1
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
3
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
4
|
Hua H, Guan L, Pan B, Gao J, Geng Y, Niu MM, Li Z, Li J. The identification of potent dual-target monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) inhibitors through pharmacophore modeling, molecular docking, molecular dynamics simulations, and biological evaluation. Front Pharmacol 2024; 15:1454523. [PMID: 39351092 PMCID: PMC11439681 DOI: 10.3389/fphar.2024.1454523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Background Overexpression of monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) is associated with the proliferation of liver cancer cells, so simultaneous inhibition of both MPS1 and HDAC8 could offer a promising therapeutic approach for the treatment of liver cancer. Dual-targeted MPS1/HDAC8 inhibitors have not been reported. Methods A combined approach of pharmacophore modeling and molecular docking was used to identify potent dual-target inhibitors of MPS1 and HDAC8. Enzyme inhibition assays were performed to evaluate the optimal compound with the strongest inhibitory activity against MPS1 and HDAC8. The selectivity of MPH-5 for MPS1 and HDAC8 was assessed on a panel of 68 kinases and other histone deacetylases. Subsequently, molecular dynamics (MD) simulation verified the binding stability of the optimal compound to MPS1 and HDAC8. Ultimately, in vitro cellular assays and in vivo antitumor assays evaluated the antitumor efficacy of the most promising compound for the treatment of hepatocellular carcinoma. Results Six dual-target compounds (MPHs 1-6) of both MPS1 and HDAC8 were identified from the database using a combined virtual screening protocol. Notably, MPH-5 showed nanomolar inhibitory effect on both MPS1 (IC50 = 4.52 ± 0.21 nM) and HDAC8 (IC50 = 6.07 ± 0.37 nM). MD simulation indicated that MPH-5 stably binds to both MPS1 and HDAC8. Importantly, cellular assays revealed that MPH-5 exhibited significant antiproliferative activity against human liver cancer cells, especially HepG2 cells. Moreover, MPH-5 exhibited low toxicity and high efficacy against tumor cells, and it overcomes drug resistance to some extent. In addition, MPH-5 may exert its antitumor effects by downregulating MPS1-driven phosphorylation of histone H3 and upregulating HDAC8-mediated K62 acetylation of PKM2. Furthermore, MPH-5 showed potent inhibition of HepG2 xenograft tumor growth in mice with no apparent toxicity and presented favorable pharmacokinetics. Conclusion The study suggests that MPH-5 is a potent, selective, high-efficacy, and low-toxicity antitumor candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huilian Hua
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Bo Pan
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, China
| | - Junyi Gao
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Jindong Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
5
|
Wang Y, Sauvage M, Diennet M, Weber S, Mader S, Gleason JL. Design, synthesis and antiproliferative activity of raloxifene/histone deacetylase inhibitor hybrids in breast cancer. Eur J Med Chem 2024; 274:116533. [PMID: 38838548 DOI: 10.1016/j.ejmech.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Antiestrogen/histone deacetylase inhibitor (HDACi) hybrids were designed by merging structures of raloxifene with suberoylanilide hydroxamic acid, incorporating the HDACi unit into the phenolic ring of the antiestrogen. These hybrids were synthesized with a range of HDACi chain lengths and assessed for bifunctionality. Four hybrids, 21 (YW471), 22 (YW490), 27(YW486), and 28 (YW487) showed good potency both as antiestrogens in a BRET assay and in a fluorometric HDACi assay. The antiproliferative activity of the hybrids was demonstrated in both ER+ MCF7 and ER- MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Madline Sauvage
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Marine Diennet
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Pavillon Marcelle-Coutu, Université de Montréal, 2950 Chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
6
|
Zhang L, Guan L, Wang Y, Niu MM, Yan J. Discovery of a dual-target DYRK2 and HDAC8 inhibitor for the treatment of hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116839. [PMID: 38889633 DOI: 10.1016/j.biopha.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and histone deacetylase 8 (HDAC8) have been shown to be associated with the development of several cancers. Here, we identified a dual-target DYRK2/HDAC8 inhibitor (DYC-1) through a combined virtual screening protocol. DYC-1 exhibited nanomolar inhibitory activity against both DYRK2 (IC50 = 5.27 ± 0.13 nM) and HDAC8 (IC50 = 8.06 ± 0.47 nM). Molecular dynamics simulations showed that DYC-1 had positive binding stability with DYRK2 and HDAC8. Importantly, the cytotoxicity assay indicated that DYC-1 exhibited superior antiproliferative activity against human liver cancer, especially SK-HEP-1 cells, and had no significant inhibition on normal liver cells. Moreover, DYC-1 showed a strong inhibitory effect on the growth of SK-HEP-1 xenograft tumors with no significant side effects. These data suggest that DYC-1 is a high-efficacy and low-toxic antitumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Changzhi People's Hospital, Changzhi Medical College, Changzhi 046000, China.
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhu Yan
- Department of Pain Treatment, Changzhi Hospital of Traditional Chinese Medicine, Changzhi 046000, China.
| |
Collapse
|
7
|
Zhu S, Zhu W, Zhao K, Yu J, Lu W, Zhou R, Fan S, Kong W, Yang F, Shan P. Discovery of a novel hybrid coumarin-hydroxamate conjugate targeting the HDAC1-Sp1-FOSL2 signaling axis for breast cancer therapy. Cell Commun Signal 2024; 22:361. [PMID: 39010083 PMCID: PMC11247895 DOI: 10.1186/s12964-024-01733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Sujie Zhu
- Institute of Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Kaihua Zhao
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Jie Yu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Rui Zhou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shule Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 00250, Finland.
- Institute Sanqu Technology (Hangzhou) Co., Ltd., Hangzhou, China.
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Peipei Shan
- Institute of Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
8
|
Fan W, Li W, Li L, Qin M, Mao C, Yuan Z, Wang P, Chu B, Jiang Y. Bifunctional HDAC and DNMT inhibitor induces viral mimicry activates the innate immune response in triple-negative breast cancer. Eur J Pharm Sci 2024; 197:106767. [PMID: 38636781 DOI: 10.1016/j.ejps.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Weiwen Fan
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenkai Li
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Chengzhou Mao
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
| | - Bizhu Chu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
9
|
Kezin VA, Matyugina ES, Surzhikov SA, Novikov MS, Maslova AA, Karpenko IL, Ivanov AV, Kochetkov SN, Khandazhinskaya AL. Cytotoxicity Studies of 5-Arylaminouracil Derivatives. Mol Biol 2024; 58:328-335. [DOI: 10.1134/s0026893324020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 04/17/2025]
|
10
|
Zhu Q, Dai Q, Zhao L, Zheng C, Li Q, Yuan Z, Li L, Xie Z, Qiu Z, Huang W, Liu G, Zu X, Chu B, Jiang Y. Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Cell Death Dis 2024; 15:10. [PMID: 38182579 PMCID: PMC10770036 DOI: 10.1038/s41419-023-06303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
PARP inhibitors and HDAC inhibitors have been approved for the clinical treatment of malignancies, but acquired resistance of or limited effects on solid tumors with a single agent remain as challenges. Bioinformatics analyses and a combination of experiments had demonstrated the synergistic effects of PARP and HDAC inhibitors in triple-negative breast cancer. A series of novel dual PARP and HDAC inhibitors were rationally designed and synthesized, and these molecules exhibited high enzyme inhibition activity with excellent antitumor effects in vitro and in vivo. Mechanistically, dual PARP and HDAC inhibitors induced BRCAness to restore synthetic lethality and promoted cytosolic DNA accumulation, which further activates the cGAS-STING pathway and produces proinflammatory chemokines through type I IFN-mediated JAK-STAT pathway. Moreover, these inhibitors promoted neoantigen generation, upregulated antigen presentation genes and PD-L1, and enhanced antitumor immunity when combined with immune checkpoint blockade therapy. These results indicated that novel dual PARP and HDAC inhibitors have antitumor immunomodulatory functions in triple-negative breast cancer. Novel dual PARP and HDAC inhibitors induce BRCAness to restore synthetic lethality, activating tumoral IFN signaling via the cGAS-STING pathway and inducing cytokine production, promoting neoantigen generation and presentation to enhance the immune response.
