1
|
Sikdar B, Mukherjee S, Bhattacharya R, Raj A, Roy A, Banerjee D, Gangopadhyay G, Roy S. The anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract and prediction of the roles of the potent phytocompounds. Microb Pathog 2024; 195:106864. [PMID: 39153575 DOI: 10.1016/j.micpath.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The leaves of Piper betle L., known as betel leaf, have immense medicinal properties. It possesses potent antimicrobial efficacies and can be a valuable tool to combat drug-resistant microorganisms. Quorum sensing (QS) inhibition is one of the best strategies to combat drug resistance. The present study investigates the anti-quorum sensing and biofilm inhibitory potential of Piper betle L. leaf extract against two bacterial strains, Chromobacterium violaceum and Pseudomonas aeruginosa. The extract produced substantial QS-inhibition zones in a biosensor strain of C. violaceum (CV026), indicating interference with quorum-sensing signals. The Results demonstrated significant inhibition in biofilm formation and different QS-regulated virulence factors (violacein, exopolysaccharides, pyocyanin, pyoverdine, elastase) in both C. violaceum and P. aeruginosa at sub-MIC concentrations of the extract and tetracycline, an antibiotic with known anti-QS activity. The quantitative real-time PCR (qRT-PCR) revealed decreased gene expression in different QS-related genes in C. violaceum (cviI, cviR, and vioA) and P. aeruginosa (lasI, lasR, lasB, rhlI, rhlR, and rhlA) strains after treatment. Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified the significant phytocompounds, mainly derivatives of chavicol and eugenol, in the extract. Of these compounds, chavicol acetate (affinity: -7.00 kcal/mol) and acetoxy chavicol acetate (affinity: -7.87 kcal/mol) showed the highest potential to bind with the CviR and LasR protein, respectively, as evident from the in-silico molecular docking experiment. The findings of this endeavour highlight the promising role of Piper betle L. as a source of natural compounds with anti-quorum sensing properties against pathogenic bacteria, opening avenues for developing novel therapeutic agents to combat bacterial infections.
Collapse
Affiliation(s)
- Bratati Sikdar
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Sourav Mukherjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Rupsa Bhattacharya
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Adarsha Raj
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Alokesh Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; Department of Biological Sciences, Midnapore City College, Kuturiya, Bhadutala, Paschim Medinipore, 721129, West Bengal, India
| | - Debarati Banerjee
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Gaurab Gangopadhyay
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India.
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
2
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Romero-González LE, Montelongo-Martínez LF, González-Valdez A, Quiroz-Morales SE, Cocotl-Yañez M, Franco-Cendejas R, Soberón-Chávez G, Pardo-López L, Bustamante VH. Pseudomonas aeruginosa Isolates from Water Samples of the Gulf of Mexico Show Similar Virulence Properties but Different Antibiotic Susceptibility Profiles than Clinical Isolates. Int J Microbiol 2024; 2024:6959403. [PMID: 38784405 PMCID: PMC11115996 DOI: 10.1155/2024/6959403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis F. Montelongo-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Admella J, Torrents E. Investigating bacterial infections in Galleria mellonella larvae: Insights into pathogen dissemination and behavior. J Invertebr Pathol 2023; 200:107975. [PMID: 37541571 DOI: 10.1016/j.jip.2023.107975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
The insect Galleria mellonella is an alternative animal model widely used for studying bacterial infections. It presents a wide range of advantages, including its low cost, easy maintenance and lack of ethical constraints. Among other features, their innate immune system is very similar to that of mammals. In this study, we dissected several larvae infected with important human pathogens: Mycobacterium abscessus, Staphylococcus aureus and Pseudomonas aeruginosa. By observing the fat body, gut, trachea, and hemolymph under the microscope, we were able to describe where bacteria tend to disseminate. We also quantified the number of bacteria in the hemolymph throughout the infection course and found significant differences between the different pathogens. With this work, we aimed to better understand the behavior and dissemination of bacteria in the infected larvae.
Collapse
Affiliation(s)
- Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Bernabè G, Marzaro G, Di Pietra G, Otero A, Bellato M, Pauletto A, Scarpa M, Sut S, Chilin A, Dall’Acqua S, Brun P, Castagliuolo I. A novel phenolic derivative inhibits AHL-dependent quorum sensing signaling in Pseudomonas aeruginosa. Front Pharmacol 2022; 13:996871. [PMID: 36204236 PMCID: PMC9531014 DOI: 10.3389/fphar.2022.996871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing antibiotic resistance and the decline in the pharmaceutical industry’s investments have amplified the need for novel treatments for multidrug-resistant bacteria. Quorum sensing (QS) inhibitors reduce pathogens’ virulence without selective pressure on bacteria and provide an alternative to conventional antibiotic-based therapies. P. aeruginosa uses complex QS signaling to control virulence and biofilm formation. We aimed to identify inhibitors of P. aeruginosa QS acting on acyl-homoserine lactones (AHL)-mediated circuits. Bioluminescence and qRT-PCR assays were employed to screen a library of 81 small phenolic derivatives to reduce AHL-dependent signaling. We identified GM-50 as the most active compound inhibiting the expression of AHL-regulated genes but devoid of cytotoxic activity in human epithelial cells and biocidal effects on bacteria. GM-50 reduces virulence factors such as rhamnolipids, pyocyanin, elastase secretion, and swarming motility in P. aeruginosa PAO1 laboratory strain. By molecular docking, we provide evidence that GM-50 highly interacts with RhlR. GM-50 significantly improved aztreonam-mediated biofilm disruption. Moreover, GM-50 prevents adhesion of PAO1 and inflammatory damage in the human A549 cell line and protects Galleria mellonella from PAO1-mediated killing. GM-50 significantly reduces virulence factors in 20 P. aeruginosa clinical isolates from patients with respiratory tract infections. In conclusion, GM-50 inhibits AHL-signaling, reduces virulence factors, enhances the anti-biofilm activity of aztreonam, and protects G. mellonella larvae from damage induced by P. aeruginosa. Since GM-50 is active on clinical strains, it represents a starting point for identifying and developing new phenolic derivatives acting as QS-inhibitors in P. aeruginosa infections.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Massimo Bellato
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Anthony Pauletto
