modulates aberrant signaling present in >80% of GBM patients. Tested against a panel of GBM cell lines in vitro, paclitaxel was found to be effective at nanomolar concentrations, complement therapy with temozolomide, and synergize strongly with everolimus. The strong synergism seen with paclitaxel and everolimus was then explored in vivo. Paclitaxel and everolimus were separately formulated into fibrous scaffolds composed of acetalated dextran, a biodegradable polymer with tunable degradation rates, for implantation in the brain. Acetalated dextran degradation rates were tailored to attain matching release kinetics (~3% per day) of both paclitaxel and everolimus to maintain a fixed combination ratio of the two drugs. Combination interstitial therapy of both paclitaxel and everolimus significantly reduced GBM growth and improved progression free survival in two clinically relevant orthotopic models of GBM resection and recurrence. This work illustrates the advantages of synchronized interstitial therapy of paclitaxel and everolimus for post-surgical tumor control of GBM.
Collapse
Affiliation(s)
- Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Simon JE, Prabhu VC, Barton K, Borys E, Piedras-Renteria E, Melian E. Synergistic Therapies for Recurrent Malignant Gliomas. World Neurosurg 2019; 133:237-239. [PMID: 31627003 DOI: 10.1016/j.wneu.2019.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Joshua E Simon
- Department of Neurological Surgery, Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA
| | - Vikram C Prabhu
- Department of Neurological Surgery, Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA; Department of Radiation Oncology, Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA.
| | - Kevin Barton
- Department of Internal Medicine (Oncology), Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA
| | - Ewa Borys
- Department of Pathology, Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA
| | - Erika Piedras-Renteria
- Department of Cell & Molecular Physiology (Neuroscience), Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA
| | - Edward Melian
- Department of Radiation Oncology, Loyola University Medical Center/Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
33
|
The long non-coding RNA, urothelial carcinoma associated 1, promotes cell growth, invasion, migration, and chemo-resistance in glioma through Wnt/β-catenin signaling pathway. Aging (Albany NY) 2019; 11:8239-8253. [PMID: 31596734 PMCID: PMC6814589 DOI: 10.18632/aging.102317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
The long non-coding RNA, urothelial carcinoma associated 1 (UCA1) has been demonstrated to play important roles in various types of cancers. This study investigated the functional role of UCA1 in glioma and explored the underlying molecular mechanisms. UCA1 was found to be highly up-regulated in glioma cells, and knock-down of UCA1 inhibited cell growth, invasion and migration, and also induced apoptosis in glioma cells. On the other hand, overexpression of UCA1 promoted cell proliferation, cell invasion and migration in glioma cells. Knock-down of UCA1 suppressed the activity of Wnt/β-catenin signaling, and treatment with lithium chloride restored the inhibitory effect of UCA1 knock-down on cell invasion and migration. More importantly, the aberrant expression of UCA1 was associated with chemo-resistance to cisplatin and temozolomide in glioma cells via interacting with Wnt/β-catenin signaling. In vivo studies showed that overexpression of UCA1 promoted the in vivo tumor growth of U87 cells in the nude mice. Clinically, UCA1 was found to be up-regulated in glioma tissues and higher expression level of UCA1 was correlated with poor survival in patients with glioma. Taken together, our results showed that UCA1 had a functional role in the regulation of glioma cell growth, invasion and migration, and chemo-resistance possibly via Wnt/β-catenin signaling pathway.
