1
|
Prajapati V, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Kumar V, Khalilullah H, Verma A, Kumar P. Structural insights, regulation, and recent advances of RAS inhibitors in the MAPK signaling cascade: a medicinal chemistry perspective. RSC Med Chem 2025:d4md00923a. [PMID: 40052089 PMCID: PMC11880839 DOI: 10.1039/d4md00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/25/2025] [Indexed: 03/09/2025] Open
Abstract
The MAPK pathway has four main components: RAS, RAF, MEK, and ERK. Among these, RAS is the most frequently mutated protein and the leading cause of cancer. The three isoforms of the RAS gene are HRAS, NRAS, and KRAS. The KRAS gene is characterized by two splice variants, K-Ras4A and K-Ras4B. The occurrence of cancer often involves a mutation in both KRAS4A and KRAS4B. In this study, we have elucidated the mechanism of the RAS protein complex and the movement of switches I and II. Only two RAS inhibitors, sotorasib and adagrasib, have been approved by the FDA, and several are in clinical trials. This review comprises recent developments in synthetic RAS inhibitors, their unique properties, their importance in inhibiting RAS mutations, and the current challenges in developing new RAS inhibitors. This review will undoubtedly help researchers design novel RAS inhibitors.
Collapse
Affiliation(s)
- Vineet Prajapati
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Allied Sciences (Chemistry), Graphic Era (Deemed to be University) Dehradun 248002 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
2
|
Barone M, Pizzorni L, Fraaije MW, Mascotti ML, Mattevi A. Evolution, structure, and drug-metabolizing activity of mammalian prenylcysteine oxidases. J Biol Chem 2024; 300:107810. [PMID: 39322016 PMCID: PMC11530802 DOI: 10.1016/j.jbc.2024.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Prenylcysteine oxidases (PCYOXs) metabolize prenylated cysteines produced by protein degradation. They utilize oxygen as a co-substrate to produce free cysteine, an aldehyde, and hydrogen peroxide through the unusual oxidation of a thioether bond. In this study, we explore the evolution, structure, and mechanism of the two mammalian PCYOXs. A gene duplication event in jawed vertebrates originated in these two paralogs. Both enzymes are active on farnesyl- and geranylgeranylcysteine, but inactive on molecules with shorter prenyl groups. Kinetics experiments outline a mechanism where flavin reduction and re-oxidation occur rapidly without any detectable intermediates, with the overall reaction rate limited by product release. The experimentally determined three-dimensional structure of PCYOX1 reveals long and wide tunnels leading from the surface to the flavin. They allow the isoprene substrate to curl up within the protein and position its reactive cysteine group close to the flavin. A hydrophobic patch on the surface mediates membrane association, enabling direct substrate and product exchange with the lipid bilayer. Leveraging established knowledge of flavoenzyme inhibition, we designed sub-micromolar PCYOX inhibitors. Additionally, we discovered that PCYOXs bind and slowly degrade salisirab, an anti-RAS compound. This activity suggests potential and previously unknown roles of PCYOXs in drug metabolism.
Collapse
Affiliation(s)
- Marco Barone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Letizia Pizzorni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | | | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Qin P, Pan Z, Zhang W, Wang R, Li X, Lu J, Xu S, Gong X, Ye J, Yan X, Liu Y, Li Y, Zhang Y, Fang F. Integrative proteomic and transcriptomic analysis in the female goat ovary to explore the onset of puberty. J Proteomics 2024; 301:105183. [PMID: 38688390 DOI: 10.1016/j.jprot.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Puberty is considered a prerequisite for affecting reproductive performance and productivity. Little was known about molecular changes in pubertal goat ovaries. Therefore, we measured and performed a correlation analysis of the mRNA and proteins changes in the pre-pubertal and pubertal goat ovaries. The results showed that only six differentially expressed genes and differentially abundant proteins out of 18,139 genes and 7550 proteins quantified had significant correlations. CNTN2 and THBS1, discovered in the mRNA-mRNA interaction network, probably participated in pubertal and reproductive regulation by influencing GnRH receptor signals, follicular development, and ovulation. The predicted core transcription factors may either promote or inhibit the expression of reproductive genes and act synergistically to maintain normal reproductive function in animals. The interaction between PKM and TIMP3 with other proteins may impact animal puberty through energy metabolism and ovarian hormone secretion. Pathway enrichment analyses revealed that the co-associated key pathways between ovarian genes and proteins at puberty included calcium signalling pathway and olfactory transduction. These pathways were associated with gonadotropin-releasing hormone synthesis and secretion, signal transmission, and cell proliferation. In summary, these results enriched the potential molecules and signalling pathways that affect puberty and provided new insights for regulating and promoting the onset of puberty. SIGNIFICANCE: This study conducted the first transcriptomic and proteomic correlation analysis of pre-pubertal and pubertal goat ovaries and identified six significantly correlated molecules at both the gene and protein levels. Meanwhile, we were drawn to several molecules and signalling pathways that may play a regulatory role in the onset of puberty and reproduction by influencing reproductive-related gene expression, GnRH receptor signals, energy metabolism, ovarian hormone secretion, follicular development, and ovulation. This information contributed to identify potential biomarkers in pubertal goat ovaries, which was vital for predicting the onset of puberty and improving livestock performance.
