1
|
Morelli T, Freeman A, Staples KJ, Wilkinson TMA. Hidden in plain sight: the impact of human rhinovirus infection in adults. Respir Res 2025; 26:120. [PMID: 40155903 PMCID: PMC11954259 DOI: 10.1186/s12931-025-03178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 03/02/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Human rhinovirus (HRV), a non-enveloped RNA virus, was first identified more than 70 years ago. It is highly infectious and easily transmitted through aerosols and direct contact. The advent of multiplex PCR has enhanced the detection of a diverse range of respiratory viruses, and HRV consistently ranks among the most prevalent respiratory pathogens globally. Circulation occurs throughout the year, with peak incidence in autumn and spring in temperate climates. Remarkably, during the SARS-CoV-2 pandemic, HRV transmission persisted, demonstrating its resistance to stringent public health measures aimed at curbing viral transmission. MAIN BODY HRV is characterised by its extensive genetic diversity, comprising three species and more than 170 genotypes. This diversity and substantial number of concurrently circulating strains allows HRVs to frequently escape the adaptive immune system and poses formidable challenges for the development of effective vaccines and antiviral therapies. There is currently a lack of specific treatments. Historically, HRV has been associated with self-limiting upper respiratory infection. However, there is now extensive evidence highlighting its significant role in severe lower respiratory disease in adults, including exacerbations of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), as well as pneumonia. These severe manifestations can occur even in immunocompetent individuals, broadening the clinical impact of this ubiquitous virus. Consequently, the burden of rhinovirus infections extends across various healthcare settings, from primary care to general hospital wards and intensive care units. The impact of HRV in adults, in terms of morbidity and healthcare utilisation, rivals that of the other major respiratory viruses, including influenza and respiratory syncytial virus. Recognition of this substantial burden underscores the critical need for novel treatment strategies and effective management protocols to mitigate the impact of HRV infections on public health. CONCLUSION This review examines the epidemiology, clinical manifestations, and risk factors associated with severe HRV infection in adults. By drawing on contemporary literature, we aim to provide a comprehensive overview of the virus's significant health implications. Understanding the scope of this impact is essential for developing new, targeted interventions and improving patient outcomes in the face of this persistent and adaptable pathogen.
Collapse
Affiliation(s)
- Tommaso Morelli
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| | - Anna Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
2
|
Liew KY, Chee HY, Abas F, Leong SW, Harith HH, Israf DA, Sulaiman MR, Tham CL. A synthetic curcumin-like diarylpentanoid analog inhibits rhinovirus infection in H1 hela cells via multiple antiviral mechanisms. Daru 2024; 32:729-744. [PMID: 39395148 PMCID: PMC11554966 DOI: 10.1007/s40199-024-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Rhinovirus (RV) infection is a major cause of common colds and asthma exacerbations, with no antiviral drug available. Curcumin exhibits broad-spectrum antiviral activities, but its therapeutic effect is limited by a poor pharmacokinetics profile. Curcumin-like diarylpentanoid analogs, particularly 2-benzoyl-6-(3,4-dihydroxybenzylidene)cyclohexen-1-ol (BDHBC) and 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), have better solubility and stability compared to curcumin. OBJECTIVES Therefore, this study aims to evaluate and compare the antiviral effects of curcumin, BDHBC, and DHHPD in an in vitro model of RV infection. METHODS The inhibitory effects on RV-16 infection in H1 HeLa cells were assessed using cytopathic effect (CPE) reduction assay, virus yield reduction assay, RT-qPCR, and Western blot. Antiviral effects in different modes of treatment (pre-, co-, and post-treatment) were also compared. Additionally, intercellular adhesion molecule 1 (ICAM-1) expression, RV binding, and infectivity were measured with Western blot, flow cytometry, and virucidal assay, respectively. RESULTS When used as a post-treatment, BDHBC (EC50: 4.19 µM; SI: 8.32) demonstrated stronger antiviral potential on RV-16 compared to DHHPD (EC50: 18.24 µM; SI: 1.82) and curcumin (less than 50% inhibition). BDHBC also showed the strongest inhibitory effect on RV-induced CPE, virus yield, vRNA, and viral proteins (P1, VP0, and VP2). Furthermore, BDHBC pre-treatment has a prophylactic effect against RV infection, which was attributed to reduced basal expression of ICAM-1. However, it did not affect virus binding, but exerted virucidal activity on RV-16, contributing to its antiviral effect during co-treatment. CONCLUSION BDHBC exhibits multiple antiviral mechanisms against RV infection and thus could be a potential antiviral agent for RV.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Chakrasali P, Hwang D, Lee JY, Jung E, Lee HL, Reneesh A, Skarka A, Musilek K, Nguyen NH, Shin JS, Jung YS. 7-Amino-3-phenyl-2-methyl-pyrazolopyrimidine derivatives inhibit human rhinovirus replication. Eur J Med Chem 2024; 276:116690. [PMID: 39032404 DOI: 10.1016/j.ejmech.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Small molecules that exhibit broad-spectrum enteroviral inhibitory activity by targeting viral replication proteins are highly desired in antiviral drug discovery studies. To discover new human rhinovirus (hRV) inhibitors, we performed a high-throughput screening of 100,000 compounds from the Korea Chemical Bank library. This search led to identification of two phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) inhibitors having the pyrazolo-pyrimidine core structure, which display moderate anti-rhinoviral activity along with mild cytotoxicity. The results of a study aimed at optimizing the activity of the hit compounds showed that the pyrazolo-pyrimidine derivative 6f exhibits the highest activity (EC50 = 0.044, 0.066, and 0.083 μM for hRV-B14, hRV-A16, and hRV-A21, respectively) and moderate toxicity (CC50 = 31.38 μM). Furthermore, 6f has broad-spectrum activities against various hRVs, coxsackieviruses and other enteroviruses, such as EV-A71, EV-D68. An assessment of kinase inhibition potencies demonstrated that 6f possesses a high and selective kinase inhibition activity against PI4KIIIβ (IC50 value of 0.057 μM) and not against PI4KIIIα (>10 μM). Moreover, 6f exhibits modest hepatic stability (46.9 and 55.3 % remaining after 30 min in mouse and human liver microsomes, respectively). Finally, an in vivo study demonstrated that 6f possesses a desirable pharmacokinetic profile reflected in low systemic clearance (0.48 L∙h-1 kg-1) and modest oral bioavailability (52.4 %). Hence, 6f (KR-26549) appears to be an ideal lead for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Prashant Chakrasali
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hye Lim Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Alba Reneesh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Nhung Hong Nguyen
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea; Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Young-Sik Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Mehta SK, Pradhan RB. Phytochemicals in antiviral drug development against human respiratory viruses. Drug Discov Today 2024; 29:104107. [PMID: 39032810 DOI: 10.1016/j.drudis.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This review explores the potential antiviral properties of various plant-based compounds, including polyphenols, phytochemicals, and terpenoids. It emphasizes the diverse functionalities of compounds such as epigallocatechin-3-gallate (EGCG), quercetin, griffithsin (GRFT,) resveratrol, linalool, and carvacrol in the context of respiratory virus infections, including SARS-CoV-2. Emphasizing their effectiveness in modulating immune responses, disrupting viral envelopes, and influencing cellular signaling pathways, the review underlines the imperative for thorough research to establish safety and efficacy. Additionally, the review underscores the necessity of well-designed clinical trials to evaluate the efficacy and safety of these compounds as potential antiviral agents. This approach would establish a robust framework for future drug development efforts focused on bolstering host defense mechanisms against human respiratory viral infections.