Collapse
Affiliation(s)
- Qingyun Zhu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qiuzi Dai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Academics Working Station, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Lei Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chang Zheng
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhuoye Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zixuan Qiu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guowen Liu
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Yuyang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Manna PR, Yang S, Reddy PH. Epigenetic Dysregulation and Its Correlation with the Steroidogenic Machinery Impacting Breast Pathogenesis: Data Mining and Molecular Insights into Therapeutics. Int J Mol Sci 2023; 24:16488. [PMID: 38003678 PMCID: PMC10671690 DOI: 10.3390/ijms242216488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous condition and comprises molecularly distinct subtypes. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen accumulation, especially 17β-estradiol (E2), promotes breast tumorigenesis. In the present study, analyses of The Cancer Genome Atlas (TCGA) pan-cancer normalized RNA-Seq datasets revealed the dysregulation of 16 epigenetic enzymes (among a total of 18 members) in luminal BC subtypes, in comparison to their non-cancerous counterparts. Explicitly, genomic profiling of these epigenetic enzymes displayed increases in HDAC1, 2, 8, 10, 11, and Sirtuins (SIRTs) 6 and 7, and decreases in HDAC4-7, -9, and SIRT1-4 levels, respectively, in TCGA breast tumors. Kaplan-Meier plot analyses showed that these HDACs, with the exception of HDAC2 and SIRT2, were not correlated with the overall survival of BC patients. Additionally, disruption of the epigenetic signaling in TCGA BC subtypes, as assessed using both heatmaps and boxplots, was associated with the genomic expression of factors that are instrumental for cholesterol trafficking/utilization for accelerating estrogen/E2 levels, in which steroidogenic acute regulatory protein (STAR) mediates the rate-limiting step in steroid biosynthesis. TCGA breast samples showed diverse expression patterns of a variety of key steroidogenic markers and hormone receptors, including LIPE, CYP27A1, STAR, STARD3, CYP11A1, CYP19A1, ER, PGR, and ERBB2. Moreover, regulation of STAR-governed steroidogenic machinery was found to be influenced by various transcription factors, i.e., CREB1, CREM, SF1, NR4A1, CEBPB, SREBF1, SREBF2, SP1, FOS, JUN, NR0B1, and YY1. Along these lines, ingenuity pathway analysis (IPA) recognized a number of new targets and downstream effectors influencing BCs. Of note, genomic, epigenomic, transcriptional, and hormonal anomalies observed in human primary breast tumors were qualitatively similar in pertinent BC cell lines. These findings identify the functional correlation between dysregulated epigenetic enzymes and estrogen/E2 accumulation in human breast tumors, providing the molecular insights into more targeted therapeutic approaches involving the inhibition of HDACs for combating this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
12
|
Zhao C, Zhang Y, Zhang J, Li S, Liu M, Geng Y, Liu F, Chai Q, Meng H, Li M, Li J, Zheng Y, Zhang Y. Discovery of Novel Fedratinib-Based HDAC/JAK/BRD4 Triple Inhibitors with Remarkable Antitumor Activity against Triple Negative Breast Cancer. J Med Chem 2023; 66:14150-14174. [PMID: 37796543 DOI: 10.1021/acs.jmedchem.3c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Multitarget HDAC inhibitors capable of simultaneously blocking the BRD4-LIFR-JAK1-STAT3 signaling pathway hold great potential for the treatment of TNBC and other solid tumors. Herein, novel Fedratinib-based multitarget HDAC inhibitors were rationally designed, synthesized, and biologically evaluated, among which compound 25ap stood out as a potent HDAC/JAK/BRD4 triple inhibitor. Satisfyingly, compound 25ap led to concurrent inhibition of HDACs and the BRD4-LIFR-JAK1-STAT3 signaling pathway, which was validated by hyper-acetylation of histone and α-tubulin, hypo-phosphorylation of STAT3, downregulation of LIFR, MCL-1, and c-Myc in MDA-MB-231 cells. The multitarget effects of 25ap contributed to its robust antitumor response, including potent antiproliferative activity, remarkable apoptosis-inducing activity, and inhibition of colony formation. Notably, 25ap possessed an acceptable therapeutic window between normal and cancerous cells, desirable in vitro metabolic stability in mouse microsome, and sufficient in vivo exposure via intraperitoneal administration. Additionally, the in vivo antitumor potency of 25ap was demonstrated in an MDA-MB-231 xenograft model.
Collapse
Affiliation(s)
- Chunlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Yu Zhang
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jin'ge Zhang
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shunda Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Mengyang Liu
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yinping Geng
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Fengling Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Qipeng Chai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Hongwei Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Mengzhe Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Jintao Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Yichao Zheng
- Key Lab of Advanced Drug Preparation Technologies (Ministry of Education), State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Xu L, Yan X, Wang J, Zhao Y, Liu Q, Fu J, Shi X, Su J. The Roles of Histone Deacetylases in the Regulation of Ovarian Cancer Metastasis. Int J Mol Sci 2023; 24:15066. [PMID: 37894746 PMCID: PMC10606123 DOI: 10.3390/ijms242015066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and metastasis is the major cause of death in patients with ovarian cancer, which is regulated by the coordinated interplay of genetic and epigenetic mechanisms. Histone deacetylases (HDACs) are enzymes that can catalyze the deacetylation of histone and some non-histone proteins and that are involved in the regulation of a variety of biological processes via the regulation of gene transcription and the functions of non-histone proteins such as transcription factors and enzymes. Aberrant expressions of HDACs are common in ovarian cancer. Many studies have found that HDACs are involved in regulating a variety of events associated with ovarian cancer metastasis, including cell migration, invasion, and the epithelial-mesenchymal transformation. Herein, we provide a brief overview of ovarian cancer metastasis and the dysregulated expression of HDACs in ovarian cancer. In addition, we discuss the roles of HDACs in the regulation of ovarian cancer metastasis. Finally, we discuss the development of compounds that target HDACs and highlight their importance in the future of ovarian cancer therapy.
Collapse
Affiliation(s)
- Long Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Xinyi Shi
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| |
Collapse
|
14
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
15
|
Yang X, Xu L, Yang L, Xu S. Research progress of STAT3-based dual inhibitors for cancer therapy. Bioorg Med Chem 2023; 91:117382. [PMID: 37369169 DOI: 10.1016/j.bmc.2023.117382] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a transcription factor, regulates gene levels that are associated with cell survival, cell cycle, and immune reaction. It is correlated with the grade of malignancy and the development of various cancers and targeting STAT3 protein is a potentially promising therapeutic strategy for tumors. Over the past 20 years, various compounds have been found to directly inhibit STAT3 activity via different strategies. However, numerous difficulties exist in the development of STAT3 inhibitors, such as serious toxic effects, poor therapeutic effects, and intrinsic and acquired drug resistance. STAT3 inhibitors synergistically suppress cancer development with additional anti-tumor drugs, such as indoleamine 2,3-dioxygenase 1 inhibitors (IDO1i), histone deacetylase inhibitors (HDACi), DNA inhibitors, pro-tumorigenic cytokine inhibitors (PTCi), NF-κB inhibitors, and tubulin inhibitors. Therefore, individual molecule- based dual-target inhibitors can be the candidate alternative or complementary treatment to overcome the disadvantages of just STAT3 or other targets as a monotherapy. In this review, we discuss the theoretical basis for formulating STAT3-based dual-target inhibitors and also summarize their structure-activity relationships (SARs).