Collapse
Affiliation(s)
- Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhihao Pan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunhai Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
6
|
Huang QJ, Liao GC, Zhuang XR, Yang ML, Yao JJ, Deng JH, Zhang YM, Wang Y, Qi XX, Pan DF, Guan Y, Huang ZY, Zhang FX, Liu ZQ, Lu LL. Ras inhibitor farnesylthiosalicylic acid conjugated with IR783 dye exhibits improved tumor-targeting and altered anti-breast cancer mechanisms in mice. Acta Pharmacol Sin 2022; 43:1843-1856. [PMID: 34845369 PMCID: PMC9253319 DOI: 10.1038/s41401-021-00775-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/05/2021] [Indexed: 11/09/2022]
Abstract
Ras has long been viewed as a promising target for cancer therapy. Farnesylthiosalicylic acid (FTS), as the only Ras inhibitor has ever entered phase II clinical trials, has yielded disappointing results due to its strong hydrophobicity, poor tumor-targeting capacity, and low therapeutic efficiency. Thus, enhancing hydrophilicity and tumor-targeting capacity of FTS for improving its therapeutic efficacy is of great significance. In this study we conjugated FTS with a cancer-targeting small molecule dye IR783 and characterized the anticancer properties of the conjugate FTS-IR783. We showed that IR783 conjugation greatly improved the hydrophilicity, tumor-targeting and therapeutic potential of FTS. After a single oral administration in Balb/c mice, the relative bioavailability of FTS-IR783 was increased by 90.7% compared with FTS. We demonstrated that organic anion transporting polypeptide (OATP) and endocytosis synergistically drove the uptake of the FTS-IR783 conjugate in breast cancer MDA-MB-231 cells, resulting in superior tumor-targeting ability of the conjugate both in vitro and in vivo. We further revealed that FTS-IR783 conjugate could bind with and directly activate AMPK rather than affecting Ras, and subsequently regulate the TSC2/mTOR signaling pathway, thus achieving 2-10-fold increased anti-cancer therapeutic efficacy against 6 human breast cancer cell lines compared to FTS both in vivo and in vitro. Overall, our data highlights a promising approach for the modification of the anti-tumor drug FTS using IR783 and makes it possible to return FTS back to the clinic with a better efficacy.
Collapse
Affiliation(s)
- Qiu-ju Huang
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China ,grid.411866.c0000 0000 8848 7685School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Guo-chao Liao
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Xue-rong Zhuang
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Meng-lan Yang
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Jing-jing Yao
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Jian-hua Deng
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yan-min Zhang
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Ying Wang
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Xiao-xiao Qi
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Dong-feng Pan
- grid.27755.320000 0000 9136 933XDepartment of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903 USA
| | - Yang Guan
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhi-ying Huang
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Feng-xue Zhang
- grid.411866.c0000 0000 8848 7685School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhong-qiu Liu
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, SAR China
| | - Lin-lin Lu
- grid.411866.c0000 0000 8848 7685Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine/ Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, SAR China
| |
Collapse
|
7
|
Proteomic analysis of hypothalamus in prepubertal and pubertal female goat. J Proteomics 2022; 251:104411. [PMID: 34728423 DOI: 10.1016/j.jprot.2021.104411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
The functions of proteins at the onset of puberty in goats remain largely unexplored. To identify the proteins regulating puberty in goats, we analysed protein abundance and pathways in the hypothalamus of female goats. We applied tandem mass tag (TMT) labelling, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and parallel reaction monitoring (PRM) to examine hypothalamus of pubertal (cases; n = 3) and prepubertal (controls; n = 3) goats. We identified 5119 proteins, including 69 differentially abundant proteins (DAPs), of which 35 were upregulated and 34 were downregulated. Fourteen DAPs were randomly selected to verify these results using PRM, and the results were consistent with the TMT quantitative results. DAPs were enriched in MAPK signalling pathway, Ras signalling pathway, Autophagy-animal, Endocytosis, and PI3K/Akt/mTOR signalling pathway categories. These pathways are related to embryogenesis, cell proliferation, cell differentiation, and promoting the release of gonadotropin-releasing hormone (GnRH) in the hypothalamus. In particular, PDGFRβ and MAP3K7 occupied important locations in the protein-protein interaction network. The results demonstrate that DAPs and their related signalling pathways are crucial in regulating puberty in goats. However, further research is needed to explore the functions of DAPs and their pathways to provide new insights into the mechanism of puberty onset. SIGNIFICANCE: In domestic animals, reaching the age of puberty is an event that contributes significantly to lifetime reproductive potential. And the hypothalamus functions directly in the complex systemic changes that control puberty. Our study was the first TMT proteomics analysis on hypothalamus tissues of pubertal goats, which revealed the changes of protein and pathways that are related to the onset of puberty. We identified 69 DAPs, which were enriched in the MAPK signaling pathway, the Ras signaling pathway, and the IGF-1/PI3K/Akt/mTOR pathway, suggesting that these processes were probably involved in the onset of puberty.
