1
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
2
|
Hizo GH, Rampelotto PH. The Impact of Probiotic Bifidobacterium on Liver Diseases and the Microbiota. Life (Basel) 2024; 14:239. [PMID: 38398748 PMCID: PMC10890151 DOI: 10.3390/life14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have shown the promising potential of probiotics, especially the bacterial genus Bifidobacterium, in the treatment of liver diseases. In this work, a systematic review was conducted, with a focus on studies that employed advanced Next Generation Sequencing (NGS) technologies to explore the potential of Bifidobacterium as a probiotic for treating liver pathologies such as Non-Alcoholic Fatty Liver Disease (NAFLD), Non-Alcoholic Steatohepatitis (NASH), Alcoholic Liver Disease (ALD), Cirrhosis, and Hepatocelullar Carcinoma (HCC) and its impact on the microbiota. Our results indicate that Bifidobacterium is a safe and effective probiotic for treating liver lesions. It successfully restored balance to the intestinal microbiota and improved biochemical and clinical parameters in NAFLD, ALD, and Cirrhosis. No significant adverse effects were identified. While more research is needed to establish its efficacy in treating NASH and HCC, the evidence suggests that Bifidobacterium is a promising probiotic for managing liver lesions.
Collapse
Affiliation(s)
- Gabriel Henrique Hizo
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-907, Brazil
| |
Collapse
|
3
|
Cho EJ, Chung GE, Yoo JJ, Cho Y, Shin DW, Kim YJ, Yoon JH, Han K, Yu SJ. The association between alcohol consumption and the risk of hepatocellular carcinoma according to glycemic status in Korea: A nationwide population-based study. PLoS Med 2023; 20:e1004244. [PMID: 37307271 PMCID: PMC10259796 DOI: 10.1371/journal.pmed.1004244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Alcohol and diabetes are known risk factors for hepatocellular carcinoma (HCC); however, it is unclear whether the association between alcohol consumption and HCC risk differs by fasting serum glucose level and diabetes. We investigated the dose-response relationship between alcohol consumption and the risk of HCC according to glycemic status. METHODS AND FINDINGS This population-based observational cohort study included patients who underwent general health checkups in 2009 using the Korean National Health Insurance Service Database. The primary outcome was HCC incidence, and Cox proportional hazard regression analysis was performed to estimate the relationship between alcohol consumption and HCC risk according to glycemic status. A total of 34,321 patients newly diagnosed with HCC were observed in the median follow-up period of 8.3 years. In the multivariable model, we adjusted for age, sex, smoking, regular exercise, income, hypertension, dyslipidemia, and body mass index. Mild-to-moderate alcohol consumption increased the risk of HCC in all glycemic statuses (normoglycemia: hazard ratio [HR], 1.06; 95% confidence interval [CI], 1.02 to 1.10; prediabetes: HR, 1.19; 95% CI, 1.14 to 1.24; and diabetes: HR, 2.02; 95% CI, 1.93 to 2.11) compared to normoglycemic nondrinking. Heavy alcohol consumption also increased the risk of HCC in all glycemic statuses (normoglycemia: HR, 1.39; 95% CI, 1.32 to 1.46; prediabetes: HR, 1.67; 95% CI, 1.58 to 1.77; and diabetes: HR, 3.29; 95% CI, 3.11 to 3.49) compared to normoglycemic nondrinking. Since alcohol consumption information in this study was based on a self-administered questionnaire, there may be a possibility of underestimation. Although we excluded patients with a history of viral hepatitis using diagnosis codes, we could not obtain information on hepatitis B or hepatitis C serum markers. CONCLUSIONS Both mild-to-moderate and heavy alcohol consumption was associated with an increased risk of HCC in all glycemic statuses. The increased risk of HCC according to alcohol consumption was the highest in the diabetes group, suggesting that more intensive alcohol abstinence is required for patients with diabetes.
