1
|
Raphael I, Mujeeb AA, Ampudia-Mesias E, Sever RE, McClellan B, Frederico SC, Sneiderman CT, Mirji A, Daba A, Puerta-Martinez F, Nisnboym M, Edwards WB, Graner M, Moertel CL, Castro MG, Kohanbash G, Olin MR. CD200 depletion in glioma enhances antitumor immunity and induces tumor rejection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611922. [PMID: 39314283 PMCID: PMC11418997 DOI: 10.1101/2024.09.08.611922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
High-grade gliomas are a major health challenge with poor prognosis and high morbidity. Immune-checkpoint inhibitors (ICI) have emerged as promising therapeutic options for several malignancies yet show little efficacy against central nervous system (CNS) tumors. CD200 is a newly recognized immune checkpoint that modulates immune homeostasis. CD200 protein is expressed by a variety of cells, including immune cells and stromal cells, and is overexpressed by many tumors. The shedding of CD200 from tumor cells can create an immunosuppressive environment that dampens anti-tumor immunity by modulating cytolytic activity and cytokine expression both within and outside the tumor microenvironment (TME). While it is well-accepted that CD200 induces a pro-tumorigenic environment through its ability to suppress the immune response, we sought to determine the role of glioma-specific expression of CD200. We show that CD200 is expressed across glioma types, is shed from tumor cells, and increases over time in the serum of patients undergoing immunotherapy. Using CD200 knockout (KO) glioma models, we demonstrated that glioma cell-derived CD200 promotes tumor growth in vivo and in vitro. Notably, CD200 KO gliomas are spontaneously rejected by their host, a process that required a fully functional immune system, including NK and T-cells. Moreover, we report that glioma-derived or brain-injected soluble CD200 contributes to the suppression of antigen-specific CD8 T-cells in the draining lymph nodes (dLNs). Our work provides new mechanistic insights regarding CD200-mediated immunosuppression by gliomas. Statement of significance We demonstrate mechanisms of the druggable glioma-derived CD200 checkpoint on tumor growth and immune suppression.
Collapse
|
2
|
Gorczynski R. Translation of Data from Animal Models of Cancer to Immunotherapy of Breast Cancer and Chronic Lymphocytic Leukemia. Genes (Basel) 2024; 15:292. [PMID: 38540350 PMCID: PMC10970502 DOI: 10.3390/genes15030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
The field of clinical oncology has been revolutionized over the past decade with the introduction of many new immunotherapies the existence of which have depended to a large extent on experimentation with both in vitro analysis and the use of various animal models, including gene-modified mice. The discussion below will review my own laboratory's studies, along with those of others in the field, on cancer immunotherapy. Our own studies have predominantly dwelt on two models of malignancy, namely a solid tumor model (breast cancer) and lymphoma. The data from our own laboratory, and that of other scientists, highlights the novel information so obtained, and the evidence that application of such information has already had an impact on immunotherapy of human oncologic diseases.
Collapse
Affiliation(s)
- Reginald Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, C/O 429 Drewry Avenue, Toronto, ON M2R 2K6, Canada
| |
Collapse
|
3
|
Webb MJ, Kottke T, Kendall BL, Swanson J, Uzendu C, Tonne J, Thompson J, Metko M, Moore M, Borad M, Roberts L, Diaz RM, Olin M, Borgatti A, Vile R. Trap and ambush therapy using sequential primary and tumor escape-selective oncolytic viruses. Mol Ther Oncolytics 2023; 29:129-142. [PMID: 37313455 PMCID: PMC10258242 DOI: 10.1016/j.omto.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 (CSDE1) gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus. Here, we show that the evolution of viral ESC tumor cells harboring the escape-promoting CSDE1C-T mutation can also be exploited by a virological ambush. By sequential delivery of two oncolytic VSVs in vivo, tumors which would otherwise escape VSV-IFN-β oncolytic virotherapy could be cured. This also facilitated the priming of anti-tumor T cell responses, which could be further exploited using immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) peptide. Our findings here are significant in that they offer the possibility to develop oncolytic viruses as highly specific, escape-targeting viro-immunotherapeutic agents to be used in conjunction with recurrence of tumors following multiple different types of frontline cancer therapies.
