1
|
Hamidi S, Ning MS, Phan J, Zafereo ME, Gule-Monroe MK, Dadu R. Recurrent Poorly Differentiated Thyroid Cancer Successfully Treated With Radiation and Immunotherapy. JCEM CASE REPORTS 2025; 3:luaf015. [PMID: 39866918 PMCID: PMC11758140 DOI: 10.1210/jcemcr/luaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Indexed: 01/28/2025]
Abstract
A 65-year-old patient presented with recurrent, locally advanced poorly differentiated thyroid cancer despite 2 neck surgeries, and with newly diagnosed brain and skull base metastases. He was treated with palliative stereotactic radiosurgery to the brain and skull base lesions. Thereafter, as no targetable genetic alteration was identified and antiangiogenic multikinase inhibitors were deemed at high risk of hemorrhagic complications, off-label systemic therapies were considered. The mechanistic target of rapamycin (mTOR) inhibitor everolimus could not be obtained due to lack of insurance coverage, so the patient was treated with single-agent pembrolizumab. He showed an initial remarkable response, but unfortunately had disease progression in the neck and upper mediastinum after 1 year of therapy. At that time, he was treated with external beam radiotherapy, with concomitant pembrolizumab. He was then found to have an CTSB::ALK fusion, which has previously been described in 2 cases of thyroid cancer. However, as he showed a positive response to radiation with pembrolizumab, he continued single-agent immune checkpoint inhibition and had a persistent marked response almost a year after completing radiation. The patient was then followed at an outside institution and was transitioned to hospice at time of progression per his preference. He died 4 years after his initial diagnosis.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Matthew S Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Maria K Gule-Monroe
- Department of Neuroradiology, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| |
Collapse
|
2
|
Martins AA, Teixeira J, Vieira R, Coutinho I. Combination of Cemiplimab and Radiotherapy in Advanced Squamous Cell Carcinoma. Dermatol Pract Concept 2025; 15:dpc.1501a4814. [PMID: 40117626 PMCID: PMC11928121 DOI: 10.5826/dpc.1501a4814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 03/23/2025] Open
Affiliation(s)
- André Aparício Martins
- Dermatology and Venereology Department, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - João Teixeira
- Dermatology and Venereology Department, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Ricardo Vieira
- Dermatology and Venereology Department, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Inês Coutinho
- Dermatology and Venereology Department, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Yang J, Lu Q, Qi W, Kolb RD, Wang L, Li Y, Li S, Lin Y, Liu J, Mourad W, MirkhaghaniHaghighi F, Slavisa T, Wu X, You WC, Yang E, Hanlon A, Zhu A, Yan W. Stereotactic central/core ablative radiation therapy: results of a phase I study of a novel strategy to treat bulky tumor. Front Oncol 2024; 14:1364627. [PMID: 38854732 PMCID: PMC11157688 DOI: 10.3389/fonc.2024.1364627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Bulky tumor remains as a challenge to surgery, chemotherapy and conventional radiation therapy. Hence, in efforts to overcome this challenge, we designed a novel therapeutic paradigm via strategy of Stereotactic Central/Core Ablative Radiation Therapy (SCART).), which is based on the principles of SBRT (stereotactic body radiation therapy and spatially fractionated radiation therapy (SFRT). We intend to safely deliver an ablative dose to the core of the tumor and with a low dose at tumor edge. The purpose of the phase 1 study was to determine dose-limiting toxicities (DLT)s and the Maximum Tolerated Dose (MTD) of SCART. Methods and materials We defined a SCART-plan volume inside the tumor, which is proportional to the dimension of tumor. VMAT/Cyberknife technique was adopted. In the current clinical trial; Patients with biopsy proven recurrent or metastatic bulky cancers were enrolled. The five dose levels were 15 Gy X1, 15Gy X3, 18GyX3, 21GyX3 and 24GyX3, while keeping the whole tumor GTV's border dose at 5Gy each fraction. There was no restriction on concurrent systemic chemotherapy agents. Results 21 patients were enrolled and underwent SCART. All 21 patients have eligible data for study follow-up. Radiotherapy was well tolerated with all treatment completed as scheduled. The dose was escalated for two patients to 24GyX3. No grade 3 or higher toxicity was observed in any of the enrolled patients. The average age of patients was 66 years (range: 14-85) and 13 (62%) patients were male. The median SCART dose was 18Gy (range: 15 - 24). Six out of the 18 patients with data for overall survival (OS) died, and the median time to death was 16.3 months (range: 1 - 25.6). The mean percent change for tumor shrinkage between first visit volumes and post-SCART volumes was 49.5% (SD: 40.89, p-value:0.009). Conclusion SCART was safely escalated to 24 GyX 3 fractions, which is the maximum Tolerated Dose (MTD) for SCART. This regimen will be used in future phase II trials.
Collapse
Affiliation(s)
- Jun Yang
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Qiuxia Lu
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Weihua Qi
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Ryann D. Kolb
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Lei Wang
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Quanzhou Binhai Hospital, Quanzhou, China
| | - Yuan Li
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Sida Li
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Yihui Lin
- Taichung Veterans General Hospital, Department of Radiation Oncology, Taichung, Taiwan
| | - Jiayi Liu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Waleed Mourad
- Department of Radiation Medicine, Markey Cancer Center – UK Chandler Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | | | - Tubin Slavisa
- Medaustron Center for Ion Therapy, Wiener Neustadt, Austria
- Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaodong Wu
- Department of Radiation Oncology, Executive Medical Physics Associates, Miami, FL, United States
| | - Wei-Ciang You
- Taichung Veterans General Hospital, Department of Radiation Oncology, Taichung, Taiwan
| | - Eddy Yang
- Department of Radiation Medicine, Markey Cancer Center – UK Chandler Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Alex Hanlon
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Weisi Yan
- Department of Radiation Medicine, Markey Cancer Center – UK Chandler Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Rumler S. Non-cellular immunotherapies in pediatric central nervous system tumors. Front Immunol 2023; 14:1242911. [PMID: 37885882 PMCID: PMC10598668 DOI: 10.3389/fimmu.2023.1242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer and the most common cause of cancer death in pediatric patients. New therapies are desperately needed for some of the most malignant of all cancers. Immunotherapy has emerged in the past two decades as an additional avenue to augment/replace traditional therapies (such as chemotherapy, surgery, and radiation therapy). This article first discusses the unique nature of the pediatric CNS immune system and how it interacts with the systemic immune system. It then goes on to review three important and widely studied types of immune therapies: checkpoint inhibitors, vaccines, and radiation therapy, and touches on early studies of antibody-mediated immunogenic therapies, Finally, the article discusses the importance of combination immunotherapy for pediatric CNS tumors, and addresses the neurologic toxicities associated with immunotherapies.