Collapse
Affiliation(s)
- Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation/Department of Digital Health, Samsung Advanced Institute for Health Science, Seoul, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhang C, Zhao J, Zhao J, Liu B, Tang W, Liu Y, Huang W, Weinman SA, Li Z. CYP2E1-dependent upregulation of SIRT7 is response to alcohol mediated metastasis in hepatocellular carcinoma. Cancer Gene Ther 2022; 29:1961-1974. [PMID: 35902730 PMCID: PMC10832389 DOI: 10.1038/s41417-022-00512-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Long-term alcohol use is a confirmed risk factor of liver cancer tumorigenesis and metastasis. Multiple mechanisms responsible for alcohol related tumorigenesis have been proposed, including toxic reactive metabolite production, oxidative stress and fat accumulation. However, mechanisms underlying alcohol-mediated liver cancer metastasis remain largely unknown. We have previously demonstrated that SIRT7 regulates chemosensitivity by altering a p53-dependent pathway in human HCC. In the current study, we further revealed that SIRT7 is a critical factor in promoting liver cancer metastasis. SIRT7 expression is associated with disease stage and high SIRT7 predicts worse overall and disease-free survival. Overexpression of SIRT7 promotes HCC cell migration and EMT while knockdown of SIRT7 showed opposite effects. Mechanistically, we found that SIRT7 suppresses E-Cadherin expression through FOXO3-dependent promoter binding and H3K18 deacetylation. Knockdown of FOXO3 abolished the suppressive effect of SIRT7 on E-cadherin transcription. More importantly, we identified that alcohol treatment upregulates SIRT7 and suppresses E-cadherin expression via a CYP2E/ROS axis in hepatocytes both in vitro and in vivo. Antioxidant treatment in primary hepatocyte or CYP2E1-/- mice fed with alcohol impaired those effects. Reducing SIRT7 activity completely abolished alcohol-mediated promotion of liver cancer metastasis in vivo. Taken together, our data reveal that SIRT7 is a pivotal regulator of alcohol-mediated HCC metastasis.
Collapse
Affiliation(s)
- Chen Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinqiu Zhao
- Department of Infectious Disease, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bohao Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Wenbin Tang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yi Liu
- Department of General Surgery, People's Hospital of Hunan Province and Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wenxiang Huang
- Department of Infectious Disease, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhuan Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China.
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Hunan Normal University School of Medicine, Changsha, Hunan, China.
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China.
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Role of AMPK-SREBP Signaling in Regulating Fatty Acid Binding-4 (FABP4) Expression following Ethanol Metabolism. BIOLOGY 2022; 11:biology11111613. [PMID: 36358315 PMCID: PMC9687530 DOI: 10.3390/biology11111613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Fatty acid binding protein-4 (FABP4) is not normally expressed in the liver but is induced in alcohol-dependent liver disease (ALD)). This study sought to identify mechanisms whereby ethanol (EtOH) metabolism alters triglyceride accumulation and FABP4 production. Human hepatoma cells which were stably transfected to express alcohol dehydrogenase (ADH) or cytochrome P4502E1 (CYP2E1) were exposed to EtOH in the absence/presence of inhibitors of ADH (4-methylpyrazole) or CYP2E1 (chlormethiazole). Cells were analyzed for free fatty acid (FFA) content and FABP4 mRNA, then culture medium assayed for FABP4 levels. Cell lysates were analyzed for AMP-activated protein kinase-α (AMPKα), Acetyl-CoA carboxylase (ACC), sterol regulatory element binding protein-1c (SREBP-1c), and Lipin-1β activity and localization in the absence/presence of EtOH and pharmacological inhibitors. CYP2E1-EtOH metabolism led to increased FABP4 mRNA/protein expression and FFA accumulation. Analysis of signaling pathway activity revealed decreased AMPKα activation and increased nuclear-SREBP-1c localization following CYP2E1-EtOH metabolism. The role of AMPKα-SREBP-1c in regulating CYP2E1-EtOH-dependent FFA accumulation and increased FABP4 was confirmed using pharmacological inhibitors and over-expression of AMPKα. Inhibition of ACC or Lipin-1β failed to prevent FFA accumulation or changes in FABP4 mRNA expression or protein secretion. These data suggest that CYP2E1-EtOH metabolism inhibits AMPKα phosphorylation to stimulate FFA accumulation and FABP4 protein secretion via an SREBP-1c dependent mechanism.
