1
|
Noberini R, Bonaldi T. Proteomics contributions to epigenetic drug discovery. Proteomics 2023; 23:e2200435. [PMID: 37727062 DOI: 10.1002/pmic.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The combined activity of epigenetic features, which include histone post-translational modifications, DNA methylation, and nucleosome positioning, regulates gene expression independently from changes in the DNA sequence, defining how the shared genetic information of an organism is used to generate different cell phenotypes. Alterations in epigenetic processes have been linked with a multitude of diseases, including cancer, fueling interest in the discovery of drugs targeting the proteins responsible for writing, erasing, or reading histone and DNA modifications. Mass spectrometry (MS)-based proteomics has emerged as a versatile tool that can assist drug discovery pipelines from target validation, through target deconvolution, to monitoring drug efficacy in vivo. Here, we provide an overview of the contributions of MS-based proteomics to epigenetic drug discovery, describing the main approaches that can be used to support different drug discovery pipelines and highlighting how they contributed to the development and characterization of epigenetic drugs.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Noberini R, Longhi E, Bonaldi T. A Super-SILAC Approach for Profiling Histone Posttranslational Modifications. Methods Mol Biol 2023; 2603:87-102. [PMID: 36370272 DOI: 10.1007/978-1-0716-2863-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histone posttranslational modifications (PTMs) play an important role in the regulation of gene expression and have been implicated in a multitude of physiological and pathological processes. During the last decade, mass spectrometry (MS) has emerged as the most accurate and versatile tool to quantitate histone PTMs. Stable-isotope labeling by amino acids in cell culture (SILAC) is an MS-based quantitation strategy involving metabolic labeling of cells, which has been applied to global protein profiling as well as histone PTM analysis. The classical SILAC approach is associated with reduced experimental variability and high quantitation accuracy, but provides limited multiplexing capabilities and can be applied only to actively dividing cells, thus excluding clinical samples. Both limitations are overcome by an evolution of classical SILAC involving the use of a mix of heavy-labeled cell lines as a spike-in standard, known as "super-SILAC". In this chapter, we will provide a detailed description of the optimized protocol used in our laboratory to generate a histone-focused super-SILAC mix and employ it as an internal standard for histone PTM quantitation.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Elisa Longhi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
3
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
4
|
Kuchaříková H, Dobrovolná P, Lochmanová G, Zdráhal Z. Trimethylacetic Anhydride-Based Derivatization Facilitates Quantification of Histone Marks at the MS1 Level. Mol Cell Proteomics 2021; 20:100114. [PMID: 34129942 PMCID: PMC8283018 DOI: 10.1016/j.mcpro.2021.100114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Histone post-translational modifications (hPTMs) are epigenetic marks that strongly affect numerous processes, including cell cycling and protein interactions. They have been studied by both antibody- and MS-based methods for years, but the analyses are still challenging, mainly because of the diversity of histones and their modifications arising from high contents of reactive amine groups in their amino acid sequences. Here, we introduce use of trimethylacetic anhydride (TMA) as a new reagent for efficient histone derivatization, which is a requirement for bottom-up proteomic hPTM analysis. TMA can derivatize unmodified amine groups of lysine residues and amine groups generated at peptide N-termini by trypsin digestion. The derivatization is facilitated by microwave irradiation, which also reduces incubation times to minutes. We demonstrate that histone derivatization with TMA reliably provides high yields of fully derivatized peptides and thus is an effective alternative to conventional methods. TMA afforded more than 98% and 99% labeling efficiencies for histones H4 and H3, respectively, thereby enabling accurate quantification of peptide forms. Trimethylacetylation substantially improves chromatographic separation of peptide forms, which is essential for direct quantification based on signals extracted from MS1 data. For this purpose, software widely applied by the proteomics community can be used without additional computational development. Thorough comparison with widely applied propionylation highlights the advantages of TMA-based histone derivatization for monitoring hPTMs in biological samples.