Collapse
Affiliation(s)
- Mason J. Webb
- Division of Hematology/Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chisom Uzendu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mitesh Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Olin
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Clinical Investigation Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Choe D, Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front Oncol 2023; 13:1088038. [PMID: 36756156 PMCID: PMC9900175 DOI: 10.3389/fonc.2023.1088038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint molecules function to inhibit and regulate immune response pathways to prevent hyperactive immune activity from damaging healthy tissues. In cancer patients, targeting these key molecules may serve as a valuable therapeutic mechanism to bolster immune function and restore the body's natural defenses against tumors. CD200, an immune checkpoint molecule, is a surface glycoprotein that is widely but not ubiquitously expressed throughout the body. By interacting with its inhibitory receptor CD200R, CD200 suppresses immune cell activity within the tumor microenvironment, creating conditions that foster tumor growth. Targeting the CD200/CD200R pathway, either through the use of monoclonal antibodies or peptide inhibitors, has shown to be effective in boosting anti-tumor immune activity. This review will explore CD200 and the protein's expression and role within the tumor microenvironment, blood endothelial cells, and lymph nodes. This paper will also discuss the advantages and challenges of current strategies used to target CD200 and briefly summarize relevant preclinical/clinical studies investigating the immunotherapeutic efficacy of CD200/CD200R blockade.
Collapse
|
5
|
Moertel C, Martinez-Puerta F, Elizabeth Pluhar GG, Castro MG, Olin M. CD200AR-L: mechanism of action and preclinical and clinical insights for treating high-grade brain tumors. Expert Opin Investig Drugs 2022; 31:875-879. [PMID: 35920338 PMCID: PMC9997597 DOI: 10.1080/13543784.2022.2108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/22/2022] [Indexed: 01/14/2023]
Affiliation(s)
| | | | - Grace G. Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, Franchini S, Giakoumettis D. Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. Int J Mol Sci 2022; 23:2607. [PMID: 35269752 PMCID: PMC8910150 DOI: 10.3390/ijms23052607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant tumour of the central nervous system. Recent appreciation of the heterogeneity amongst these tumours not only changed the WHO classification approach, but also created the need for developing novel and personalised therapies. This systematic review aims to highlight recent advancements in understanding the molecular pathogenesis of the GBM and discuss related novel treatment targets. A systematic search of the literature in the PubMed library was performed following the PRISMA guidelines for molecular pathogenesis and therapeutic advances. Original and meta-analyses studies from the last ten years were reviewed using pre-determined search terms. The results included articles relevant to GBM development focusing on the aberrancy in cell signaling pathways and intracellular events. Theragnostic targets and vaccination to treat GBM were also explored. The molecular pathophysiology of GBM is complex. Our systematic review suggests targeting therapy at the stemness, p53 mediated pathways and immune modulation. Exciting novel immune therapy involving dendritic cell vaccines, B-cell vaccines and viral vectors may be the future of treating GBM.
Collapse
Affiliation(s)
- Yagmur Esemen
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Mariam Awan
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Rabeeia Parwez
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Arsalan Baig
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Shahinur Rahman
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Ilaria Masala
- Department of Trauma and Orthopedics, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
| | - Sonia Franchini
- General Surgery Department, Queen’s Hospital, Romford, London RM7 0AG, UK;
| | - Dimitrios Giakoumettis
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| |
Collapse
|
7
|
Ogino H, Taylor JW, Nejo T, Gibson D, Watchmaker PB, Okada K, Saijo A, Tedesco MR, Shai A, Wong CM, Rabbitt JE, Olin MR, Moertel CL, Nishioka Y, Salazar AM, Molinaro AM, Phillips JJ, Butowski NA, Clarke JL, Oberheim Bush NA, Hervey-Jumper SL, Theodosopoulos P, Chang SM, Berger MS, Okada H. Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T-cell response in low-grade gliomas. J Clin Invest 2021; 132:151239. [PMID: 34882581 PMCID: PMC8803342 DOI: 10.1172/jci151239] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long-term prognosis of WHO grade II low-grade glioma (LGG) is poor secondary to risk of recurrence and malignant transformation into high-grade glioma. Given the relatively intact immune system of patients with LGG and the slow tumor growth rate, vaccines are an attractive treatment strategy. METHODS We conducted a pilot study to evaluate the safety and immunological effects of vaccination with GBM6-AD, lysate of an allogeneic glioblastoma stem cell line, with poly-ICLC in patients with LGG. Patients were randomized to receive the vaccines before surgery (Arm 1) or not (Arm 2) and all patients received adjuvant vaccine. Co-primary outcomes were to evaluate the safety and immune response in the tumor. RESULTS A total of 17 eligible patients were enrolled - nine into Arm 1 and eight into Arm 2. This regimen was well-tolerated with no regimen-limiting toxicity. Neoadjuvant vaccination induced upregulation of type-1 cytokines and chemokines, and increased activated CD8+ T-cells in peripheral blood. Single-cell RNA/TCR-sequencing detected CD8+ T-cell clones that expanded with effector phenotype and migrated into tumor microenvironment (TME) in response to neoadjuvant vaccination. Mass cytometric analyses detected increased tissue resident-like CD8+ T-cells with effector memory phenotype in TME following the neoadjuvant vaccination. CONCLUSION The current regimen induces effector CD8+ T-cell response in peripheral blood and enables vaccine-reactive CD8+ T-cells to migrate into TME. Further refinements of the regimen may have to be integrated into future strategies. TRIAL REGISTRATION ClinicalTrials.gov NCT02549833. FUNDING NIH (1R35NS105068, 1R21CA233856), Dabbiere Foundation, Parker Institute for Cancer Immunotherapy, and Daiichi Sankyo Foundation of Life Science.