Collapse
|
6
|
Yoo JE, Han K, Shin DW, Kim D, Kim BS, Chun S, Jeon KH, Jung W, Park J, Park JH, Choi KS, Kim JS. Association Between Changes in Alcohol Consumption and Cancer Risk. JAMA Netw Open 2022; 5:e2228544. [PMID: 36001313 PMCID: PMC9403779 DOI: 10.1001/jamanetworkopen.2022.28544] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
IMPORTANCE Although numerous studies have shown an association between alcohol consumption and cancer, how changes in drinking behavior increase or decrease the incidence of cancer is not well understood. OBJECTIVE To investigate the association between the reduction, cessation, or increase of alcohol consumption and the development of alcohol-related cancers and all cancers. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study analyzed adult beneficiaries in the Korean National Health Insurance Service. Participants (aged ≥40 years) included those who underwent a national health screening in both 2009 and 2011 and had available data on their drinking status. Data were analyzed from April 16 to July 6, 2020. EXPOSURES Alcohol consumption level, which was self-reported by participants in health screening questionnaires, was categorized into none (0 g/d), mild (<15 g/d), moderate (15-29.9 g/d), and heavy (≥30 g/d) drinking. Based on changes in alcohol consumption level from 2009 to 2011, participants were categorized into the following groups: nondrinker, sustainer, increaser, quitter, and reducer. MAIN OUTCOMES AND MEASURES The primary outcome was newly diagnosed alcohol-related cancers (including cancers of the head and neck, esophagus, colorectum, liver, larynx, and female breast), and the secondary outcome was all newly diagnosed cancers (except for thyroid cancer). RESULTS Among the 4 513 746 participants (mean [SD] age, 53.6 [9.6] years; 2 324 172 [51.5%] men), the incidence rate of cancer was 7.7 per 1000 person-years during a median (IQR) follow-up of 6.4 (6.1-6.6) years. Compared with the sustainer groups at each drinking level, the increaser groups had a higher risk of alcohol-related cancers and all cancers. The increased alcohol-related cancer incidence was associated with dose; those who changed from nondrinking to mild (adjusted hazard ratio [aHR], 1.03; 95% CI, 1.00-1.06), moderate (aHR, 1.10; 95% CI, 1.02-1.18), or heavy (aHR, 1.34; 95% CI, 1.23-1.45) drinking levels had an associated higher risk than those who did not drink. Those with mild drinking levels who quit drinking had a lower risk of alcohol-related cancer (aHR, 0.96; 95% CI, 0.92-0.99) than those who sustained their drinking levels. Those with moderate (aHR, 1.07; 95% CI, 1.03-1.12) or heavy (aHR, 1.07; 95% CI, 1.02-1.12) drinking levels who quit drinking had a higher all cancer incidence than those who sustained their levels, but when quitting was sustained, this increase in risk disappeared. Compared with sustained heavy drinking, reduced heavy drinking levels to moderate levels (alcohol-related cancer: aHR, 0.91 [95% CI, 0.86-0.97]; all cancers: aHR, 0.96 [95% CI, 0.92-0.99]) or mild levels (alcohol-related cancer: aHR, 0.92 [95% CI, 0.86-0.98]; all cancers: aHR, 0.92 [95% CI, 0.89-0.96]) were associated with decreased cancer risk. CONCLUSIONS AND RELEVANCE Results of this study showed that increased alcohol consumption was associated with higher risks for alcohol-related and all cancers, whereas sustained quitting and reduced drinking were associated with lower risks of alcohol-related and all cancers. Alcohol cessation and reduction should be reinforced for the prevention of cancer.