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
16
|
Djokovic N, Djuric A, Ruzic D, Srdic-Rajic T, Nikolic K. Correlating Basal Gene Expression across Chemical Sensitivity Data to Screen for Novel Synergistic Interactors of HDAC Inhibitors in Pancreatic Carcinoma. Pharmaceuticals (Basel) 2023; 16:294. [PMID: 37259439 PMCID: PMC9964546 DOI: 10.3390/ph16020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 11/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies. Development of the chemoresistance in the PDAC is one of the key contributors to the poor survival outcomes and the major reason for urgent development of novel pharmacological approaches in a treatment of PDAC. Systematically tailored combination therapy holds the promise for advancing the treatment of PDAC. However, the number of possible combinations of pharmacological agents is too large to be explored experimentally. In respect to the many epigenetic alterations in PDAC, epigenetic drugs including histone deacetylase inhibitors (HDACi) could be seen as the game changers especially in combined therapy settings. In this work, we explored a possibility of using drug-sensitivity data together with the basal gene expression of pancreatic cell lines to predict combinatorial options available for HDACi. Developed bioinformatics screening protocol for predictions of synergistic drug combinations in PDAC identified the sphingolipid signaling pathway with associated downstream effectors as a promising novel targets for future development of multi-target therapeutics or combined therapy with HDACi. Through the experimental validation, we have characterized novel synergism between HDACi and a Rho-associated protein kinase (ROCK) inhibitor RKI-1447, and between HDACi and a sphingosine 1-phosphate (S1P) receptor agonist fingolimod.
Collapse
Affiliation(s)
- Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Djuric
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
17
|
Shan P, Yang F, Yu J, Wang L, Qu Y, Qiu H, Zhang H, Zhu S. A novel histone deacetylase inhibitor exerts promising anti-breast cancer activity via triggering AIFM1-dependent programmed necrosis. Cancer Commun (Lond) 2022; 42:1207-1211. [PMID: 36161715 PMCID: PMC9648389 DOI: 10.1002/cac2.12362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023] Open
Affiliation(s)
- Peipei Shan
- Institute of Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandong266021P. R. China
| | - Feifei Yang
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Jie Yu
- Qingdao Center Hospital: Qingdao Center Medical GroupQingdaoShandong266042P. R. China
| | - Lirong Wang
- Institute of Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandong266021P. R. China
| | - Yuhua Qu
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Huiran Qiu
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Hua Zhang
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Sujie Zhu
- Institute of Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandong266021P. R. China
| |
Collapse
|
18
|
Kawakubo K, Castillo CFD, Liss AS. Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy. J Gastroenterol 2022; 57:819-826. [PMID: 36048239 PMCID: PMC9596544 DOI: 10.1007/s00535-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic adenocarcinoma is a lethal cancer with poor response to chemotherapy and immune checkpoint inhibitors. Recent studies suggest that epigenetic alterations contribute to its aggressive biology and the tumor microenvironment which render it unresponsive to immune checkpoint blockade. Here, we review our current understandings of epigenetic dysregulation in pancreatic adenocarcinoma, its effect on the tumor immune microenvironment, and the potential for epigenetic therapy to be combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Patel AJ, Warda S, Maag JL, Misra R, Miranda-Román MA, Pachai MR, Lee CJ, Li D, Wang N, Bayshtok G, Fishinevich E, Meng Y, Wong EW, Yan J, Giff E, Pappalardi MB, McCabe MT, Fletcher JA, Rudin CM, Chandarlapaty S, Scandura JM, Koche RP, Glass JL, Antonescu CR, Zheng D, Chen Y, Chi P. PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discov 2022; 12:2120-2139. [PMID: 35789380 PMCID: PMC9437570 DOI: 10.1158/2159-8290.cd-21-1671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor-mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)-dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context-specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Amish J. Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesper L.V. Maag
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohan Misra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Miguel A. Miranda-Román
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve Fishinevich
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yinuo Meng
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
| | - Elissa W.P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Giff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa B. Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Michael T. McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Joseph M. Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, New York
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, New York
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob L. Glass
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Ferrara AL, Liotti A, Pezone A, De Rosa V. Therapeutic opportunities to modulate immune tolerance through the metabolism-chromatin axis. Trends Endocrinol Metab 2022; 33:507-521. [PMID: 35508518 DOI: 10.1016/j.tem.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The ability of the immune system to discriminate external stimuli from self-components - namely immune tolerance - occurs through a coordinated cascade of events involving a dense network of immune cells. Among them, CD4+CD25+ T regulatory cells are crucial to balance immune homeostasis and function. Growing evidence supports the notion that energy metabolites can dictate T cell fate and function via epigenetic modifications, which affect gene expression without altering the DNA sequence. Moreover, changes in cellular metabolism couple with activation of immune pathways and epigenetic remodeling to finely tune the balance between T cell activation and tolerance. This Review summarizes these aspects and critically evaluates novel possibilities for developing therapeutic strategies to modulate immune tolerance through metabolism via epigenetic drugs.
Collapse
Affiliation(s)
- Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonietta Liotti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Università di Napoli "Federico II", 80131 Napoli, Italy.
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy.
| |
Collapse
|
21
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
22
|
Lemelle L, Moya-Plana A, Dumont B, Fresneau B, Laprie A, Claude L, Deneuve S, Cordero C, Pierron G, Couloigner V, Bernard S, Cardoen L, Brisse HJ, Jehanno N, Metayer L, Fréneaux P, Helfre S, Kolb F, Thariat J, Réguerre Y, Orbach D. NUT carcinoma in children, adolescents and young adults. Bull Cancer 2022; 109:491-504. [DOI: 10.1016/j.bulcan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
23
|
Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG. The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 2022; 22:133. [PMID: 35331234 PMCID: PMC8944087 DOI: 10.1186/s12935-022-02539-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053 Shangdong China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, 250013 Shangdong China
| | - Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053 Shangdong China
| | - Qi-Ming Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, 250013 Shangdong China
| | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013 Shandong China
| |
Collapse
|
24
|
Bag A, Schultz A, Bhimani S, Stringfield O, Dominguez W, Mo Q, Cen L, Adeegbe D. Coupling the immunomodulatory properties of the HDAC6 inhibitor ACY241 with Oxaliplatin promotes robust anti-tumor response in non-small cell lung cancer. Oncoimmunology 2022; 11:2042065. [PMID: 35223194 PMCID: PMC8865306 DOI: 10.1080/2162402x.2022.2042065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While HDAC inhibitors have shown promise in hematologic cancers, their efficacy remains limited in solid cancers. In the present study, we evaluated the immunomodulatory properties of the HDAC6 inhibitor, Citarinostat (ACY241) on lung tumor immune compartment and its therapeutic potential in combination with Oxaliplatin. As a single agent, ACY241 treatment promoted increased infiltration, activation, proliferation, and effector function of T cells in the tumors of lung adenocarcinoma-bearing mice. Furthermore, tumor-associated macrophages exhibited downregulated expression of inhibitory ligands in favor of increased MHC and co-stimulatory molecules in addition to higher expression of CCL4 that favored increased T cell numbers in the tumors. RNA-sequencing of tumor-associated T cells and macrophages after ACY241 treatment revealed significant genomic changes that is consistent with improved T cell viability, reduced inhibitory molecular signature, and enhancement of macrophage capacity for improved T cell priming. Finally, coupling these ACY241-mediated effects with the chemotherapy drug Oxaliplatin led to significantly enhanced tumor-associated T cell effector functionality in lung cancer-bearing mice and in patient-derived tumors. Collectively, our studies highlight the molecular underpinnings of the expansive immunomodulatory activity of ACY241 and supports its suitability as a partner agent in combination with rationally selected chemotherapy agents for therapeutic intervention in NSCLC.