Collapse
|
34
|
Chiocca EA, Yu JS, Lukas RV, Solomon IH, Ligon KL, Nakashima H, Triggs DA, Reardon DA, Wen P, Stopa BM, Naik A, Rudnick J, Hu JL, Kumthekar P, Yamini B, Buck JY, Demars N, Barrett JA, Gelb AB, Zhou J, Lebel F, Cooper LJN. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci Transl Med 2019; 11:eaaw5680. [PMID: 31413142 PMCID: PMC7286430 DOI: 10.1126/scitranslmed.aaw5680] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Human interleukin-12 (hIL-12) is a cytokine with anticancer activity, but its systemic application is limited by toxic inflammatory responses. We assessed the safety and biological effects of an hIL-12 gene, transcriptionally regulated by an oral activator. A multicenter phase 1 dose-escalation trial (NCT02026271) treated 31 patients undergoing resection of recurrent high-grade glioma. Resection cavity walls were injected (day 0) with a fixed dose of the hIL-12 vector (Ad-RTS-hIL-12). The oral activator for hIL-12, veledimex (VDX), was administered preoperatively (assaying blood-brain barrier penetration) and postoperatively (measuring hIL-12 transcriptional regulation). Cohorts received 10 to 40 mg of VDX before and after Ad-RTS-hIL-12. Dose-related increases in VDX, IL-12, and interferon-γ (IFN-γ) were observed in peripheral blood, with about 40% VDX tumor penetration. Frequency and severity of adverse events, including cytokine release syndrome, correlated with VDX dose, reversing promptly upon discontinuation. VDX (20 mg) had superior drug compliance and 12.7 months median overall survival (mOS) at mean follow-up of 13.1 months. Concurrent corticosteroids negatively affected survival: In patients cumulatively receiving >20 mg versus ≤20 mg of dexamethasone (days 0 to 14), mOS was 6.4 and 16.7 months, respectively, in all patients and 6.4 and 17.8 months, respectively, in the 20-mg VDX cohort. Re-resection in five of five patients with suspected recurrence after Ad-RTS-hIL-12 revealed mostly pseudoprogression with increased tumor-infiltrating lymphocytes producing IFN-γ and programmed cell death protein 1 (PD-1). These inflammatory infiltrates support an immunological antitumor effect of hIL-12. This phase 1 trial showed acceptable tolerability of regulated hIL-12 with encouraging preliminary results.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rimas V Lukas
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- University of Chicago, Chicago, IL 60637, USA
| | - Isaac H Solomon
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keith L Ligon
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A Triggs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Brittany M Stopa
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ajay Naik
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Rudnick
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jethro L Hu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Priya Kumthekar
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Jill Y Buck
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Nathan Demars
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - John A Barrett
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Arnold B Gelb
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - John Zhou
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Francois Lebel
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Laurence J N Cooper
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
35
|
Gonçalves RM, Agnes JP, Delgobo M, de Souza PO, Thomé MP, Heimfarth L, Lenz G, Moreira JCF, Zanotto-Filho A. Late autophagy inhibitor chloroquine improves efficacy of the histone deacetylase inhibitor SAHA and temozolomide in gliomas. Biochem Pharmacol 2019; 163:440-450. [PMID: 30878553 DOI: 10.1016/j.bcp.2019.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme is the most aggressive type of primary brain tumor associated with few therapeutic opportunities and poor prognosis. In this study, we evaluated the efficacy of combining temozolomide (TMZ) with suberoylanilide hydroxamic acid (SAHA) - a specific histone deacetylases inhibitor - in glioma models in vitro and in vivo. In glioma cell lines, combined TMZ/SAHA promoted more cytotoxicity, G2/M arrest and apoptosis than either drugs alone. G2/M arrest was detected as soon as 24 h post drug exposure and preceded apoptosis, which occurred from 72 h treatment. TMZ and SAHA, alone or combined, also stimulated autophagy as evaluated by means of acridine orange staining and immunodetection of LC3I-II conversion and p62/SQSTM1 degradation. Time-course of autophagy accompanied G2/M arrest and preceded apoptosis, and blockage of late steps of autophagy with chloroquine (CQ) augmented SAHA/TMZ toxicity leading to apoptosis. In orthotopic gliomas in vivo, combined SAHA/TMZ showed better antitumor efficacy than either drugs alone, and adding CQ to the regimen improved antiglioma effects of SAHA and TMZ monotherapies without further benefit on combined SAHA/TMZ. In summary, the herein presented data suggest that autophagy acts as a protective response that impairs efficacy of SAHA and TMZ. Inhibiting autophagy termination with CQ may offer means to improve antitumor effects of SAHA and TMZ in gliomas and possibly other cancers.
Collapse
Affiliation(s)
- Rosângela Mayer Gonçalves
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonathan Paulo Agnes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marina Delgobo
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Marcos P Thomé
- Departamento de Biofísica and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Alfeu Zanotto-Filho
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
36
|
Abstract
Transcriptional signatures and immune cell infiltrates associated with immune activation distinguish patients with glioblastoma who initially respond to immune checkpoint blockade from those who do not.