Collapse
Affiliation(s)
- Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Supportive Care Center/Department of Family Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dahye Kim
- Department of Medical Statistics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bong-seong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
- Department of Medical Statistics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sohyun Chun
- International Healthcare Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Keun Hye Jeon
- Department of Family Medicine, Cha Gumi Medical Center, Cha University, Gumi-si, Gyeongsangbuk-do, Republic of Korea
| | - Wonyoung Jung
- Department of Supportive Care Center/Department of Family Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jinsung Park
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Jin Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kui Son Choi
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Inhibiting uptake activity of organic anion transporter 2 by bile acids. Drug Metab Pharmacokinet 2022; 43:100448. [DOI: 10.1016/j.dmpk.2022.100448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
|
8
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:3011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
9
|
Zhao L, Mehmood A, Yuan D, Usman M, Murtaza MA, Yaqoob S, Wang C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021; 13:nu13051612. [PMID: 34064981 PMCID: PMC8151346 DOI: 10.3390/nu13051612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-6898-4547
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Punjab 54590, Pakistan;
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Kim W, Jeong HS, Kim SC, Choi CH, Lee KH. Chronic Alcohol Exposure of Cells Using Controlled Alcohol-Releasing Capillaries. Cells 2021; 10:cells10051120. [PMID: 34066517 PMCID: PMC8148542 DOI: 10.3390/cells10051120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alcohol is one of the main causes of liver diseases such as fatty liver, alcoholic hepatitis, and chronic hepatitis with liver fibrosis or cirrhosis. To reproduce the conditions of alcohol-induced liver diseases and to identify the disease-causing mechanisms at the cellular level, several methods have been used to expose the cells to ethanol. As ethanol evaporates easily, it is difficult to mimic chronic alcohol exposure conditions at the cellular level. In this study, we developed a glass capillary system containing ethanol, which could steadily release ethanol from the polyethylene tubing and hydrogel portion at both sides of the capillary. The ethanol-containing capillary could release ethanol in the cell culture medium for up to 144 h, and the concentration of ethanol in the cell culture medium could be adjusted by controlling the number of capillaries. A long-term exposure to ethanol by the capillary system led to an increased toxicity of cells and altered the cellular physiologies, such as increasing the lipid accumulation and hepatic transaminase release in cells, as compared to the traditional direct ethanol addition method. Ethanol capillaries showed different gene expression patterns of lipid accumulation- or chronic alcoholism-related genes. Our results suggest that our ethanol-containing capillary system can be used as a valuable tool for studying the mechanism of chronic alcohol-mediated hepatic diseases at the cellular level.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan-si 38610, Gyeongsangbuk-do, Korea; (W.K.); (H.-S.J.)
- Department of Biochemistry and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hye-Seon Jeong
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan-si 38610, Gyeongsangbuk-do, Korea; (W.K.); (H.-S.J.)
| | - Sang-Chan Kim
- College of Korean Medicine, Daegu Haany University, Hanuidae-ro 1, Gyeongsan-si 38610, Gyeongsangbuk-do, Korea;
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan-si 38610, Gyeongsangbuk-do, Korea; (W.K.); (H.-S.J.)
- Correspondence: (C.-H.C.); (K.-H.L.)
| | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan-si 38610, Gyeongsangbuk-do, Korea; (W.K.); (H.-S.J.)
- Correspondence: (C.-H.C.); (K.-H.L.)
| |
Collapse
|
11
|
Wei J, Fang D. Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Hepatocarcinoma. Int J Mol Sci 2021; 22:ijms22041799. [PMID: 33670323 PMCID: PMC7918477 DOI: 10.3390/ijms22041799] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), also known as hepatoma, is a primary malignancy of the liver and the third leading cause of cancer mortality globally. Although much attention has focused on HCC, its pathogenesis remains largely obscure. The endoplasmic reticulum (ER) is a cellular organelle important for regulating protein synthesis, folding, modification and trafficking, and lipid metabolism. ER stress occurs when ER homeostasis is disturbed by numerous environmental, physiological, and pathological challenges. In response to ER stress due to misfolded/unfolded protein accumulation, unfolded protein response (UPR) is activated to maintain ER function for cell survival or, in cases of excessively severe ER stress, initiation of apoptosis. The liver is especially susceptible to ER stress given its protein synthesis and detoxification functions. Experimental data suggest that ER stress and unfolded protein response are involved in HCC development, aggressiveness and response to treatment. Herein, we highlight recent findings and provide an overview of the evidence linking ER stress to the pathogenesis of HCC.