Collapse
|
8
|
Jafari SH, Rabiei N, Taghizadieh M, Mirazimi SMA, Kowsari H, Farzin MA, Razaghi Bahabadi Z, Rezaei S, Mohammadi AH, Alirezaei Z, Dashti F, Nejati M. Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma. Pathol Res Pract 2021; 224:153528. [PMID: 34171601 DOI: 10.1016/j.prp.2021.153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasive prognostic methods that are focused on glioblastoma heterogeneity is perceived as an urgent need. Imaging neuro-oncological biomarkers including MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status, tumor grade along with other tumor characteristics and demographic features (e.g., age) are commonly referred to during diagnostic, therapeutic and prognostic processes. Therefore, the use of new noninvasive prognostic methods focused on glioblastoma heterogeneity is considered an urgent need. Some neuronal biomarkers, including the promoter methylation status of the promoter MGMT, the characteristics and grade of the tumor, along with the patient's demographics (such as age and sex) are involved in diagnosis, treatment, and prognosis. Among the wide array of imaging techniques, magnetic resonance imaging combined with the more physiologically detailed technique of H-magnetic resonance spectroscopy can be useful in diagnosing neurological cancer patients. In addition, intracranial tumor qualitative analysis and sometimes tumor biopsies help in accurate diagnosis. This review summarizes the evidence for biochemical biomarkers being a reliable biomarker in the early detection and disease management in GBM. Moreover, we highlight the correlation between Imaging techniques and biochemical biomarkers and ask whether they can be combined.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayad Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Kowsari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Farzin
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Chen S, Liu B, Li J, Liao S, Bi Y, Huang W, Yuan L, Yang Y, Qin A. Talin1 regulates endometrial adhesive capacity through the Ras signaling pathway. Life Sci 2021; 274:119332. [PMID: 33711384 DOI: 10.1016/j.lfs.2021.119332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023]
Abstract
AIMS Blastocyst implantation is mainly depended on the adhesion between cells and cell matrix. Endometrial adhesion plays an important role in establishing embryo implantation, but the underlying mechanisms are remains unclear. Talin1 is a local adhesion complex protein that is necessary for cell adhesion and movement. However, the role and mechanisms of Talin1 in embryo implantation are still unclear. MAIN METHODS The expression of Talin1 and Integrin αvβ3 was measured in the receptive endometrium from the RIF (Recurrent implantation failure) cohort and NC (normal fertile control group) cohort. A JEG-3 trophoblast and endometrial epithelial cell adhesion model and pregnant mouse model were established. The molecular mechanism of Talin1-mediated cell adhesion was explored by RNA sequencing, RT-qPCR, as well as western blotting assays. KEY FINDINGS Talin1 enhances endometrial cell adhesion by regulating the Ras signaling pathway, and ultimately facilitates embryo implantation. SIGNIFICANCE This study revealed the molecular mechanisms of regarding the pathogenesis of RIF caused by endometrial receptivity insufficiency. Further pharmacological research on the Ras signaling pathway would be valuable and might provide new therapeutic targets for RIF patients.
Collapse
Affiliation(s)
- Saiqiong Chen
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Bo Liu
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jingjing Li
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengbin Liao
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yin Bi
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weiyu Huang
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lifang Yuan
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yihua Yang
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Aiping Qin
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
10
|
Shu L, Wang D, Saba NF, Chen ZG. A Historic Perspective and Overview of H-Ras Structure, Oncogenicity, and Targeting. Mol Cancer Ther 2021; 19:999-1007. [PMID: 32241873 DOI: 10.1158/1535-7163.mct-19-0660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/02/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
H-Ras is a unique isoform of the Ras GTPase family, one of the most prominently mutated oncogene families across the cancer landscape. Relative to other isoforms, though, mutations of H-Ras account for the smallest proportion of mutant Ras cancers. Yet, in recent years, there have been renewed efforts to study this isoform, especially as certain H-Ras-driven cancers, like those of the head and neck, have become more prominent. Important advances have therefore been made not only in the understanding of H-Ras structural biology but also in approaches designed to inhibit and impair its signaling activity. In this review, we outline historic and present initiatives to elucidate the mechanisms of H-Ras-dependent tumorigenesis as well as highlight ongoing developments in the quest to target this critical oncogene.
Collapse
Affiliation(s)
- Lihua Shu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
11
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
12
|
Hoo WPY, Siak PY, In LLA. Overview of Current Immunotherapies Targeting Mutated KRAS Cancers. Curr Top Med Chem 2019; 19:2158-2175. [PMID: 31483231 DOI: 10.2174/1568026619666190904163524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The occurrence of somatic substitution mutations of the KRAS proto-oncogene is highly prevalent in certain cancer types, which often leads to constant activation of proliferative pathways and subsequent neoplastic transformation. It is often seen as a gateway mutation in carcinogenesis and has been commonly deemed as a predictive biomarker for poor prognosis and relapse when conventional chemotherapeutics are employed. Additionally, its mutational status also renders EGFR targeted therapies ineffective owing to its downstream location. Efforts to discover new approaches targeting this menacing culprit have been ongoing for years without much success, and with incidences of KRAS positive cancer patients being on the rise, researchers are now turning towards immunotherapies as the way forward. In this scoping review, recent immunotherapeutic developments and advances in both preclinical and clinical studies targeting K-ras directly or indirectly via its downstream signal transduction machinery will be discussed. Additionally, some of the challenges and limitations of various K-ras targeting immunotherapeutic approaches such as vaccines, adoptive T cell therapies, and checkpoint inhibitors against KRAS positive cancers will be deliberated.