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV—IRCCS, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
- *Correspondence: Paola Brun,
| | | |
Collapse
|
6
|
Yuanyuan N, Xiaobo Y, Shang W, Yutong Y, Hongrui Z, Chenyu L, Bin X, Xi Z, Chen Z, Zhiqiang S, Jingfeng W, Yun L, Pingfeng Y, Zhigang Q. Isolation and characterization of two homolog phages infecting Pseudomonas aeruginosa. Front Microbiol 2022; 13:946251. [PMID: 35935197 PMCID: PMC9348578 DOI: 10.3389/fmicb.2022.946251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages (phages) are capable of infecting specific bacteria, and therefore can be used as a biological control agent to control bacteria-induced animal, plant, and human diseases. In this study, two homolog phages (named PPAY and PPAT) that infect Pseudomonas aeruginosa PAO1 were isolated and characterized. The results of the phage plaque assay showed that PPAT plaques were transparent dots, while the PPAY plaques were translucent dots with a halo. Transmission electron microscopy results showed that PPAT (65 nm) and PPAY (60 nm) strains are similar in size and have an icosahedral head and a short tail. Therefore, these belong to the short-tailed phage family Podoviridae. One-step growth curves revealed the latent period of 20 min and burst time of 30 min for PPAT and PPAY. The burst size of PPAT (953 PFUs/infected cell) was higher than that of PPAY (457 PFUs/infected cell). Also, the adsorption rate constant of PPAT (5.97 × 10−7 ml/min) was higher than that of PPAY (1.32 × 10−7 ml/min) at 5 min. Whole-genome sequencing of phages was carried out using the Illumina HiSeq platform. The genomes of PPAT and PPAY have 54,888 and 50,154 bp, respectively. Only 17 of the 352 predicted ORFs of PPAT could be matched to homologous genes of known function. Likewise, among the 351 predicted ORFs of PPAY, only 18 ORFs could be matched to genes of established functions. Homology and evolutionary analysis indicated that PPAT and PPAY are closely related to PA11. The presence of tail fiber proteins in PPAY but not in PPAT may have contributed to the halo effect of its plaque spots. In all, PPAT and PPAY, newly discovered P. aeruginosa phages, showed growth inhibitory effects on bacteria and can be used for research and clinical purposes.
Collapse
Affiliation(s)
- Niu Yuanyuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Xiaobo
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Shang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Yutong
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhou Hongrui
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li Chenyu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xue Bin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhang Xi
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhao Chen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shen Zhiqiang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Jingfeng
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ling Yun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ling Yun,
| | - Yu Pingfeng
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Qiu Zhigang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
- Qiu Zhigang,
| |
Collapse
|
7
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
8
|
Tang H, Hao S, Khan MF, Zhao L, Shi F, Li Y, Guo H, Zou Y, Lv C, Luo J, Zeng Z, Wu Q, Ye G. Epigallocatechin-3-Gallate Ameliorates Acute Lung Damage by Inhibiting Quorum-Sensing-Related Virulence Factors of Pseudomonas aeruginosa. Front Microbiol 2022; 13:874354. [PMID: 35547130 PMCID: PMC9083413 DOI: 10.3389/fmicb.2022.874354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
The superbug Pseudomonas aeruginosa is among the most formidable antibiotic-resistant pathogens. With declining options for antibiotic-resistant infections, new medicines are of utmost importance to combat with P. aeruginosa. In our previous study, we demonstrated that Epigallocatechin-3-gallate (EGCG) can inhibit the production of quorum sensing (QS)-regulated virulence factors in vitro. Accordingly, the protective effect and molecular mechanisms of EGCG against P. aeruginosa-induced pneumonia were studied in a mouse model. The results indicated that EGCG significantly lessened histopathological changes and increased the survival rates of mice infected with P. aeruginosa. EGCG effectively alleviated lung injury by reducing the expression of virulence factors and bacterial burden. In addition, EGCG downregulated the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, and IL-17, and increased the expression of anti-inflammatory cytokines IL-4 and IL-10. Thus, the experimental results supported for the first time that EGCG improved lung damage in P. aeruginosa infection by inhibiting the production of QS-related virulence factors in vivo.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
- Engineering Research Center of the Medicinal Diet Industry, Tongren Polytechnic College, Tongren, China
| | - Ze Zeng
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren, China
| | - Qiang Wu
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
11
|
Xu W, Zhang X, Wang L, Zeng W, Sun Y, Zhou C, Zhou T, Shen M. Effect of chlorogenic acid on the quorum-sensing system of clinically isolated multidrug-resistant Pseudomonas aeruginosa. J Appl Microbiol 2021; 132:1008-1017. [PMID: 34464994 DOI: 10.1111/jam.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
AIMS Quorum sensing (QS) is the intercellular communication used by bacteria to regulate collective behaviour. QS regulates the production of virulence factors in many bacterial species and is considered to be an attractive target for reducing bacterial pathogenicity. Chlorogenic acid (CA) is abundant in vegetables, fruits, and traditional Chinese medicine, and has multiple activities. This study aimed to investigate the QS quenching activity of CA against clinically isolated multidrug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS The results showed that CA inhibited the mobility of bacteria, reduced the production of pyocyanin, and inhibited the activity of elastase. Furthermore, crystal violet staining and scanning electron microscope experiments showed that CA inhibited the formation of multidrug-resistant P. aeruginosa biofilm. CA at or below the concentration of 2560 µg/mL exerted negligible cytotoxicity to RAW264.7 cells. The study also examined the expression of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsA, and pqsR in P. aeruginosa and found that the expression of these genes was down-regulated under CA treatment. CONCLUSIONS The study showed that CA could be used as an anti-virulence factor for treating clinical P. aeruginosa infection. SIGNIFICANCE AND IMPACT OF STUDY For the first time, this study took clinically isolated multidrug-resistant P. aeruginosa as the experimental object, and suggested that CA might be an effective antimicrobial compound targeting QS in treating P. aeruginosa infection, thus providing a new therapeutic direction for treating bacterial infection and effectively alleviating bacterial resistance.