Collapse
Affiliation(s)
- Hirotaka Ito
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Wu J, Frady LN, Bash RE, Cohen SM, Schorzman AN, Su YT, Irvin DM, Zamboni WC, Wang X, Frye SV, Ewend MG, Sulman EP, Gilbert MR, Earp HS, Miller CR. MerTK as a therapeutic target in glioblastoma. Neuro Oncol 2019; 20:92-102. [PMID: 28605477 DOI: 10.1093/neuonc/nox111] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Glioma-associated macrophages and microglia (GAMs) are components of the glioblastoma (GBM) microenvironment that express MerTK, a receptor tyrosine kinase that triggers efferocytosis and can suppress innate immune responses. The aim of the study was to define MerTK as a therapeutic target using an orally bioavailable inhibitor, UNC2025. Methods We examined MerTK expression in tumor cells and macrophages in matched patient GBM samples by double-label immunohistochemistry. UNC2025-induced MerTK inhibition was studied in vitro and in vivo. Results MerTK/CD68+ macrophages increased in recurrent tumors while MerTK/glial fibrillary acidic protein-positive tumor cells did not. Pharmacokinetic studies showed high tumor exposures of UNC2025 in a syngeneic orthotopic allograft mouse GBM model. The same model mice were randomized to receive vehicle, daily UNC2025, fractionated external beam radiotherapy (XRT), or UNC2025/XRT. Although median survival (21, 22, 35, and 35 days, respectively) was equivalent with or without UNC2025, bioluminescence imaging (BLI) showed significant growth delay with XRT/UNC2025 treatment and complete responses in 19%. The responders remained alive for 60 days and showed regression to 1%-10% of pretreatment BLI tumor burden; 5 of 6 were tumor free by histology. In contrast, only 2% of 98 GBM mice of the same model treated with XRT survived 50 days and none survived 60 days. UNC2025 also reduced CD206+ macrophages in mouse tumor samples. Conclusions These results suggest that MerTK inhibition combined with XRT has a therapeutic effect in a subset of GBM. Further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lauren N Frady
- Lineberger Comprehensive Cancer Center.,Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan E Bash
- Lineberger Comprehensive Cancer Center.,Division of Neuropathology, Department of Pathology and Laboratory Medicine
| | - Stephanie M Cohen
- Division of Neuropathology, Department of Pathology and Laboratory Medicine
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - William C Zamboni
- Lineberger Comprehensive Cancer Center.,Division of Pharmacotherapy and Experimental Therapeutics, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Xiaodong Wang
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Stephen V Frye
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Matthew G Ewend
- Lineberger Comprehensive Cancer Center.,Department of Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Erik P Sulman
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - C Ryan Miller
- Lineberger Comprehensive Cancer Center.,Division of Neuropathology, Department of Pathology and Laboratory Medicine.,Department of Neurology and Neurosciences Center
| |
Collapse
|
38
|
de Moura Sperotto ND, Deves Roth C, Rodrigues-Junior VS, Ev Neves C, Reisdorfer Paula F, da Silva Dadda A, Bergo P, Freitas de Freitas T, Souza Macchi F, Moura S, Duarte de Souza AP, Campos MM, Valim Bizarro C, Santos DS, Basso LA, Machado P. Design of Novel Inhibitors of Human Thymidine Phosphorylase: Synthesis, Enzyme Inhibition, in Vitro Toxicity, and Impact on Human Glioblastoma Cancer. J Med Chem 2019; 62:1231-1245. [DOI: 10.1021/acs.jmedchem.8b01305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Fávero Reisdorfer Paula
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, 97508-000 Uruguaiana, RS, Brazil
| | | | | | | | | | - Sidnei Moura