Collapse
Affiliation(s)
- Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Lionel L A In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Porta EOJ, Bofill Verdaguer I, Perez C, Banchio C, Ferreira de Azevedo M, Katzin AM, Labadie GR. Repositioning Salirasib as a new antimalarial agent. MEDCHEMCOMM 2019; 10:1599-1605. [PMID: 31803400 DOI: 10.1039/c9md00298g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Malaria is a serious tropical disease that kills thousands of people every year, mainly in Africa, due to Plasmodium falciparum infections. Salirasib is a promising cancer drug candidate that interferes with the post-translational modification of Ras. This S-farnesyl thiosalicylate inhibits isoprenylcysteine carboxyl methyltransferase (ICMT), a validated target for cancer drug development. There is a high homology between the human and the parasite enzyme isoforms, in addition to being a druggable target. Looking to repurpose its structure as an antimalarial drug, a collection of S-substituted derivatives of thiosalicylic acid were prepared by introducing 1,2,3-triazole as a diversity entry point or by direct alkylation of the thiol. We further investigated the in vitro toxicity of FTS analogues to Plasmodium falciparum in the asexual stages and in Vero cells. An antiplasmodial activity assay was performed using a simple, high-sensitivity methodology based on nanoluciferase (NLuc)-transfected P. falciparum parasites. The results showed that some of the analogs were active at low micromolar concentration, including Salirasib. The most potent member of the series has S-farnesyl and the 1,2,3-triazole moiety substituted with phytyl. However, the compound substituted with methyl-naphthyl shows promising physicochemical and activity values. The low cytotoxicity in eukaryotic cells of the most active analogs provided good therapeutic indices, being starting-point candidates for future antimalarial drug development.
Collapse
Affiliation(s)
- Exequiel O J Porta
- Instituto de Química Rosario , UNR , CONICET , Suipacha 531 , S2002LRK , Rosario , Argentina . ; ; Tel: +54 341 4370477
| | - Ignasi Bofill Verdaguer
- Departamento de Parasitología , Instituto de Ciências Biomédicas , Universidade de São Paulo , São Paulo , Brazil .
| | - Consuelo Perez
- Instituto de Biología Molecular y Celular (IBR-CONICET-UNR) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , S2002LRK , Rosario , Argentina
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular (IBR-CONICET-UNR) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , S2002LRK , Rosario , Argentina
| | | | - Alejandro M Katzin
- Departamento de Parasitología , Instituto de Ciências Biomédicas , Universidade de São Paulo , São Paulo , Brazil .
| | - Guillermo R Labadie
- Instituto de Química Rosario , UNR , CONICET , Suipacha 531 , S2002LRK , Rosario , Argentina . ; ; Tel: +54 341 4370477.,Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , S2002LRK , Rosario , Argentina
| |
Collapse
|
14
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer-Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC. This review intends to present trials of small molecule tyrosine kinase inhibitors (TKIs) in PC management and the troubles encountered due to inevitable acquired resistance to TKIs.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Saikrishna Lakkakula
- Department of Zoology, Visvodaya Government Degree College, Venkatagiri, AP-524132, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R.Ambedkar University, Srikakulam, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP- 500004, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA.
| |
Collapse
|
15
|
Sugita S, Enokida H, Yoshino H, Miyamoto K, Yonemori M, Sakaguchi T, Osako Y, Nakagawa M. HRAS as a potential therapeutic target of salirasib RAS inhibitor in bladder cancer. Int J Oncol 2018; 53:725-736. [PMID: 29901113 DOI: 10.3892/ijo.2018.4435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 11/06/2022] Open
Abstract
The active form of the small GTPase RAS binds to downstream effectors to promote cell growth and proliferation. RAS signal enhancement contributes to tumorigenesis, invasion, and metastasis in various different cancers. HRAS proto-oncogene GTPase (HRAS), one of the RAS isoforms, was the first human oncogene for which mutations were reported in T24 bladder cancer (BC) cells in 1982, and HRAS mutation or upregulation has been reported in several cancers. According to data from The Cancer Genome Atlas, HRAS expression was significantly upregulated in clinical BC samples compared to healthy samples (P=0.0024). HRAS expression was also significantly upregulated in BC with HRAS mutation compared to patients without HRAS mutation (P<0.0001). The tumor suppressive effect of salirasib, a RAS inhibitor, has been reported in several cancer types, but only at relatively high concentrations. As such, RAS inhibitors have not been used for clinical applications. The aim of the current study was to investigate the therapeutic potential of targeting HRAS using salirasib and small interfering RNA (siRNA) and to characterize the mechanism by which HRAS functions using recently developed quantitative in vitro proteome-assisted multiple reaction monitoring for protein absolute quantification (iMPAQT), in BC cells. iMPAQT allows measurement of the absolute abundance of any human protein with the high quantitative accuracy. Salirasib and siRNA targeting of HRAS inhibited cell proliferation, migration and invasion in HRAS wild type and HRAS-mutated cell lines. Proteomic analyses revealed that several metabolic pathways, including the oxidative phosphorylation pathway and glycolysis, were significantly downregulated in salirasib-treated BC cells. However, the expression levels of hexokinase 2, phosphoglycerate kinase 1, pyruvate kinase, muscle (PKM)1, PKM2 and lactate dehydrogenase A, which are downstream of RAS and target genes of hypoxia inducible factor-1α, were not notably downregulated, which may explain the high concentration of salirasib required to inhibit cell viability. These findings provide insight into the mechanisms of salirasib, and suggest the need for novel therapeutic strategies to treat cancers such as BC.