Collapse
Affiliation(s)
- Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Pellissier L, Leoni S, Marcourt L, Ferreira Queiroz E, Lecoultre N, Quiros-Guerrero LM, Barthélémy M, Eparvier V, Chave J, Stien D, Gindro K, Perron K, Wolfender JL. Characterization of Pseudomonas aeruginosa Quorum Sensing Inhibitors from the Endophyte Lasiodiplodia venezuelensis and Evaluation of Their Antivirulence Effects by Metabolomics. Microorganisms 2021; 9:microorganisms9091807. [PMID: 34576706 PMCID: PMC8465504 DOI: 10.3390/microorganisms9091807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the "critical priority pathogens" due to its multidrug resistance to a wide range of antibiotics. Its ability to invade and damage host tissues is due to the use of quorum sensing (QS) to collectively produce a plethora of virulence factors. Inhibition of QS is an attractive strategy for new antimicrobial agents because it disrupts the initial events of infection without killing the pathogen. Highly diverse microorganisms as endophytes represent an under-explored source of bioactive natural products, offering opportunities for the discovery of novel QS inhibitors (QSI). In the present work, the objective was to explore selective QSIs within a unique collection of fungal endophytes isolated from the tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted, and screened for their antibacterial and specific anti-QS activities against P. aeruginosa. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation for its selective activity, leading to the isolation of eight compounds in a single step. Among them, two pyran-derivatives were found to be responsible for the QSI activity, with an effect on some QS-regulated virulence factors. Additional non-targeted metabolomic studies on P. aeruginosa documented their effects on the production of various virulence-related metabolites.
Collapse
Affiliation(s)
- Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Correspondence: (L.P.); (J.-L.W.)
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (S.L.); (K.P.)
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (N.L.); (K.G.)
| | - Luis-Manuel Quiros-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Morgane Barthélémy
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR 2301, 91198 Gif-sur-Yvette, France; (M.B.); (V.E.)
| | - Véronique Eparvier
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR 2301, 91198 Gif-sur-Yvette, France; (M.B.); (V.E.)
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique (UMR 5174), CNRS, UT3, IRD, Université Toulouse 3, 118 Route de Narbonne, 31062 Toulouse, France;
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-Sur-Mer, France;
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (N.L.); (K.G.)
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (S.L.); (K.P.)
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Correspondence: (L.P.); (J.-L.W.)
| |
Collapse
|
13
|
Antibiotic cement plate composite structure internal fixation after debridement of bone infection. Sci Rep 2021; 11:16921. [PMID: 34413456 PMCID: PMC8377006 DOI: 10.1038/s41598-021-96522-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
An internal fixation composite structure of antibiotic cement plates was created. The aim of this study was to analyse the infection control effect of this structure when applied to treat a bone infection. We retrospectively analysed patients with bone infection admitted to our hospital between January 2013 and June 2019. After debridement, an antibiotic cement plate composite structure was used to fill and stabilize the defects. The treatment effect was evaluated at six months after surgery, and the infection control rate, factors associated with the recurrence of infection, and complications were analysed. If the patients had bone defects, the defect was repaired after infection control, and the infection control rate of all of the patients was re-evaluated at 12 months after surgery. A total of 548 patients were treated with this technique, including 418 men and 130 women. The infection sites included 309 tibias, 207 femurs, 16 radii and ulnae, 13 humeri, and 3 clavicles. After at least 6 months of follow-up, 92 patients (16.79%) had an infection recurrence and needed further treatment. The recurrence rate of the tibia was higher than that of the femur (P = 0.025). Eighty-nine out of 92 patients who relapsed underwent a second debridement with the same method, and the infection control rate after the second debridement was 94.71%. Complications included 8 cases of epidermal necrosis around the incision, 6 cases of internal fixation failure, and 30 cases of lower limb swelling. By the follow-up time of 12 months, another 6 patients had experienced recurrence of infection, and 4 cases were controlled after debridement. Finally, among all 548 cases, 7 patients remained persistently infected, and 6 underwent amputation. The infection control rate was 97.6% at the 1-year follow-up. The clinical efficacy of this new antibiotic cement plate composite structure for internal fixation after debridement of bone infection is stable and reliable.