Collapse
Affiliation(s)
- Hana Kuchaříková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Dobrovolná
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Lu C, Coradin M, Janssen KA, Sidoli S, Garcia BA. Combinatorial Histone H3 Modifications Are Dynamically Altered in Distinct Cell Cycle Phases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1300-1311. [PMID: 33818074 PMCID: PMC8380055 DOI: 10.1021/jasms.0c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cell cycle is a highly regulated and evolutionary conserved process that results in the duplication of cell content and the equal distribution of the duplicated chromosomes into a pair of daughter cells. Histones are fundamental structural components of chromatin in eukaryotic cells, and their post-translational modifications (PTMs) benchmark DNA readout and chromosome condensation. Aberrant regulation of the cell cycle associated with dysregulation of histone PTMs is the cause of critical diseases such as cancer. Monitoring changes of histone PTMs could pave the way to understanding the molecular mechanisms associated with epigenetic regulation of cell proliferation. Previously, our lab established a novel middle-down workflow using porous graphitic carbon (PGC) as a stationary phase to analyze histone PTMs, which utilizes the same reversed-phase chromatography for gradient separation as canonical proteomics coupled with online mass spectrometry (MS). Here, we applied this novel workflow for high-throughput analysis of histone modifications of H3.1 and H3.2 during the cell cycle. Collectively, we identified 1133 uniquely modified canonical histone H3 N-terminal tails. Consistent with previous findings, histone H3 phosphorylation increased significantly during the mitosis (M) phase. Histone H3 variant-specific and cell-cycle-dependent expressions of PTMs were observed, underlining the need to not combine H3.1 and H3.2 together as H3. We confirmed previously known H3 PTM crosstalk (e.g., K9me-S10ph) and revealed new information in this area as well. These findings imply that the combinatorial PTMs play a role in cell cycle control, and they may serve as markers for proliferation.
Collapse
Affiliation(s)
- Congcong Lu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biochemistry and Molecular Biophysics graduate group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin A. Janssen
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biochemistry and Molecular Biophysics graduate group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- To whom correspondence should be addressed.
| |
Collapse
|
6
|
Noberini R, Robusti G, Bonaldi T. Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J 2021; 289:1191-1213. [PMID: 33415821 PMCID: PMC9291046 DOI: 10.1111/febs.15707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
In the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants. MS has been extensively used for the analysis of epigenetic marks in cell lines and animal tissue and, thanks to recent technological advances, is now ready to be applied also to clinical samples. In this review, we will provide an overview on the quantitative MS-based analysis of histones, their PTMs and their variants in cancer clinical samples, highlighting current achievements and future perspectives for this novel field of research. Among the different MS-based approaches currently available for histone PTM profiling, we will focus on the 'bottom-up' strategy, namely the analysis of short proteolytic peptides, as it has been already successfully employed for the analysis of clinical samples.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
7
|
Hsu KF, Wilkins SE, Hopkinson RJ, Sekirnik R, Flashman E, Kawamura A, McCullagh JS, Walport LJ, Schofield CJ. Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications. Epigenetics 2021; 16:14-27. [PMID: 32609604 PMCID: PMC7889154 DOI: 10.1080/15592294.2020.1786305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Post-translational modifications (PTMs) to the tails of the core histone proteins are critically involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demonstrate that intact protein LC-MS profiling is a relatively simple and robust method for investigating potential effects of drugs on histone modifications. The results provide insights into the profiles of PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics cause similar changes to histones. These findings imply chemically-induced hypoxia does not completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting that caution should be used in interpreting data from their use.
Collapse
Affiliation(s)
- Kuo-Feng Hsu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sarah E. Wilkins
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Richard J. Hopkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, UK
| | - Rok Sekirnik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Emily Flashman
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Louise J. Walport
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | |
Collapse
|
8
|
Lu C, Coradin M, Porter EG, Garcia BA. Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry-Based Approaches. Mol Cell Proteomics 2020; 20:100006. [PMID: 33203747 PMCID: PMC7950153 DOI: 10.1074/mcp.r120.002257] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Histone post-translational modifications (PTMs) are one of the main mechanisms of epigenetic regulation. Dysregulation of histone PTMs leads to many human diseases, such as cancer. Because of its high throughput, accuracy, and flexibility, mass spectrometry (MS) has emerged as a powerful tool in the epigenetic histone modification field, allowing the comprehensive and unbiased analysis of histone PTMs and chromatin-associated factors. Coupled with various techniques from molecular biology, biochemistry, chemical biology, and biophysics, MS has been used to characterize distinct aspects of histone PTMs in the epigenetic regulation of chromatin functions. In this review, we will describe advancements in the field of MS that have facilitated the analysis of histone PTMs and chromatin biology. Middle–down is the most suitable to study histone combinatorial post-translational modifications. Crosslinking MS has a variety of potential applications in exploring histone post-translational modifications. Hydrogen–deuterium exchange MS holds great promise to study the compaction of nucleosome. Multi-omics approaches are useful to study complex regulatory networks.