Collapse
Affiliation(s)
- Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Kazutaka Miyamoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan
| |
Collapse
|
16
|
Altshuler A, Verbuk M, Bhattacharya S, Abramovich I, Haklai R, Hanna JH, Kloog Y, Gottlieb E, Shalom-Feuerstein R. RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Reports 2018; 10:1088-1101. [PMID: 29456180 PMCID: PMC5918191 DOI: 10.1016/j.stemcr.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
The transition from naive to primed state of pluripotent stem cells is hallmarked by epithelial-mesenchymal transition, metabolic switch from oxidative phosphorylation to aerobic glycolysis, and changes in the epigenetic landscape. Since these changes are also seen as putative hallmarks of neoplastic cell transformation, we hypothesized that oncogenic pathways may be involved in this process. We report that the activity of RAS is repressed in the naive state of mouse embryonic stem cells (ESCs) and that all three RAS isoforms are significantly activated upon early differentiation induced by LIF withdrawal, embryoid body formation, or transition to the primed state. Forced expression of active RAS and RAS inhibition have shown that RAS regulates glycolysis, CADHERIN expression, and the expression of repressive epigenetic marks in pluripotent stem cells. Altogether, this study indicates that RAS is located at a key junction of early ESC differentiation controlling key processes in priming of naive cells.
Collapse
Affiliation(s)
- Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Mila Verbuk
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ifat Abramovich
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Roni Haklai
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoel Kloog
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Gottlieb
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
17
|
Amanam I, Chung V. Targeted Therapies for Pancreatic Cancer. Cancers (Basel) 2018; 10:E36. [PMID: 29382159 PMCID: PMC5836068 DOI: 10.3390/cancers10020036] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer related death and by 2030, it will be second only to lung cancer. We have seen tremendous advances in therapies for lung cancer as well as other solid tumors using a molecular targeted approach but our progress in treating pancreatic cancer has been incremental with median overall survival remaining less than one year. There is an urgent need for improved therapies with better efficacy and less toxicity. Small molecule inhibitors, monoclonal antibodies and immune modulatory therapies have been used. Here we review the progress that we have made with these targeted therapies.
Collapse
Affiliation(s)
- Idoroenyi Amanam
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Vincent Chung
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
18
|
HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3160360. [PMID: 28553432 PMCID: PMC5434241 DOI: 10.1155/2017/3160360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Aβ) deposition is increased in human immunodeficiency virus-1- (HIV-1-) infected brain, but the mechanisms are not fully understood. The aim of the present study was to evaluate the role of Ras signaling in HIV-1 transactivator protein- (Tat-) induced Aβ accumulation in human cerebral microvascular endothelial cells (HBEC-5i). Cell viability assay showed that 1 μg/mL Tat and 20 μmol/L of the Ras inhibitor farnesylthiosalicylic acid (FTS) had no significant effect on HBEC-5i cell viability after 24 h exposure. Exposure to Tat decreased protein and mRNA levels of zonula occludens- (ZO-) 1 and Aβ-degrading enzyme neprilysin (NEP) in HBEC-5i cells as determined by western blotting and quantitative real-time polymerase chain reaction. Exposure to Tat also increased transendothelial transfer of Aβ and intracellular reactive oxygen species (ROS) levels; however, these effects were attenuated by FTS. Collectively, these results suggest that the Ras signaling pathway is involved in HIV-1 Tat-induced changes in ZO-1 and NEP, as well as Aβ deposition in HBEC-5i cells. FTS partially protects blood-brain barrier (BBB) integrity and inhibits Aβ accumulation.
Collapse
|
19
|
Guan Y, Zhang Y, Xiao L, Li J, Wang JP, Chordia MD, Liu ZQ, Chung LWK, Yue W, Pan D. Improving Therapeutic Potential of Farnesylthiosalicylic Acid: Tumor Specific Delivery via Conjugation with Heptamethine Cyanine Dye. Mol Pharm 2017; 14:1-13. [PMID: 26992462 PMCID: PMC5815365 DOI: 10.1021/acs.molpharmaceut.5b00906] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RAS and mTOR inhibitor S-trans-trans-farnesylthiosalicylic acid (FTS) is a promising anticancer agent with moderate potency, currently undergoing clinical trials as a chemotherapeutic agent. FTS has displayed its potential against a variety of cancers including endocrine resistant breast cancer. However, the poor pharmacokinetics profile attributed to its high hydrophobicity is a major hindrance for its continued advancement in clinic. One of the ways to improve its therapeutic potential would be to enhance its bioavailability to cancer tissue by developing a method for targeted delivery. In the current study, FTS was conjugated with the cancer-targeting heptamethine cyanine dye 5 to form the FTS-dye conjugate 11. The efficiency of tumor targeting properties of conjugate 11 against cancer cell growth and mTOR inhibition was evaluated in vitro in comparison with parent FTS. Cancer targeting of 11 in a live mouse model of MCF7 xenografts was demonstrated with noninvasive, near-infrared fluorescence (NIRF) imaging. The results from our studies clearly suggest that the bioavailability of FTS is indeed improved as indicated by log P values and cancer cell uptake. The FTS-dye conjugate 11 displayed higher potency (IC50 = 16.8 ± 0.5 μM) than parent FTS (IC50 = ∼51.3 ± 1.8 μM) and inhibited mTOR activity in the cancer cells at a lower concentration (12.5 μM). The conjugate 11 was shown to be specifically accumulated in tumors as observed by in vivo NIRF imaging, organ distribution, and ex vivo tumor histology along with cellular level confocal microscopy. In conclusion, the conjugation of FTS with cancer-targeting heptamethine cyanine dye improved its pharmacological profile.