Collapse
|
14
|
Kuang Z, Bennett RC, Lin J, Hao Y, Zhu L, Akinbi HT, Lau GW. Surfactant phospholipids act as molecular switches for premature induction of quorum sensing-dependent virulence in Pseudomonas aeruginosa. Virulence 2021; 11:1090-1107. [PMID: 32842850 PMCID: PMC7549932 DOI: 10.1080/21505594.2020.1809327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The virulence behaviors of many Gram-negative bacterial pathogens are governed by quorum-sensing (QS), a hierarchical system of gene regulation that relies on population density by producing and detecting extracellular signaling molecules. Although extensively studied under in vitro conditions, adaptation of QS system to physiologically relevant host environment is not fully understood. In this study, we investigated the influence of lung environment on the regulation of Pseudomonas aeruginosa virulence factors by QS in a mouse model of acute pneumonia. When cultured under laboratory conditions in lysogeny broth, wild-type P. aeruginosa strain PAO1 began to express QS-regulated virulence factors elastase B (LasB) and rhamnolipids (RhlA) during transition from late-exponential into stationary growth phase. In contrast, during acute pneumonia as well as when cultured in mouse bronchial alveolar lavage fluids (BALF), exponential phase PAO1 bacteria at low population density prematurely expressed QS regulatory genes lasI-lasR and rhlI-rhlR and their downstream virulence genes lasB and rhlA. Further analysis indicated that surfactant phospholipids were the primary components within BALF that induced the synthesis of N-(3-oxododecanoyl)-L-homoserine lactone (C12-HSL), which triggered premature expression of LasB and RhlA. Both phenol extraction and phospholipase A2 digestion abolished the ability of mouse BALF to promote LasB and RhlA expression. In contrast, provision of the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) restored the expression of both virulence factors. Collectively, our study demonstrates P. aeruginosa modulates its QS to coordinate the expression of virulence factors during acute pneumonia by recognizing pulmonary surfactant phospholipids.
Collapse
Affiliation(s)
- Zhizhou Kuang
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Richard C Bennett
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Henry T Akinbi
- Division of Pulmonary Medicine, Cincinnati Children Hospital , Cincinnati, OH, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| |
Collapse
|
15
|
Boero E, Mnich ME, Manetti AGO, Soldaini E, Grimaldi L, Bagnoli F. Human Three-Dimensional Models for Studying Skin Pathogens. Curr Top Microbiol Immunol 2021; 430:3-27. [PMID: 32601967 DOI: 10.1007/82_2020_219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
16
|
Mai B, Gao Y, Li M, Jia M, Liu S, Wang X, Zhang K, Liu Q, Wang P. Tailoring the cationic lipid composition of lipo-DVDMS augments the phototherapy efficiency of burn infection. Biomater Sci 2021; 9:2053-2066. [PMID: 33470996 DOI: 10.1039/d0bm01895c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increase in infections with Gram-negative Pseudomonas aeruginosa (P. aeruginosa) is a serious global challenge in healthcare. Sinoporphyrin sodium (DVDMS) combined with photodynamic antimicrobial chemotherapy (PACT) can effectively eradicate Gram-positive organisms. However, the poor penetration of DVDMS into the Gram-negative bacterial cell membrane and bacterial biofilm greatly limits the photo-inspired antimicrobial activity. This study optimized the cationic lipid-mediated nano-DVDMS delivery to improve the cellular uptake, and evaluated the antimicrobial efficacy of cationic DVDMS-liposome (CDL)-provoked PACT in both P. aeruginosa and its multidrug resistant strain. The results showed that the positively charged liposome modification promoted the enrichment of DVDMS in Gram-negative bacteria. CDL-PACT-produced ROS and caused bacterial death, accompanied by the decreased expression levels of virulence factor-related genes. The P. aeruginosa-infected burn model indicated satisfactory bacterial eradication and accelerated wound healing after CDL-PACT, in addition to gradually increasing bFGF, VEGF, TGF-β1 and Hyp levels and reducing TNF-α and IL-6, with no detectable side-effects. Overall, these findings provide fundamental knowledge that enables the design of feasible and efficient PACT treatments, including biophysical membrane permeabilization and photodynamic eradication, which are promising to overcome the infection and resistance of highly opportunistic Gram-negative bacteria.
Collapse
Affiliation(s)
- Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
18
|
Sengillo JD, Duker J, Hernandez M, Maestre J, Reyes-Capo D, Patel A, Watane A, Patel NA, Yannuzzi NA, Miller D, Flynn HW. Characterization of Pseudomonas aeruginosa isolates from patients with endophthalmitis using conventional microbiologic techniques and whole genome sequencing. J Ophthalmic Inflamm Infect 2020; 10:25. [PMID: 32984926 PMCID: PMC7520479 DOI: 10.1186/s12348-020-00216-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose To demonstrate antibiotic susceptibility and genomic virulence factor profiles of Pseudomonas aeruginosa isolates from patients with culture-confirmed endophthalmitis. Methods Clinical isolates from patients diagnosed with pseudomonas endophthalmitis were included. Laboratory antibiotic susceptibility testing and whole genome sequencing was performed on all isolates. Results In the current study, 8 patients had vitreous culture-confirmed endophthalmitis due to P. aeruginosa. All isolates were multi-drug resistant but sensitive to ceftazidime and each fluoroquinolone tested. Whole genome sequencing revealed a total of 179 unique genes. The most common type of virulence genes included those involved in adherence and the secretion system. Seven of 8 (88%) isolates were of the cytoinvasive phenotype (exoST) and no isolates contained exoU. Conclusions P. aeruginosa associated endophthalmitis is often multi-drug resistant and demonstrates a variety of virulence factors with those involved in adherence and the secretion system being the most common.