Collapse
Affiliation(s)
- Congcong Lu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Espejo I, Di Croce L, Aranda S. The changing chromatome as a driver of disease: A panoramic view from different methodologies. Bioessays 2020; 42:e2000203. [PMID: 33169398 DOI: 10.1002/bies.202000203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Indexed: 12/16/2022]
Abstract
Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the "chromatome") are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could, thus, reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
Collapse
Affiliation(s)
- Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,UniversitatPompeuFabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
10
|
Hoopmann MR, Kusebauch U, Palmblad M, Bandeira N, Shteynberg DD, He L, Xia B, Stoychev SH, Omenn GS, Weintraub ST, Moritz RL. Insights from the First Phosphopeptide Challenge of the MS Resource Pillar of the HUPO Human Proteome Project. J Proteome Res 2020; 19:4754-4765. [PMID: 33166149 DOI: 10.1021/acs.jproteome.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mass spectrometry has greatly improved the analysis of phosphorylation events in complex biological systems and on a large scale. Despite considerable progress, the correct identification of phosphorylated sites, their quantification, and their interpretation regarding physiological relevance remain challenging. The MS Resource Pillar of the Human Proteome Organization (HUPO) Human Proteome Project (HPP) initiated the Phosphopeptide Challenge as a resource to help the community evaluate methods, learn procedures and data analysis routines, and establish their own workflows by comparing results obtained from a standard set of 94 phosphopeptides (serine, threonine, tyrosine) and their nonphosphorylated counterparts mixed at different ratios in a neat sample and a yeast background. Participants analyzed both samples with their method(s) of choice to report the identification and site localization of these peptides, determine their relative abundances, and enrich for the phosphorylated peptides in the yeast background. We discuss the results from 22 laboratories that used a range of different methods, instruments, and analysis software. We reanalyzed submitted data with a single software pipeline and highlight the successes and challenges in correct phosphosite localization. All of the data from this collaborative endeavor are shared as a resource to encourage the development of even better methods and tools for diverse phosphoproteomic applications. All submitted data and search results were uploaded to MassIVE (https://massive.ucsd.edu/) as data set MSV000085932 with ProteomeXchange identifier PXD020801.
Collapse
Affiliation(s)
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Lingjie He
- Synpeptide Co., Ltd., Shanghai 201204, China
| | - Bin Xia
- Synpeptide Co., Ltd., Shanghai 201204, China
| | | | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine and Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
11
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
12
|
Epigenetic drug target deconvolution by mass spectrometry-based technologies. Nat Struct Mol Biol 2019; 26:854-857. [PMID: 31582842 DOI: 10.1038/s41594-019-0279-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
The identification of the full target spectrum of active molecules, known as target deconvolution, has become an indispensable step during the drug discovery process. It is now achievable thanks to mass spectrometry-based technologies. Here we discuss these approaches in the context of epigenetic drug discovery.
Collapse
|
13
|
Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019; 26:5317-5337. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Rebecca Wangen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, N-5021 Bergen, Norway
| | - Frode S Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Astrid Guldbrandsen
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Computational Biology Unit, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlensgt 55, N-5008 Bergen, Norway
| |
Collapse
|
14
|
Onwuli DO, Samuel SF, Sfyri P, Welham K, Goddard M, Abu-Omar Y, Loubani M, Rivero F, Matsakas A, Benoit DM, Wade M, Greenman J, Beltran-Alvarez P. The inhibitory subunit of cardiac troponin (cTnI) is modified by arginine methylation in the human heart. Int J Cardiol 2019; 282:76-80. [PMID: 30772011 DOI: 10.1016/j.ijcard.2019.01.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The inhibitory subunit of cardiac troponin (cTnI) is a gold standard cardiac biomarker and also an essential protein in cardiomyocyte excitation-contraction coupling. The interactions of cTnI with other proteins are fine-tuned by post-translational modification of cTnI. Mutations in cTnI can lead to hypertrophic cardiomyopathy. METHODS AND RESULTS Here we report, for the first time, that cTnI is modified by arginine methylation in human myocardium. Using Western blot, we observed reduced levels of cTnI arginine methylation in human hypertrophic cardiomyopathy compared to dilated cardiomyopathy biopsies. Similarly, using a rat model of cardiac hypertrophy we observed reduced levels of cTnI arginine methylation compared to sham controls. Using mass spectrometry, we identified cTnI methylation sites at R74/R79 and R146/R148 in human cardiac samples. R146 and R148 lie at the boundary between the critical cTnI inhibitory and switch peptides; PRMT1 methylated an extended inhibitory peptide at R146 and R148 in vitro. Mutations at R145 that have been associated with hypertrophic cardiomyopathy hampered R146/R148 methylation by PRMT1 in vitro. H9c2 cardiac-like cells transfected with plasmids encoding for a methylation-deficient R146A/R148A cTnI protein developed cell hypertrophy, with a 32% increase in cell size after 72 h, compared to control cells. DISCUSSION Our results provide evidence for a novel and significant cTnI post-translational modification. Our work opens the door to translational investigations of cTnI arginine methylation as a biomarker of disease, which can include e.g. cardiomyopathies, myocardial infarction and heart failure, and offers a novel way to investigate the effect of cTnI mutations in the inhibitory/switch peptides.