- Laboratório de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu R, Qin XP, Zhuang Y, Zhang Y, Liao HB, Tang JC, Pan MX, Zeng FF, Lei Y, Lei RX, Wang S, Liu AC, Chen J, Zhang ZF, Zhao D, Wu SL, Liu RZ, Wang ZF, Wan Q. Glioblastoma recurrence correlates with NLGN3 levels. Cancer Med 2018; 7:2848-2859. [PMID: 29777576 PMCID: PMC6051187 DOI: 10.1002/cam4.1538] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive glioma in the brain. Recurrence of GBM is almost inevitable within a short term after tumor resection. In a retrospective study of 386 cases of GBM collected between 2013 and 2016, we found that recurrence of GBM mainly occurs in the deep brain regions, including the basal ganglia, thalamus, and corpus callosum. But the mechanism underlying this phenomenon is not clear. Previous studies suggest that neuroligin‐3 (NLGN3) is necessary for GBM growth. Our results show that the levels of NLGN3 in the cortex are higher than those in the deep regions in a normal human brain, and similar patterns are also found in a normal mouse brain. In contrast, NLGN3 levels in the deep brain regions of GBM patients are high. We also show that an increase in NLGN3 concentration promotes the growth of U251 cells and U87‐MG cells. Respective use of the cortex neuron culture medium (C‐NCM) and basal ganglia neuron culture medium (BG‐NCM) with DMEM to cultivate U251, U87‐MG and GBM cells isolated from patients, we found that these cells grew faster after treatment with C‐NCM and BG‐NCM in which the cells treated with C‐NCM grew faster than the ones treated with BG‐NCM group. Inhibition of NLGN3 release by ADAM10i prevents NCM‐induced cell growth. Together, this study suggests that increased levels of NLGN3 in the deep brain region under the GBM pathological circumstances may contribute to GBM recurrence in the basal ganglia, thalamus, and corpus callosum.
Collapse
Affiliation(s)
- Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Fei-Fei Zeng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Rui-Xue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Shu Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - An-Chun Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Zhao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Song-Lin Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ren-Zhong Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China
| | - Qi Wan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, Wuhan, China.,Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Gao P, Ji M, Fang X, Liu Y, Yu Z, Cao Y, Sun A, Zhao L, Zhang Y. Capillary electrophoresis - Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues. Anal Biochem 2017; 537:1-7. [PMID: 28847592 DOI: 10.1016/j.ab.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 08/02/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Glioma is one of the most lethal brain malignancies with unknown etiologies. Many metabolomics analysis aiming at diverse kinds of samples had been performed. Due to the varied adopted analytical platforms, the reported disease-related metabolites were not consistent across different studies. Comparable metabolomics results are more likely to be acquired by analyzing the same sample types with identical analytical platform. For tumor researches, tissue samples metabolomics analysis own the unique advantage that it can gain more direct insight into disease-specific pathological molecules. In this light, a previous reported capillary electrophoresis - mass spectrometry human tissues metabolomics analysis method was employed to profile the metabolome of rat C6 cell implantation gliomas and the corresponding precancerous tissues. It was found that 9 metabolites increased in the glioma tissues. Of them, hypotaurine was the only metabolite that enriched in the malignant tissues as what had been reported in the relevant human tissues metabolomics analysis. Furthermore, hypotaurine was also proved to inhibit α-ketoglutarate-dependent dioxygenases (2-KDDs) through immunocytochemistry staining and in vitro enzymatic activity assays by using C6 cell cultures. This study reinforced the previous conclusion that hypotaurine acted as a competitive inhibitor of 2-KDDs and proved the value of metabolomics in oncology studies.
Collapse
Affiliation(s)
- Peng Gao
- Clinical Laboratory, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Min Ji
- Department of Interventional Therapy, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Xueyan Fang
- Department of Nursing, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Yingyang Liu
- Department of Nursing, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Zhigang Yu
- Clinical Technology Center, Dalian Medical University, Dalian, 116044, China
| | - Yunfeng Cao
- RSKT Biopharma Inc., Dalian, Dalian, 116023, China
| | - Aijun Sun
- Translational Medicine Center, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Liang Zhao
- Translational Medicine Center, Dalian Sixth People's Hospital, Dalian, 116031, China
| | - Yong Zhang
- Department of Surgery, Dalian Sixth People's Hospital, Dalian, 116031, China.