Collapse
Affiliation(s)
- Jesse D Sengillo
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jacob Duker
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Maribel Hernandez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jorge Maestre
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Daniela Reyes-Capo
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Annika Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Arjun Watane
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Darlene Miller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.
| |
Collapse
|
19
|
Irrelevance of Panton-Valentine leukocidin in hidradenitis suppurativa: results from a pilot, observational study. Eur J Clin Microbiol Infect Dis 2020; 40:77-83. [PMID: 32767177 PMCID: PMC7782376 DOI: 10.1007/s10096-020-04002-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Panton-Valentine leukocidin (PVL) appears to be a virulence factor which, among others, can exacerbate the pathogenicity of Staphylococcus aureus infections, especially inducing severe necrotic, deep-seated skin infections, abscesses, and recurrences. These peculiarities have some overlaps with hidradenitis suppurativa (HS). Our main aim was to assess if S. aureus producing PVL could have some role in influencing clinical features and/or course of HS, specifically in the suppuration and recurrence of lesions. This pilot, mono-centric, observational study included all adult subjects affected with HS consecutively referring to our HS clinic over a 3-month period. Clinically evident suppuration and at least 2 weeks wash out from any antibiotic were the main inclusion criteria. Purulent material from HS skin lesions was collected with swabs in order to isolate micro-organisms, with specific regard to S. aureus. Detection of PVL was performed by real-time quantitative PCR (RT-qPCR). We also analyzed purulent material from suppurative skin lesions other than HS, as a control. Thirty HS patients were included; 29 purulent lesions (96.7%) harbored at least one bacterial species. Five (16.7%) swab samples were positive for S. aureus, none of which was positive for PVL genes. Among the 30 purulent disorders included as controls, 8 (26.3%) were positive for S. aureus; of these, 4 strains (50%) expressed LPV. The study results seem to exclude the pathogenetic involvement of S. aureus producing PVL in HS; as a result, PVL does not seem to represent a potential target in the future development of HS treatments.
Collapse
|
20
|
Huang X, Pan W, Kim W, White A, Li S, Li H, Lee K, Fuchs BB, Zeng K, Mylonakis E. Caenorhabditis elegans mounts a p38 MAPK pathway-mediated defence to Cutibacterium acnes infection. Cell Microbiol 2020; 22:e13234. [PMID: 32543022 DOI: 10.1111/cmi.13234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Cutibacterium acnes is capable of inducing inflammation in acne and can lead to a chronic prostatic infection. The diverse pathogenicity among different strains of C. acnes has been presented, but simple appropriate animal models for the evaluation of this bacterium are lacking. In this study, the nematode Caenorhabditis elegans was used as an invertebrate infection model. We revealed that C. acnes type strain ATCC 6919 caused lethal infections to C. elegans in solid and liquid culture media (p < .0001). Compared with the strain ATCC 6919, the antibiotic-resistant strain HM-513 was more virulent, resulting in reduced survival (p < .0001). Four different C. acnes strains killed worms with a p value of less than .0001 when provided to C. elegans at 4.8 × 108 CFU/ml. The infection model was also employed to explore host defence responses. An increase in numerous immune effectors in response to C. acnes was detected. We focused on nine C-type lectins, including: clec-13, clec-17, clec-47, clec-52, clec-60, clec-61, clec-70, clec-71 and clec-227. The induced expression of these C-type lectin genes was down-regulated in mutant worms deficient in the p38 mitogen-activated protein kinase (MAPK) pathway. Meanwhile, PMK-1 (MAPK) was phosphorylated and activated at the onset of C. acnes infection. By monitoring the survival of mutant worms, we found that PMK-1, SEK-1 (MAPKK) and TIR-1 (MAPKKK) were critical in responding to C. acnes infection. C. elegans pmk-1 and tir-1 mutants exhibited higher mortality to C. acnes infection (p < .0001). In conclusion, C. elegans serves as a simple and valuable model to study C. acnes virulence and facilitates improvements in understanding of host innate immune responses.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Wen Pan
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Alexis White
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Molecular Pharmacology, Physiology and Biotechnology at Brown University, Providence, Rhode Island, USA
| | - Silei Li
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Kiho Lee
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Chen T, Xu Y, Xu W, Liao W, Xu C, Zhang X, Cao J, Zhou T. Hypertonic glucose inhibits growth and attenuates virulence factors of multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol 2020; 20:203. [PMID: 32646366 PMCID: PMC7346426 DOI: 10.1186/s12866-020-01889-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is the most common Gram-negative pathogen responsible for chronic wound infections, such as diabetic foot infections, and further exacerbates the treatment options and cost of such conditions. Hypertonic glucose, a commonly used prolotherapy solution, can accelerate the proliferation of granulation tissue and improve microcirculation in wounds. However, the action of hypertonic glucose on bacterial pathogens that infect wounds is unclear. In this study, we investigated the inhibitory effects of hypertonic glucose on multidrug-resistant P. aeruginosa strains isolated from diabetic foot infections. Hypertonic glucose represents a novel approach to control chronic wound infections caused by P. aeruginosa. RESULTS Four multidrug-resistant P. aeruginosa clinical strains isolated from diabetic foot ulcers from a tertiary hospital in China and the reference P. aeruginosa PAO1 strain were studied. Hypertonic glucose significantly inhibited the growth, biofilm formation, and swimming motility of P. aeruginosa clinical strains and PAO1. Furthermore, hypertonic glucose significantly reduced the production of pyocyanin and elastase virulence factors in P. aeruginosa. The expression of major quorum sensing genes (lasI, lasR, rhlI, and rhlR) in P. aeruginosa were all downregulated in response to hypertonic glucose treatment. In a Galleria mellonella larvae infection model, the administration of hypertonic glucose was shown to increase the survival rates of larvae infected by P. aeruginosa strains (3/5). CONCLUSIONS Hypertonic glucose inhibited the growth, biofilm formation, and swimming motility of P. aeruginosa, as well as reduced the production of virulence factors and quorum sensing gene expression. Further studies that investigate hypertonic glucose therapy should be considered in treating chronic wound infections.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ye Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenya Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenli Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Terra ACG, Salvador EA. In silico integrative analysis predicts relevant properties of exotoxin-derived peptides for the design of vaccines against Pseudomonas aeruginosa. INFECTION GENETICS AND EVOLUTION 2020; 85:104424. [PMID: 32561294 DOI: 10.1016/j.meegid.2020.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic human pathogen responsible for causing serious infections in patients with cystic fibrosis. Infections caused by PA are difficult to treat and eradicate due to intrinsic and added resistance to antibiotic therapy. Therefore, it is necessary to establish effective prevention strategies against this infectious agent. In this study, a combination of immunoinformatic tools was applied to predict immunogenic and immunodominant regions in the structure of exotoxins commonly secreted as virulence factors in PA infection (ExoA, ExoS, ExoT, ExoU and ExoY). The peptides derived from exotoxins were evaluated for the potential affinity for human leukocyte antigen (HLA) I and HLA-II molecules, antigenicity score and toxicity profile. From an initial screening of 941 peptides, 13 (1.38%) were successful in all analyzes. The peptides with relevant immunogenic properties were mainly those derived from Exo A (10 / 76.9%). All peptides selected in the last analysis present a high population coverage rate based on the interaction of HLA alleles (95.36 ± 7.83%). Therefore, the peptides characterized in this study are recommended for in vitro and in vivo studies and can provide the basis for the rational design of a vaccine against PA.