Collapse
Affiliation(s)
- Arup Bag
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Andrew Schultz
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Saloni Bhimani
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Olya Stringfield
- Department of Thoracic Oncology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - William Dominguez
- Small Animal Imaging Lab, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Dennis Adeegbe
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
25
|
Wang Y, Tortorella M. Molecular design of dual inhibitors of PI3K and potential molecular target of cancer for its treatment: A review. Eur J Med Chem 2022; 228:114039. [PMID: 34894440 DOI: 10.1016/j.ejmech.2021.114039] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Aberrant activation of the phosphoinositide 3-kinase (PI3K) signaling network is a key event in many human cancers and therefore enormous efforts have been made in the development of PI3K inhibitors. However, due to intrinsic and acquired resistance as well as poor drug tolerance, limited therapeutic efficacy has been achieved with these agents. In view of the fact that PI3K inhibitors can show synergistic antitumor effects with other cancer agents, namely mammalian target of rapamycin (mTOR) inhibitors, histone deacetylase (HDAC) inhibitors and mitogen-activated protein kinase (MEK) inhibitors, dual inhibition of both targets by a single-molecule is regarded as a promising complementary or alternative therapeutic strategy to overcome the drawbacks of just PI3K monotherapy. In this review, we discuss the theoretical foundation for designing PI3K-based dual-target inhibitors and summarize the structure-activity relationships and clinical progress of these dual-binding agents.
Collapse
Affiliation(s)
- Yuanze Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, 510530, PR China.
| | - Micky Tortorella
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, 510530, PR China
| |
Collapse
|
26
|
Rasha F, Sharma M, Pruitt K. Mechanisms of endocrine therapy resistance in breast cancer. Mol Cell Endocrinol 2021; 532:111322. [PMID: 34000350 DOI: 10.1016/j.mce.2021.111322] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
The most commonly diagnosed breast cancer (BC) subtype is characterized by estrogen receptor (ER) expression. Treatment of this BC subtype typically involves modalities that either suppress the production of estrogen or impede the binding of estrgen to its receptors, constituting the basis for endocrine therapy. While many patients have benefitted from endocrine therapy with clear reduction in mortality and cancer recurrence, one of the clinical hurdles that remain involves overcoming intrinsic (de novo) or acquired resistance to endocrine therapy driven by diverse and complex changes occurring in the tumor microenvironment. Moreover, such resistance may persist even after progression through additional antiestrogen therapies thus demonstrating the importance of further investigation of mechanisms of ER modulation. Here, we discuss a number of advances that provide a better understanding of the complex mechanistic basis for resistance to endocrine therapy as well as future therapeutic maneuvers that may break this resistance.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
27
|
Shan P, Yang F, Qi H, Hu Y, Zhu S, Sun Z, Zhang Z, Wang C, Hou C, Yu J, Wang L, Zhou Z, Li P, Zhang H, Wang K. Alteration of MDM2 by the Small Molecule YF438 Exerts Antitumor Effects in Triple-Negative Breast Cancer. Cancer Res 2021; 81:4027-4040. [PMID: 33985974 DOI: 10.1158/0008-5472.can-20-0922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/27/2020] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits a high mortality rate and is the most aggressive subtype of breast cancer. As previous studies have shown that histone deacetylases (HDAC) may represent molecular targets for TNBC treatment, we screened a small library of synthetic molecules and identified a potent HDAC inhibitor (HDACi), YF438, which exerts effective anti-TNBC activity both in vitro and in vivo. Proteomic and biochemical studies revealed that YF438 significantly downregulated mouse double minute 2 homolog (MDM2) expression. In parallel, loss of MDM2 expression or blocking MDM2 E3 ligase activity rendered TNBC cells less sensitive to YF438 treatment, revealing an essential role of MDM2 E3 ligase activity in YF438-induced inhibition of TNBC. Mechanistically, YF438 disturbed the interaction between HDAC1 and MDM2, induced the dissociation of MDM2-MDMX, and subsequently increased MDM2 self-ubiquitination to accelerate its degradation, which ultimately inhibited growth and metastasis of TNBC cells. In addition, analysis of clinical tissue samples demonstrated high expression levels of MDM2 in TNBC, and MDM2 protein levels closely correlated with TNBC progression and metastasis. Collectively, these findings show that MDM2 plays an essential role in TNBC progression and targeting the HDAC1-MDM2-MDMX signaling axis with YF438 may provide a promising therapeutic option for TNBC. Furthermore, this novel underlying mechanism of a hydroxamate-based HDACi in altering MDM2 highlights the need for further development of HDACi for TNBC treatment. SIGNIFICANCE: This study uncovers the essential role of MDM2 in TNBC progression and suggests that targeting the HDAC1-MDM2-MDMX axis with a hydroxamate-based HDACi could be a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Yunjie Hu
- Weifang Medical University, Weifang, P.R. China
| | - Sujie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Zhenqing Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Zhe Zhang
- Qingdao Municipal Hospital, Qingdao, Shandong, P.R. China
| | - Chuanxiao Wang
- Qingdao Municipal Hospital, Qingdao, Shandong, P.R. China
| | - Caixia Hou
- Qingdao Central Hospital, Qingdao, Shandong, P.R. China
| | - Jie Yu
- Qingdao Central Hospital, Qingdao, Shandong, P.R. China
| | - Lirong Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China.
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong, P.R. China.
| |
Collapse
|
28
|
Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics 2021; 13:83. [PMID: 33879235 PMCID: PMC8056722 DOI: 10.1186/s13148-021-01069-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic ("above genetics") modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
Collapse
Affiliation(s)
- Ning Jin
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Tiffany L George
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Claire Verschraegen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Haitao Wen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - David Carbone
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - James Herman
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| | - Kai He
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
29
|
Chen CT, Salunke S, Wei TT, Tang YA, Wang YC. Fluorescent Nanohybrids from ZnS/CdSe Quantum Dots Functionalized with Triantennary, N-Hydroxy- p-(4-arylbutanamido)benzamide/Gallamide Dendrons That Act as Inhibitors of Histone Deacetylase for Lung Cancer. ACS APPLIED BIO MATERIALS 2021; 4:2475-2489. [DOI: 10.1021/acsabm.0c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Santosh Salunke
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Tang Wei
- Department of Pharmacology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-An Tang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
30
|
Anh D, Hai PT, Huy LD, Ngoc HB, Ngoc TTM, Dung DTM, Park EJ, Song IK, Kang JS, Kwon JH, Tung TT, Han SB, Nam NH. Novel 4-Oxoquinazoline-Based N-Hydroxypropenamides as Histone Deacetylase Inhibitors: Design, Synthesis, and Biological Evaluation. ACS OMEGA 2021; 6:4907-4920. [PMID: 33644598 PMCID: PMC7905942 DOI: 10.1021/acsomega.0c05870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
Two series of novel 4-oxoquinazoline-based N-hydroxypropenamides (9a-m and 10a-m) were designed, synthesized, and evaluated for their inhibitory and cytotoxicity activities against histone deacetylase (HDAC). The compounds showed good to potent HDAC inhibitory activity and cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). In this series, compounds with the N-hydroxypropenamide functionality impeded at position 7 on the 4-oxoquinazoline skeleton (10a-m) were generally more potent than compounds with the N-hydroxypropenamide moiety at position 6 (9a-m). Also, the N 3-benzyl-substituted derivatives (9h-m, 10h-m) exhibited stronger bioactivity than the N 3-alkyl-substituted ones (9a-e, 10a-e). Two compounds 10l and 10m were the most potent ones. Their HDAC inhibitory activity (IC50 values, 0.041-0.044 μM) and cytotoxicity (IC50 values, 0.671-1.211 μM) were approximately 2- to 3-fold more potent than suberoylanilide hydroxamic acid (SAHA). Some compounds showed up to 10-fold more potent HDAC6 inhibition compared to their inhibitory activity in total HDAC extract assay. Analysis of selected compounds 10l and 10m revealed that these compounds strongly induced both early and late apoptosis and arrested SW620 cells at the G2/M phase. Docking studies were carried out on the HDAC6 isoform for series 10a-m and revealed some important features contributing to the inhibitory activity of synthesized compounds.