Collapse
Affiliation(s)
- Sarah Rumler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Duval KEA, Tavakkoli AD, Kheirollah A, Soderholm HE, Demidenko E, Lines JL, Croteau W, Zhang SC, Wagner RJ, Aulwes E, Noelle RJ, Hoopes PJ. Enhancement of Radiation Therapy through Blockade of the Immune Checkpoint, V-domain Ig Suppressor of T Cell Activation (VISTA), in Melanoma and Adenocarcinoma Murine Models. Int J Mol Sci 2023; 24:13742. [PMID: 37762046 PMCID: PMC10530750 DOI: 10.3390/ijms241813742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Radiation therapy (RT) has recently demonstrated promise at stimulating an enhanced immune response. The recent success of immunotherapies, such as checkpoint inhibitors, CART cells, and other immune modulators, affords new opportunities for combination with radiation. The aim of this study is to evaluate whether and to what extent blockade of VISTA, an immune checkpoint, can potentiate the tumor control ability of radiation therapy. Our study is novel in that it is the first comparison of two VISTA-blocking methods (antibody inhibition and genetic knockout) in combination with RT. VISTA was blocked either through genetic knockout (KO) or an inhibitory antibody and combined with RT in two syngeneic murine flank tumor models (B16 and MC38). Selected mRNA, immune cell infiltration, and tumor growth delay were used to assess the biological effects. When combined with a single 15Gy radiation dose, VISTA blockade via genetic knockout in the B16 model and via anti-VISTA antibodies in the MC38 model significantly improved survival compared to RT alone by an average of 5.5 days and 6.3 days, respectively (p < 0.05). The gene expression data suggest that the mechanism behind the enhanced tumor control is primarily a result of increased apoptosis and immune-mediated cytotoxicity. VISTA blockade significantly enhances the anti-tumor effect of a single dose of 15Gy radiation through increased expression and stimulation of cell-mediated apoptosis pathways. These results suggest that VISTA is a biologically relevant immune promoter that has the potential to enhance the efficacy of a large single radiation dose in a synergic manner.
Collapse
Affiliation(s)
- Kayla E. A. Duval
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Armin D. Tavakkoli
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Alireza Kheirollah
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Haille E. Soderholm
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine, Hanover, NH 03755, USA;
| | - Janet L. Lines
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH 03755, USA; (J.L.L.); (R.J.N.)
| | - Walburga Croteau
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH 03755, USA; (J.L.L.); (R.J.N.)
| | - Samuel C. Zhang
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Robert J. Wagner
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Ethan Aulwes
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH 03755, USA; (J.L.L.); (R.J.N.)
| | - P. Jack Hoopes
- Department of Surgery, Geisel School of Medicine, Hanover, NH 03755, USA; (K.E.A.D.); (A.D.T.); (A.K.); (H.E.S.); (S.C.Z.); (E.A.)
| |
Collapse
|
6
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
7
|
Multimodality Treatment with Radiotherapy and Immunotherapy in Older Adults: Rationale, Evolving Data, and Current Recommendations. Semin Radiat Oncol 2022; 32:142-154. [DOI: 10.1016/j.semradonc.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Kim Y, Choi C, Park JH, Ahn WG, Shin SW, Kim SY, Noh JM. Immunomodulatory effect of splenectomy in lung cancer mouse xenograft models receiving radiation therapy. Radiat Oncol J 2022; 40:53-65. [PMID: 35368201 PMCID: PMC8984136 DOI: 10.3857/roj.2021.00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/26/2021] [Indexed: 11/03/2022] Open
Abstract
Purpose: This study aims to investigate the effect of splenectomy on radiation-mediated growth inhibition and immune modulation in lung cancer xenograft models. Materials and Methods: Human non-small cell lung cancer H1299 cells and murine Lewis lung carcinoma LL/2-luc cells were injected into the right hind leg of BALB/c-nude mice and C57BL/6 mice, respectively. Splenectomy or sham operation was performed prior to tumor cell injection or before and after irradiation during tumor growth. Irradiation was delivered with 2–3 fractions of 6 Gy X-ray using a linear accelerator. Flow cytometry analysis was performed for immune cell profiling.Results: Splenectomy prior to tumor injection or at early stage inhibited growth of LL/2-luc tumors but not that of H1299 tumors; however, it did not enhance the antitumor effect of radiation regardless of intervention timing. Flow cytometry analysis showed monocytic myeloid-derived suppressor cells (MDSCs) and activated CD8+ T cells increased after irradiation in the tumors of splenectomized mice, compared to those of sham-operated mice. Administration of anti-PD-1 (programmed death-1) antibodies improved the ability of splenectomy to attenuate the growth of irradiated tumors.Conclusion: Splenectomy has paradoxical effects on radiation-induced tumor growth inhibition, depending on tumor types and intervention timing, but it has an immune-modulating effect when combined with radiation.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee Hyun Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Gyun Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shin-Yeong Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Correspondence: Jae Myoung Noh Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Tel: +82-2-3410-2612 Fax: +82-2-6190-5332 E-mail:
| |
Collapse
|
9
|
Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021; 11:768493. [PMID: 34888245 PMCID: PMC8649625 DOI: 10.3389/fonc.2021.768493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the differences in biological response to photon and particle radiation is important for optimal exploitation of particle therapy for cancer patients, as well as for the adequate application of radiation protection measures for astronauts. To address this need, we compared the transcriptional profiles of isolated peripheral blood mononuclear cells 8 h after exposure to 1 Gy of X-rays, carbon ions or iron ions with those of non-irradiated cells using microarray technology. All genes that were found differentially expressed in response to either radiation type were up-regulated and predominantly controlled by p53. Quantitative PCR of selected genes revealed a significantly higher up-regulation 24 h after exposure to heavy ions as compared to X-rays, indicating their prolonged activation. This coincided with increased residual DNA damage as evidenced by quantitative γH2AX foci analysis. Furthermore, despite the converging p53 signature between radiation types, specific gene sets related to the immune response were significantly enriched in up-regulated genes following irradiation with heavy ions. In addition, irradiation, and in particular exposure to carbon ions, promoted transcript variation. Differences in basal and iron ion exposure-induced expression of DNA repair genes allowed the identification of a donor with distinct DNA repair profile. This suggests that gene signatures may serve as a sensitive indicator of individual DNA damage repair capacity. In conclusion, we have shown that photon and particle irradiation induce similar transcriptional pathways, albeit with variable amplitude and timing, but also elicit radiation type-specific responses that may have implications for cancer progression and treatment
Collapse
Affiliation(s)
- Ellina Macaeva
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Biomedical Engineering, University of South Carolina, Columbia, SC, United States
| | - Arlette Michaux
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Nicole Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marjan Moreels
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Winnok H De Vos
- Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Roel Quintens
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| |
Collapse
|
10
|
Bhat V, Pellizzari S, Allan AL, Wong E, Lock M, Brackstone M, Lohmann AE, Cescon DW, Parsyan A. Radiotherapy and radiosensitization in breast cancer: Molecular targets and clinical applications. Crit Rev Oncol Hematol 2021; 169:103566. [PMID: 34890802 DOI: 10.1016/j.critrevonc.2021.103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Relatively poor survival outcomes are observed in advanced or metastatic breast cancer, where local control of the primary or metastatic disease may be achieved by surgical resection, local ablative and radiation therapies. Radioresistance, poses a major challenge in achieving durable oncologic outcomes, mandating development of novel management strategies. Although multimodality approaches that combine radiotherapy with chemotherapy, or systemic agents, are utilized for radiosensitization and treatment of various malignancies, this approach has not yet found its clinical application in breast cancer. Some agents for breast cancer treatment can serve as radiosensitizers, creating an opportunity to enhance effects of radiation while providing systemic disease control. Hence, combination of radiotherapy with radiosensitizing agents have the potential to improve oncologic outcomes in advanced or metastatic breast cancer. This review discusses molecular targets for radiosensitization and novel systemic agents that have potential for clinical use as radiosensitizers in breast cancer.