Collapse
Affiliation(s)
- Yang Guan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22903, United States
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 51006, China
| | - Yi Zhang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22903, United States
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Li Xiao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Jie Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22903, United States
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ji-ping Wang
- Department of Endocrinology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mahendra D. Chordia
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Zhong-Qiu Liu
- Department of Endocrinology, University of Virginia, Charlottesville, Virginia 22903, United States
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 51006, China
| | - Leland W. K. Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Wei Yue
- Department of Endocrinology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Dongfeng Pan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
20
|
Xu J, Zhang X, Chen Y, Huang Y, Wang P, Wei Y, Ma X, Li S. Improved Micellar Formulation for Enhanced Delivery for Paclitaxel. Mol Pharm 2016; 14:31-41. [PMID: 28043124 DOI: 10.1021/acs.molpharmaceut.6b00581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have previously improved the bioactivity of PEG5k-FTS2 system by incorporating disulfide bond (PEG5k-S-S-FTS2) to facilitate the release of farnesyl thiosalicylic acid (FTS).1 Later, fluorenylmethyloxycarbonyl (Fmoc) moiety has been introduced to PEG5k-FTS2 system (PEG5k-Fmoc-FTS2) in order to enhance drug loading capacity (DLC) and formulation stability.2 In this study, we have brought in both disulfide linkage and Fmoc group to PEG5k-FTS2 to form a simple PEG5k-Fmoc-S-S-FTS2 micellar system. PEG5k-Fmoc-S-S-FTS2 conjugate formed filamentous micelles with a ∼10-fold decrease in critical micellar concentration (CMC). Compared with PEG5k-Fmoc-FTS2, our novel system exhibited further strengthened DLC and colloidal stability. More FTS was freed from PEG5k-Fmoc-S-S-FTS2 in treated tumor cells compared to PEG5k-Fmoc-FTS2, which was correlated to an increased cytotoxicity of our new carrier in these cancer cells. After loading Paclitaxel (PTX) into PEG5k-Fmoc-S-S-FTS2 micelles, it showed more potent efficiency in inhibition of tumor cell proliferation than Taxol and PTX-loaded PEG5k-Fmoc-FTS2. PTX release kinetics of PTX/PEG5k-Fmoc-S-S-FTS2 was much slower than that of Taxol and PTX/PEG5k-Fmoc-FTS2 in normal release medium. In contrast, in glutathione (GSH)-containing medium, PTX in PEG5k-Fmoc-S-S-FTS2 micelles revealed faster and more complete release. Pharmacokinetics and tissue distribution study showed that our PEG5k-Fmoc-S-S-FTS2 system maintained PTX in circulation for a longer time and delivered more PTX to tumor sites with less accumulation in major organs. Finally, PTX-loaded PEG5k-Fmoc-S-S-FTS2 micelles resulted in a superior therapeutic effect in vivo compared to Taxol and PTX formulated in PEG5k-Fmoc-FTS2 micelles.
Collapse
Affiliation(s)
- Jieni Xu
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaolan Zhang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yichao Chen
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Pengcheng Wang
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Yuan Wei
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaochao Ma
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Song Li
- Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
21
|
Zhang J, Park D, Shin DM, Deng X. Targeting KRAS-mutant non-small cell lung cancer: challenges and opportunities. Acta Biochim Biophys Sin (Shanghai) 2016; 48:11-6. [PMID: 26578706 DOI: 10.1093/abbs/gmv118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) occur in 15%-30% of non-small cell lung cancer (NSCLC). However, despite decades of intensive research, there is still no direct KRAS inhibitor with clinically proven efficacy. Considering its association with poor treatment response and prognosis of lung cancer, developing an effective inhibitory approach is urgently needed. Here, we review different strategies currently being explored to target KRAS-mutant NSCLC, discuss opportunities and challenges, and also propose some novel methods and concepts with the promise of clinical application.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Akinleye A, Iragavarapu C, Furqan M, Cang S, Liu D. Novel agents for advanced pancreatic cancer. Oncotarget 2015; 6:39521-37. [PMID: 26369833 PMCID: PMC4741843 DOI: 10.18632/oncotarget.3999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is relatively insensitive to conventional chemotherapy. Therefore, novel agents targeting dysregulated pathways (MAPK/ERK, EGFR, TGF-β, HEDGEHOG, NOTCH, IGF, PARP, PI3K/AKT, RAS, and Src) are being explored in clinical trials as monotherapy or in combination with cytotoxic chemotherapy. This review summarizes the most recent advances with the targeted therapies in the treatment of patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Chaitanya Iragavarapu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Muhammad Furqan
- Division of Hematology/Oncology, Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Department of Oncology, Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
24
|
Ling Y, Wang Z, Wang X, Zhao Y, Zhang W, Wang X, Chen L, Huang Z, Zhang Y. Synthesis and biological evaluation of hybrids from farnesylthiosalicylic acid and hydroxylcinnamic acid with dual inhibitory activities of Ras-related signaling and phosphorylated NF-κB. Org Biomol Chem 2015; 12:4517-30. [PMID: 24848877 DOI: 10.1039/c4ob00023d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of hybrids (5a–r) of farnesylthiosalicylic acid (FTS) and hydroxylcinnamic acid were designed and synthesized. Most of the hybrids displayed potent antiproliferative activity against seven cancer cell lines in vitro, superior to FTS as well as sorafenib. The most potent compound 5f selectively inhibited cancer cells but not non-tumor liver cell proliferation in vitro, and significantly induced SMMC-7721 cell apoptosis. Interestingly, 5f could simultaneously inhibit not only Ras-related signaling but also phosphorylated NF-κB, which may synergetically contribute to the cell growth inhibition and apoptosis induction. Moreover, 5f showed low acute toxicity to mice and significantly inhibited the hepatoma tumor growth.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jang H, Abraham SJ, Chavan TS, Hitchinson B, Khavrutskii L, Tarasova NI, Nussinov R, Gaponenko V. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 2015; 290:9465-77. [PMID: 25713064 PMCID: PMC4392252 DOI: 10.1074/jbc.m114.620724] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/19/2015] [Indexed: 01/08/2023] Open
Abstract
K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling.