Collapse
Affiliation(s)
- Duong
T. Anh
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Pham-The Hai
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Le D. Huy
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Hoang B. Ngoc
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Trinh T. M. Ngoc
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Do T. M. Dung
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Eun J. Park
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - In K. Song
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jong S. Kang
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Joo-Hee Kwon
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Truong T. Tung
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA
Institute for Advanced Study (PIAS), PHENIKAA
University, Hanoi 12116, Vietnam
| | - Sang-Bae Han
- College
of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Department
of Pharmaceutical Chemistry, Hanoi University
of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
- . Tel: +84-4-39330531. Fax: +84-4-39332332
| |
Collapse
|
31
|
Collier KA, Valencia H, Newton H, Hade EM, Sborov DW, Cavaliere R, Poi M, Phelps MA, Liva SG, Coss CC, Wang J, Khountham S, Monk P, Shapiro CL, Piekarz R, Hofmeister CC, Welling DB, Mortazavi A. A phase 1 trial of the histone deacetylase inhibitor AR-42 in patients with neurofibromatosis type 2-associated tumors and advanced solid malignancies. Cancer Chemother Pharmacol 2021; 87:599-611. [PMID: 33492438 DOI: 10.1007/s00280-020-04229-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Given clinical activity of AR-42, an oral histone deacetylase inhibitor, in hematologic malignancies and preclinical activity in solid tumors, this phase 1 trial investigated the safety and tolerability of AR-42 in patients with advanced solid tumors, including neurofibromatosis type 2-associated meningiomas and schwannomas (NF2). The primary objective was to define the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs). Secondary objectives included determining pharmacokinetics and clinical activity. METHODS This phase I trial was an open-label, single-center, dose-escalation study of single-agent AR-42 in primary central nervous system and advanced solid tumors. The study followed a 3 + 3 design with an expansion cohort at the MTD. RESULTS Seventeen patients were enrolled with NF2 (n = 5), urothelial carcinoma (n = 3), breast cancer (n = 2), non-NF2-related meningioma (n = 2), carcinoma of unknown primary (n = 2), small cell lung cancer (n = 1), Sertoli cell carcinoma (n = 1), and uveal melanoma (n = 1). The recommended phase II dose is 60 mg three times weekly, for 3 weeks of a 28-day cycle. DLTs included grade 3 thrombocytopenia and grade 4 psychosis. The most common treatment-related adverse events were cytopenias, fatigue, and nausea. The best response was stable disease in 53% of patients (95% CI 26.6-78.7). Median progression-free survival (PFS) was 3.6 months (95% CI 1.2-9.1). Among evaluable patients with NF2 or meningioma (n = 5), median PFS was 9.1 months (95% CI 1.9-not reached). CONCLUSION Single-agent AR-42 is safe and well tolerated. Further studies may consider AR-42 in a larger cohort of patients with NF2 or in combination with other agents in advanced solid tumors. TRIAL REGISTRATION NCT01129193, registered 5/24/2010.
Collapse
Affiliation(s)
- Katharine A Collier
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Hugo Valencia
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Herbert Newton
- Division of Neuro-Oncology, Departments of Neurology and Neurosurgery, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Erinn M Hade
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Douglas W Sborov
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Robert Cavaliere
- Division Neuro-Oncology, Department of Cancer Medicine, Baptist MD Anderson, Jacksonville, FL, USA
| | - Ming Poi
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Mitch A Phelps
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Sophia G Liva
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Coss
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Jiang Wang
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Soun Khountham
- Division of Hematology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Paul Monk
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Charles L Shapiro
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Richard Piekarz
- National Cancer Institute/Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | - Craig C Hofmeister
- Division of Hematology, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - D Bradley Welling
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear Infirmary and Massachusetts General Hospital, Boston, MA, USA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
32
|
Vu TK, Thanh NT, Minh NV, Linh NH, Thao NTP, Nguyen TTB, Hien DT, Chinh LV, Duc TH, Anh LD, Hai PT. Novel Conjugated Quinazolinone-Based Hydroxamic Acids: Design, Synthesis and Biological Evaluation. Med Chem 2021; 17:732-749. [PMID: 32310052 DOI: 10.2174/1573406416666200420081540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin- 4(3H)-ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structureactivity relationships. RESULTS It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 μM, and HDAC inhibition with IC50 value of 6.36 μM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. CONCLUSION The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.
Collapse
Affiliation(s)
- Tran Khac Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Van Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Huong Linh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Phương Thao
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Trương Thuc Bao Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Doan Thi Hien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Luu Van Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay, Hanoi, Vietnam
| | - Ta Hong Duc
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Lai Duc Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham-The Hai
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| |
Collapse
|
33
|
Histone Deacetylase Inhibitors as Multitarget-Directed Epi-Drugs in Blocking PI3K Oncogenic Signaling: A Polypharmacology Approach. Int J Mol Sci 2020; 21:ijms21218198. [PMID: 33147762 PMCID: PMC7662987 DOI: 10.3390/ijms21218198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations and aberrant epigenetic alterations are the triggers for carcinogenesis. The emergence of the drugs targeting epigenetic aberrations has provided a better outlook for cancer treatment. Histone deacetylases (HDACs) are epigenetic modifiers playing critical roles in numerous key biological functions. Inappropriate expression of HDACs and dysregulation of PI3K signaling pathway are common aberrations observed in human diseases, particularly in cancers. Histone deacetylase inhibitors (HDACIs) are a class of epigenetic small-molecular therapeutics exhibiting promising applications in the treatment of hematological and solid malignancies, and in non-neoplastic diseases. Although HDACIs as single agents exhibit synergy by inhibiting HDAC and the PI3K pathway, resistance to HDACIs is frequently encountered due to activation of compensatory survival pathway. Targeted simultaneous inhibition of both HDACs and PI3Ks with their respective inhibitors in combination displayed synergistic therapeutic efficacy and encouraged the development of a single HDAC-PI3K hybrid molecule via polypharmacology strategy. This review provides an overview of HDACs and the evolution of HDACs-based epigenetic therapeutic approaches targeting the PI3K pathway.