Collapse
|
23
|
Wang X, Wang S, Fu J, Sun D, Shen J, Xie Z. Risk factors associated with recurrence of extremity osteomyelitis treated with the induced membrane technique. Injury 2020; 51:307-311. [PMID: 31771787 DOI: 10.1016/j.injury.2019.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/10/2019] [Accepted: 11/20/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Our aim was to observe the efficacy of the induced membrane technique in the treatment of extremity osteomyelitis and to analyse the causes of infection recurrence and its risk factors. METHODS We retrospectively analysed 424 cases of extremity osteomyelitis treated with the induced membrane technique in our department between May 2013 and June 2017. Infection recurrence time, recurrence sites and other relevant information were collected, summarized, and analysed. RESULTS A total of 424 patients were considered as "cured" of osteomyelitis after the first stage and the induced membrane technique was performed to rebuild the bone defects. After a mean follow-up of 31.6 (16-63) months, 52 patients had recurrence of infection, including 42 tibias and 10 femurs. The recurrence rate was 12.26%. Symptoms were relieved in 16 patients after intravenous antibiotic treatment. In the remaining 36 cases (8.49%), the infection was uncontrolled by intravenous antibiotics and surgical debridement was performed. The recurrence rate of infection of the tibia (16.22%) was higher than that of the femur (8.70%). The recurrence rate of post-traumatic osteomyelitis (14.66%) was significantly higher than that of hematogenous osteomyelitis (2.41%). Patients in whom Pseudomonas aeruginosa was isolated at the first stage had a recurrence rate of 28% (7/25), which was higher than that with the other isolated bacteria. Logistic regression analysis showed that repeated operations (≥3), post-traumatic osteomyelitis, and internal fixation at the first stage were risk factors for recurrence of infection, with odds ratios (ORs) of 2.30, 5.53 and 5.28 respectively. CONCLUSIONS The induced membrane technique is an effective method in the treatment of extremity osteomyelitis, although infection recurs in some cases. Repeated operations, post-traumatic osteomyelitis, and internal fixation at the first stage were risk factors for recurrence of infection. P. aeruginosa isolated at the first stage, tibia osteomyelitis, the presence of sinus, or flaps may also be associated with recurrence of infection.
Collapse
Affiliation(s)
- Xiaohua Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Shulin Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jingshu Fu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Dong Sun
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jie Shen
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zhao Xie
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
24
|
Kida Y, Yamamoto T, Kuwano K. SdsA1, a secreted sulfatase, contributes to the in vivo virulence of Pseudomonas aeruginosa in mice. Microbiol Immunol 2020; 64:280-295. [PMID: 31907968 DOI: 10.1111/1348-0421.12772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 01/08/2023]
Abstract
Mucin is a glycoprotein that is the primary component of the mucus overlaying the epithelial tissues. Because mucin functions as a first line of the innate immune system, Pseudomonas aeruginosa appears to require interaction with mucin to establish infection in the host. However, the interactions between P. aeruginosa and mucin have been poorly understood. In this study, using in vivo expression technology (IVET), we attempted to identify mucin-inducible promoters that are likely to be involved in the establishment of P. aeruginosa infection. The IVET analysis revealed that the genes encoding glycosidases, sulfatases, and peptidases that are thought to be required for the utilization of mucin as a nutrient are present in 13 genes downstream of the identified promoters. Our results indicated that, among them, sdsA1 encoding a secreted sulfatase plays a central role in the degradation of mucin. It was then demonstrated that disruption of sdsA1 leads to a decreased release of sulfate from mucin and sulfated sugars. Furthermore, the sdsA1 mutant showed a reduction in the ability of mucin gel penetration and an attenuation of virulence in leukopenic mice compared with the wild-type strain. Collectively, these results suggest that SdsA1 plays an important role as a virulence factor of P. aeruginosa.
Collapse
Affiliation(s)
- Yutaka Kida
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Yamamoto
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Koichi Kuwano
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
25
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Pseudomonas aeruginosa ExsA Regulates a Metalloprotease, ImpA, That Inhibits Phagocytosis of Macrophages. Infect Immun 2019; 87:IAI.00695-19. [PMID: 31527124 DOI: 10.1128/iai.00695-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium whose type III secretion system (T3SS) plays a critical role in acute infections. Translocation of the T3SS effectors into host cells induces cytotoxicity. In addition, the T3SS promotes the intracellular growth of P. aeruginosa during host infections. The T3SS regulon genes are regulated by an AraC-type regulator, ExsA. In this study, we found that an extracellular metalloprotease encoded by impA (PA0572) is under the regulation of ExsA. An ExsA consensus binding sequence was identified upstream of the impA gene, and direct binding of the site by ExsA was demonstrated via an electrophoretic mobility shift assay. We further demonstrate that secreted ImpA cleaves the macrophage surface protein CD44, which inhibits the phagocytosis of the bacterial cells by macrophages. Combined, our results reveal a novel ExsA-regulated virulence factor that cooperatively inhibits the functions of macrophages with the T3SS.