Collapse
Affiliation(s)
- Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - David Gibson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Meghan R Tedesco
- Department of Neurology, University of California, San Francisco, San Francisco, United States of America
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Cynthia M Wong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Jane E Rabbitt
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Michael R Olin
- Division of Pediartric Hematology/Oncology, University of Minnesota School of Medicine, Minneapolis, United States of America
| | - Christopher L Moertel
- Division of Pediartric Hematology/Oncology, University of Minnesota School of Medicine, Minneapolis, United States of America
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University, Tokushima, Japan
| | - Andres M Salazar
- Oncovir Inc, Oncovir Inc, Washington DC, United States of America
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Joanna J Phillips
- University of California, San Francisco, San Francisco, United States of America
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Philip Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States of America
| |
Collapse
|
8
|
Ampudia-Mesias E, Puerta-Martinez F, Bridges M, Zellmer D, Janeiro A, Strokes M, Sham YY, Taher A, Castro MG, Moertel CL, Pluhar GE, Olin MR. CD200 Immune-Checkpoint Peptide Elicits an Anti-glioma Response Through the DAP10 Signaling Pathway. Neurotherapeutics 2021; 18:1980-1994. [PMID: 33829411 PMCID: PMC8609078 DOI: 10.1007/s13311-021-01038-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous therapies aimed at driving an effective anti-glioma response have been employed over the last decade; nevertheless, survival outcomes for patients remain dismal. This may be due to the expression of immune-checkpoint ligands such as PD-L1 by glioblastoma (GBM) cells which interact with their respective receptors on tumor-infiltrating effector T cells curtailing the activation of anti-GBM CD8+ T cell-mediated responses. Therefore, a combinatorial regimen to abolish immunosuppression would provide a powerful therapeutic approach against GBM. We developed a peptide ligand (CD200AR-L) that binds an uncharacterized CD200 immune-checkpoint activation receptor (CD200AR). We sought to test the hypothesis that CD200AR-L/CD200AR binding signals via he DAP10&12 pathways through in vitro studies by analyzing transcription, protein, and phosphorylation, and in vivo loss of function studies using inhibitors to select signaling molecules. We report that CD200AR-L/CD200AR binding induces an initial activation of the DAP10&12 pathways followed by a decrease in activity within 30 min, followed by reactivation via a positive feedback loop. Further in vivo studies using DAP10&12KO mice revealed that DAP10, but not DAP12, is required for tumor control. When we combined CD200AR-L with an immune-stimulatory gene therapy, in an intracranial GBM model in vivo, we observed increased median survival, and long-term survivors. These studies are the first to characterize the signaling pathway used by the CD200AR, demonstrating a novel strategy for modulating immune checkpoints for immunotherapy currently being analyzed in a phase I adult trial.