Collapse
Affiliation(s)
- Vasudeva Bhat
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Sierra Pellizzari
- Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - Eugene Wong
- Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Physics and Astronomy, Western University, London, ON, N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, N6A 5C1, Canada
| | - Michael Lock
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - Muriel Brackstone
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Surgery, Western University, London, ON, N6A 3K7, Canada
| | - Ana Elisa Lohmann
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - David W Cescon
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Armen Parsyan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Surgery, Western University, London, ON, N6A 3K7, Canada.
| |
Collapse
|
11
|
Yang SR, Tsai MH, Hung CJ, Peng SL, Chiu NT, Huang YH, Tsai HJ. Anaplastic Thyroid Cancer Successfully Treated With Radiation and Immunotherapy: A Case Report. AACE Clin Case Rep 2021; 7:299-302. [PMID: 34522768 PMCID: PMC8426608 DOI: 10.1016/j.aace.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/03/2021] [Indexed: 01/15/2023] Open
Abstract
Objective Anaplastic thyroid cancer (ATC) is a rare thyroid cancer subtype with a devastating prognosis. Novel treatment strategies are under investigation to improve the survival of patients with ATC. Methods We present a case of recurrent ATC treated with a combination of radiation therapy (RT) and pembrolizumab, a programmed death-1 inhibitor, with a durable complete response. Results A 63-year-old woman underwent total thyroidectomy and left neck lymph node dissection and was diagnosed with papillary carcinoma in December, 2017. She received radioiodine in April, 2018. However, a left neck mass was noted in April, 2018 with biopsy demonstrating ATC with 95% positivity for programmed death-ligand 1 immunostaining. Positron emission tomography showed fluorodeoxyglucose uptake in the left thyroid bed and multiple lymph nodes in the left retropharyngeal, left neck, and right upper paratracheal areas. Hypofractionated RT for the recurrent areas was initiated in August,2018, and concomitant pembrolizumab was given 2 days after RT. A total of 10 cycles of pembrolizumab (2 mg/kg) were given every 3 weeks. The computed tomography scan after completion of RT and 3 cycles of pembrolizumab showed shrinkage of the neck lymph nodes. The serial follow-up computed tomography scans showed further shrinkage of the lymph nodes, and there was no recurrence of ATC as of October, 2020. Conclusion We describe an ATC case successfully treated with a combination of RT and pembrolizumab with a durable response of 26 months and acceptable toxicities. This result warrants further investigation of this combination regimen in the treatment of ATC.
Collapse
Affiliation(s)
- Shuen-Ru Yang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mu-Hung Tsai
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Jye Hung
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ling Peng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Tsing Chiu
- Department of Nuclear Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hui Huang
- Nursing Department of National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hui-Jen Tsai
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
13
|
Pouget JP, Constanzo J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front Med (Lausanne) 2021; 8:692436. [PMID: 34386508 PMCID: PMC8353448 DOI: 10.3389/fmed.2021.692436] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted alpha therapy (TAT) using alpha particle-emitting radionuclides is in the spotlight after the approval of 223RaCl2 for patients with metastatic castration-resistant prostate cancer and the development of several alpha emitter-based radiopharmaceuticals. It is acknowledged that alpha particles are highly cytotoxic because they produce complex DNA lesions. Hence, the nucleus is considered their critical target, and many studies did not report any effect in other subcellular compartments. Moreover, their physical features, including their range in tissues (<100 μm) and their linear energy transfer (50–230 keV/μm), are well-characterized. Theoretically, TAT is indicated for very small-volume, disseminated tumors (e.g., micrometastases, circulating tumor cells). Moreover, due to their high cytotoxicity, alpha particles should be preferred to beta particles and X-rays to overcome radiation resistance. However, clinical studies showed that TAT might be efficient also in quite large tumors, and biological effects have been observed also away from irradiated cells. These distant effects are called bystander effects when occurring at short distance (<1 mm), and systemic effects when occurring at much longer distance. Systemic effects implicate the immune system. These findings showed that cells can die without receiving any radiation dose, and that a more complex and integrated view of radiobiology is required. This includes the notion that the direct, bystander and systemic responses cannot be dissociated because DNA damage is intimately linked to bystander effects and immune response. Here, we provide a brief overview of the paradigms that need to be revisited.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
14
|
Vile RG, Melcher A, Pandha H, Harrington KJ, Pulido JS. APOBEC and Cancer Viroimmunotherapy: Thinking the Unthinkable. Clin Cancer Res 2021; 27:3280-3290. [PMID: 33558423 PMCID: PMC8281496 DOI: 10.1158/1078-0432.ccr-20-1888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 01/21/2023]
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) family protects against infection by degrading incoming viral genomes through cytosine deamination. Here, we review how the potential to unleash these potent DNA mutagens comes at a price as APOBEC DNA mutagenesis can contribute to development of multiple types of cancer. In addition, because viral infection induces its expression, APOBEC is seen as the enemy of oncolytic virotherapy through mutation of the viral genome and by generating virotherapy-resistant tumors. Therefore, overall APOBEC in cancer has received very poor press. However, we also speculate how there may be silver linings to the storm clouds (kataegis) associated with APOBEC activity. Thus, although mutagenic genomic chaos promotes emergence of ever more aggressive subclones, it also provides significant opportunity for cytotoxic and immune therapies. In particular, the superpower of cancer immunotherapy derives in part from mutation, wherein generation of tumor neoantigens-neoantigenesis-exposes tumor cells to functional T-cell repertoires, and susceptibility to immune checkpoint blockade. Moreover, APOBECs may be able to induce suprathreshold levels of cellular mutation leading to mitotic catastrophe and direct tumor cell killing. Finally, we discuss the possibility that linking predictable APOBEC-induced mutation with escape from specific frontline therapies could identify mutated molecules/pathways that can be targeted with small molecules and/or immunotherapies in a Trap and Ambush strategy. Together, these considerations lead to the counterintuitive hypothesis that, instead of attempting to expunge and excoriate APOBEC activity in cancer therapy, it might be exploited-and even, counterintuitively, encouraged.