Collapse
Affiliation(s)
- Donatus O Onwuli
- Biomedical Sciences, University of Hull, Cottingham Rd, HU6 7RX Hull, UK
| | | | - Pagona Sfyri
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Kevin Welham
- School of Chemistry, University of Hull, Cottingham Rd, HU6 7RX Hull, UK
| | - Martin Goddard
- Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridge CB23 3RE, UK
| | - Yasir Abu-Omar
- Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridge CB23 3RE, UK
| | - Mahmoud Loubani
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK; Hull and East Yorkshire Hospitals NHS Trust, Castle Rd, Cottingham HU16 5JQ, UK
| | - Francisco Rivero
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Antonios Matsakas
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - David M Benoit
- School of Chemistry, University of Hull, Cottingham Rd, HU6 7RX Hull, UK
| | - Mark Wade
- Biomedical Sciences, University of Hull, Cottingham Rd, HU6 7RX Hull, UK
| | - John Greenman
- Biomedical Sciences, University of Hull, Cottingham Rd, HU6 7RX Hull, UK
| | | |
Collapse
|
15
|
Mauger F, Deleuze JF. Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. PROGNOSTIC EPIGENETICS 2019:45-83. [DOI: 10.1016/b978-0-12-814259-2.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Ginno PA, Burger L, Seebacher J, Iesmantavicius V, Schübeler D. Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat Commun 2018; 9:4048. [PMID: 30279501 PMCID: PMC6168604 DOI: 10.1038/s41467-018-06007-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Regulation of transcription, replication, and cell division relies on differential protein binding to DNA and chromatin, yet it is unclear which regulatory components remain bound to compacted mitotic chromosomes. By utilizing the buoyant density of DNA–protein complexes after cross-linking, we here develop a mass spectrometry-based approach to quantify the chromatin-associated proteome at separate stages of the cell cycle. While epigenetic modifiers that promote transcription are lost from mitotic chromatin, repressive modifiers generally remain associated. Furthermore, while proteins involved in transcriptional elongation are evicted, most identified transcription factors are retained on mitotic chromatin to varying degrees, including core promoter binding proteins. This predicts conservation of the regulatory landscape on mitotic chromosomes, which we confirm by genome-wide measurements of chromatin accessibility. In summary, this work establishes an approach to study chromatin, provides a comprehensive catalog of chromatin changes during the cell cycle, and reveals the degree to which the genomic regulatory landscape is maintained through mitosis. Mitosis poses a challenge for transcriptional programs, as it is thought that several proteins lose binding on condensed chromosomes. Here, the authors analyze the chromatin-bound proteome through the cell cycle, revealing retention of most transcription factors and preservation of the regulatory landscape.