Collapse
|
12
|
Kumar A, Acharya SK, Singh SP, Arora A, Dhiman RK, Aggarwal R, Anand AC, Bhangui P, Chawla YK, Datta Gupta S, Dixit VK, Duseja A, Kalra N, Kar P, Kulkarni SS, Kumar R, Kumar M, Madhavan R, Mohan Prasad V, Mukund A, Nagral A, Panda D, Paul SB, Rao PN, Rela M, Sahu MK, Saraswat VA, Shah SR, Shalimar, Sharma P, Taneja S, Wadhawan M, The INASL Task-Force on Hepatocellular Carcinoma. 2019 Update of Indian National Association for Study of the Liver Consensus on Prevention, Diagnosis, and Management of Hepatocellular Carcinoma in India: The Puri II Recommendations. J Clin Exp Hepatol 2020; 10:43-80. [PMID: 32025166 PMCID: PMC6995891 DOI: 10.1016/j.jceh.2019.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/15/2019] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of morbidity, mortality, and healthcare expenditure in patients with chronic liver disease in India. The Indian National Association for Study of the Liver (INASL) had published its first guidelines on diagnosis and management of HCC (The Puri Recommendations) in 2014, and these guidelines were very well received by the healthcare community involved in diagnosis and management of HCC in India and neighboring countries. However, since 2014, many new developments have taken place in the field of HCC diagnosis and management, hence INASL endeavored to update its 2014 consensus guidelines. A new Task Force on HCC was constituted that reviewed the previous guidelines as well as the recent developments in various aspects of HCC that needed to be incorporated in the new guidelines. A 2-day round table discussion was held on 5th and 6th May 2018 at Puri, Odisha, to discuss, debate, and finalize the revised consensus statements. Each statement of the guideline was graded according to the Grading of Recommendations Assessment Development and Evaluation system with minor modifications. We present here the 2019 Update of INASL Consensus on Prevention, Diagnosis, and Management of Hepatocellular Carcinoma in India: The Puri-2 Recommendations.
Collapse
Key Words
- AFP, alpha-fetoprotein
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- DAA, direct-acting antiviral
- DALY, disability-adjusted life-year
- DNA, deoxyribonucleic acid
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- Gd-BOPTA, gadolinium benzyloxypropionictetraacetate
- Gd-EOB-DTPA, gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid
- HBV, hepatitis B virus
- HBeAg, hepatitis B envelope antigen
- HCC, hepatocellular carcinoma
- HIV, human immunodeficiency virus
- IARC, International Agency for Research on Cancer
- IFN, interferon
- INASL, Indian National Association for Study of the Liver
- MiRNA, micro-RNA
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- PIVKA, protein induced by vitamin K absence
- RFA
- RNA, ribonucleic acid
- SVR, sustained virological response
- TACE
- TACE, trans-arterial chemoembolization
- TARE, transarterial radioembolization
- TNF, tumor necrosis factor
- WHO, World Health Organization
- liver cancer
- targeted therapy
- transplant
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Anil Arora
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Anil C. Anand
- Department of Gastroenterology, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110 076, India
| | - Prashant Bhangui
- Medanta Institute of Liver Transplantation and Regenerative Medicine, Medanta the Medicity, CH Baktawar Singh Road, Sector 38, Gurugram, Haryana, 122 001, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Vinod K. Dixit
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Naveen Kalra
- Department of Radio Diagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Suyash S. Kulkarni
- Division of Interventional Radiology, Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, 400 012, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Ram Madhavan
- Department of Radiation Oncology, Amrita Institute of Medical Sciences, Amrita University, Peeliyadu Road, Ponekkara, Edappally, Kochi, Kerala, 682 041, India
| | - V.G. Mohan Prasad
- Department of Gastroenterology, VGM Gastro Centre, 2100, Trichy Road, Rajalakshmi Mills Stop, Singanallur, Coimbatore, Tamil Nadu, 641 005, India
| | - Amar Mukund