Collapse
Affiliation(s)
- Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Alan Melcher
- The Institute of Cancer Research/Royal Marsden, National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Hardev Pandha
- Surrey Cancer Research Institute, Faculty of Health and Medical Sciences, University of Surrey Guildford, Surrey, United Kingdom
| | - Kevin J Harrington
- The Institute of Cancer Research/Royal Marsden, National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
- Will's Eye Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Nowosielska EM, Cheda A, Pociegiel M, Cheda L, Szymański P, Wiedlocha A. Effects of a Unique Combination of the Whole-Body Low Dose Radiotherapy with Inactivation of Two Immune Checkpoints and/or a Heat Shock Protein on the Transplantable Lung Cancer in Mice. Int J Mol Sci 2021; 22:6309. [PMID: 34208396 PMCID: PMC8231142 DOI: 10.3390/ijms22126309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer death worldwide. Recently, targeting molecules whose functions are associated with tumorigenesis has become a game changing adjunct to standard anti-cancer therapy. As evidenced by the results of preclinical and clinical investigations, whole-body irradiations (WBI) with X-rays at less than 0.1-0.2 Gy per fraction can induce remissions of various neoplasms without inciting adverse side effects of conventional chemo- and radiotherapy. In the present study, a murine model of human NSCLC was employed to evaluate for the first time the anti-neoplastic efficacy of WBI combined with inactivation of CTLA-4, PD-1, and/or HSP90. The results indicate that WBI alone and in conjunction with the inhibition of the function of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed death-1 (PD-1) receptor immune checkpoints (ICs) and/or heat shock protein 90 (HSP90) markedly reduced tumorigenesis in mice implanted by three different routes with the syngeneic Lewis lung cancer cells and suppressed clonogenic potential of Lewis lung carcinoma (LLC1) cells in vitro. These results were associated with the relevant changes in the profile of pro- and anti-neoplastic immune cells recruited to the growing tumors and the circulating anti- and pro-inflammatory cytokines. In contrast, inhibition of the tested molecular targets used either separately or in combination with each other did not exert notable anti-neoplastic effects. Moreover, no significant synergistic effects were detected when the inhibitors were applied concurrently with WBI. The obtained results supplemented with further mechanistic explanations provided by future investigations will help design the effective strategies of treatment of lung and other cancers based on inactivation of the immune checkpoint and/or heat shock molecules combined with low-dose radiotherapy.
Collapse
Affiliation(s)
- Ewa M. Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
| | - Mateusz Pociegiel
- National Centre for Nuclear Research Radioisotope Centre POLATOM, 7A Soltana St., 05-400 Otwock, Poland;
| | - Lukasz Cheda
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury St., 02-089 Warsaw, Poland;
| | - Paweł Szymański
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland
| | - Antoni Wiedlocha
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Centre for Cancer Reprograming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| |
Collapse
|
16
|
Constanzo J, Faget J, Ursino C, Badie C, Pouget JP. Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Front Immunol 2021; 12:680503. [PMID: 34079557 PMCID: PMC8165314 DOI: 10.3389/fimmu.2021.680503] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
In the past decade, radiation therapy (RT) entered the era of personalized medicine, following the striking improvements in radiation delivery and treatment planning optimization, and in the understanding of the cancer response, including the immunological response. The next challenge is to identify the optimal radiation regimen(s) to induce a clinically relevant anti-tumor immunity response. Organs at risks and the tumor microenvironment (e.g. endothelial cells, macrophages and fibroblasts) often limit the radiation regimen effects due to adverse toxicities. Here, we reviewed how RT can modulate the immune response involved in the tumor control and side effects associated with inflammatory processes. Moreover, we discussed the versatile roles of tumor microenvironment components during RT, how the innate immune sensing of RT-induced genotoxicity, through the cGAS-STING pathway, might link the anti-tumor immune response, radiation-induced necrosis and radiation-induced fibrosis, and how a better understanding of the switch between favorable and deleterious events might help to define innovative approaches to increase RT benefits in patients with cancer.
Collapse
Affiliation(s)
- Julie Constanzo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Julien Faget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Chiara Ursino
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards Public Health England Chilton, Didcot, United Kingdom
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Riva M, Wouters R, Sterpin E, Giovannoni R, Boon L, Himmelreich U, Gsell W, Van Ranst M, Coosemans A. Radiotherapy, Temozolomide, and Antiprogrammed Cell Death Protein 1 Treatments Modulate the Immune Microenvironment in Experimental High-Grade Glioma. Neurosurgery 2021; 88:E205-E215. [PMID: 33289503 DOI: 10.1093/neuros/nyaa421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The lack of immune synergy with conventional chemoradiation could explain the failure of checkpoint inhibitors in current clinical trials for high-grade gliomas (HGGs). OBJECTIVE To analyze the impact of radiotherapy (RT), Temozolomide (TMZ) and antiprogrammed cell death protein 1 (αPD1) (as single or combined treatments) on the immune microenvironment of experimental HGGs. METHODS Mice harboring neurosphere /CT-2A HGGs received RT (4 Gy, single dose), TMZ (50 mg/kg, 4 doses) and αPD1 (100 μg, 3 doses) as monotherapies or combinations. The influence on survival, tumor volume, and tumor-infiltrating immune cells was analyzed. RESULTS RT increased total T cells (P = .0159) and cluster of differentiation (CD)8+ T cells (P = .0078) compared to TMZ. Lymphocyte subpopulations resulting from TMZ or αPD1 treatment were comparable with those of controls. RT reduced M2 tumor-associated macrophages/microglia (P = .0019) and monocytic myeloid derived suppressor cells (mMDSCs, P = .0003) compared to controls. The effect on mMDSC was also seen following TMZ and αPD1 treatment, although less pronounced (P = .0439 and P = .0538, respectively). Combining RT with TMZ reduced CD8+ T cells (P = .0145) compared to RT alone. Adding αPD1 partially mitigated this effect as shown by the increased CD8+ T cells/Tregs ratio, even if this result failed to reach statistical significance (P = .0973). Changing the combination sequence of RT, TMZ, and αPD1 did not alter survival nor the immune effects. CONCLUSION RT, TMZ, and αPD1 modify the immune microenvironment of HGG. The combination of RT with TMZ induces a strong immune suppression which cannot be effectively counteracted by αPD1.
Collapse
Affiliation(s)
- Matteo Riva
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Neurosurgery, University Hospital of Godinne, UCL Namur, Yvoir, Belgium
| | - Roxanne Wouters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Edmond Sterpin
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Louis Boon
- Polpharma Biologics, Utrecht, the Netherlands
| | - Uwe Himmelreich
- Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Biomedical MRI, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Biomedical MRI, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Le Louedec F, Leenhardt F, Marin C, Chatelut É, Evrard A, Ciccolini J. Cancer Immunotherapy Dosing: A Pharmacokinetic/Pharmacodynamic Perspective. Vaccines (Basel) 2020; 8:E632. [PMID: 33142728 PMCID: PMC7712135 DOI: 10.3390/vaccines8040632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune check-point inhibitors are drugs that are markedly different from other anticancer drugs because of their indirect mechanisms of antitumoral action and their apparently random effect in terms of efficacy and toxicity. This marked pharmacodynamics variability in patients calls for reconsidering to what extent approved dosing used in clinical practice are optimal or whether they should require efforts for customization in outlier patients. To better understand whether or not dosing could be an actionable item in oncology, in this review, preclinical and clinical development of immune checkpoint inhibitors are described, particularly from the angle of dose finding studies. Other issues in connection with dosing issues are developed, such as the flat dosing alternative, the putative role therapeutic drug monitoring could play, the rise of combinatorial strategies, and pharmaco-economic aspects.