Collapse
|
34
|
Anh DT, Hai PT, Dung DTM, Dung PTP, Huong LTT, Park EJ, Jun HW, Kang JS, Kwon JH, Tung TT, Han SB, Nam NH. Design, synthesis and evaluation of novel indirubin-based N-hydroxybenzamides, N-hydroxypropenamides and N-hydroxyheptanamides as histone deacetylase inhibitors and antitumor agents. Bioorg Med Chem Lett 2020; 30:127537. [DOI: 10.1016/j.bmcl.2020.127537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
|
35
|
Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 2020; 19:776-800. [PMID: 32929243 DOI: 10.1038/s41573-020-0077-5] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
Dysregulation of the epigenome drives aberrant transcriptional programmes that promote cancer onset and progression. Although defective gene regulation often affects oncogenic and tumour-suppressor networks, tumour immunogenicity and immune cells involved in antitumour responses may also be affected by epigenomic alterations. This could have important implications for the development and application of both epigenetic therapies and cancer immunotherapies, and combinations thereof. Here, we review the role of key aberrant epigenetic processes - DNA methylation and post-translational modification of histones - in tumour immunogenicity, as well as the effects of epigenetic modulation on antitumour immune cell function. We emphasize opportunities for small-molecule inhibitors of epigenetic regulators to enhance antitumour immune responses, and discuss the challenges of exploiting the complex interplay between cancer epigenetics and cancer immunology to develop treatment regimens combining epigenetic therapies with immunotherapies.
Collapse
|
36
|
Huang F, Sun J, Chen W, He X, Zhu Y, Dong H, Wang H, Li Z, Zhang L, Khaled S, Marcucci G, Huang J, Li L. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML. Aging (Albany NY) 2020; 12:16759-16774. [PMID: 32726753 PMCID: PMC7521497 DOI: 10.18632/aging.103605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 01/24/2023]
Abstract
Aberrant DNA methylation often silences transcription of tumor-suppressor genes and is considered a hallmark of myeloid neoplasms. Similarly, histone deacetylation represses transcription of genes responsible for cell differentiation/death. A previous clinical study suggested potential pharmacodynamic antagonism between histone deacetylase inhibitors (HDACi) and DNA hypomethylating agents (HMA). Herein, to determine such antagonism, we used MDS/AML lines and NHD13 transgenic mice, and demonstrated that treatment with the pan-HDACi suberoylanilide hydroxamic acid (SAHA) significantly decreased TET2 expression and global 5-hydroxymethylcytosine (5hmC) levels. Mechanistically, our RNAi screen revealed that HDAC4 was responsible for maintaining TET2 levels. Accordingly, HDAC4 knockout reduced expression levels of MTSS1, a known TET2 target, an event associated with decreased 5hmC enrichment on the MTSS1 enhancer. Retrospective analysis of GEO datasets demonstrated that lower HDAC4 levels predict worse prognosis for AML patients. In an MDS-L xenografted immunodeficient mouse model, vitamin C co-treatment prevented TET2 loss of activity seen following SAHA treatment. Accordingly, vitamin C co-treatment further reduced MDS-L cell engraftment relative to SAHA alone. In summary, our findings suggest that co-administration of a TET2 agonist with pan-HDACi treatment could effectively counter potential diminution in TET2 activity resulting from pan-HDACi treatment alone, providing a rationale for evaluating such combinations against high-risk MDS/AML.
Collapse
Affiliation(s)
- Feiteng Huang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Jie Sun
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Wei Chen
- The Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Xin He
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yinghui Zhu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Haojie Dong
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Hanying Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Zheng Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Lei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Samer Khaled
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA,Department of Hematology and Hematopoietic Cell Transplantation (HCT), Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Jinwen Huang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
37
|
Ding N, You A, Tian W, Gu L, Deng D. Chidamide increases the sensitivity of Non-small Cell Lung Cancer to Crizotinib by decreasing c- MET mRNA methylation. Int J Biol Sci 2020; 16:2595-2611. [PMID: 32792859 PMCID: PMC7415423 DOI: 10.7150/ijbs.45886] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction: Crizotinib is a kinase inhibitor targeting c-MET/ALK/ROS1 used as the first-line chemical for the treatment of non-small cell lung cancer (NSCLC) with ALK mutations. Although c-MET is frequently overexpressed in 35-72% of NSCLC, most NSCLCs are primarily resistant to crizotinib treatment. Method: A set of NSCLC cell lines were used to test the effect of chidamide on the primary crizotinib resistance in vitro and in vivo. Relationships between the synergistic effect of chidamide and c-MET expression and RNA methylation were systemically studied with a battery of molecular biological assays. Results: We found for the first time that chidamide could sensitize the effect of crizotinib in a set of ALK mutation-free NSCLC cell lines, especially those with high levels of c-MET expression. Notably, chidamide could not increase the sensitivity of NSCLC cells to crizotinib cultured in serum-free medium without hepatocyte growth factor (HGF; a c-MET ligand). In contrast, the addition of HGF into the serum-/HGF-free medium could restore the synergistic effect of chidamide. Moreover, the synergistic effect of chidamide could also be abolished either by treatment with c-MET antibody or siRNA-knockdown of c-MET expression. While cells with low or no c-MET expression were primarily resistant to chidamide-crizotinib cotreatment, enforced c-MET overexpression could increase the sensitivity of these cells to chidamide-crizotinib cotreatment. Furthermore, chidamide could decrease c-MET expression by inhibiting mRNA N6-methyladenosine (m6A) modification through the downregulation of METTL3 and WTAP expression. Chidamide-crizotinib cotreatment significantly suppressed the activity of c-MET downstream molecules. Conclusion: Chidamide downregulated c-MET expression by decreasing its mRNA m6A methylation, subsequently increasing the crizotinib sensitivity of NSCLC cells in a c-MET-/HGF-dependent manner.
Collapse
Affiliation(s)
- Nan Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Abin You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| |
Collapse
|
38
|
Exploration of certain 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg Chem 2020; 101:103988. [PMID: 32534346 DOI: 10.1016/j.bioorg.2020.103988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Several novel series of hydroxamic acids bearing 2-benzamidooxazole/thiazole (5a-g, 6a-g) or 2-phenylsulfonamidothiazole (8a-c) were designed and synthesized. The compounds were obtained straightforwards via a two step pathway, starting from commercially available ethyl 2-aminooxazole-4-carboxylate or ethyl 2-aminothiazole-4-carboxylate. Biological evaluation showed that these hydroxamic acids generally exhibited good cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer), with IC50 values in low micromolar range and comparable to that of SAHA. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range (0.010-0.131 µM) and some compounds (e.g 5f, IC50, 0.010 µM) were even more potent than SAHA (IC50, 0.025 µM) in HDAC inhibition. Representative compounds 6a and 8a appeared to arrest the SW620 cell cycle at G2 phase and significantly induced both early and late apoptosis of SW620 colon cancer cells. Docking experiments on HDAC2 and HDAC6 isozymes revealed favorable interactions at the tunnel of the HDAC active site which positively contributed to the inhibitory activity of synthesized compound. The binding affinity predicted by docking program showed good correlation with the experimental IC50 values. This study demonstrates that simple 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids are also promising as antitumor agents and HDAC inhibitors and these results should provide valuable information for further design of more potent HDAC inhibitors and antitumor agents.