| |
Collapse
|
41
|
Iwagami Y, Casulli S, Nagaoka K, Kim M, Carlson RI, Ogawa K, Lebowitz MS, Fuller S, Biswas B, Stewart S, Dong X, Ghanbari H, Wands JR. Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma. Heliyon 2017; 3:e00407. [PMID: 28971150 PMCID: PMC5619992 DOI: 10.1016/j.heliyon.2017.e00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/26/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. METHODS We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. RESULTS Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. CONCLUSIONS These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Miran Kim
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Kosuke Ogawa
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| | | | - Steve Fuller
- Panacea Pharmaceuticals, Gaithersburg, MD, 20877, USA
| | | | | | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
42
|
The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol 2017; 39:225-239. [PMID: 28138787 DOI: 10.1007/s00281-016-0616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
In this review, we focus on the biologic advantages of dendritic cell-based vaccinations as a therapeutic strategy for cancer as well as preclinical and emerging clinical data associated with such approaches for glioblastoma patients.
Collapse
|
43
|
Dong W, Gong H, Zhang G, Vuletic S, Albers J, Zhang J, Liang H, Sui Y, Zheng J. Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:62-73. [PMID: 27864281 DOI: 10.1093/abbs/gmw117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
Glioma is one of the common tumors in brain. The expression level of lipoprotein lipase (LPL) or phospholipid transfer protein (PLTP) may influence glioma progression and its relationship with clinical and pathological parameters. The clinical significance of LPL or PLTP expression in glioma has not been established. In the present study, the LPL and PLTP levels in glioma tumors were investigated and the relationship between the LPL and PLTP level and the grade of malignant glioma was analyzed, with the aim to provide new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. LPL and PLTP mRNA and protein levels were significantly higher in Grade IV glioma than those in the lower grade tumors (P < 0.01). Double immunofluorescent staining showed that the levels of LPL and PLTP were significantly associated with the pathological grade of glioma (P = 0.005). The levels of LPL and PLTP were increased with the shortened survival of glioma patients (P < 0.001). Knockdown of LPL and PLTP led to decreased cell growth and migration but increased apoptosis in vitro Additionally, cell cycle-related cyclins and their partners were found to be down-regulated while cyclin-dependent kinase inhibitors p16, p21, and Rb were up-regulated. Furthermore, knockdown of LPL or PLTP resulted in the up-regulation of pro-apoptotic molecules and the down-regulation of anti-apoptotic molecules. Ablation of LPL or PLTP in U251 cells resulted in the down-regulation of epithelial mesenchymal transition markers and invasion molecules matrix metalloproteinases. LPL and PLTP appear to be novel glioma-associated proteins and play a role in the progression of human glioma.
Collapse
Affiliation(s)
- Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - John Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - Jiaojiao Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hua Liang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanxia Sui
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
44
|
Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL, Kim JY, Atashi F, Zhang L, Lesniak MS, James CD, Ahmed AU. Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model. Mol Cancer Ther 2016; 15:3064-3076. [PMID: 27765847 DOI: 10.1158/1535-7163.mct-15-0675] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
Increasing evidence exposes a subpopulation of cancer cells, known as cancer stem cells (CSCs), to be critical for the progression of several human malignancies, including glioblastoma multiforme. CSCs are highly tumorigenic, capable of self-renewal, and resistant to conventional therapies, and thus considered to be one of the key contributors to disease recurrence. To elucidate the poorly understood evolutionary path of tumor recurrence and the role of CSCs in this process, we developed patient-derived xenograft glioblastoma recurrent models induced by anti-glioma chemotherapy, temozolomide. In this model, we observed a significant phenotypic shift towards an undifferentiated population. We confirmed these findings in vitro as sorted CD133-negative populations cultured in differentiation-forcing media were found to acquire CD133 expression following chemotherapy treatment. To investigate this phenotypic switch at the single-cell level, glioma stem cell (GSC)-specific promoter-based reporter systems were engineered to track changes in the GSC population in real time. We observed the active phenotypic and functional switch of single non-stem glioma cells to a stem-like state and that temozolomide therapy significantly increased the rate of single-cell conversions. Importantly, we showed the therapy-induced hypoxia-inducible factors (HIF) 1α and HIF2α play key roles in allowing non-stem glioma cells to acquire stem-like traits, as the expression of both HIFs increase upon temozolomide therapy and knockdown of HIFs expression inhibits the interconversion between non-stem glioma cells and GSCs post-therapy. On the basis of our results, we propose that anti-glioma chemotherapy promotes the accumulation of HIFs in the glioblastoma multiforme cells that induces the formation of therapy-resistant GSCs responsible for recurrence. Mol Cancer Ther; 15(12); 3064-76. ©2016 AACR.