Collapse
Affiliation(s)
- Félicien Le Louedec
- Institut Claudius-Regaud, Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, and Cancer Research Center of Toulouse (CRCT), Inserm U1037, University of Toulouse, 31100 Toulouse, France;
| | - Fanny Leenhardt
- Institut de Cancérologie de Montpellier (ICM) and Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, University of Montpellier, 34090 Montpellier, France;
| | - Clémence Marin
- Assistance Publique—Hôpitaux de Marseille (AP-HM) and Simulation Modeling Adaptive Response for Therapeutics in cancer (SMARTc), Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France; (C.M.); (J.C.)
| | - Étienne Chatelut
- Institut Claudius-Regaud, Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, and Cancer Research Center of Toulouse (CRCT), Inserm U1037, University of Toulouse, 31100 Toulouse, France;
| | - Alexandre Evrard
- Centre Hospitalier Universitaire de Nîmes Carémeau, Nîmes, France and IRCM U1194, University of Montpellier, 34090 Montpellier, France;
| | - Joseph Ciccolini
- Assistance Publique—Hôpitaux de Marseille (AP-HM) and Simulation Modeling Adaptive Response for Therapeutics in cancer (SMARTc), Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France; (C.M.); (J.C.)
| |
Collapse
|
19
|
Philippou Y, Sjoberg H, Lamb AD, Camilleri P, Bryant RJ. Harnessing the potential of multimodal radiotherapy in prostate cancer. Nat Rev Urol 2020; 17:321-338. [PMID: 32358562 DOI: 10.1038/s41585-020-0310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapy in combination with androgen deprivation therapy (ADT) is a standard treatment option for men with localized and locally advanced prostate cancer. However, emerging clinical evidence suggests that radiotherapy can be incorporated into multimodality therapy regimens beyond ADT, in combinations that include chemotherapy, radiosensitizing agents, immunotherapy and surgery for the treatment of men with localized and locally advanced prostate cancer, and those with oligometastatic disease, in whom the low metastatic burden in particular might be treatable with these combinations. This multimodal approach is increasingly recognized as offering considerable clinical benefit, such as increased antitumour effects and improved survival. Thus, radiotherapy is becoming a key component of multimodal therapy for many stages of prostate cancer, particularly oligometastatic disease.
Collapse
Affiliation(s)
- Yiannis Philippou
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Hanna Sjoberg
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Philip Camilleri
- Oxford Department of Clinical Oncology, Churchill Hospital Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, UK
| | - Richard J Bryant
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
20
|
Beauford SS, Kumari A, Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol 2020; 21:18. [PMID: 32299365 PMCID: PMC7164225 DOI: 10.1186/s12865-020-00349-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The use of immunotherapy strategies for the treatment of advanced cancer is rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing escape from immune attack. The use of ionizing radiation as a treatment for cancer has been shown to enhance anti-tumor immunity by several mechanisms including immunogenic tumor cell death and phenotypic modulation of tumor cells. Less is known about the impact of radiation directly on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on human TREG viability, phenotype, and suppressive activity. RESULTS Both natural and TGF-β1-induced CD4+ TREG cells exhibited increased resistance to radiation (10 Gy) as compared to CD4+ conventional T cells. Treatment, however, decreased Foxp3 expression in natural and induced TREG cells and the reduction was more robust in induced TREGS. Radiation also modulated the expression of signature iTREG molecules, inducing increased expression of LAG-3 and decreased expression of CD25 and CTLA-4. Despite the disconcordant modulation of suppressive molecules, irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells. CONCLUSIONS Our findings demonstrate that while human TREG cells are more resistant to radiation-induced death, treatment causes downregulation of Foxp3 expression, as well as modulation in the expression of TREG signature molecules associated with suppressive activity. Functionally, irradiated TGF-β1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data suggest that doses of radiotherapy in the hypofractionated range could be utilized to effectively target and reduce TREG activity, particularly when used in combination with cancer immunotherapies.
Collapse
Affiliation(s)
- Samantha S Beauford
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
21
|
A GM, M H, J J B, A KA, S M J M, A GM, S A R M. COVID-19 Tragic Pandemic: Concerns over Unintentional "Directed Accelerated Evolution" of Novel Coronavirus (SARS-CoV-2) and Introducing a Modified Treatment Method for ARDS. J Biomed Phys Eng 2020; 10:241-246. [PMID: 32337192 PMCID: PMC7166223 DOI: 10.31661/jbpe.v0i0.2003-1085] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/01/2022]
Abstract
Global health authorities are trying to work out the current status of the novel coronavirus (COVID-19) outbreak and explore methods
to reduce the rate of its transmission to healthy individuals. In this viewpoint we provide insights concerning how health care professionals
can unintentionally shift the novel coronavirus type to more drug-resistant forms. It is worth noting that viruses usually have different
sensitivities to physical and chemical damaging agents such antiviral drugs, UV and heat ranging from extremely sensitive (ES) to extremely
resistant (ER) based on a bell-shaped curve. Given this consideration, the widespread infection of people with such ER viruses would be a real disaster.
Here, we introduce a modified treatment method for COVID-19-associated pneumonia. In this proposed method, COVID-19 patients will receive a single
dose of 100, 180 or 250 mSv X-ray radiation that is less than the maximum annual radiation dose of the residents of high background radiation
areas of Ramsar that is up to 260 mSv. In contrast with antiviral drugs, a single dose of either 100, 180 or 250 mSv of low LET X-rays cannot
exert a significant selective pressure on the novel coronavirus (SARS-CoV-2) and hence does not lead to directed accelerated evolution of these viruses.
Moreover, Low Dose Radiation (LDR) has the capacity of modulating excessive inflammatory responses, regulating lymphocyte counts, and controling bacterial
co-infections in patients with COVID-19.
Collapse
Affiliation(s)
- Ghadimi-Moghadam A
- MD, Pediatric Infectious Ward, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Haghani M
- PhD, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bevelacqua J J
- PhD, Bevelacqua Resources, Richland, Washington 99352, United States
| | - Kaveh-Ahangar A
- MSc, Vice-chancellery for Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortazavi S M J
- PhD, Medical Physics and Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Diagnostic Imaging Department, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| | | | - Mortazavi S A R
- MD, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Shahani M, Shakeri J, Akbari ME, Arefnezhad B, Tafti A, Zali H, Nafisi N, Hashemi M, Rezaei-Tavirani M, Mohammadpour S, Salami SAR, Mirzai HR, Samsami M, Ezabady SHJ, Akbari A. Transcriptomic and proteomic approaches reveal biological basis of intraoperative radiotherapy-treated tumor bed modification in breast cancer patients: A pilot study. J Proteomics 2020; 212:103596. [PMID: 31759177 DOI: 10.1016/j.jprot.2019.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
AIM Intraoperative electron Radiotherapy, herein referred to, as IOeRT is a novel approach in breast cancer (BC) treatment. This study designed to investigate short-term molecular effects of 12Gy as Boost versus 21Gy as Radical dose of IOeRT using high throughput approaches. MATERIALS AND METHODS Six BC patients as a pilot study were treated with IOeRT following two separate strategies, including Boost and Radical doses. Approximately 100 mg of tumor bed tissue retrieved from each patient (before IOeRT,immediately, 24 h post-treatment). mRNA sequencing also Isobaric tag for relative and absolute quantitation (iTRAQ) were performed to study the transcriptome and proteome profile of IOeRT-treated tumor bed. RESULTS Using NGS, ~6 Giga base (GB) clean data per individual samples were generated. Moreover, by iTRAQ for proteome quantification, in total, 1,045,410 spectrums were generated, likewise 5860 proteins were identified (FDR <0.01). CONCLUSION Functional annotation and gene ontology (GO) indicated that significant enrichment in molecular pathways on BC treatment is somehow single high dose-independent. This means that, key molecular pathways in radiotherapy (RT) are equally enriched by both Boost and Radical doses. Generally, by modification of the Radical dose, with the same effectiveness, it is possible to reduce single high dose irradiation in BC.