Collapse
Affiliation(s)
| | - Francisco Puerta-Martinez
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Miurel Bridges
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David Zellmer
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew Janeiro
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matt Strokes
- Cell Signaling Technology, Inc, Danvers, MA, 09123, USA
| | - Yuk Y Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ayman Taher
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christopher L Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- University of Minnesota, 2-167 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Alghamri MS, McClellan BL, Hartlage MS, Haase S, Faisal SM, Thalla R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Front Pharmacol 2021; 12:680021. [PMID: 34084145 PMCID: PMC8167057 DOI: 10.3389/fphar.2021.680021] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are one of the most lethal types of cancers accounting for ∼80% of all central nervous system (CNS) primary malignancies. Among gliomas, glioblastomas (GBM) are the most aggressive, characterized by a median patient survival of fewer than 15 months. Recent molecular characterization studies uncovered the genetic signatures and methylation status of gliomas and correlate these with clinical prognosis. The most relevant molecular characteristics for the new glioma classification are IDH mutation, chromosome 1p/19q deletion, histone mutations, and other genetic parameters such as ATRX loss, TP53, and TERT mutations, as well as DNA methylation levels. Similar to other solid tumors, glioma progression is impacted by the complex interactions between the tumor cells and immune cells within the tumor microenvironment. The immune system’s response to cancer can impact the glioma’s survival, proliferation, and invasiveness. Salient characteristics of gliomas include enhanced vascularization, stimulation of a hypoxic tumor microenvironment, increased oxidative stress, and an immune suppressive milieu. These processes promote the neuro-inflammatory tumor microenvironment which can lead to the loss of blood-brain barrier (BBB) integrity. The consequences of a compromised BBB are deleteriously exposing the brain to potentially harmful concentrations of substances from the peripheral circulation, adversely affecting neuronal signaling, and abnormal immune cell infiltration; all of which can lead to disruption of brain homeostasis. In this review, we first describe the unique features of inflammation in CNS tumors. We then discuss the mechanisms of tumor-initiating neuro-inflammatory microenvironment and its impact on tumor invasion and progression. Finally, we also discuss potential pharmacological interventions that can be used to target neuro-inflammation in gliomas.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Margaret S Hartlage
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed Mohd Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rohit Thalla
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ali Dabaja
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anzar A Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Hingorani P, Dinu V, Zhang X, Lei H, Shern JF, Park J, Steel J, Rauf F, Parham D, Gastier-Foster J, Hall D, Hawkins DS, Skapek SX, Labaer J, McEachron TA. Transcriptome analysis of desmoplastic small round cell tumors identifies actionable therapeutic targets: a report from the Children's Oncology Group. Sci Rep 2020; 10:12318. [PMID: 32703985 PMCID: PMC7378211 DOI: 10.1038/s41598-020-69015-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
To further understand the molecular pathogenesis of desmoplastic small round cell tumor (DSRCT), a fatal malignancy occurring primarily in adolescent/young adult males, we used next-generation RNA sequencing to investigate the gene expression profiles intrinsic to this disease. RNA from DSRCT specimens obtained from the Children's Oncology Group was sequenced using the Illumina HiSeq 2000 system and subjected to bioinformatic analyses. Validation and functional studies included WT1 ChIP-seq, EWS-WT1 knockdown using JN-DSRCT-1 cells and immunohistochemistry. A panel of immune signature genes was also evaluated to identify possible immune therapeutic targets. Twelve of 14 tumor samples demonstrated presence of the diagnostic EWSR1-WT1 translocation and these 12 samples were used for the remainder of the analysis. RNA sequencing confirmed the lack of full-length WT1 in all fusion positive samples as well as the JN-DSRCT-1 cell line. ChIP-seq for WT1 showed significant overlap with genes found to be highly expressed, including IGF2 and FGFR4, which were both highly expressed and targets of the EWS-WT1 fusion protein. In addition, we identified CD200 and CD276 as potentially targetable immune checkpoints whose expression is independent of the EWS-WT1 fusion gene in cultured DSCRT cells. In conclusion, we identified IGF2, FGFR4, CD200, and CD276 as potential therapeutic targets with clinical relevance for patients with DSRCT.