Collapse
Affiliation(s)
- Paul Adrian Ginno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Kriss CL, Gregory-Lott E, Storey AJ, Tackett AJ, Wahls WP, Stevens SM. In Vivo Metabolic Tracing Demonstrates the Site-Specific Contribution of Hepatic Ethanol Metabolism to Histone Acetylation. Alcohol Clin Exp Res 2018; 42:1909-1923. [PMID: 30030934 PMCID: PMC6208134 DOI: 10.1111/acer.13843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epigenetic dysregulation through ethanol (EtOH)-induced changes in DNA methylation and histone modifications has been implicated in several alcohol-related disorders such as alcoholic liver disease. EtOH metabolism in the liver results in the formation of acetate, a metabolite that can be converted to acetyl-CoA, which can then be used by histone acetyltransferases to acetylate lysine residues. EtOH metabolism in the liver can also indirectly influence lysine acetylation through NAD+ -dependent sirtuin activity that is altered due to increases in NADH. As a proof-of-concept study to determine the direct influence of hepatic EtOH metabolism on histone acetylation changes, we used heavy-labeled EtOH (13 C2 ) and mass spectrometry (MS) to site specifically characterize lysine acetylation on histone proteins. METHODS Eight-week-old male C57BL/6J mice were gavaged using a bolus dose of either 13 C2 -labeled EtOH (5 g/kg) or maltose dextrin. Blood and livers were collected at 0, 4, and 24 hours followed by histone protein enrichment and derivatization using acid extraction and propionylation, respectively. Metabolic tracing and relative quantitation of acetylated histone proteins were performed using a hybrid quadrupole-orbitrap mass spectrometer. Data were analyzed using MaxQuant, Xcalibur Qual Browser, and the Bioconductor package "mzR." The contribution of EtOH to histone acetylation was quantified using the change in relative abundance of stable isotope incorporation in acetylated peptides detected by MS. RESULTS Data show significant incorporation of the EtOH-derived 13 C2 -label into N-terminal lysine acetylation sites on histones H3 and H4 after 4 hours, with rapid turnover of labeled histone acetylation sites and return to endogenous levels at 24 hours postgavage. Moreover, site-specific selectivity was observed in regard to label incorporation into certain lysine acetylation sites as determined by tandem mass spectrometry and comparison to isotope simulations. CONCLUSIONS These data provide the first quantitative evidence of how hepatic EtOH metabolism directly influences histone lysine acetylation in a site-specific manner and may influence EtOH-induced gene expression through these transcriptionally activating chromatin marks.
Collapse
Affiliation(s)
- Crystina L. Kriss
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| | - Emily Gregory-Lott
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| |
Collapse
|
18
|
Dammalli M, Dey G, Kumar M, Madugundu AK, Gopalakrishnan L, Gowrishankar BS, Mahadevan A, Shankar SK, Prasad TSK. Proteomics of the Human Olfactory Tract. ACTA ACUST UNITED AC 2018; 22:77-87. [DOI: 10.1089/omi.2017.0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Manjunath Dammalli
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore, India
- NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
19
|
Soldi M, Mari T, Nicosia L, Musiani D, Sigismondo G, Cuomo A, Pavesi G, Bonaldi T. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers. Nucleic Acids Res 2017; 45:12195-12213. [PMID: 28981749 PMCID: PMC5716071 DOI: 10.1093/nar/gkx821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type–specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low tri-methylation levels of lysine 4 of histone H3 is considered a signature of enhancers, but a comprehensive view of histone modifications associated to enhancers is still lacking. By combining chromatin immunoprecipitation (ChIP) with mass spectrometry, we investigated cis-regulatory regions in macrophages to comprehensively identify histone marks specifically associated with enhancers, and to profile their dynamics after transcriptional activation elicited by an inflammatory stimulation. The intersection of the proteomics data with ChIP-seq and RNA-seq analyses revealed the existence of novel subpopulations of enhancers, marked by specific histone modification signatures: specifically, H3K4me1/K36me2 marks transcribed enhancers, while H3K4me1/K36me3 and H3K4me1/K79me2 combinations mark distinct classes of intronic enhancers. Thus, our MS analysis of functionally distinct genomic regions revealed the combinatorial code of histone modifications, highlighting the potential of proteomics in addressing fundamental questions in epigenetics.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Tommaso Mari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Daniele Musiani
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Milan 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| |
Collapse
|
20
|
Eubanks CG, Dayebgadoh G, Liu X, Washburn MP. Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics 2017; 14:905-915. [PMID: 28895440 DOI: 10.1080/14789450.2017.1374860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chromatin remodeling complexes play important roles in the control of genome regulation in both normal and diseased states, and are therefore critical components for the regulation of epigenetic states in cells. Given the role epigenetics plays in cancer, for example, chromatin remodeling complexes are routinely targeted for therapeutic intervention. Areas covered: Protein mass spectrometry and proteomics are powerful technologies used to study and understand chromatin remodeling. While impressive progress has been made in this area, there remain significant challenges in the application of proteomic technologies to the study of chromatin remodeling. As parts of large multi-subunit complexes that can be heavily modified with dynamic post-translational modifications, challenges in the study of chromatin remodeling complexes include defining the content, determining the regulation, and studying the dynamics of the complexes under different cellular states. Expert commentary: Impwortant considerations in the study of chromatin remodeling complexes include the complexity of sample preparation, the choice of proteomic methods for the analysis of samples, and data analysis challenges. Continued research in these three areas promise to yield even greater insights into the biology of chromatin remodeling and epigenetics and the dynamics of these systems in human health and cancer.