Collapse
Affiliation(s)
- Hyunbum Jang
- From the Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research and Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Sherwin J Abraham
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, Departments of Biochemistry and Molecular Genetics and
| | - Tanmay S Chavan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, Medicinal Chemistry, University of Illinois, Chicago, Illinois 60607, and
| | | | - Lyuba Khavrutskii
- From the Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research and Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Nadya I Tarasova
- Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702,
| | - Ruth Nussinov
- From the Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research and Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vadim Gaponenko
- Departments of Biochemistry and Molecular Genetics and Medicinal Chemistry, University of Illinois, Chicago, Illinois 60607, and
| |
Collapse
|
26
|
van Hattum H, Waldmann H. Chemical Biology Tools for Regulating RAS Signaling Complexity in Space and Time. ACTA ACUST UNITED AC 2014; 21:1185-95. [DOI: 10.1016/j.chembiol.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/14/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022]
|
27
|
Ling Y, Wang Z, Wang X, Li X, Wang X, Zhang W, Dai H, Chen L, Zhang Y. Hybrid molecule from Farnesylthiosalicylic acid-diamine and phenylpropenoic acid as Ras-related signaling inhibitor with potent antitumor activities. Chem Biol Drug Des 2014; 85:145-52. [PMID: 25043275 DOI: 10.1111/cbdd.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022]
Abstract
Novel series of Farnesylthiosalicylic acid-diamine/phenylpropenoic acid hybrids were designed and synthesized. Their in vitro growth inhibitory assays showed that most compounds displayed strong antiproliferation activity against seven cancer cells. Especially, the new hybrid 12 f, by the conjugation of 10a with ferulic acid, could selectively suppress the proliferation of tumor cells and display significantly lower toxicities to normal cells than its intermediate 10a. Furthermore, 12 f dose-dependently induced SMMC-7721 cell apoptosis. Additionally, our observations demonstrated that 12 f inhibited both Ras-related signaling and phosphorylated NF-κB synergistically, which may be advantageous to the strong antitumor activities of 12 f. Our findings suggest that these novel hybrids may hold a great promise as therapeutic agents for the intervention of human cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice. Cell Death Dis 2014; 5:e1241. [PMID: 24853419 PMCID: PMC4047882 DOI: 10.1038/cddis.2014.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.
Collapse
|
29
|
Aizman E, Blacher E, Ben-Moshe O, Kogan T, Kloog Y, Mor A. Therapeutic effect of farnesylthiosalicylic acid on adjuvant-induced arthritis through suppressed release of inflammatory cytokines. Clin Exp Immunol 2014; 175:458-67. [PMID: 24215151 PMCID: PMC3927906 DOI: 10.1111/cei.12235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2013] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by pronounced inflammation and leucocyte infiltration in affected joints. Despite significant therapeutic advances, a new targeted approach is needed. Our objective in this work was to investigate the anti-inflammatory effects of the Ras inhibitor farnesylthiosalicylic acid (FTS) on adjuvant-induced arthritis (AIA) in rats, an experimental model for RA. Following AIA induction in Lewis rats by intradermal injection of heat-killed Mycobacterium tuberculosis, rats were treated with either FTS or dexamethasone and assessed daily for paw swelling. Joints were imaged by magnetic resonance imaging and computerized tomography and analysed histologically. The anti-inflammatory effect of FTS was assessed by serum assay of multiple cytokines. After adjuvant injection rats demonstrated paw swelling, leucocyte infiltration, cytokine secretion and activation of Ras-effector pathways. Upon FTS treatment these changes reverted almost to normal. Histopathological analysis revealed that the synovial hyperplasia and leucocyte infiltration observed in the arthritic rats were alleviated by FTS. Periarticular bony erosions were averted. Efficacy of FTS treatment was also demonstrated by inhibition of CD4(+) and CD8(+) T cell proliferation and of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-17 release. The Ras effectors PI3K, protein kinase B (AKT), p38, and extracellular-regulated kinase (ERK) were significantly attenuated and forkhead box protein 3 (FoxP3) transcription factor, a marker of regulatory T cells, was significantly increased. Thus, FTS possesses significant anti-inflammatory and anti-arthritic properties and accordingly shows promise as a potential therapeutic agent for RA. Its effects are apparently mediated, at least in part, by a decrease in proinflammatory cytokines.