Collapse
Affiliation(s)
- Minoo Shahani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Shakeri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Tafti
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Departeman of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hakimeh Zali
- School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Nafisi
- Breast Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mohammadpour
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Mirzai
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Duval KEA, Petryk JD, Crary-Burney MA, Demidenko E, Wagner RJ, Hoopes PJ. mNP hyperthermia and hypofractionated radiation activate similar immunogenetic and cytotoxic pathways. Int J Hyperthermia 2020; 37:929-937. [PMID: 32757666 PMCID: PMC10795105 DOI: 10.1080/02656736.2020.1802070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE The goal of this study is to better understand the immunogenetic expression and related cytotoxic responses of moderate but clinically relevant doses of hypofractionated radiation (1x15 Gy and 3x8 Gy) and magnetic nanoparticle hyperthermia (mNPH, CEM43 30). METHODS Genetic, protein, immunopathology and tumor growth delay assessments were used to determine the immune and cytotoxic responses following radiation and mNPH alone and in combination. Although the thermal dose used, 43 C°/30 min (CEM43 30), typically results in modest independent cytotoxicity, it has shown the ability to stimulate an immune response and enhance other cancer treatments. The radiation doses studied (15 Gy and 3x8 Gy) are commonly used in preclinical research and are effective in selected stereotactic and palliative treatment settings, however they are not commonly used as first-line primary tumor treatment regimens. RESULTS Our RNA-based genetic results suggest that while many of the cytotoxic and immune gene and protein pathways for radiation and hyperthermia are similar, radiation, at the doses used, results in a more consistent and expansive anti-cancer immune/cytotoxic expression profile. These results were supported by immunohistochemistry based cytotoxic T-cell tumor infiltration and tumor growth delay studies. When used together radiation and hyperthermia led to greater immune and cytotoxic activity than either modality alone. CONCLUSION This study clearly shows that modest, but commonly used hypofractionated radiation and hyperthermia doses share many important immune and cytotoxic pathways and that combining the treatments, as compared to either treatment alone, results in genetic and biological anti-cancer benefits.
Collapse
Affiliation(s)
| | - James D. Petryk
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | | | | | - P. Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
24
|
D'Andrea MA, Reddy GK. Extracranial systemic antitumor response through the abscopal effect induced by brain radiation in a patient with metastatic melanoma. Radiat Oncol J 2019; 37:302-308. [PMID: 31918469 PMCID: PMC6952716 DOI: 10.3857/roj.2019.00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
The abscopal effect is a term that has been used to describe the phenomenon in which localized radiation therapy treatment of a tumor lesion triggers a spontaneous regression of metastatic lesion(s) at a non-irradiated distant site(s). Radiation therapy induced abscopal effects are believed to be mediated by activation and stimulation of the immune system. However, due to the brain's distinctive immune microenvironment, extracranial abscopal responses following cranial radiation therapy have rarely been reported. In this report, we describe the case of 42-year-old female patient with metastatic melanoma who experienced an abscopal response following her cranial radiation therapy for her brain metastasis. The patient initially presented with a stage III melanoma of the right upper skin of her back. Approximately 5 years after her diagnosis, the patient developed a large metastatic lesion in her upper right pectoral region of her chest wall and axilla. Since the patient's tumor was positive for BRAF and MEK, targeted therapy with dabrafenib and trametinib was initiated. However, the patient experienced central nervous system (CNS) symptoms such as headache and disequilibrium and developed brain metastases prior to the start of targeted therapy. The patient received radiation therapy to a dose of 30 Gy delivered in 15 fractions to her brain lesions while the patient was on dabrafenib and trametinib therapy. The patient's CNS metastases improved significantly within weeks of her therapy. The patient's non-irradiated large extracranial chest mass and axilla mass also shrank substantially demonstrating the abscopal effect during her CNS radiation therapy. Following radiation therapy of her residual chest lesions, the patient was disease free clinically and her CNS lesions had regressed. However, when the radiation therapy ended and the patient continued her targeted therapy alone, recurrence outside of her previously treated fields was noted. The disease recurrence could be due to the possibility of developing BRAF resistance clones to the BRAF targeted therapy. The patient died eventually due to wide spread systemic disease recurrence despite targeted therapy.
Collapse
Affiliation(s)
| | - G K Reddy
- University Cancer and Diagnostic Centers, Houston, TX, USA
| |
Collapse
|
25
|
Schuelke MR, Wongthida P, Thompson J, Kottke T, Driscoll CB, Huff AL, Shim KG, Coffey M, Pulido J, Evgin L, Vile RG. Diverse immunotherapies can effectively treat syngeneic brainstem tumors in the absence of overt toxicity. J Immunother Cancer 2019; 7:188. [PMID: 31315671 PMCID: PMC6637625 DOI: 10.1186/s40425-019-0673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immunotherapy has shown remarkable clinical promise in the treatment of various types of cancers. However, clinical benefits derive from a highly inflammatory mechanism of action. This presents unique challenges for use in pediatric brainstem tumors including diffuse intrinsic pontine glioma (DIPG), since treatment-related inflammation could cause catastrophic toxicity. Therefore, the goal of this study was to investigate whether inflammatory, immune-based therapies are likely to be too dangerous to pursue for the treatment of pediatric brainstem tumors. METHODS To complement previous immunotherapy studies using patient-derived xenografts in immunodeficient mice, we developed fully immunocompetent models of immunotherapy using transplantable, syngeneic tumors. These four models - HSVtk/GCV suicide gene immunotherapy, oncolytic viroimmunotherapy, adoptive T cell transfer, and CAR T cell therapy - have been optimized to treat tumors outside of the CNS and induce a broad spectrum of inflammatory profiles, maximizing the chances of observing brainstem toxicity. RESULTS All four models achieved anti-tumor efficacy in the absence of toxicity, with the exception of recombinant vaccinia virus expressing GMCSF, which demonstrated inflammatory toxicity. Histology, imaging, and flow cytometry confirmed the presence of brainstem inflammation in all models. Where used, the addition of immune checkpoint blockade did not introduce toxicity. CONCLUSIONS It remains imperative to regard the brainstem with caution for immunotherapeutic intervention. Nonetheless, we show that further careful development of immunotherapies for pediatric brainstem tumors is warranted to harness the potential potency of anti-tumor immune responses, despite their possible toxicity within this anatomically sensitive location.