Collapse
Affiliation(s)
- Pooja Hingorani
- UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Valentin Dinu
- The Biodesign Institute, OKED Genomics Core, Arizona State University, Tempe, AZ, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jin Park
- The Biodesign Institute, OKED Genomics Core, Arizona State University, Tempe, AZ, USA
| | - Jason Steel
- The Biodesign Institute, OKED Genomics Core, Arizona State University, Tempe, AZ, USA
| | - Femina Rauf
- The Biodesign Institute, OKED Genomics Core, Arizona State University, Tempe, AZ, USA
| | - David Parham
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Julie Gastier-Foster
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - David Hall
- Division of Biostatistics, Children's Oncology Group, Monrovia, CA, USA
| | - Douglas S Hawkins
- Division of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen X Skapek
- Division of Pediatric Hematology Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joshua Labaer
- The Biodesign Institute, OKED Genomics Core, Arizona State University, Tempe, AZ, USA
| | - Troy A McEachron
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Xin C, Zhu J, Gu S, Yin M, Ma J, Pan C, Tang J, Zhang P, Liu Y, Bai XF, Mo X, Xu M, Zhu H. CD200 is overexpressed in neuroblastoma and regulates tumor immune microenvironment. Cancer Immunol Immunother 2020; 69:2333-2343. [PMID: 32514618 DOI: 10.1007/s00262-020-02589-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Patients with pediatric cancers such as neuroblastoma (NB) are often unresponsive to checkpoint blockade immunotherapy. One major factor in pediatric tumor resistance to immunotherapy is considered to be the low mutation rate of pediatric tumors. Another factor may be the overexpression of additional inhibitory pathways. While analyzing the RNA-sequencing database TARGET, we found that human NB tumors overexpress immune checkpoint molecule CD200. To determine its significance and impact on tumor immune microenvironment, we analyzed 49 cases of previously untreated, surgically removed NB tumors using immunohistochemistry and multi-color flow cytometry (FACS). We found that CD200 is overexpressed in more than 90% of NB tumors. In the tumor microenvironment of NB, CD200 is mainly overexpressed in CD45- NB tumor cells, while its cognate receptor (CD200R) is mainly expressed in HLA-DR+CD14+ myeloid cells and CD11c+ dendritic cells. Low-level expression of CD200R is also observed in tumor-infiltrating CD4+ and CD8+ T cells. In NB tumors with higher CD200 expression (CD200high), we observed lower numbers of HLA-DR+CD14+ myeloid cells and less tumor-infiltrating CD4+ and CD8+ T cells. Moreover, we found that CD4+ and CD8+ T cells produced less IFN-γ and/or TNF-α in CD200high NB tumors. Thus, CD200-CD200R pathway appears to downregulate anti-tumor immunity in the tumor microenvironment of NB tumors, and blockade of this pathway may be beneficial for NB patients.
Collapse
Affiliation(s)
- Chao Xin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200017, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ma
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci Pan
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China
| | - Jingyan Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200017, China.
| | - Hua Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China.
| |
Collapse
|
12
|
Liu JQ, Hu A, Zhu J, Yu J, Talebian F, Bai XF. CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:155-165. [PMID: 32030689 DOI: 10.1007/978-3-030-35582-1_8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated inflammation and immune responses are key components in the tumor microenvironment (TME) which regulate tumor growth, progression, and metastasis. Tumor-associated myeloid cells (TAMCs) are a group of cells that play multiple key roles including induction of tumor-associated inflammation/angiogenesis and regulation of tumor-specific T-cell responses. Thus, identification and characterization of key pathways that can regulate TAMCs are of critical importance for developing cancer immunotherapy. Recent studies suggest that CD200-CD200 receptor (CD200R) interaction may be important in regulating the TME via affecting TAMCs. In this chapter, we will give a brief overview of the CD200-CD200R axis, including the biology behind CD200-CD200R interaction and the role(s) it plays in tumor microenvironment and tumor growth, and activation/effector functions of T cells. We will also discuss CD200-CD200R's role as potential checkpoint molecules for cancer immunotherapy. Further investigation of the CD200-CD200R pathway will not only advance our understanding of tumor pathogenesis and immunity but also provide the rationale for CD200-CD200R-targeted immunotherapy of human cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Aiyan Hu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyu Yu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Xiong Z, Ampudia Mesias E, Pluhar GE, Rathe SK, Largaespada DA, Sham YY, Moertel CL, Olin MR. CD200 Checkpoint Reversal: A Novel Approach to Immunotherapy. Clin Cancer Res 2020; 26:232-241. [PMID: 31624103 DOI: 10.1158/1078-0432.ccr-19-2234] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Advances in immunotherapy have revolutionized care for some patients with cancer. However, current checkpoint inhibitors are associated with significant toxicity and yield poor responses for patients with central nervous system tumors, calling into question whether cancer immunotherapy can be applied to glioblastoma multiforme. We determined that targeting the CD200 activation receptors (CD200AR) of the CD200 checkpoint with a peptide inhibitor (CD200AR-L) overcomes tumor-induced immunosuppression. We have shown the clinical efficacy of the CD200AR-L in a trial in companion dogs with spontaneous high-grade glioma. Addition of the peptide to autologous tumor lysate vaccines significantly increased the median overall survival to 12.7 months relative to tumor lysate vaccines alone, 6.36 months. EXPERIMENTAL DESIGN This study was developed to elucidate the mechanism of the CD200ARs and develop a humanized peptide inhibitor. We developed macrophage cell lines with each of four CD200ARs knocked out to determine their binding specificity and functional response. Using proteomics, we developed humanized CD200AR-L to explore their effects on cytokine/chemokine response, dendritic cell maturation and CMV pp65 antigen response in human CD14+ cells. GMP-grade peptide was further validated for activity. RESULTS We demonstrated that the CD200AR-L specifically targets a CD200AR complex. Moreover, we developed and validated a humanized CD200AR-L for inducing chemokine response, stimulating immature dendritic cell differentiation and significantly enhanced an antigen-specific response, and determined that the use of the CD200AR-L downregulated the expression of CD200 inhibitory and PD-1 receptors. CONCLUSIONS These results support consideration of a CD200AR-L as a novel platform for immunotherapy against multiple cancers including glioblastoma multiforme.