Collapse
Affiliation(s)
- Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India.
| | - Ran Bahadur Pradhan
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India
| |
Collapse
|
5
|
Harada N, Sonoda M, Ishimura M, Eguchi K, Kinoshita K, Matsuoka W, Motomura Y, Kaku N, Kawaguchi N, Takeuchi T, Ohga S. Pretransplant ribavirin and interferon-α therapy for rhinovirus interstitial pneumonia in a RAG1-deficient infant. J Infect Chemother 2024; 30:362-365. [PMID: 37944696 DOI: 10.1016/j.jiac.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Severe combined immunodeficiency (SCID) is one of the most serious inborn errors of immunity leading to a fatal infection in early infancy. Allogeneic hematopoietic cell transplantation (HCT) or elective gene therapy prior to infection or live-attenuated vaccination is the current standard of curative treatment. Even in the era of newborn screening for SCID, pretransplant control of severe infection is challenging for SCID. Multiple pathogens are often isolated from immunocompromised patients, and limited information is available regarding antiviral strategies to facilitate curative HCT. We herein present a case of successfully controlled pretransplant pneumonia after ribavirin and interferon-α therapy in an infant with RAG1-deficiency. A four-month-old infant presented with severe interstitial pneumonia due to a co-infection of rhinovirus and Pneumocystis jirovecii. The tentative diagnosis of SCID prompted to start antibiotics and trimethoprim-sulfamethoxazole on ventilatory support. Because of the progressive respiratory failure four days after treatment, ribavirin and then pegylated interferon-α were started. He showed a drastic response to the treatment that led to a curative HCT 32 days after admission. This patient received the genetic diagnosis of RAG1-deficiency. Currently, he is an active 3-year-old boy with normal growth and development. The review of literature indicated that rhinovirus had a comparable or rather greater impact on the mortality of pediatric patients than respiratory syncytial virus. Considered the turn-around time to the genetic diagnosis of SCID, prompt ribavirin plus interferon-α therapy may help to control severe rhinovirus pneumonia and led to the early curative HCT for the affected infants.
Collapse
Affiliation(s)
- Nobutaka Harada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keishiro Kinoshita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wakato Matsuoka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Kaku
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Naoki Kawaguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Division of Pediatrics, Oita Prefectural Hospital, Oita, Japan
| | | | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Singh Dagur H, Behmard E, Rajakumara E, Barzegari E. Identifying potent inhibitory phytocompounds from Lagerstroemia speciosa against SARS-Coronavirus-2: structure-based virtual screening. J Biomol Struct Dyn 2024; 42:806-818. [PMID: 37170794 DOI: 10.1080/07391102.2023.2205942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
The ongoing spillover of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for expedited countermeasure through developing therapeutics from natural reservoirs and/or the use of less time-consuming drug discovery methodologies. This study aims to apply these approaches to identify potential blockers of the virus from the longstanding medicinal herb, Lagerstroemia speciosa, through comprehensive computational-based screening. Nineteen out of 22 L. speciosa phytochemicals were selected on the basis of their pharmacokinetic properties. SARS-CoV-2 Main protease (Mpro), RNA-directed RNA polymerase (RdRp), Envelope viroporin protein (Evp) and receptor-binding domain of Spike glycoprotein (S-RBD), as well as the human receptor Angiotensin-converting enzyme-2 (hACE2) were chosen as targets. The screening was performed by molecular docking, followed by 100-ns molecular dynamic simulations and free energy calculations. 24-Methylene cycloartanol acetate (24MCA) was found as the best inhibitor for both Evp and RdRp, and sitosterol acetate (SA) as the best hit for Mpro, S-RBD and hACE2. Dynamic simulations, binding mode analyses, free energy terms and share of key amino acids in protein-drug interactions confirmed the stable binding of these phytocompounds to the hotspot sites on the target proteins. With their possible multi-targeting capability, the introduced phytoligands might offer promising lead compounds for persistent fight with the rapidly evolving coronavirus. Therefore, experimental verification of their safety and efficacy is recommended.