Collapse
Affiliation(s)
- Gina Lee
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brenda Auffinger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Donna Guo
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tanwir Hasan
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marc Deheeger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alex L Tobias
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeong Yeon Kim
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Fatemeh Atashi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lingjiao Zhang
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
45
|
Mostafa H, Pala A, Högel J, Hlavac M, Dietrich E, Westhoff MA, Nonnenmacher L, Burster T, Georgieff M, Wirtz CR, Schneider EM. Immune phenotypes predict survival in patients with glioblastoma multiforme. J Hematol Oncol 2016; 9:77. [PMID: 27585656 PMCID: PMC5009501 DOI: 10.1186/s13045-016-0272-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 11/24/2022] Open
Abstract
Background Glioblastoma multiforme (GBM), a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA) and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0272-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haouraa Mostafa
- Sektion Experimentelle Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany.,Klinik für Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Andrej Pala
- Department of Neurosurgery, University Hospital Ulm Albert Einstein Allee 23, 89081 Ulm and Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Germany
| | - Josef Högel
- Institute for Human Genetics, Albert Einstein Allee 11, 89081, Ulm, Germany
| | - Michal Hlavac
- Department of Neurosurgery, University Hospital Ulm Albert Einstein Allee 23, 89081 Ulm and Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Germany
| | - Elvira Dietrich
- Sektion Experimentelle Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany.,Klinik für Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - M Andrew Westhoff
- Department of Pediatric Hematology and Oncology, University Hospital Ulm, Prittwitzstr. 43, 89075, Ulm, Germany
| | - Lisa Nonnenmacher
- Department of Neurosurgery, University Hospital Ulm Albert Einstein Allee 23, 89081 Ulm and Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Germany
| | - Timo Burster
- Department of Neurosurgery, University Hospital Ulm Albert Einstein Allee 23, 89081 Ulm and Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Germany
| | - Michael Georgieff
- Klinik für Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - C Rainer Wirtz
- Department of Neurosurgery, University Hospital Ulm Albert Einstein Allee 23, 89081 Ulm and Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Germany
| | - E Marion Schneider
- Sektion Experimentelle Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany. .,Klinik für Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
46
|
Zheng J, Dong W, Zhang J, Li G, Gong H. YB-1, a new biomarker of glioma progression, is associated with the prognosis of glioma patients. Acta Biochim Biophys Sin (Shanghai) 2016; 48:318-25. [PMID: 26936129 DOI: 10.1093/abbs/gmw012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023] Open
Abstract
Y box protein 1 (YB-1) is a multifunctional cellular protein expressed in various cancers, and is a potential target in cancer therapy. Although there is evidence showing that YB-1 plays a role in human cancers, the clinical significance of YB-1 expression in glioma has not been established. In the present study, we investigated the YB-1 level in glioma tumors and analyzed the relationship between the YB-1 level and the grade of malignant glioma, with the aim of providing new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. A total of 108 patients, comprising 14, 31, 30, and 33 with gliomas of Grades I, II, III, and IV, respectively, were included in this study. The mRNA and protein levels of YB-1 were found to be significantly different between Grade IV and lower-grade tumors. The YB-1 levels in cerebrospinal fluid were significantly higher in Grades III and IV glioma patients than in Grades I and II patients. Immunofluorescence staining was used to detect the levels of YB-1 in the cytoplasm and the nucleus, and results indicated that the intracellular distribution was significantly associated with the pathological grade of glioma. A higher level of YB-1 was associated with shortened survival, suggesting that YB-1 plays a role in the progression of human glioma.