Collapse
Affiliation(s)
| | | | - Xingyu Liu
- a Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Michael P Washburn
- a Stowers Institute for Medical Research , Kansas City , MO , USA.,b Departments of Pathology & Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
21
|
Sidoli S, Lu C, Coradin M, Wang X, Karch KR, Ruminowicz C, Garcia BA. Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code. Epigenetics Chromatin 2017; 10:34. [PMID: 28683815 PMCID: PMC5501349 DOI: 10.1186/s13072-017-0139-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/27/2017] [Indexed: 01/15/2023] Open
Abstract
Background Middle-down mass spectrometry (MS), i.e., analysis of long (~50–60 aa) polypeptides, has become the method with the highest throughput and accuracy for the characterization of combinatorial histone posttranslational modifications (PTMs). The discovery of histone readers with multiple domains, and overall the cross talk of PTMs that decorate histone proteins, has revealed that histone marks have synergistic roles in modulating enzyme recruitment and subsequent chromatin activities. Here, we demonstrate that the middle-down MS strategy can be combined with metabolic labeling for enhanced quantification of histone proteins and their combinatorial PTMs in a dynamic manner. Methods We used a nanoHPLC-MS/MS system consisting of hybrid weak cation exchange–hydrophilic interaction chromatography combined with high resolution MS and MS/MS with ETD fragmentation. After spectra identification, we filtered confident hits and quantified polypeptides using our in-house software isoScale. Results We first verified that middle-down MS can discriminate and differentially quantify unlabeled from heavy labeled histone N-terminal tails (heavy lysine and arginine residues). Results revealed no bias toward identifying and quantifying unlabeled versus heavy labeled tails, even if the heavy labeled peptides presented the typical skewed isotopic pattern typical of long protein sequences that hardly get 100% labeling. Next, we plated epithelial cells into a media with heavy methionine-(methyl-13CD3), the precursor of the methyl donor S-adenosylmethionine and stimulated epithelial to mesenchymal transition (EMT). We assessed that results were reproducible across biological replicates and with data obtained using the more widely adopted bottom-up MS strategy, i.e., analysis of short tryptic peptides. We found remarkable differences in the incorporation rate of methylations in non-confluent cells versus confluent cells. Moreover, we showed that H3K27me3 was a critical player during the EMT process, as a consistent portion of histones modified as H3K27me2K36me2 in epithelial cells were converted into H3K27me3K36me2 in mesenchymal cells. Conclusions We demonstrate that middle-down MS, despite being a more scarcely exploited MS technique than bottom-up, is a robust quantitative method for histone PTM characterization. In particular, middle-down MS combined with metabolic labeling is currently the only methodology available for investigating turnover of combinatorial histone PTMs in dynamic systems. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Congcong Lu
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Xiaoshi Wang
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Kelly R Karch
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Gul S. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017; 9:41. [PMID: 28439316 PMCID: PMC5399855 DOI: 10.1186/s13148-017-0342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
The implication of epigenetic abnormalities in many diseases and the approval of a number of compounds that modulate specific epigenetic targets in a therapeutically relevant manner in cancer specifically confirms that some of these targets are druggable by small molecules. Furthermore, a number of compounds are currently in clinical trials for other diseases including cardiovascular, neurological and metabolic disorders. Despite these advances, the approved treatments for cancer only extend progression-free survival for a relatively short time and being associated with significant side effects. The current clinical trials involving the next generation of epigenetic drugs may address the disadvantages of the currently approved epigenetic drugs. The identification of chemical starting points of many drugs often makes use of screening in vitro assays against libraries of synthetic or natural products. These assays can be biochemical (using purified protein) or cell-based (using for example, genetically modified, cancer cell lines or primary cells) and performed in microtiter plates, thus enabling a large number of samples to be tested. A considerable number of such assays are available to monitor epigenetic target activity, and this review provides an overview of drug discovery and chemical biology and describes assays that monitor activities of histone deacetylase, lysine-specific demethylase, histone methyltransferase, histone acetyltransferase and bromodomain. It is of critical importance that an appropriate assay is developed and comprehensively validated for a given drug target prior to screening in order to improve the probability of the compound progressing in the drug discovery value chain.