Collapse
Affiliation(s)
- Hanuman Singh Dagur
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Komba S, Hase M, Kotake-Nara E. Organic Synthesis of New Secosteroids from Fucosterol, Its Intestinal Absorption by Caco-2 Cells, and Simulation of the Biological Activities of Vitamin D. Mar Drugs 2023; 21:540. [PMID: 37888475 PMCID: PMC10608315 DOI: 10.3390/md21100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
We previously examined the cellular uptake of six types of vitamin D in human intestinal Caco-2 cells. Since vitamins D5-D7 were commercially unavailable, we synthesized these compounds organically before studying them. This process led us to understand that new secosteroids could be generated as vitamin D candidates, depending on the sterol used as the starting material. We obtained two new secosteroids-compounds 3 and 4-from fucosterol in the current study. We investigated the intestinal absorption of these compounds using Caco-2 cells cultured in Transwells and compared the results with vitamin D3, a representative secosteroid. The intestinal absorption of compound 4 was comparable to that of vitamin D3. Compound 3 showed similar uptake levels but transported about half as much as vitamin D3. These compounds demonstrated intestinal absorption at the cellular level. Vitamin D is known for its diverse biological activities manifest after intestinal absorption. Using PASS online simulation, we estimated the biological activity of compound 3's activated form. In several items indicated by PASS, compound 3 exhibited stronger biological activity than vitamins D2-D7 and was also predicted to have unique biological activities.
Collapse
Affiliation(s)
- Shiro Komba
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan
| | - Megumi Hase
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan
| | - Eiichi Kotake-Nara
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan
| |
Collapse
|
8
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
9
|
Kudkyal VR, Matsuura I, Hiramatsu H, Hayashi K, Kawahara T. Phenol Derivatives Obtained from Grape Seed Extract Show Virucidal Activity against Murine Norovirus. Molecules 2022; 27:molecules27227739. [PMID: 36431850 PMCID: PMC9693041 DOI: 10.3390/molecules27227739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Human noroviruses are the most common pathogens known to cause acute gastroenteritis, a condition that can lead to severe illness among immunocompromised individuals such as organ transplant recipients and the elderly. To date, no safe and effective vaccines or therapeutic agents have been approved for treating norovirus infections. Therefore, we aimed to demonstrate the virucidal activity of grape seed extract (GSE), which contains >83% proanthocyanidins, against murine norovirus (MNV), a surrogate for human norovirus. GSE showed virucidal activity against MNV in a dose- and time-dependent manner. Atomic force microscopic analysis showed viral particle aggregates after treatment of MNV with GSE. MNV treated with 50 µg/mL of GSE for 10 min resulted in the absence of pathogenicity in an animal model of infection, indicating that GSE has irreversible virucidal activity against MNV particles. Thus, GSE may aid in the development of treatments for norovirus infections.
Collapse
Affiliation(s)
| | - Iori Matsuura
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Hiroaki Hiramatsu
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Toshio Kawahara
- Graduate School of Engineering, Chubu University, Kasugai 487-8501, Japan
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
- Correspondence: ; Tel.: +81-56-851-9314
| |
Collapse
|
10
|
Golec M, Lemieszek MK, Dutkiewicz J, Milanowski J, Barteit S. A Scoping Analysis of Cathelicidin in Response to Organic Dust Exposure and Related Chronic Lung Illnesses. Int J Mol Sci 2022; 23:8847. [PMID: 36012117 PMCID: PMC9408003 DOI: 10.3390/ijms23168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Over two billion people worldwide are exposed to organic dust, which can cause respiratory disorders. The discovery of the cathelicidin peptide provides novel insights into the lung's response to organic dust; however, its role in the lung's response to organic dust exposure and chronic lung diseases remains limited. We conducted a scoping review to map the current evidence on the role of cathelicidin LL-37/CRAMP in response to organic dust exposure and related chronic lung diseases: hypersensitivity pneumonitis (HP), chronic obstructive pulmonary disease (COPD) and asthma. We included a total of n = 53 peer-reviewed articles in this review, following the process of (i) a preliminary screening; (ii) a systematic MEDLINE/PubMed database search; (iii) title, abstract and full-text screening; (iv) data extraction and charting. Cathelicidin levels were shown to be altered in all clinical settings investigated; its pleiotropic function was confirmed. It was found that cathelicidin contributes to maintaining homeostasis and participates in lung injury response and repair, in addition to exerting a positive effect against microbial load and infections. In addition, LL-37 was found to sustain continuous inflammation, increase mucus formation and inhibit microorganisms and corticosteroids. In addition, studies investigated cathelicidin as a treatment modality, such as cathelicidin inhalation in experimental HP, which had positive effects. However, the primary focus of the included articles was on LL-37's antibacterial effect, leading to the conclusion that the beneficial LL-37 activity has not been adequately examined and that further research is required.
Collapse
Affiliation(s)
- Marcin Golec
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, 69117 Heidelberg, Germany
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jacek Dutkiewicz
- Department of Biological Health Hazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Sandra Barteit
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Kumar Biswas B, Soo Shin J, Malpani YR, Hwang D, Jung E, Bong Han S, Vishakantegowda AG, Jung YS. Enteroviral replication inhibition by N-Alkyl triazolopyrimidinone derivatives through a non-capsid binding mode. Bioorg Med Chem Lett 2022; 64:128673. [PMID: 35292344 DOI: 10.1016/j.bmcl.2022.128673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Small-molecule inhibitors exhibiting broad-spectrum enteroviral inhibition by targeting viral replication proteins are highly desirable in antiviral drug discovery. We used the previously identified antiviral compound 1 as the starting material to develop a novel compound series with high efficacy against human rhinovirus (hRV). Further optimization of N-substituted triazolopyrimidinone derivatives revealed that the N-alkyl triazolopyrimidinone derivatives (2) had more potent antiviral activity against hRVs than compound 1. The new compounds showed improved selectivity index values, and compound 2c (KR-25210) displayed broad anti-hRV activity, with half-maximal effective concentration values ≤ 2 µM against all tested hRVs. In addition, 2c showed notable activity against other enteroviruses. Drug-likeness elucidation showed that 2c exhibited reasonable human and rat liver microsomal phase-I stability and safe CYP inhibition. Replication studies revealed that 2c is not a capsid inhibitor, and a time-of-addition assay indicated that 2c targets the virus replication stages.