Collapse
|
27
|
Multidrug Resistant Gram-Negative Bacteria in Community-Acquired Pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:79. [PMID: 30850010 PMCID: PMC6408800 DOI: 10.1186/s13054-019-2371-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
|
28
|
Heterogeneous production of proteases from Brazilian clinical isolates of Pseudomonas aeruginosa. Enferm Infecc Microbiol Clin 2019; 35:630-637. [PMID: 27480954 DOI: 10.1016/j.eimc.2016.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important human pathogen that causes severe infections in a wide range of immunosuppressed patients. Herein, we evaluated the proteolytic profiles of 96 Brazilian clinical isolates of P. aeruginosa recovered from diverse anatomical sites. METHODS Cell-associated and extracellular proteases were evidenced by gelatin-SDS-PAGE and by the cleavage of soluble gelatin. Elastase was measured by using the peptide substrate N-succinyl-Ala-Ala-Ala-p-nitroanilide. The prevalence of elastase genes (lasA and lasB) was evaluated by PCR. RESULTS Bacterial extracts were initially applied on gelatin-SDS-PAGE and the results revealed four distinct zymographic profiles as follows: profile I (composed by bands of 145, 118 and 50kDa), profile II (118 and 50kDa), profile III (145kDa) and profile IV (118kDa). All the proteolytic enzymes were inhibited by EDTA, identifying them as metalloproteases. The profile I was the most detected in both cellular (79.2%) and extracellular (84.4%) extracts. Overall, gelatinase and elastase activities measured in the spent culture media were significantly higher (around 2-fold) compared to the cellular extracts and the production level varied according to the site of bacterial isolation. For instance, tracheal secretion isolates produced elevated amount of gelatinase and elastase measured in both cellular and extracellular extracts. The prevalence of elastase genes revealed that 100% isolates were lasB-positive and 85.42% lasA-positive. Some positive/negative correlations were showed concerning the production of gelatinase, elastase, isolation site and antimicrobial susceptibility. CONCLUSION The protease production was highly heterogeneous in Brazilian clinical isolates of P. aeruginosa, which corroborates the genomic/metabolic versatility of this pathogen.
Collapse
|
29
|
Vincent JL. Multidrug Resistant Gram-Negative Bacteria in Community-Acquired Pneumonia. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2019 2019. [PMCID: PMC7119995 DOI: 10.1007/978-3-030-06067-1_36] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Community-acquired pneumonia (CAP) is associated with high morbidity and mortality worldwide [1]. Although several different bacteria and respiratory viruses can be responsible for CAP, Streptococcus pneumoniae (pneumococcus) remains the most common causative pathogen. A small proportion of CAP cases are caused by Gram-negative bacteria, especially Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Stenotrophomona maltophilia [2, 3]. The main problem concerning the treatment of Gram-negative bacterial infections is their related antibiotic resistance, reported as multidrug resistant (MDR = resistant to at least one agent in three or more groups of antibiotics), extensively drug resistant (XDR = resistant to at least one agent in all but two or fewer groups of antibiotics) and pan-drug resistant (PDR = resistant to all groups of antibiotics) [4]. This makes the clinical management of pneumonia caused by such pathogens a challenge for physicians. Taking into account the clinical severity that may be associated with CAP caused by Gram-negative bacteria (respiratory failure, bacteremia, shock, acute respiratory distress syndrome [ARDS]) the magnitude of the global health problem is tremendous.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Dept. of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
30
|
Wang H, Chu W, Ye C, Gaeta B, Tao H, Wang M, Qiu Z. Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl Microbiol Biotechnol 2018; 103:903-915. [PMID: 30421108 DOI: 10.1007/s00253-018-9482-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023]
Abstract
Quorum sensing (QS) is a cell-to-cell communication that is used by bacteria to regulate collective behaviors. Quorum sensing controls virulence factor production in many bacterial species and it is regarded as an attractive target to combat bacterial pathogenicity, especially against antibiotic-resistant bacteria. Chlorogenic acid (CA), abundant in fruits, vegetables, and Chinese herbs, processes multiple activities. In this research, we explored its quorum sensing quenching activity. In Pseudomonas aeruginosa, CA significantly inhibited the formation of biofilm, the ability of swarming, and virulence factors including protease and elastase activities and rhamnolipid and pyocyanin production. CA showed similar inhibitory effects in Chromobacterium violaceum on its biofilm formation, swarming motility, chitinolytic activity and violacein production. We examined the expression of QS-related genes in P.aeruginosa and found these genes were all downregulated by CA treatment. Computational modeling revealed that CA can form hydrogen bonds with all three QS receptors. Caenorhabditis elegans and mouse infection models were employed to explore the anti-virulence ability of CA and its effect on pathogenesis process in vivo. CA extended the survival period and reduced the quantity of P. aeruginosa in nematode gut, showing a moderate protective effect on C. elegans. In mice wound model, CA-treated groups showed an accelerating healing rate and the bacteria number in wound area was also decreased by CA treatment. It is suggested by our research that CA has potential to be used as an anti-virulence factor in P. aeruginosa infection.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Weihua Chu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Chao Ye
- School of computer Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bruno Gaeta
- School of computer Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Huimin Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Zheng Qiu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
31
|
Milivojevic D, Šumonja N, Medic S, Pavic A, Moric I, Vasiljevic B, Senerovic L, Nikodinovic-Runic J. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathog Dis 2018; 76:4978417. [PMID: 29684116 DOI: 10.1093/femspd/fty041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa has been amongst the top 10 'superbugs' worldwide and is causing infections with poor outcomes in both humans and animals. From 202 P. aeruginosa isolates (n = 121 animal and n = 81 human), 40 were selected on the basis of biofilm-forming ability and were comparatively characterized in terms of virulence determinants to the type strain P. aeruginosa PAO1. Biofilm formation, pyocyanin and hemolysin production, and bacterial motility patterns were compared with the ability to kill human cell line A549 in vitro. On average, there was no significant difference between levels of animal and human cytotoxicity, while human isolates produced higher amounts of pyocyanin, hemolysins and showed increased swimming ability. Non-parametric statistical analysis identified the highest positive correlation between hemolysis and the swarming ability. For the first time an ensemble machine learning approach used on the in vitro virulence data determined the highest relative predictive importance of the submerged biofilm formation for the cytotoxicity, as an indicator of the infection ability. The findings from the in vitro study were validated in vivo using zebrafish (Danio rerio) embryos. This study highlighted no major differences between P. aeruginosa species isolated from animal and human infections and the importance of pyocyanin production in cytotoxicity and infection ability.