Collapse
Affiliation(s)
- Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
23
|
Bauden M, Kristl T, Andersson R, Marko-Varga G, Ansari D. Characterization of histone-related chemical modifications in formalin-fixed paraffin-embedded and fresh-frozen human pancreatic cancer xenografts using LC-MS/MS. J Transl Med 2017; 97:279-288. [PMID: 27941757 DOI: 10.1038/labinvest.2016.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Post-translational modifications (PTMs) of histones including acetylation, methylation, and ubiquitination are known to be involved in the epigenetic regulation of gene expression and thus can have an important role in tumorigenesis. A number of PTMs have been linked to pancreatic cancer and are frequently studied as potential targets for cancer therapy or diagnosis. The availability of biobank-stored, formalin-fixed, paraffin-embedded (FFPE) materials and advanced proteomic analytical tools make it possible to detect histone-related PTMs using predicted mass shifts caused by specific modification. It is, however, important to take into account the fact that formaldehyde (FA) present in the FFPE material is chemically reactive and may undergo condensation reactions, for example, with terminal amino groups and active CH functionalities of the studied proteins. As supported by the results of this study, the possibility to misinterpret such protein condensation product as endogenous PTMs should be taken into consideration in all proteomic analytical work involving FFPE materials. In this study, we used liquid chromatography-tandem mass spectrometry to assess preassumed modification of the lysine residues of histone proteins in FFPE or fresh-frozen (FF) tumor xenografts, derived from the human pancreatic cancer cell line, Capan-1. Here we report modifications with a defined mass shift of +14.016, +28.031, +42.011, or +114.043 Da, corresponding to apparent methylation, dimethylation, acetylation, or ubiquitination that were differentially distributed between the groups. The identified modifications were significantly more frequent in FFPE samples as compared with FF samples. Our results indicate that FFPE tissue processing may result in persistent chemical modifications of histones, which correspond in mass shift of important PTMs. Herein, we highlight the importance to investigate and report FA-formed modifications in FFPE-treated tissues, as well as the necessity of careful manual examination of observed modifications to eliminate false-positive PTMs.
Collapse
Affiliation(s)
- Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Theresa Kristl
- Department of Oncology and Pathology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
24
|
Zhang C, Liu Y. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry. Methods Enzymol 2016; 586:165-191. [PMID: 28137562 DOI: 10.1016/bs.mie.2016.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Posttranslational modifications (PTMs) of histones are one of the main research interests in the rapidly growing field of epigenetics. Accurate and precise quantification of these highly complex histone PTMs is critical for understanding the histone code and the biological significance behind it. It nonetheless remains a major analytical challenge. Mass spectrometry (MS) has been proven as a robust tool in retrieving quantitative information of histone PTMs, and a variety of MS-based quantitative strategies have been successfully developed and employed in basic research as well as clinical studies. In this chapter, we provide an overview for quantitative analysis of histone PTMs, often highly flexible and case dependent, as a primer for future experimental designs.
Collapse
Affiliation(s)
- C Zhang
- Baylor College of Medicine, Houston, TX, United States.
| | - Y Liu
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
25
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016. [PMID: 27446239 DOI: 10.1186/s13072‐016‐0081‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J Bannister
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
26
|
Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016; 9:31. [PMID: 27446239 PMCID: PMC4955263 DOI: 10.1186/s13072-016-0081-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
Abstract
Epigenetic inheritance plays a crucial role in many biological processes, such as gene expression in early embryo development, imprinting and the silencing of transposons. It has recently been established that epigenetic effects can be inherited from one generation to the next. Here, we review examples of epigenetic mechanisms governing animal phenotype and behaviour, and we discuss the importance of these findings in respect to animal studies, and livestock in general. Epigenetic parameters orchestrating transgenerational effects, as well as heritable disorders, and the often-overlooked areas of livestock immunity and stress, are also discussed. We highlight the importance of nutrition and how it is linked to epigenetic alteration. Finally, we describe how our understanding of epigenetics is underpinning the latest cancer research and how this can be translated into directed efforts to improve animal health and welfare.