Collapse
Affiliation(s)
- Bishyajit Kumar Biswas
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Yashwardhan R Malpani
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
| | - Avinash G Vishakantegowda
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
| | - Young-Sik Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Love ME, Proud D. Respiratory Viral and Bacterial Exacerbations of COPD—The Role of the Airway Epithelium. Cells 2022; 11:cells11091416. [PMID: 35563722 PMCID: PMC9099594 DOI: 10.3390/cells11091416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
COPD is a leading cause of death worldwide, with acute exacerbations being a major contributor to disease morbidity and mortality. Indeed, exacerbations are associated with loss of lung function, and exacerbation frequency predicts poor prognosis. Respiratory infections are important triggers of acute exacerbations of COPD. This review examines the role of bacterial and viral infections, along with co-infections, in the pathogenesis of COPD exacerbations. Because the airway epithelium is the initial site of exposure both to cigarette smoke (or other pollutants) and to inhaled pathogens, we will focus on the role of airway epithelial cell responses in regulating the pathophysiology of exacerbations of COPD. This will include an examination of the interactions of cigarette smoke alone, and in combination with viral and bacterial exposures in modulating epithelial function and inflammatory and host defense pathways in the airways during COPD. Finally, we will briefly examine current and potential medication approaches to treat acute exacerbations of COPD triggered by respiratory infections.
Collapse
|
13
|
Smyk JM, Majewska A. Favipiravir in the Battle with Respiratory Viruses. Mini Rev Med Chem 2022; 22:2224-2236. [DOI: 10.2174/1389557522666220218122744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Among antiviral drugs, the vast majority targets only one or two related viruses. The conventional model, one virus - one drug, significantly limits therapeutic options. Therefore, in the strategy of controlling viral infections, there is a necessity to develop compounds with pleiotropic effects. Favipiravir (FPV) emerged as a strong candidate to become such a drug. The aim of the study is to present up-to-date information on the role of favipiravir in the treatment of viral respiratory infections. The anti-influenza activity of favipiravir has been confirmed in cell culture experiments, animal models and clinical trials. Thoroughly different - from the previously registered drugs - mechanism of action suggests that FVP can be used as a countermeasure for the novel or re-emerging influenza virus infections.
In recent months, favipiravir has been broadly investigated due to its potential efficacy in the treatment of Covid-19. Based on preclinical and clinical studies and a recently published meta-analysis it seems that favipiravir may be a promising antiviral drug in the treatment of patients with Covid-19.
FPV is also effective against other RNA respiratory viruses and may be a candidate for the treatment of serious infections caused by human rhinovirus, respiratory syncytial virus, metapneumovirus, parainfluenza viruses and hantavirus pulmonary syndrome.
Collapse
Affiliation(s)
- Julia M. Smyk
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
14
|
Butnariu AB, Look A, Grillo M, Tabish TA, McGarvey MJ, Pranjol MZI. SARS-CoV-2-host cell surface interactions and potential antiviral therapies. Interface Focus 2022; 12:20200081. [PMID: 34956606 PMCID: PMC8662392 DOI: 10.1098/rsfs.2020.0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this review, we reveal the latest developments at the interface between SARS-CoV-2 and the host cell surface. In particular, we evaluate the current and potential mechanisms of binding, fusion and the conformational changes of the spike (S) protein to host cell surface receptors, especially the human angiotensin-converting enzyme 2 (ACE2) receptor. For instance, upon the initial attachment, the receptor binding domain of the S protein forms primarily hydrogen bonds with the protease domain of ACE2 resulting in conformational changes within the secondary structure. These surface interactions are of paramount importance and have been therapeutically exploited for antiviral design, such as monoclonal antibodies. Additionally, we provide an insight into novel therapies that target viral non-structural proteins, such as viral RNA polymerase. An example of which is remdesivir which has now been approved for use in COVID-19 patients by the US Food and Drug Administration. Establishing further understanding of the molecular details at the cell surface will undoubtably aid the development of more efficacious and selectively targeted therapies to reduce the burden of COVID-19.
Collapse
Affiliation(s)
| | - Alex Look
- School of Life Sciences, University of Sussex, Falmer, UK
| | - Marta Grillo
- School of Life Sciences, University of Sussex, Falmer, UK
| | - Tanveer A. Tabish
- Faculty of Engineering, Department of Materials, Royal School of Mines, Imperial College London, London, UK
| | - Michael J. McGarvey
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Esneau C, Duff AC, Bartlett NW. Understanding Rhinovirus Circulation and Impact on Illness. Viruses 2022; 14:141. [PMID: 35062345 PMCID: PMC8778310 DOI: 10.3390/v14010141] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Rhinoviruses (RVs) have been reported as one of the main viral causes for severe respiratory illnesses that may require hospitalization, competing with the burden of other respiratory viruses such as influenza and RSV in terms of severity, economic cost, and resource utilization. With three species and 169 subtypes, RV presents the greatest diversity within the Enterovirus genus, and despite the efforts of the research community to identify clinically relevant subtypes to target therapeutic strategies, the role of species and subtype in the clinical outcomes of RV infection remains unclear. This review aims to collect and organize data relevant to RV illness in order to find patterns and links with species and/or subtype, with a specific focus on species and subtype diversity in clinical studies typing of respiratory samples.