Collapse
|
39
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
40
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
41
|
Dzobo K. Epigenomics-Guided Drug Development: Recent Advances in Solving the Cancer Treatment "jigsaw puzzle". OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:70-85. [PMID: 30767728 DOI: 10.1089/omi.2018.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human epigenome plays a key role in determining cellular identity and eventually function. Drug discovery undertakings have focused mainly on the role of genomics in carcinogenesis, with the focus turning to the epigenome recently. Drugs targeting DNA and histone modifications are under development with some such as 5-azacytidine, decitabine, vorinostat, and panobinostat already approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This expert review offers a critical analysis of the epigenomics-guided drug discovery and development and the opportunities and challenges for the next decade. Importantly, the coupling of epigenetic editing techniques, such as clustered regularly interspersed short palindromic repeat (CRISPR)-CRISPR-associated protein-9 (Cas9) and APOBEC-coupled epigenetic sequencing (ACE-seq) with epigenetic drug screens, will allow the identification of small-molecule inhibitors or drugs able to reverse epigenetic changes responsible for many diseases. In addition, concrete and sustainable innovation in cancer treatment ought to integrate epigenome targeting drugs with classic therapies such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Cancer's epigenetic drugs: where are they in the cancer medicines? THE PHARMACOGENOMICS JOURNAL 2019; 20:367-379. [PMID: 31819161 DOI: 10.1038/s41397-019-0138-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
Epigenetic modulation can affect the characteristics of cancers. Because it is likely to manipulate epigenetic genes, they can be considered as potential targets for cancer treatment. In this comprehensive study, epigenetic drugs are categorized according to anticancer mechanisms and phase of therapy. The relevant articles or databases were searched for epigenetic approaches to cancer therapy. Epigenetic drugs are divided according to their mechanisms and clinical phases that have been approved by the FDA or are undergoing evaluation phases. DNA methylation agents, chromatin remodelers specially HDACs, and noncoding RNAs especially microRNAs are the main epi-drugs for cancer. Despite many challenges, combination therapy using epi-drugs and routine therapies such as chemotherapy in various approaches have exhibited beneficial effects compared with each treatment alone. Cancer stem cell targeting and epigenetic editing have been confirmed as definitive pathways for cancer treatment. This paper reviewed the available epigenetic approaches to cancer therapy.
Collapse
|
43
|
Minh NV, Thanh NT, Lien HT, Anh DTP, Cuong HD, Nam NH, Hai PT, Minh-Ngoc L, Le-Thi-Thu H, Chinh LV, Vu TK. Design, Synthesis and Biological Evaluation of Novel N-hydroxyheptanamides Incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as Histone Deacetylase Inhibitors and Cytotoxic Agents. Anticancer Agents Med Chem 2019; 19:1543-1557. [PMID: 31267876 DOI: 10.2174/1871520619666190702142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development worldwide, and Histone Deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating 6-hydroxy-2 methylquinazolin-4(3H)-ones (14a-m) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2 (liver cancer), MCF-7 (breast cancer) and SKLu-1 (lung cancer). Molecular simulations were finally carried out to gain more insight into the structure-activity relationships. ADME-T predictions for selected compounds were also performed to predict some important features contributing to the absorption profile of the present hydroxamic derivatives. RESULTS It was found that the N-hydroxyheptanamide 14i and 14j were the most potent, both in terms of HDAC inhibition and cytotoxicity. These compounds displayed up to 21-71-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in terms of cytotoxicity, and strong inhibition against the whole cell HDAC enzymes with IC50 values of 7.07-9.24μM. Docking experiments on HDAC2 isozyme using Autodock Vina showed all compounds bound to HDAC2 with relatively higher affinities (from -7.02 to -11.23 kcal/mol) compared to SAHA (-7.4 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward breast cancer cells (MCF-7) than liver (HepG2), and lung (SKLu-1) cancer cells.
Collapse
Affiliation(s)
- Nguyen V Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Nguyen T Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Hoang T Lien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Dinh T P Anh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Ho D Cuong
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Nguyen H Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham T Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Le Minh-Ngoc
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Huong Le-Thi-Thu
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Luu V Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay-Hanoi, Vietnam
| | - Tran K Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| |
Collapse
|
44
|
Duan S, Gong X, Liu X, Cui W, Chen K, Mao L, Jun S, Zhou R, Sang Y, Huang G. Histone deacetylase inhibitor, AR-42, exerts antitumor effects by inducing apoptosis and cell cycle arrest in Y79 cells. J Cell Physiol 2019; 234:22411-22423. [PMID: 31102271 DOI: 10.1002/jcp.28806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Retinoblastoma (RB) is the most common type of intraocular malignant tumor that occurs in childhood. AR-42, a member of a newly discovered class of phenylbutyrate-derived histone deacetylase inhibitors, exerts antitumor effects on many cancers. In the present study, we initially evaluated the effect of AR-42 towards RB cells and explored the underlying mechanism in this disease. Our results found that AR-42 showed powerful antitumor effects at low micromolar concentrations by inhibiting cell viability, blocking cell cycle, stimulating apoptosis in vitro, and suppressing RB growth in a mouse subcutaneous tumor xenograft model. Furthermore, the AKT/nuclear factor-kappa B signaling pathway was disrupted in Y79 cells treated with AR-42. In conclusion, we propose that AR-42 might be a promising drug treatment for RB.
Collapse
Affiliation(s)
- Sujuan Duan
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaona Gong
- Department of Ophthalmology, Xiangyang First People's Hospital, Xiangyang, China
| | - Xing Liu
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wenwen Cui
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Kaddie Chen
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longbing Mao
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Sun Jun
- First Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ruihao Zhou
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
45
|
Hieu DT, Anh DT, Hai PT, Thuan NT, Huong LTT, Park EJ, Young Ji A, Soon Kang J, Phuong Dung PT, Han SB, Nam NH. Quinazolin-4(3H)-one-Based Hydroxamic Acids: Design, Synthesis and Evaluation of Histone Deacetylase Inhibitory Effects and Cytotoxicity. Chem Biodivers 2019; 16:e1800502. [PMID: 30653817 DOI: 10.1002/cbdv.201800502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin-4(3H)-ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N-hydroxy-7-(7-methyl-4-oxoquinazolin-3(4H)-yl)heptanamide (5b) and N-hydroxy-7-(6-methyl-4-oxoquinazolin-3(4H)-yl)heptanamide (5c) (IC50 values, 0.10-0.16 μm) were found to be approximately 30-fold more cytotoxic than SAHA (IC50 values of 3.29-3.67 μm). N-Hydroxy-7-(4-oxoquinazolin-3(4H)-yl)heptanamide (5a; IC50 values of 0.21-0.38 μm) was approximately 10- to 15-fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub-micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c, strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.
Collapse
Affiliation(s)
- Doan Thanh Hieu
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Nguyen Thi Thuan
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| | - Le-Thi-Thu Huong
- School of Medicine and Pharmacy, Vietnam National University, 144 Xuan Thuy, Hanoi, 100000, Vietnam
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - A Young Ji
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jong Soon Kang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28160, Republic of Korea
| | | | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 0084, Vietnam
| |
Collapse
|
46
|
Anh DT, Thuan NT, Hai PT, Huong LTT, Yen NTK, Han BW, Park EJ, Choi YJ, Kang JS, Hue VTM, Han SB, Nam NH. Design, Synthesis and Evaluation of Novel 3/4-((Substituted benzamidophenoxy) methyl)-N-hydroxybenzamides/propenamides as Histone Deacetylase Inhibitors and Antitumor Agents. Anticancer Agents Med Chem 2018; 19:546-556. [PMID: 30426904 DOI: 10.2174/1871520618666181114113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histone Deacetylase (HDAC) inhibitors represent an extensive class of targeted anticancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as givinostat (ITF2357) and belinostat (PXD-101). AIMS This study aims at developing novel HDAC inhibitors bearing N-hydroxybenzamides and Nhydroxypropenamides scaffolds with potential cytotoxicity against different cancer cell lines. METHODS Two new series of N-hydroxybenzamides and N-hydroxypropenamides analogues (4a-j, 6a-j) designed based on the structural features of nexturastat A, AR-42, and PXD-101, were synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines (SW620 (colorectal adenocarcinoma), PC3 (prostate adenocarcinoma), and NCI-H23 (adenocarcinoma, non-small cell lung cancer). Molecular simulations were finally carried out to gain more insight into the structure-activity relationships. RESULTS It was found that the N-hydroxypropenamides (6a-e) displayed very good HDAC inhibitory potency and cytotoxicity. Various compounds, e.g. 6a-e, especially compound 6e, were up to 5-fold more potent than suberanilohydroxamic acid (SAHA) in terms of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in the sub-micromolar range. Docking experiments showed that these compounds bound to HDAC2 at the enzyme active binding site with the same binding mode of SAHA, but with higher binding affinities. CONCLUSIONS The two series of N-hydroxybenzamides and N-hydroxypropenamides designed and synthesized were potential HDAC inhibitors and antitumor agents. Further development of these compounds should be warranted.