Collapse
Affiliation(s)
- Zhengming Xiong
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Moertel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Oweira H, Khajeh E, Mohammadi S, Ghamarnejad O, Daniel V, Schnitzler P, Golriz M, Mieth M, Morath C, Zeier M, Mehrabi A, Sadeghi M. Pre-transplant CD200 and CD200R1 concentrations are associated with post-transplant events in kidney transplant recipients. Medicine (Baltimore) 2019; 98:e17006. [PMID: 31517819 PMCID: PMC6750316 DOI: 10.1097/md.0000000000017006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CD200 is an immunoglobulin superfamily membrane protein that binds to a myeloid cell-specific receptor and induces inhibitory signaling. The aim of this study was to investigate the role of CD200 and its receptor (CD200R1) on kidney transplant (KTx) outcome. In a collective of 125 kidney recipients (University hospital, Heidelberg, Germany), CD200 and CD200R1 concentrations were evaluated immediately before transplantation. Recipient baseline and clinical characteristics and KTx outcome, including acute rejection (AR), acute tubular necrosis, delayed graft function, cytomegalovirus (CMV) and human polyomaviridae (BK) virus infections, and graft loss were evaluated during the first post-transplant year. The association of CD200 and CD200R1 concentrations and CD200R1/CD200 ratios with the outcome of KTx was investigated for the first time in a clinical setting in a prospective cohort. There was a positive association between pre-transplant CD200R1 concentrations and CMV (re)activation (P = .041). Also, increased CD200R1 concentration was associated with a longer duration of CMV infection (P = .049). Both the frequency of AR and levels of creatinine (3 and 6 months after KTx) were significantly higher in patients with an increased CD200R1/CD200 ratio (median: 126 vs 78, P = .008). Increased pre-transplant CD200R1/CD200 ratios predict immunocompetence and risk of AR, whereas high CD200R1 concentrations predict immunosuppression and high risk of severe CMV (re)activation after KTx.
Collapse
Affiliation(s)
- Hani Oweira
- Department of General, Visceral and Transplant Surgery
| | - Elias Khajeh
- Department of General, Visceral and Transplant Surgery
| | | | | | | | | | | | - Markus Mieth
- Department of General, Visceral and Transplant Surgery
| | - Christian Morath
- Division of Nephrology, Ruprecht Karls, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Division of Nephrology, Ruprecht Karls, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
15
|
Treatment Combining CD200 Immune Checkpoint Inhibitor and Tumor-Lysate Vaccination after Surgery for Pet Dogs with High-Grade Glioma. Cancers (Basel) 2019; 11:cancers11020137. [PMID: 30682795 PMCID: PMC6406711 DOI: 10.3390/cancers11020137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Recent advances in immunotherapy have included inhibition of immune checkpoint proteins in the tumor microenvironment and tumor lysate-based vaccination strategies. We combined these approaches in pet dogs with high-grade glioma. Administration of a synthetic peptide targeting the immune checkpoint protein, CD200, enhanced the capacity of antigen-presenting cells to prime T-cells to mediate an anti-glioma response. We found that in canine spontaneous gliomas, local injection of a canine-specific, CD200-directed peptide before subcutaneous delivery of an autologous tumor lysate vaccine prolonged survival relative to a historical control treated with autologous tumor lysate alone (median survivals of 12.7 months and 6.36 months, respectively). Antigen-presenting cells and T-lymphocytes primed with this peptide suppressed their expression of the inhibitory CD200 receptor, thereby enhancing their ability to initiate immune reactions in a glioblastoma microenvironment replete with the immunosuppressive CD200 protein. These results support consideration of a CD200 ligand as a novel glioblastoma immunotherapeutic agent.