Collapse
Affiliation(s)
- Kostas A. Triantaphyllopoulos
- />Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Ioannis Ikonomopoulos
- />Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| | - Andrew J. Bannister
- />Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
27
|
Weigt D, Hopf C, Médard G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenetics 2016; 8:76. [PMID: 27437033 PMCID: PMC4950666 DOI: 10.1186/s13148-016-0244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022] Open
Abstract
Some epigenetic modifier proteins have become validated clinical targets. With a few small molecule inhibitors already approved by national health administrations and many more in the pharmaceutical industry pipelines, there is a need for technologies that can promote full comprehension of the molecular action of these drugs. Proteomics, with its relatively unbiased nature, can contribute to a thorough understanding of the complexity of the megadalton complexes, which write, read and erase the histone code, and it can help study the on-target and off-target effect of the drugs designed to modulate their action. This review on the one hand gathers the published affinity probes able to decipher small molecule targets and off-targets in a close-to-native environment. These are small molecule analogues of epigenetic drugs conceived as protein target enrichment tools after they have engaged them in cells or lysates. Such probes, which have been designed for deacetylases, bromodomains, demethylases, and methyltransferases not only enrich their direct protein targets but also their stable interactors, which can be identified by mass spectrometry. Hence, they constitute a tool to study the epigenetic complexes together with other techniques also reviewed here: immunoaffinity purification with antibodies against native protein complex constituents or epitope tags, affinity matrices designed to bind recombinantly tagged protein, and enrichment of the complexes using histone tail peptides as baits. We expect that this toolbox will be adopted by more and more researchers willing to harness the spectacular advances in mass spectrometry to the epigenetic field.
Collapse
Affiliation(s)
- David Weigt
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Carsten Hopf
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Guillaume Médard
- />Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| |
Collapse
|
28
|
Yin J, Xu T, Zhang N, Wang H. Three-Enzyme Cascade Bioreactor for Rapid Digestion of Genomic DNA into Single Nucleosides. Anal Chem 2016; 88:7730-7. [DOI: 10.1021/acs.analchem.6b01682] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Junfa Yin
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tian Xu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Cohen DO, Duchin S, Feldman M, Zarivach R, Aharoni A, Levy D. Engineering of Methylation State Specific 3xMBT Domain Using ELISA Screening. PLoS One 2016; 11:e0154207. [PMID: 27111853 PMCID: PMC4844143 DOI: 10.1371/journal.pone.0154207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023] Open
Abstract
The ε-amino group of lysine residues may be mono-, di- or tri-methylated by protein lysine methyltransferases. In the past few years it has been highly considered that methylation of both histone and non-histone proteins has fundamental role in development and progression of various human diseases. Thus, the establishment of tools to study lysine methylation that will distinguish between the different states of methylation is required to elucidate their cellular functions. The 3X malignant brain tumor domain (3XMBT) repeats of the Lethal(3)malignant brain tumor-like protein 1 (L3MBTL1) have been utilized in the past as an affinity reagent for the identification of mono- and di-methylated lysine residues on individual proteins and on a proteomic scale. Here, we have utilized the 3XMBT domain to develop an enzyme-linked immunosorbent assay (ELISA) that allows the high-throughput detection of 3XMBT binding to methylated lysines. We demonstrated that this system allows the detection of methylated peptides, methylated proteins and PKMT activity on both peptides and proteins. We also optimized the assay to detect 3XMBT binding in crude E. coli lysates which facilitated the high throughput screening of 3XMBT mutant libraries. We have utilized protein engineering tools and generated a double site saturation 3XMBT library of residues 361 and 411 that were shown before to be important for binding mono and di-methylated substrates and identified variants that can exclusively recognize only di-methylated peptides. Together, our results demonstrate a powerful new approach that will contribute to deeper understanding of lysine methylation biology and that can be utilized for the engineering of domains for specific binders of other post-translational modifications.
Collapse
Affiliation(s)
- Dan Od Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Shai Duchin
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
- * E-mail: (DL); (AA)
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
- * E-mail: (DL); (AA)
| |
Collapse
|