- Department of Radiology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Dipanjan Panda
- Department of Oncology, Institutes of Cancer, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110 076, India
| | - Shashi B. Paul
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Padaki N. Rao
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, No. 6-3-661, Punjagutta Road, Somajiguda, Hyderabad, Telangana, 500 082, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Gleneagles Global Health City, 439, Cheran Nagar, Perumbakkam, Chennai, Tamil Nadu, 600 100, India
| | - Manoj K. Sahu
- Department of Medical Gastroenterology, IMS & SUM Hospital, K8 Kalinga Nagar, Shampur, Bhubaneswar, Odisha 751 003, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Samir R. Shah
- Department of Gastroenterology, Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Praveen Sharma
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Manav Wadhawan
- Liver & Digestive Diseases Institute, Institute of Liver & Digestive Diseases, BLK Super Specialty Hospital, Delhi, 110 005, India
| | | |
Collapse
|
13
|
Thompson KJ, Nazari SS, Jacobs WC, Grahame NJ, McKillop IH. Use of a crossed high alcohol preferring (cHAP) mouse model with the NIAAA-model of chronic-binge ethanol intake to study liver injury. Alcohol Alcohol 2018; 52:629-637. [PMID: 29036399 DOI: 10.1093/alcalc/agx063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Aims This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). Methods Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. Results cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. Conclusions Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. Short Summary cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water.
Collapse
Affiliation(s)
- Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Shayan S Nazari
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA.,Department of Biology, UNC at Charlotte, Charlotte, NC 28223, USA
| | - W Carl Jacobs
- Department of Pathology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| |
Collapse
|
14
|
Thompson KJ, Austin RG, Nazari SS, Gersin KS, Iannitti DA, McKillop IH. Altered fatty acid-binding protein 4 (FABP4) expression and function in human and animal models of hepatocellular carcinoma. Liver Int 2018; 38:1074-1083. [PMID: 29171144 DOI: 10.1111/liv.13639] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 11/16/2017] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality. Risk factors for developing HCC include viral hepatitis, alcohol and obesity. Fatty acid-binding proteins (FABPs) bind long-chain free fatty acids (FFAs) and are expressed in a tissue-specific pattern; FABP1 being the predominant hepatic form, and FABP4 the predominant adipocyte form. The aims of this study were to investigate the expression and function of FABPs1-9 in human and animal models of obesity-related HCC. METHODS FABP1-9 expression was determined in a mouse model of obesity-promoted HCC. Based on these data, expression and function of FABP4 was determined in human HCC cells (HepG2 and HuH7) in vitro. Serum from patients with different underlying hepatic pathologies was analysed for circulating FABP4 levels. RESULTS Livers from obese mice, independent of tumour status, exhibited increased FABP4 mRNA and protein expression concomitant with elevated serum FABP4. In vitro, FABP4 expression was induced in human HCC cells by FFA treatment, and led to FABP4 release into culture medium. Treatment of HCC cells with exogenous FABP4 significantly increased proliferation and migration of human HCC cells. Patient serum analysis demonstrated significantly increased FABP4 in those with underlying liver disease, particularly non-alcoholic fatty liver disease (NAFLD) and HCC. CONCLUSIONS These data suggest FABP4, an FABP not normally expressed in the liver, can be synthesized and secreted by hepatocytes and HCC cells, and that FABP4 may play a role in regulating tumour progression in the underlying setting of obesity.
Collapse
Affiliation(s)
- Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | | | | | - Keith S Gersin
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - David A Iannitti
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| |
Collapse
|