Collapse
Affiliation(s)
- Matthew R Schuelke
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Amanda L Huff
- Virology and Gene Therapy Track, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin G Shim
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matt Coffey
- Oncolytics Biotech, Inc., Calgary, AB, T2N 1X7, Canada
| | - Jose Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK.
| |
Collapse
|
26
|
Bourillon L, Bourgier C, Gaborit N, Garambois V, Llès E, Zampieri A, Ogier C, Jarlier M, Radosevic-Robin N, Orsetti B, Delpech H, Theillet C, Colombo PE, Azria D, Pèlegrin A, Larbouret C, Chardès T. An auristatin-based antibody-drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer. Int J Cancer 2019; 145:1838-1851. [PMID: 30882895 DOI: 10.1002/ijc.32273] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by poor response to chemotherapy and radiotherapy due to the lack of efficient therapeutic tools and early diagnostic markers. We previously generated the nonligand competing anti-HER3 antibody 9F7-F11 that binds to pancreatic tumor cells and induces tumor regression in vivo in experimental models. Here, we asked whether coupling 9F7-F11 with a radiosensitizer, such as monomethylauristatin E (MMAE), by using the antibody-drug conjugate (ADC) technology could improve radiation therapy efficacy in PDAC. We found that the MMAE-based HER3 antibody-drug conjugate (HER3-ADC) was efficiently internalized in tumor cells, increased the fraction of cells arrested in G2/M, which is the most radiosensitive phase of the cell cycle, and promoted programmed cell death of irradiated HER3-positive pancreatic cancer cells (BxPC3 and HPAC cell lines). HER3-ADC decreased the clonogenic survival of irradiated cells by increasing DNA double-strand break formation (based on γH2AX level), and by modulating DNA damage repair. Tumor radiosensitization with HER3-ADC favored the inhibition of the AKT-induced survival pathway, together with more efficient caspase 3/PARP-mediated apoptosis. Incubation with HER3-ADC before irradiation synergistically reduced the phosphorylation of STAT3, which is involved in chemoradiation resistance. In vivo, the combination of HER3-ADC with radiation therapy increased the overall survival of mice harboring BxPC3, HPAC cell xenografts or patient-derived xenografts, and reduced proliferation (KI67-positive cells). Combining auristatin radiosensitizer delivery via an HER3-ADC with radiotherapy is a new promising therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Laura Bourillon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Céline Bourgier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Nadège Gaborit
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Eva Llès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Alexandre Zampieri
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Charline Ogier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Nina Radosevic-Robin
- Department of Biopathology, Jean Perrin Comprehensive Cancer Center and INSERM/UCA UMR 1240, 63011, Clermont-Ferrand, France
| | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Pierre-Emmanuel Colombo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - David Azria
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
27
|
Cañas R, Linares I, Guedea F, Berenguer Francés MÁ. Why should radiation oncology do translational research? [corrected]. Rep Pract Oncol Radiother 2019; 24:60-64. [PMID: 30455615 PMCID: PMC6234255 DOI: 10.1016/j.rpor.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022] Open
Abstract
Radiological Oncology, like the rest of medical specialties, is beginning to provide can personalized therapies. The ongoing scientific advances enable a great degree of precision in diagnoses and therapies. To fight cancer, from a radiotherapy unit, requires up-to-date equipment, professionals with different specialties working in synchrony (doctors, physicists, biologists, etc.) and a lot of research. Some of the new therapeutic tendencies are immunotherapy, nanoparticles, gene therapy, biomarkers, artificial intelligence, etc. A new clinical paradigm in which new professional networks are inevitable is arising. The mission of translational research is to become a scientific engine in the clinical space.
Collapse
Affiliation(s)
- Rut Cañas
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
| | - Isabel Linares
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| | - Miguel Ángel Berenguer Francés
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| |
Collapse
|
28
|
Dalgleish AG, Stern PL. The failure of radical treatments to cure cancer: can less deliver more? Ther Adv Vaccines Immunother 2018; 6:69-76. [PMID: 30623172 PMCID: PMC6304701 DOI: 10.1177/2515135518815393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
All too often attempts to deliver improved cancer cure rates by increasing the dose of a particular treatment are not successful enough to justify the accompanying increase in toxicity and reduction in quality of life suffered by a significant number of patients. In part, this drive for using higher levels of treatment derives from the nature of the process for testing and incorporation of new protocols. Indeed, new treatment regimens must now consider the key role of immunity in cancer control, a component that has been largely ignored until very recently. The recognition that some drugs developed for cytotoxicity at higher doses can display alternative anticancer activities at lower doses including through modulation of immune responses is prompting a significant re-evaluation of treatment protocol development. Given that tumours are remarkably heterogeneous and with inherent genetic instability it is probably only the adaptive immune response with its flexibility and extensive repertoire that can rise to the challenge of effecting significant control and ultimately elimination of a patient's cancer. This article discusses some of the elements that have limited higher levels of treatment outcomes and where too much proved less effective. We explore observations that less can often be as effective, if not more effective especially with some chemotherapy regimens, and discuss how this can be exploited in combination with immunotherapies to deliver nontoxic improved tumour responses.
Collapse
Affiliation(s)
- Angus G Dalgleish
- Infection and Immunity Centre, St George's, University of London, Cranmer Terrace, London, UK
| | - Peter L Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
29
|
Eggermont AMM, Crittenden M, Wargo J. Combination Immunotherapy Development in Melanoma. Am Soc Clin Oncol Educ Book 2018; 38:197-207. [PMID: 30231333 DOI: 10.1200/edbk_201131] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma has been the most important cancer to drive immunotherapy development of solid tumors. Since 2010, immunotherapy has been revolutionized by the concept of breaking tolerance. It represents a major paradigm shift and marks the beginning of a new era. The impact of the first immune checkpoint inhibitors, anti-CTLA-4 and anti-PD-1/anti-PD-L1, is unprecedented. In 7 years, it transformed advanced-stage melanoma into a curable disease in over 50% of patients. Another major step has been the development of the combination of BRAF inhibitors plus MEK inhibitors in the treatment of BRAF-mutant melanomas. For the treatment of advanced disease, approvals were obtained for the immune checkpoint inhibitors ipilimumab (2011), nivolumab (2014), pembrolizumab (2014), the combination ipilimumab plus nivolumab (2015), and the oncolytic virus vaccine laherparepvec (2015). The combination dabrafenib plus trametinib for BRAF-mutant melanoma was approved in 2014, with similar success for other BRAF plus MEK inhibitor combinations. Because of its unique therapeutic index (high efficacy and low toxicity) anti-PD-1 agents (nivolumab and pembrolizumab) have now been placed at the center of practically all combination therapy development strategies in melanoma. Anti-PD-1 agents are the central molecule for combinations with a great variety of other immunotherapeutics such as immune checkpoint inhibitors, agonists, IDO inhibitors, macrophage polarizing agents, monoclonal antibodies, vaccines, targeted agents, chemotherapeutics, radiation therapy, and even microbiome modulators.