Collapse
Affiliation(s)
| | | | - Nathan W. Bartlett
- Hunter Medical Research Institute, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (C.E.); (A.C.D.)
| |
Collapse
|
16
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
17
|
Wronski S, Beinke S, Obernolte H, Belyaev NN, Saunders KA, Lennon MG, Schaudien D, Braubach P, Jonigk D, Warnecke G, Zardo P, Fieguth HG, Wilkens L, Braun A, Hessel EM, Sewald K. Rhinovirus-induced Human Lung Tissue Responses Mimic COPD and Asthma Gene Signatures. Am J Respir Cell Mol Biol 2021; 65:544-554. [PMID: 34181859 PMCID: PMC8641849 DOI: 10.1165/rcmb.2020-0337oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human rhinovirus (RV) is a major risk factor for chronic obstructive pulmonary disease (COPD) and asthma exacerbations. The exploration of RV pathogenesis has been hampered by a lack of disease-relevant model systems. We performed a detailed characterization of host responses to RV infection in human lung tissue ex vivo and investigated whether these responses are disease relevant for patients with COPD and asthma. In addition, impact of the viral replication inhibitor rupintrivir was evaluated. Human precision-cut lung slices (PCLS) were infected with RV1B with or without rupintrivir. At Days 1 and 3 after infection, RV tissue localization, tissue viability, and viral load were determined. To characterize host responses to infection, mediator and whole genome analyses were performed. RV successfully replicated in PCLS airway epithelial cells and induced both antiviral and proinflammatory cytokines such as IFNα2a, CXCL10, CXCL11, IFN-γ, TNFα, and CCL5. Genomic analyses revealed that RV not only induced antiviral immune responses but also triggered changes in epithelial cell–associated pathways. Strikingly, the RV response in PCLS was reflective of gene expression changes described in patients with COPD and asthma. Although RV-induced host immune responses were abrogated by rupintrivir, RV-triggered epithelial processes were largely refractory to antiviral treatment. Detailed analysis of RV-infected human PCLS and comparison with gene signatures of patients with COPD and asthma revealed that the human RV PCLS model represents disease-relevant biological mechanisms that can be partially inhibited by a well-known antiviral compound and provide an outstanding opportunity to evaluate novel therapeutics.
Collapse
Affiliation(s)
- Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany;
| | - Soren Beinke
- Research and Development, GlaxoSmithKline, Stevenage, United Kingdom of Great Britain and Northern Ireland
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Nikolai N Belyaev
- Research and Development, GlaxoSmithKline, Stevenage, United Kingdom of Great Britain and Northern Ireland
| | - Ken A Saunders
- Research and Development, GlaxoSmithKline, Stevenage, United Kingdom of Great Britain and Northern Ireland
| | - Mark G Lennon
- Research and Development, GlaxoSmithKline, Stevenage, United Kingdom of Great Britain and Northern Ireland
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Dsease (BREATH), Hannover, Germany
| | - Peter Braubach
- Hannover Medical School, 9177, Department of Pathology, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Danny Jonigk
- Hannover Medical School, 9177, Department of Pathology, Hannover, Niedersachsen, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Gregor Warnecke
- Hannover Medical School, 9177, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Patrick Zardo
- Hannover Medical School, 9177, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover, Germany
| | | | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Edith M Hessel
- Research and Development, GlaxoSmithKline, Stevenage, United Kingdom of Great Britain and Northern Ireland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of Fraunhofer international Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | | |
Collapse
|
18
|
Hardy JM, Newton ND, Modhiran N, Scott CAP, Venugopal H, Vet LJ, Young PR, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun 2021; 12:3266. [PMID: 34075032 PMCID: PMC8169900 DOI: 10.1038/s41467-021-22773-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.
Collapse
Affiliation(s)
- Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
James SA, Yam WK. Sub-structure-based screening and molecular docking studies of potential enteroviruses inhibitors. Comput Biol Chem 2021; 92:107499. [PMID: 33932782 DOI: 10.1016/j.compbiolchem.2021.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Rhinoviruses (RV), especially Human rhinovirus (HRVs) have been accepted as the most common cause for upper respiratory tract infections (URTIs). Pleconaril, a broad spectrum anti-rhinoviral compound, has been used as a drug of choice for URTIs for over a decade. Unfortunately, for various complications associated with this drug, it was rejected, and a replacement is highly desirable. In silico screening and prediction methods such as sub-structure search and molecular docking have been widely used to identify alternative compounds. In our study, we have utilised sub-structure search to narrow down our quest in finding relevant chemical compounds. Molecular docking studies were then used to study their binding interaction at the molecular level. Interestingly, we have identified 3 residues that is worth further investigation in upcoming molecular dynamics simulation systems of their contribution in stable interaction.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Selangor Darul Ehsan, Malaysia; Department of Biochemistry, Faculty of Science, Kaduna State University, 800211, Kaduna, Nigeria.