Collapse
|
16
|
Gorczynski RM, Zhu F. Checkpoint blockade in solid tumors and B-cell malignancies, with special consideration of the role of CD200. Cancer Manag Res 2017; 9:601-609. [PMID: 29180896 PMCID: PMC5691938 DOI: 10.2147/cmar.s147326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the ontogeny of a normal immune response, a series of checkpoints must be overcome to ensure that unwanted and/or harmful self-directed activation responses are avoided. Many of the molecules now known to be active in this overseeing of the evolving immune activation cascade, contributing inhibitory signals to dampen an overexuberant response, belong to the immunoglobulin supergene family. These include members of the CD28/CTLA-4:B7.1/B7.2 receptor/ligand family, PD-1 and PDL-1, CD200 and CD200R, and the more recently described V-domain immunoglobulin suppressor of T-cell activation and its ligand (VSIG-3/IGSF11). Unfortunately, from the point of view of improving immunotargeting of cancer cells, triggering these checkpoint inhibitory signaling pathways, so necessary to maintain self-tolerance, simultaneously acts to prevent effective tumor immunity. The recent development of reagents, predominantly antibodies, to act as checkpoint blockade agents, has had a dramatic effect on human cancer treatment, with a marked reported success for anti-CTLA-4 and PD-1 in particular in clinical trials. This review provides a general overview of the data now available showing the promise of such treatments to our cancer armamentarium and elaborates in depth on the potential promise of what can be regarded as an underappreciated target molecule for checkpoint blockade in chronic lymphocytic leukemia and solid tumors, CD200.
Collapse
Affiliation(s)
| | - Fang Zhu
- Department of Surgical Research, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Aref S, Azmy E, El-Bakry K, Ibrahim L, Abdel Aziz S. Prognostic impact of CD200 and CD56 expression in pediatric B-cell acute lymphoblastic leukemia patients. Pediatr Hematol Oncol 2017; 34:275-285. [PMID: 29144828 DOI: 10.1080/08880018.2017.1363836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to determine the prognostic impact of CD200 and CD56 expression in pediatric B cell acute lymphoblastic leukemia (B-ALL) patients, both of which have been implicated in immune tolerance and previously suggested as independent risk factors. CD200 has a central role in immune tolerance that protects stem cells and other critical tissues from immune damage. The expression of CD200/CD56 in leukemic blasts were assessed in leukemic blasts before chemotherapy in 43 bone marrow (BM) and/or peripheral blood (PB) samples by flow cytometry. Twenty eight of 43 B-ALL cases (65%) showed CD200 positive expression, 5 of 43 cases (11.6%) showed CD56 expression, and only 2 patients (4.7%) expressed both CD200 and CD56. Patients with CD200+ and CD56+ were significantly associated with lower platelet count; less tendency for induction of remission response as compared to negative ones (p = .01 for both). The overall survival (OS) and DFS were significantly shorter in CD200+ and CD56+ cases as compared to those with CD200- and CD56- expression. In conclusion, CD200 and/or CD56 positive expression in B-ALL at diagnosis suggest a poor prognosis and may be associated with biological aggressiveness.
Collapse
Affiliation(s)
- Salah Aref
- a Clinical Pathology Department, Hematology Unit , Mansoura University Oncology Center, Mansoura University , Mansoura , Egypt
| | - Emad Azmy
- b Internal Medicine Department , Hematology Unit , Internal medicine department , Faculty of Medicine, Mansoura university , Mansoura , Egypt
| | - Kadry El-Bakry
- c Zoology Department , Physiology , Zoology department , Faculty of science, Damietta University , Damietta , Egypt
| | - Lobna Ibrahim
- c Zoology Department , Physiology , Zoology department , Faculty of science, Damietta University , Damietta , Egypt
| | - Sherin Abdel Aziz
- a Clinical Pathology Department, Hematology Unit , Mansoura University Oncology Center, Mansoura University , Mansoura , Egypt
| |
Collapse
|