Collapse
Affiliation(s)
- Jin Zheng
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jiangwei Zhang
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guangyue Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huilin Gong
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
47
|
Gatson NTN, Weathers SPS, de Groot JF. ReACT Phase II trial: a critical evaluation of the use of rindopepimut plus bevacizumab to treat EGFRvIII-positive recurrent glioblastoma. CNS Oncol 2015; 5:11-26. [PMID: 26670466 DOI: 10.2217/cns.15.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the most deadly primary brain tumor in adults and has long represented a therapeutic challenge. Disease recurrence is inevitable, and the management of recurrent disease is complicated by spontaneous or induced tumor heterogeneity which confers resistance to therapy and increased oncogenicity. EGFR and the tumor-specific mutation EGFRvIII is commonly altered in glioblastoma making it an appealing therapeutic target. Immunotherapy is an emerging and promising therapeutic approach to glioma and the EGFRvIII vaccine, rindopepimut, is the first immunotherapeutic drug to enter Phase III clinical trials for glioblastoma. Rindopepimut activates a specific immune response against tumor cells harboring the EGFRvIII protein. This review evaluates the recently completed ReACT Phase II trial using rindopepimut plus bevacizumab in the setting of EGFRvIII-positive recurrent glioblastoma (Clinical Trials identifier: NCT01498328).
Collapse
Affiliation(s)
- Na Tosha N Gatson
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX 77054, USA
| | - Shiao-Pei S Weathers
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX 77054, USA
| | - John F de Groot
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX 77054, USA
| |
Collapse
|
48
|
Das A, Cheng RR, Hilbert MLT, Dixon-Moh YN, Decandio M, Vandergrift WA, Banik NL, Lindhorst SM, Cachia D, Varma AK, Patel SJ, Giglio P. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma. CANCER GROWTH AND METASTASIS 2015; 8:51-60. [PMID: 26648752 PMCID: PMC4667559 DOI: 10.4137/cgm.s32801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the management of human GBs.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ron Ron Cheng
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Megan L T Hilbert
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Moh
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Michele Decandio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Scott M Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - David Cachia
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Abhay K Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Pierre Giglio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
49
|
BRYUKHOVETSKIY IGOR, BRYUKHOVETSKIY ANDREY, KHOTIMCHENKO YURI, MISCHENKO POLINA. Novel cellular and post-genomic technologies in the treatment of glioblastoma multiforme (Review). Oncol Rep 2015; 35:639-48. [DOI: 10.3892/or.2015.4404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/17/2015] [Indexed: 11/05/2022] Open
|
50
|
Levin GT, Greenwood KM, Singh F, Tsoi D, Newton RU. Exercise Improves Physical Function and Mental Health of Brain Cancer Survivors: Two Exploratory Case Studies. Integr Cancer Ther 2015; 15:190-6. [PMID: 26276806 DOI: 10.1177/1534735415600068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Malignant brain tumors are unpredictable and incurable, with 5-year survival rates less than 30%. The poor prognosis combined with intensive treatment necessitates the inclusion of complementary and supportive therapies that optimize quality of life and reduce treatment-related declines in health. Exercise therapy has been shown to be beneficial in other cancer populations, but no evidence is available for brain cancer survivors. Therefore, we report results from 2 preliminary cases. Methods Two female patients diagnosed with glioblastoma multiforme and oligodendroglioma participated in a structured and supervised 12-week exercise program. The program consisted of two 1-hour resistance and aerobic exercise sessions per week and additional self-managed aerobic sessions. Outcome measures of strength, cardiovascular fitness, and several psychological indicators (depression, anxiety, and quality of life) were recorded at baseline, after 6 weeks and at the conclusion of the intervention. Results Exercise was well tolerated; both participants completed all 24 sessions and the home-based component with no adverse effects. Objective outcome measures displayed positive responses relating to reduced morbidity. Similar positive responses were found for psychological outcomes. Scores on the Hospital Anxiety and Depression Scale showed clinically meaningful improvements in depression and total distress. Conclusion These findings provide initial evidence that, despite the difficulties associated with brain cancer treatment and survivorship, exercise may be safe and beneficial and should be considered in the overall management of patients with brain cancer.
Collapse
Affiliation(s)
- Gregory T Levin
- University of Calgary, AB, Canada Edith Cowan University, Perth, WA, Australia
| | - Kenneth M Greenwood
- Edith Cowan University, Perth, WA, Australia Capital Medical University, Beijing, PRC
| | - Favil Singh
- Edith Cowan University, Perth, WA, Australia
| | - Daphne Tsoi
- St John of God Hospital, Subiaco, WA, Australia
| | | |
Collapse
|