| | - Wai Keat Yam
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Casari I, Manfredi M, Metharom P, Falasca M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog Lipid Res 2021; 82:101092. [PMID: 33571544 PMCID: PMC7869689 DOI: 10.1016/j.plipres.2021.101092] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that has infected over a hundred million people globally. There have been more than two million deaths recorded worldwide, with no end in sight until a widespread vaccination will be achieved. Current research has centred on different aspects of the virus interaction with cell surface receptors, but more needs to be done to further understand its mechanism of action in order to develop a targeted therapy and a method to control the spread of the virus. Lipids play a crucial role throughout the viral life cycle, and viruses are known to exploit lipid signalling and synthesis to affect host cell lipidome. Emerging studies using untargeted metabolomic and lipidomic approaches are providing new insight into the host response to COVID-19 infection. Indeed, metabolomic and lipidomic approaches have identified numerous circulating lipids that directly correlate to the severity of the disease, making lipid metabolism a potential therapeutic target. Circulating lipids play a key function in the pathogenesis of the virus and exert an inflammatory response. A better knowledge of lipid metabolism in the host-pathogen interaction will provide valuable insights into viral pathogenesis and to the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Pat Metharom
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia; Western Australian Centre for Thrombosis and Haemostasis, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Curtin Medical School, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
21
|
Vivar-Sierra A, Araiza-Macías MJ, Hernández-Contreras JP, Vergara-Castañeda A, Ramírez-Vélez G, Pinto-Almazán R, Salazar JR, Loza-Mejía MA. In Silico Study of Polyunsaturated Fatty Acids as Potential SARS-CoV-2 Spike Protein Closed Conformation Stabilizers: Epidemiological and Computational Approaches. Molecules 2021; 26:711. [PMID: 33573088 PMCID: PMC7866518 DOI: 10.3390/molecules26030711] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 infects host cells by interacting its spike protein with surface angiotensin-converting enzyme 2 (ACE2) receptors, expressed in lung and other cell types. Although several risk factors could explain why some countries have lower incidence and fatality rates than others, environmental factors such as diet should be considered. It has been described that countries with high polyunsaturated fatty acid (PUFA) intake have a lower number of COVID-19 victims and a higher rate of recovery from the disease. Moreover, it was found that linoleic acid, an omega-6 PUFA, could stabilize the spike protein in a closed conformation, blocking its interaction with ACE2. These facts prompted us to perform in silico simulations to determine if other PUFA could also stabilize the closed conformation of spike protein and potentially lead to a reduction in SARS-CoV-2 infection. We found that: (a) countries whose source of omega-3 is from marine origin have lower fatality rates; and (b) like linoleic acid, omega-3 PUFA could also bind to the closed conformation of spike protein and therefore, could help reduce COVID-19 complications by reducing viral entrance to cells, in addition to their known anti-inflammatory effects.
Collapse
Affiliation(s)
- Alonso Vivar-Sierra
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - María José Araiza-Macías
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - José Patricio Hernández-Contreras
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - Arely Vergara-Castañeda
- Basic and Clinical Health Sciences Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico;
| | - Gabriela Ramírez-Vélez
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - Rodolfo Pinto-Almazán
- Molecular Biology in Metabolic and Neurodegenerative Diseases Laboratory, Research Unit, High Speciality Regional Hospital of Ixtapaluca (HRAEI), Carretera Federal México-Puebla Km 34.5, Ixtapaluca 56530, Mexico;
| | - Juan Rodrigo Salazar
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - Marco A. Loza-Mejía
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| |
Collapse
|
22
|
Watson A, Wilkinson TMA. Respiratory viral infections in the elderly. Ther Adv Respir Dis 2021; 15:1753466621995050. [PMID: 33749408 PMCID: PMC7989115 DOI: 10.1177/1753466621995050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
With the global over 60-year-old population predicted to more than double over the next 35 years, caring for this aging population has become a major global healthcare challenge. In 2016 there were over 1 million deaths in >70 year olds due to lower respiratory tract infections; 13-31% of these have been reported to be caused by viruses. Since then, there has been a global COVID-19 pandemic, which has caused over 2.3 million deaths so far; increased age has been shown to be the biggest risk factor for morbidity and mortality. Thus, the burden of respiratory viral infections in the elderly is becoming an increasing unmet clinical need. Particular challenges are faced due to the interplay of a variety of factors including complex multimorbidities, decreased physiological reserve and an aging immune system. Moreover, their atypical presentation of symptoms may lead to delayed necessary care, prescription of additional drugs and prolonged hospital stay. This leads to morbidity and mortality and further nosocomial spread. Clinicians currently have limited access to sensitive detection methods. Furthermore, a lack of effective antiviral treatments means there is little incentive to diagnose and record specific non-COVID-19 viral infections. To meet this unmet clinical need, it is first essential to fully understand the burden of respiratory viruses in the elderly. Doing this through prospective screening research studies for all respiratory viruses will help guide preventative policies and clinical trials for emerging therapeutics. The implementation of multiplex point-of-care diagnostics as a mainstay in all healthcare settings will be essential to understand the burden of respiratory viruses, diagnose patients and monitor outbreaks. The further development of novel targeted vaccinations as well as anti-viral therapeutics and new ways to augment the aging immune system is now also essential.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Alastair Watson
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Tom M. A. Wilkinson
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton University, Mailpoint 810, Level F, South Block, Southampton General Hospital, Southampton, Hampshire, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
23
|
Ortega H, Nickle D, Carter L. Rhinovirus and asthma: Challenges and opportunities. Rev Med Virol 2020; 31:e2193. [PMID: 33217098 PMCID: PMC8365703 DOI: 10.1002/rmv.2193] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Human rhinoviruses (RVs) are the primary aetiological agent of the common cold. Generally, the associated infection is mild and self‐limiting, but may also be associated with bronchiolitis in infants, pneumonia in the immunocompromised and exacerbation in patients with pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Viral infection accounts for as many as two thirds of asthma exacerbations in children and more than half in adults. Allergy and asthma are major risk factors for more frequent and severe RV‐related illnesses. The prevalence of RV‐induced wheezing will likely continue to increase given that asthma affects a significant proportion of the population, with allergic asthma accounting for the majority. Several new respiratory viruses and their subgroups have been discovered, with various degrees of relevance. This review will focus on RV infection in the context of the epidemiologic evidence, genetic variability, pathobiology, clinical studies in the context of asthma, differences with other viruses including COVID‐19 and current treatment interventions.