Collapse
Affiliation(s)
- Duong T Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Nguyen T Thuan
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Le-Thi-Thu Huong
- School of Medicine and Pharmacy, Vietnam National University, 144 Xuan Thuy, Hanoi, Vietnam
| | - Nguyen T K Yen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Byung W Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Eun J Park
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Korea
| | - Yeo J Choi
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Korea
| | - Jong S Kang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, Korea
| | - Van T M Hue
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyung-1, Heungdeok, Cheongju, Chungbuk, 28160, Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| |
Collapse
|
47
|
Wu J, Jiang H, Yang X, Zheng H. ING5-mediated antineuroblastoma effects of suberoylanilide hydroxamic acid. Cancer Med 2018; 7:4554-4569. [PMID: 30091530 PMCID: PMC6144157 DOI: 10.1002/cam4.1634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid neuroendocrine cancer and is one of the leading causes of death in children. To improve clinical outcomes and prognosis, discovering new promising drugs and targeted medicine is essential. We found that applying Suberoylanilide hydroxamic acid (SAHA; Vorinostat, a histone deacetylase inhibitor) and MG132 (a proteasome inhibitor) to SH-SY5Y cells synergistically suppressed proliferation, glucose metabolism, migration, and invasion and induced apoptosis and cell cycle arrest. These effects occurred both concentration and time dependently and were associated with the effects observed with inhibitor of growth 5 (ING5) overexpression. SAHA and MG132 treatment increased the expression levels of ING5, PTEN, p53, Caspase-3, Bax, p21, and p27 but decreased the expression levels of 14-3-3, MMP-2, MMP-9, ADFP, Nanog, c-myc, CyclinD1, CyclinB1, and Cdc25c concentration dependently, similar to ING5. SAHA may downregulate miR-543 and miR-196-b expression to enhance the translation of ING5 protein, which promotes acetylation of histones H3 and H4. All three proteins (ING5 and acetylated histones H3 and H4) were recruited to the promoters of c-myc, Nanog, CyclinD1, p21, and p27 for complex formation, thereby regulating the mRNA expression of downstream genes. ING5 overexpression and SAHA and/or MG132 administration inhibited tumor growth in SH-SY5Y cells by suppressing proliferation and inducing apoptosis. The expression of acetylated histones H3 and ING5 may be closely linked to the tumor size of neuroblastomas. In summary, SAHA and/or MG132 can synergistically suppress the malignant phenotypes of neuroblastoma cells through the miRNA-ING5-histone acetylation axis and via proteasomal degradation, respectively. Therefore, the two drugs may serve as potential treatments for neuroblastoma.
Collapse
Affiliation(s)
- Ji‐cheng Wu
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Hua‐mao Jiang
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiang‐hong Yang
- Department of PathologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Hua‐chuan Zheng
- Tumor Basic and Translational LaboratoryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
48
|
Kim EJ, Kim YK. Panic disorders: The role of genetics and epigenetics. AIMS GENETICS 2018; 5:177-190. [PMID: 31435520 PMCID: PMC6690230 DOI: 10.3934/genet.2018.3.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023]
Abstract
Panic disorder is characterized by symptoms with abrupt surges of fear with palpitations, sweating, trembling, heat sensations. Considering its disease burden on each individual and on society, understanding its etiology is important. Though no one specific etiology has been known, like other psychiatric disorders, multiple factors such as genetic, environmental, neurobiological, psychopathological factors have been suggested. In this article, we reviewed currently known etiologies and related study results, regarding especially genetic and epigenetic aspects of the panic disorder. Early studies, including twin studies, family studies, adoption studies suggested highly familial trait of panic disorder. Linkage studies, either, found panic disorder is not a single gene disorder but confirmed existence of multiple related genes. Chromosome and candidate gene studies found few related genes, NPY, ADORA2A, COMT, IKBKE. Newer method, genome-wide association studies (GWAS) have been searching for newer genes. No genome-wide significant genes, however, were detected, confirming previously known candidate genes, NPY5R on 4q31.3-32, BDKRB2 on 14q32, instead. Epigenetic modification has also been studied on many different psychiatric disorders. Monoamine oxidase A (MAOA) hypomethylation, taken together with negative life events, showed relation with panic disorder. Glutamate decarbodylases 1 (GAD1) hypomethylation was also specific on panic disorder patients. Relation with noradrenaline transporter (NET) gene SLC6a2 promoter methylation has also been studied. In conclusion, no specific gene or epigenetic pattern can fully explain etiology of panic disorder. Few genes and epigenetic patterns, however, showed strong association with panic disorder compared to healthy controls. Considering its multivariable background, further studies with larger populations can confirm current results and clarify etiologies of panic disorder.
Collapse
Affiliation(s)
- Eun Jeong Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
49
|
Novel hydroxamic acids incorporating 1-((1H-1,2,3-Triazol-4-yl)methyl)-3-hydroxyimino-indolin-2-ones: synthesis, biological evaluation, and SAR analysis. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1472-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Hieu DT, Anh DT, Hai PT, Huong LTT, Park EJ, Choi JE, Kang JS, Dung PTP, Han SB, Nam NH. Quinazoline-Based Hydroxamic Acids: Design, Synthesis, and Evaluation of Histone Deacetylase Inhibitory Effects and Cytotoxicity. Chem Biodivers 2018; 15:e1800027. [DOI: 10.1002/cbdv.201800027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Doan Thanh Hieu
- Hanoi University of Pharmacy; 13-15 Le Thanh Tong Hanoi Vietnam
| | - Duong Tien Anh
- Hanoi University of Pharmacy; 13-15 Le Thanh Tong Hanoi Vietnam
| | - Pham-The Hai
- Hanoi University of Pharmacy; 13-15 Le Thanh Tong Hanoi Vietnam
| | - Le-Thi-Thu Huong
- School of Medicine and Pharmacy; Vietnam National University; 144 XuanThuy Hanoi Vietnam
| | - Eun Jae Park
- College of Pharmacy; Chungbuk National University; 194-31, Osongsaengmyung-1, Heungdeok Cheongju Chungbuk 28160 Korea
| | - Jeong Eun Choi
- College of Pharmacy; Chungbuk National University; 194-31, Osongsaengmyung-1, Heungdeok Cheongju Chungbuk 28160 Korea
| | - Jong Soon Kang
- Bio-Evaluation Center; Korea Research Institute of Bioscience and Biotechnology; 30 Yeongudanji-ro, Ochang-eup, Chenogwon-gu Cheongju-si Chungcheongbuk-do 28116 Korea
| | | | - Sang-Bae Han
- College of Pharmacy; Chungbuk National University; 194-31, Osongsaengmyung-1, Heungdeok Cheongju Chungbuk 28160 Korea
| | - Nguyen-Hai Nam
- Hanoi University of Pharmacy; 13-15 Le Thanh Tong Hanoi Vietnam
| |
Collapse
|