Collapse
Affiliation(s)
- Alexander M M Eggermont
- From the Gustave Roussy Cancer Institute and University Paris-Saclay, Villejuif, France; Earle A. Chiles Research Institute, Portland, OR; The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marka Crittenden
- From the Gustave Roussy Cancer Institute and University Paris-Saclay, Villejuif, France; Earle A. Chiles Research Institute, Portland, OR; The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer Wargo
- From the Gustave Roussy Cancer Institute and University Paris-Saclay, Villejuif, France; Earle A. Chiles Research Institute, Portland, OR; The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
30
|
Tallet AV, Dhermain F, Le Rhun E, Noël G, Kirova YM. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol 2018; 28:2962-2976. [PMID: 29045524 DOI: 10.1093/annonc/mdx408] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies (TT) and immune checkpoint inhibitors (ICI) are currently modifying the landscape of metastatic cancer management and are increasingly used over the course of many cancers treatment. They allow long-term survival with controlled extra-cerebral disease, contributing to the increasing incidence of brain metastases (BMs). Radiation therapy remains the cornerstone of BMs treatment (either whole brain irradiation or stereotactic radiosurgery), and investigating the safety profile of radiation therapy combined with TT or ICI is of high interest. Discontinuing an efficient systemic therapy, when BMs irradiation is considered, might allow systemic disease progression and, on the other hand, the mechanisms of action of these two therapeutic modalities might lead to unexpected toxicities and/or greater efficacy, when combined. Patients and methods We carried out a systematic literature review focusing on the safety profile and the efficacy of BMs radiation therapy combined with targeted agents or ICI, emphasizing on the role (if any) of the sequence of combination scheme (drug given before, during, and/or after radiation therapy). Results Whereas no relevant toxicity has been noticed with most of these drugs, the concomitant use of some other drugs with brain irradiation requires caution. Conclusion Most of available studies appear to advocate for TT or ICI combination with radiation therapy, without altering the clinical safety profiles, allowing the maintenance of systemic treatments when stereotactic radiation therapy is considered. Cognitive functions, health-related quality of life and radiation necrosis risk remain to be assessed. The results of prospective studies are awaited in order to complete and validate the above discussed retrospective data.
Collapse
Affiliation(s)
- A V Tallet
- Department of Radiation Oncology, Institut Paoli Calmettes, Marseille
| | - F Dhermain
- Department of Radiation Oncology, Gustave Roussy University Hospital, Cancer Campus Grand Paris, Villejuif
| | - E Le Rhun
- University U-1192, INSERM U-1192, Department of General and Stereotactic Neurosurgery, University Hospital, Department of Medical Oncology, Oscar Lambret center, Lille
| | - G Noël
- Department of Radiation Oncology, Centre Paul Strauss, Strasbourg
| | - Y M Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Radiotherapy has the potential to augment the host's immune response to cancer. Urological malignancies are highly immunogenic and the combination of radiotherapy and immunotherapy shows promise. In this review, we discuss the effects of radiotherapy on the cancer immune system and highlight the rationale for using the combined approach in prostate, urothelial and renal cancers. Current clinical studies are summarized emphasising the synergistic effects of the combination and the possibility of improved clinical outcomes. RECENT FINDINGS Local and abscopal effects have been observed in different urological cancers when using a combined approach. Large fraction size is associated with an increased immune response. Multiple radiotherapy/immunotherapy combinations are being studied in several clinical trials although no combination has yet been introduced in to standard practice. SUMMARY Although our knowledge of immunomodulation by radiotherapy has improved significantly in recent times, there remain several unanswered questions regarding how to best use the combination in clinical practice. Ongoing trials will provide further insight into complex mechanisms governing radiotherapy-immunotherapy interactions, with potential to improve clinical outcomes.
Collapse
|
32
|
Posselt R, Erlenbach-Wünsch K, Haas M, Jeßberger J, Büttner-Herold M, Haderlein M, Hecht M, Hartmann A, Fietkau R, Distel LV. Spatial distribution of FoxP3+ and CD8+ tumour infiltrating T cells reflects their functional activity. Oncotarget 2018; 7:60383-60394. [PMID: 27494875 PMCID: PMC5312390 DOI: 10.18632/oncotarget.11039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Regulatory and cytotoxic T cells are key players in the host's anticancer immune response. We studied the spatial distribution of FoxP+ and CD8+ cells to identify potential interactions. METHODS In 202 patients 103 pre-radiochemotherapy biopsies and 153 post-radiochemotherapy tumour specimens of advanced rectal cancer were available and an immunohistochemical double staining of FoxP3+ and CD8+ tumour-infiltrating lymphocytes was performed to investigate cell density and cell-to-cell distances. RESULTS FoxP3+ cells decreased after radiochemotherapy by a factor of 3 while CD8+ cells remained nearly unchanged. High epithelial (p=0.033) and stromal (p=0.009) FoxP3+ cell density was associated with an improved overall survival. Cell-to-cell distances of randomly distributed cells were simulated and compared to observed cell-to-cell distances. Observed distances shorter than the simulated, random distances were hypothesized to represent FoxP3+ cells actively interacting with CD8+ cells. Epithelial short distances were associated with a favourable prognosis while the opposite was true for the stromal compartment. CONCLUSION The analysis of cell-to-cell distances may offer a tool to predict outcome, maybe by identifying functionally active, interacting infiltrating inflammatory cells in different tumour compartments.
Collapse
Affiliation(s)
- Rebecca Posselt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Erlenbach-Wünsch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Haas
- Department of Radiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jonas Jeßberger
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Deparment of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlen Haderlein
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
33
|
Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 2017; 66:819-832. [PMID: 28361232 PMCID: PMC5489643 DOI: 10.1007/s00262-017-1993-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
The cancer immunoediting hypothesis assumes that the immune system guards the host against the incipient cancer, but also "edits" the immunogenicity of surviving neoplastic cells and supports remodeling of tumor microenvironment towards an immunosuppressive and pro-neoplastic state. Local irradiation of tumors during standard radiotherapy, by killing neoplastic cells and generating inflammation, stimulates anti-cancer immunity and/or partially reverses cancer-promoting immunosuppression. These effects are induced by moderate (0.1-2.0 Gy) or high (>2 Gy) doses of ionizing radiation which can also harm normal tissues, impede immune functions, and increase the risk of secondary neoplasms. In contrast, such complications do not occur with exposures to low doses (≤0.1 Gy for acute irradiation or ≤0.1 mGy/min dose rate for chronic exposures) of low-LET ionizing radiation. Furthermore, considerable evidence indicates that such low-level radiation (LLR) exposures retard the development of neoplasms in humans and experimental animals. Here, we review immunosuppressive mechanisms induced by growing tumors as well as immunomodulatory effects of LLR evidently or likely associated with cancer-inhibiting outcomes of such exposures. We also offer suggestions how LLR may restore and/or stimulate effective anti-tumor immunity during the more advanced stages of carcinogenesis. We postulate that, based on epidemiological and experimental data amassed over the last few decades, whole- or half-body irradiations with LLR should be systematically examined for its potential to be a viable immunotherapeutic treatment option for patients with systemic cancer.
Collapse
Affiliation(s)
- Marek K Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland.
| | - Marta Wincenciak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Ewa M Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
34
|
Gallegos CE, Michelin S, Dubner D, Carosella ED. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation. Cell Immunol 2016; 303:16-23. [PMID: 27113815 DOI: 10.1016/j.cellimm.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules.
Collapse
Affiliation(s)
- Cristina E Gallegos
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), CONICET, Toxicology laboratory, Bahía Blanca, Argentina(2).
| | - Severino Michelin
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Diana Dubner
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Edgardo D Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMR E-5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France
| |
Collapse
|