Collapse
|
24
|
Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD, Kavanagh Williamson M, Shoemark DK, Garzoni F, Staufer O, Milligan R, Capin J, Mulholland AJ, Spatz J, Fitzgerald D, Berger I, Schaffitzel C. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science 2020; 370:725-730. [PMID: 32958580 PMCID: PMC8050947 DOI: 10.1126/science.abd3255] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Many efforts to develop therapies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the spike (S) protein trimer that binds to the host receptor. Structures of trimeric S protein show its receptor-binding domain in either an up or a down conformation. Toelzer et al. produced SARS-CoV-2 S in insect cells and determined the structure by cryo–electron microscopy. In their dataset, the closed form was predominant and was stabilized by binding linoleic acid, an essential fatty acid. A similar binding pocket appears to be present in previous highly pathogenic coronaviruses, and past studies suggested links between viral infection and fatty acid metabolism. The pocket could be exploited to develop inhibitors that trap S protein in the closed conformation. Science, this issue p. 725 Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo–electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| | - Sathish K N Yadav
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| | - Frederic Garzoni
- Imophoron Ltd., St. Philips Central, Albert Rd., St. Philips, Bristol BS2 0XJ, UK
| | - Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.,Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany.,Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Rachel Milligan
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| | - Adrian J Mulholland
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.,Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany.,Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Daniel Fitzgerald
- Geneva Biotech Sàrl, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK. .,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK.,Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK.,School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK. .,Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave., Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
26
|
Interferon-Dependent and Respiratory Virus-Specific Interference in Dual Infections of Airway Epithelia. Sci Rep 2020; 10:10246. [PMID: 32581261 PMCID: PMC7314816 DOI: 10.1038/s41598-020-66748-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Many respiratory viruses cocirculate in the population and multiple infections are commonly reported. The clinical impact of coinfection is unclear and may vary depending on the viral couples involved. Using three-dimensional reconstituted human airway epithelia and clinical viral strains, we investigated the interaction between influenza virus (Flu), respiratory syncytial virus (RSV) and rhinovirus (RV). We showed that Flu and RSV interfere with RV replication, whereas RV does not interfere with either of these viruses. We then experimentally demonstrated that, when present, the interference is not related to a block of viral entry but rather to type I and type III interferon (IFN), the front-line antiviral defense of the respiratory mucosa. Consistent with this observation, we highlighted the differential sensitivity of each virus to IFNs, with RV being the only virus significantly inhibited by IFN-λ and the most sensitive to IFN-α. Finally, as type III IFN is of therapeutic interest due to its low proinflammatory profile, we also assessed and confirmed an inhibitory effect of IFN-λ in the context of persistent RV infections. The present work provides mechanistic clues concerning innate immunity involvement during respiratory virus interactions and confirms that IFN-λ is a promising candidate in the treatment of RV infections.
Collapse
|
27
|
Pérez A, Montoro J, Hernani R, Lorenzo I, Hernández‐Boluda JC, Giménez E, Gómez MD, Balaguer‐Roselló A, Gonzalez‐Barberá E, Guerreiro M, Aguilar C, Navarro D, Solano C, Sanz J, Piñana JL. Assessment of immunodeficiency scoring index performance in enterovirus/rhinovirus respiratory infection after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2020; 22:e13301. [DOI: 10.1111/tid.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Ariadna Pérez
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
| | - Juan Montoro
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - Rafael Hernani
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
| | - Ignacio Lorenzo
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - Juan Carlos Hernández‐Boluda
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
- Department of Medicine School of Medicine University of Valencia Valencia Spain
| | - Estela Giménez
- Microbiology Service Hospital Clínico Universitario Valencia Spain
| | - María Dolores Gómez
- Department of Microbiology School of Medicine University of Valencia Valencia Spain
| | | | - Eva Gonzalez‐Barberá
- Department of Microbiology School of Medicine University of Valencia Valencia Spain
| | - Manuel Guerreiro
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - Cristóbal Aguilar
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
| | - David Navarro
- Department of Medicine School of Medicine University of Valencia Valencia Spain
- Microbiology Service Hospital Clínico Universitario Valencia Spain
| | - Carlos Solano
- Department of Hematology Hospital Clínico Universitario Fundación INCLIVA Valencia Spain
- Department of Medicine School of Medicine University of Valencia Valencia Spain
| | - Jaime Sanz
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
- Department of Medicine School of Medicine University of Valencia Valencia Spain
- CIBERONC Instituto Carlos III Madrid Spain
| | - José Luis Piñana
- Department of Hematology Hospital Universitari I Politècnic la Fe Valencia Spain
- CIBERONC Instituto Carlos III Madrid Spain
| |
Collapse
|
28
|
Kefala AM, Fortescue R, Alimani GS, Kanavidis P, McDonnell MJ, Magiorkinis E, Megremis S, Paraskevis D, Voyiatzaki C, Mathioudakis GA, Papageorgiou E, Papadopoulos NG, Vestbo J, Beloukas A, Mathioudakis AG. Prevalence and clinical implications of respiratory viruses in stable chronic obstructive pulmonary disease (COPD) and exacerbations: a systematic review and meta-analysis protocol. BMJ Open 2020; 10:e035640. [PMID: 32269027 PMCID: PMC7170624 DOI: 10.1136/bmjopen-2019-035640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Both stable chronic obstructive pulmonary disease (COPD) and acute exacerbations represent leading causes of death, disability and healthcare expenditure. They are complex, heterogeneous and their mechanisms are poorly understood. The role of respiratory viruses has been studied extensively but is still not adequately addressed clinically. Through a rigorous evidence update, we aim to define the prevalence and clinical burden of the different respiratory viruses in stable COPD and exacerbations, and to investigate whether viral load of usual respiratory viruses could be used for diagnosis of exacerbations triggered by viruses, which are currently not diagnosed or treated aetiologically. METHODS AND ANALYSIS Based on a prospectively registered protocol, we will systematically review the literature using standard methods recommended by the Cochrane Collaboration and the Grading of Recommendations Assessment, Development and Evaluation working group. We will search Medline/PubMed, Excerpta Medica dataBASE (EMBASE), the Cochrane Library, the WHO's Clinical Trials Registry and the proceedings of relevant international conferences on 2 March 2020. We will evaluate: (A) the prevalence of respiratory viruses in stable COPD and exacerbations, (B) differences in the viral loads of respiratory viruses in stable COPD vs exacerbations, to explore whether the viral load of prevalent respiratory viruses could be used as a diagnostic biomarker for exacerbations triggered by viruses and (C) the association between the presence of respiratory viruses and clinical outcomes in stable COPD and in exacerbations. ETHICS AND DISSEMINATION Ethics approval is not required since no primary data will be collected. Our findings will be presented in national and international scientific conferences and will be published in peer reviewed journals. Respiratory viruses currently represent a lost opportunity to improve the outcomes of both stable COPD and exacerbations. Our work aspires to 'demystify' the prevalence and clinical burden of viruses in stable COPD and exacerbations and to promote clinical and translational research. PROSPERO REGISTRATION NUMBER CRD42019147658.