Collapse
Affiliation(s)
- E Aizman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv UniversityTel-Aviv, Israel
| | - E Blacher
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv UniversityTel-Aviv, Israel
| | - O Ben-Moshe
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv UniversityTel-Aviv, Israel
| | - T Kogan
- Department of Pathology, Sapir Medical Center, Sackler School of Medicine, Tel-Aviv UniversityTel-Aviv, Israel
| | - Y Kloog
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv UniversityTel-Aviv, Israel
| | - A Mor
- Department of Medicine and Pathology, New York University School of MedicineNew York, USA
| |
Collapse
|
30
|
Ling Y, Wang X, Zhu H, Wang Z, Xu C, Wang X, Chen L, Zhang W. Synthesis and biological evaluation of novel farnesylthiosalicylic acid derivatives for cancer treatment. Arch Pharm (Weinheim) 2014; 347:327-33. [PMID: 24435839 DOI: 10.1002/ardp.201300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Novel farnesylthiosalicylic acid (FTS) derivatives were synthesized by coupling with different substituted diamines. Their in vitro growth inhibitory activities against seven human cancer cell lines were evaluated. The results revealed that the synthetic farnesylthiosalicylamides displayed significant antitumor activities compared to the positive control FTS. Especially, compound 8f exhibited the strongest antitumor activities with IC50 values of 6.20-7.83 µM, which were one- to threefold less than those of sorafenib and six- to tenfold less than that of FTS against each cell line in vitro. Furthermore, 8f could inhibit the Ras-related signaling pathway and induce SMMC-7721 cell apoptosis superior to FTS in a dose-dependent manner. These data indicate that 8f may hold greater promise as therapeutic agent for the intervention of human cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy, Nantong University, Nantong, P. R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ling Y, Wang Z, Zhu H, Wang X, Zhang W, Wang X, Chen L, Huang Z, Zhang Y. Synthesis and biological evaluation of farnesylthiosalicylamides as potential anti-tumor agents. Bioorg Med Chem 2014; 22:374-80. [DOI: 10.1016/j.bmc.2013.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
|
32
|
Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia. Blood 2013; 122:2694-703. [PMID: 23974202 DOI: 10.1182/blood-2013-01-477133] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34(+) normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias.
Collapse
|
33
|
Abstract
The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent.
Collapse
Affiliation(s)
- Yoel Kloog
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel.
| | - Galit Elad-Sfadia
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel
| | - Roni Haklai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel
| | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, New York, USA; Department of Pathology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
34
|
Altered galectin-1 serum levels in patients diagnosed with high-grade glioma. J Neurooncol 2013; 115:9-17. [PMID: 23824536 DOI: 10.1007/s11060-013-1201-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
High-grade gliomas (HGG) are the most common and most aggressive intrinsic human brain tumors in adults. Galectin-1, a glycan-binding protein that is overexpressed in HGG, has been shown to contribute significantly to the aggressive nature of HGG. It is unknown whether increased galectin-1 expression levels are exclusively found at the tumor site or whether galectin-1 can also be detected in the serum of HGG patients. Galectin-1 serum levels were analyzed in a prospective dataset of 43 healthy controls and 125 patients with newly diagnosed or recurrent HGG. Samples were taken at the moment of surgical resection and/or 2-3 weeks after surgery. Galectin-1 serum levels were determined using an ELISA for galectin-1. Galectin-1 serum levels depended significantly on age and sex in the control group. Age- and sex-adjusted galectin-1 serum levels were significantly higher in all patient subgroups compared to healthy controls with a high discriminative ability that increased with age. We did not observe a significant decrease in the galectin-1 serum levels upon surgical resection of the tumor. Collectively, the data presented here may represent a first step to establish galectin-1 as a biomarker in HGG disease monitoring. Further longitudinal evaluation is required and ongoing to investigate the value of galectin-1 serum levels in HGG patients as an additional diagnostic marker, but more importantly as a predictor of treatment response and prognosis. Furthermore, galectin-1 serum levels could also provide an important tool for the identification of HGG patients that could benefit from galectin-1 directed therapies that are currently under development.
Collapse
|
35
|
|
36
|
Abstract
The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), thus stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Despite intensive effort, to date, no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery.
Collapse
|
37
|
Sacco E, Metalli D, Spinelli M, Manzoni R, Samalikova M, Grandori R, Morrione A, Traversa S, Alberghina L, Vanoni M. Novel RasGRF1-derived Tat-fused peptides inhibiting Ras-dependent proliferation and migration in mouse and human cancer cells. Biotechnol Adv 2011; 30:233-43. [PMID: 21620943 DOI: 10.1016/j.biotechadv.2011.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Mutations of RAS genes are critical events in the pathogenesis of different human tumors and Ras proteins represent a major clinical target for the development of specific inhibitors to use as anticancer agents. Here we present RasGRF1-derived peptides displaying both in vitro and in vivo Ras inhibitory properties. These peptides were designed on the basis of the down-sizing of dominant negative full-length RasGRF1 mutants. The over-expression of these peptides can revert the phenotype of K-RAS transformed mouse fibroblasts to wild type, as monitored by several independent biological readouts, including Ras-GTP intracellular levels, ERK activity, morphology, proliferative potential and anchorage independent growth. Fusion of the RasGRF1-derived peptides with the Tat protein transduction domain allows their uptake into mammalian cells. Chemically synthesized Tat-fused peptides, reduced to as small as 30 residues on the basis of structural constraints, retain Ras inhibitory activity. These small peptides interfere in vitro with the GEF catalyzed nucleotide dissociation and exchange on Ras, reduce cell proliferation of K-RAS transformed mouse fibroblasts, and strongly reduce Ras-dependent IGF-I-induced migration and invasion of human bladder cancer cells. These results support the use of RasGRF1-derived peptides as model compounds for the development of Ras inhibitory anticancer agents.
Collapse
Affiliation(s)
- Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 2011; 130:177-90. [DOI: 10.1016/j.pharmthera.2011.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/13/2011] [Indexed: 12/16/2022]
|