Collapse
Affiliation(s)
- Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.,Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Neven Šumonja
- Centre for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - Strahinja Medic
- VetLab Ltd., Veterinary Laboratory for Clinical Diagnostics, Savska 31, 11000 Belgrade, Serbia
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Ivana Moric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Soukarieh F, Williams P, Stocks MJ, Cámara M. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives. J Med Chem 2018; 61:10385-10402. [PMID: 29999316 DOI: 10.1021/acs.jmedchem.8b00540] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health globally, manifested by the frequent emergence of multidrug resistant pathogens that render current chemotherapy inadequate. Health organizations worldwide have recognized the severity of this crisis and implemented action plans to contain its adverse consequences and prolong the utility of conventional antibiotics. Hence, there is a pressing need for new classes of antibacterial agents with novel modes of action. Quorum sensing (QS), a communication system employed by bacterial populations to coordinate virulence gene expression, is a potential target that has been intensively investigated over the past decade. This Perspective will focus on recent advances in targeting the three main quorum sensing systems ( las, rhl, and pqs) of a major opportunistic human pathogen, Pseudomonas aeruginosa, and will specifically evaluate the medicinal chemistry strategies devised to develop QS inhibitors from a drug discovery perspective.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Michael J Stocks
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| |
Collapse
|
33
|
The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives. Arch Immunol Ther Exp (Warsz) 2018. [PMID: 29541797 DOI: 10.1007/s00005-018-0510-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.
Collapse
|
34
|
Bean HD, Rees CA, Hill JE. Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. J Breath Res 2016; 10:047102. [PMID: 27869104 PMCID: PMC5266606 DOI: 10.1088/1752-7155/10/4/047102] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa is a nearly ubiquitous Gram-negative organism, well known to occupy a multitude of environmental niches and cause human infections at a variety of bodily sites, due to its metabolic flexibility, secondary to extensive genetic heterogeneity at the species level. Because of its dynamic metabolism and clinical importance, we sought to perform a comparative analysis on the volatile metabolome (the 'volatilome') produced by P. aeruginosa clinical isolates. In this study, we analyzed the headspace volatile molecules of 24 P. aeruginosa clinical isolates grown in vitro, using 2D gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). We identified 391 non-redundant compounds that we associate with the growth and metabolism of P. aeruginosa (the 'pan-volatilome'). Of these, 70 were produced by all 24 isolates (the 'core volatilome'), 52 by only a single isolate, and the remaining 269 volatile molecules by a subset. Sixty-five of the detected compounds could be assigned putative compound identifications, of which 43 had not previously been associated with P. aeruginosa. Using the accessory volatile molecules, we determined the inter-strain variation in the metabolomes of these isolates, clustering strains by their metabotypes. Assessing the extent of metabolomic diversity in P. aeruginosa through an analysis of the volatile molecules that it produces is a critical next step in the identification of novel diagnostic or prognostic biomarkers.
Collapse
Affiliation(s)
- Heather D Bean
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA. These authors made equal contributions to this work
| | | | | |
Collapse
|
35
|
Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 2016; 40:774-94. [PMID: 27268906 DOI: 10.1093/femsre/fuw009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/20/2023] Open
Abstract
Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
36
|
Welsh MA, Blackwell HE. Chemical Genetics Reveals Environment-Specific Roles for Quorum Sensing Circuits in Pseudomonas aeruginosa. Cell Chem Biol 2016; 23:361-9. [PMID: 26905657 DOI: 10.1016/j.chembiol.2016.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 12/22/2022]
Abstract
Nutritional cues differentially influence the activities of the three quorum sensing (QS) circuits-Las, Rhl, and Pqs-in the pathogen Pseudomonas aeruginosa. A full understanding of how these systems work together to tune virulence factor production to the environment is lacking. Here, we used chemical probes to evaluate the contribution of each QS circuit to virulence in wild-type P. aeruginosa under defined environmental conditions. Our results indicate that Rhl and Pqs drive virulence factor production in phosphate- and iron-limiting environments, while Las has a minor influence. Consequently, simultaneous inhibition of Rhl and Pqs can attenuate virulence in environments where Las inhibition fails. The activity trends generated in this study can be extrapolated to predict QS inhibitor activity in infection-relevant environments, such as cystic fibrosis sputum. These results indicate that environmental signals can drastically alter the efficacy of small-molecule QS inhibitors in P. aeruginosa and possibly other pathogens.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|