Collapse
Affiliation(s)
- Anastasia M Kefala
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
| | - Rebecca Fortescue
- Cochrane Airways, Population Health Research Institute, University of London Saint George's, London, UK
| | - Gioulinta S Alimani
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
- Athens Breath Centre, Athens, Greece
| | - Prodromos Kanavidis
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Emmanouil Magiorkinis
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
- Department of Laboratory Haematology, Sotiria Regional Chest Disease Hospital of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Science, The University of Manchester, Manchester, UK
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
| | | | - Effie Papageorgiou
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
29
|
Human Rhinovirus Inhibition Through Capsid “Canyon” Perturbation: Structural Insights into The Role of a Novel Benzothiophene Derivative. Cell Biochem Biophys 2019; 78:3-13. [DOI: 10.1007/s12013-019-00896-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
|
30
|
Denlinger LC, Heymann P, Lutter R, Gern JE. Exacerbation-Prone Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:474-482. [PMID: 31765853 DOI: 10.1016/j.jaip.2019.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Patients who are prone to exacerbations of asthma experience significant costs in terms of missed work and school, acute care visits, and hospitalizations. Exacerbations are largely driven by environmental exposures including pollutants, stress, and viral and bacterial pathogens. These exposures are most likely to induce acute severe "asthma attacks" in high-risk patients. These personal risk factors for exacerbations can vary with the phenotype of asthma and age of the patient. In children, allergic sensitization is a strong risk factor, especially for those children who develop sensitization early in life. Airway inflammation is an important risk factor, and biomarkers are under evaluation for utility in detecting eosinophilic and type 2 inflammation and neutrophilic inflammation as indicators of risk for recurrent exacerbations. Insights into inflammatory mechanisms have led to new approaches to prevent exacerbations using mAb-based biologics that target specific type 2 pathways. Challenges remain in developing an evidence base to support precision interventions with these effective yet expensive therapies, and in determining whether these treatments will be safe and effective in young children. Unfortunately, there has been less progress in developing treatments for acute exacerbations. Hopefully, greater understanding of mechanisms relating airway viruses, bacteria, mucin production, and neutrophilic inflammatory responses will lead to additional treatment options for patients experiencing acute exacerbations.
Collapse
Affiliation(s)
- Loren C Denlinger
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis.
| | - Peter Heymann
- Department of Pediatrics, University of Virginia, Charlottesville, Va
| | - Rene Lutter
- Departments of Respiratory Medicine and Experimental Immunology, Amsterdam University Centers, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
31
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
32
|
Ishiguro T, Yoshida Y, Kobayashi Y, Shimizu Y, Takayanagi N. Primary rhinovirus pneumonia in which bronchoalveolar lavage fluid yielded human rhinovirus. Respir Med Case Rep 2019; 28:100910. [PMID: 31384546 PMCID: PMC6661423 DOI: 10.1016/j.rmcr.2019.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
A 27-year-old man presented to our hospital with symptoms of lower respiratory tract infection. This patient showed imaging findings of diffuse bronchiolitis, ground-glass opacities, and consolidations. Antibiotics were not effective, and we performed bronchoalveolar lavage, in which only human rhinovirus infection was detected by multiplex PCR testing.
Collapse
Affiliation(s)
- Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Yuki Yoshida
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan.,Department of Respiratory Medicine, Kyorin University, Tokyo, Japan
| | - Yasuhito Kobayashi
- Department of Pathology, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Yoshihiko Shimizu
- Department of Pathology, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Noboru Takayanagi
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| |
Collapse
|
33
|
Transcriptomic Analysis Reveals Priming of The Host Antiviral Interferon Signaling Pathway by Bronchobini ® Resulting in Balanced Immune Response to Rhinovirus Infection in Mouse Lung Tissue Slices. Int J Mol Sci 2019; 20:ijms20092242. [PMID: 31067687 PMCID: PMC6540047 DOI: 10.3390/ijms20092242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Rhinovirus (RV) is the predominant virus causing respiratory tract infections. Bronchobini® is a low dose multi component, multi target preparation used to treat inflammatory respiratory diseases such as the common cold, described to ease severity of symptoms such as cough and viscous mucus production. The aim of the study was to assess the efficacy of Bronchobini® in RV infection and to elucidate its mode of action. Therefore, Bronchobini®’s ingredients (BRO) were assessed in an ex vivo model of RV infection using mouse precision-cut lung slices, an organotypic tissue capable to reflect the host immune response to RV infection. Cytokine profiles were assessed using enzyme-linked immunosorbent assay (ELISA) and mesoscale discovery (MSD). Gene expression analysis was performed using Affymetrix microarrays and ingenuity pathway analysis. BRO treatment resulted in the significant suppression of RV-induced antiviral and pro-inflammatory cytokine release. Transcriptome analysis revealed a multifactorial mode of action of BRO, with a strong inhibition of the RV-induced pro-inflammatory and antiviral host response mediated by nuclear factor kappa B (NFkB) and interferon signaling pathways. Interestingly, this was due to priming of these pathways in the absence of virus. Overall, BRO exerted its beneficial anti-inflammatory effect by priming the antiviral host response resulting in a reduced inflammatory response to RV infection, thereby balancing an otherwise excessive inflammatory response.
Collapse
|
34
|
Colvin E. Welcome to the 14th volume of Future Virology. Future Virol 2019. [DOI: 10.2217/fvl-2018-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ellen Colvin
- Affiliation: Future Science Group, Unitec House 2 Albert Place, Albert Pl, London N3 1QB
| |
Collapse
|