1
|
Chen F, Sheng J, Li X, Gao Z, Hu L, Chen M, Fei J, Song Z. Tumor-associated macrophages: orchestrators of cholangiocarcinoma progression. Front Immunol 2024; 15:1451474. [PMID: 39290697 PMCID: PMC11405194 DOI: 10.3389/fimmu.2024.1451474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly invasive cancer, with its incidence rising in recent years. Currently, surgery remains the most definitive therapeutic option for CCA. However, similar to other malignancies, most CCA patients are not eligible for surgical intervention at the time of diagnosis. The chemotherapeutic regimen of gemcitabine combined with cisplatin is the standard treatment for advanced CCA, but its effectiveness is often hampered by therapeutic resistance. Recent research highlights the remarkable plasticity of tumor-associated macrophages (TAMs) within the tumor microenvironment (TME). TAMs play a crucial dual role in either promoting or suppressing tumor development, depending on the factors that polarize them toward pro-tumorigenic or anti-tumorigenic phenotypes, as well as their interactions with cancer cells and other stromal components. In this review, we critically examine recent studies on TAMs in CCA, detailing the expression patterns and prognostic significance of different TAM subtypes in CCA, the mechanisms by which TAMs influence CCA progression and immune evasion, and the potential for reprogramming TAMs to enhance anticancer therapies. This review aims to provide a framework for deeper future research.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- Department of Research and Teaching, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoping Li
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Minjie Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianguo Fei
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Xu Z, Huang J, Shi W, Qi Y, Yuan F, Lin B. Identification of an anoikis-related gene signature and characterization of immune infiltration in skin cutaneous melanoma. Medicine (Baltimore) 2024; 103:e37900. [PMID: 38669429 PMCID: PMC11049774 DOI: 10.1097/md.0000000000037900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Anoikis is considered strongly associated with a biological procession of tumors. Herein, we utilized anoikis-related genes (ARGs) to predict the prognosis and immunotherapeutic efficacy for skin cutaneous melanoma (SKCM). RNA-seq data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. After dividing patients into novel subtypes based on the expression of prognostic ARGs, K-M survival was conducted to compare the survival status. Subsequently, differentially expressed ARGs were identified and the predictive model was established. The predictive effects were validated using the areas under the curve about the receiver operating characteristic. Moreover, tumor mutation burden, the enriched functional pathway, immune cells and functions, and the immunotherapeutic response were also analyzed and compared. The distribution of model genes at cell level was visualized by the single-cell seq with tumor immune single-cell hub database. Patients of The Cancer Genome Atlas-SKCM cohort were divided into 2 clusters, the cluster 1 performed a better prognosis. Cluster 2 was more enriched in metabolism-related pathways whereas cluster 1 was more associated with immune pathways. A predictive risk model was established with 6 ARGs, showing the areas under the curves of 1-year, 3-year, and 5-year ROC were 0.715, 0,720, and 0.731, respectively. Moreover, risk score was negatively associated with tumor mutation burden and immune-related pathways enrichment. In addition, patients with high-risk scores performed immunosuppressive status but the decreasing scores enhanced immune cell infiltration, immune function activation, and immunotherapeutic response. In this study, we established a novel signature in predicting prognosis and immunotherapy. It can be considered reliable to formulate the complex treatment for SKCM patients.
Collapse
Affiliation(s)
- Ziqian Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qi
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Feng Yuan
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Bingjiang Lin
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Khalid S, Guo J, Muhammad SA, Bai B. Designing, cloning and simulation studies of cancer/testis antigens based multi-epitope vaccine candidates against cutaneous melanoma: An immunoinformatics approach. Biochem Biophys Rep 2024; 37:101651. [PMID: 38371523 PMCID: PMC10873875 DOI: 10.1016/j.bbrep.2024.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Melanoma is the most fatal kind of skin cancer. Among its various types, cutaneous melanoma is the most prevalent one. Melanoma cells are thought to be highly immunogenic due to the presence of distinct tumor-associated antigens (TAAs), which includes carcinoembryonic antigen (CEA), cancer/testis antigens (CTAs) and neo-antigens. The CTA family is a group of antigens that are only expressed in malignancies and testicular germ cells. Methods We used integrative framework and systems-level analysis to predict potential vaccine candidates for cutaneous melanoma involving epitopes prediction, molecular modeling and molecular docking to cross-validate the binding affinity and interaction between potential vaccine agents and major histocompatibility molecules (MHCs) followed by molecular dynamics simulation, immune simulation and in silico cloning. Results In this study, three cancer/testis antigens were targeted for immunotherapy of cutaneous melanoma. Among many CTAs that were studied for their expression in primary and malignant melanoma, NY-ESO-1, MAGE1 and SSX2 antigens are most prevalent in cutaneous melanoma. Cytotoxic and Helper epitopes were predicted, and the finest epitopes were shortlisted based on binding score. The vaccine construct was composed of the four epitope-rich domains of antigenic proteins, an appropriate adjuvant, His tag and linkers. This potential multi-epitope vaccine was further evaluated in terms of antigenicity, allergencity, toxicity and other physicochemical properties. Molecular interaction estimated through protein-protein docking unveiled good interactions characterized by favorable binding energies. Molecular dynamics simulation ensured the stability of docked complex and the predicted immune response through immune simulation revealed elevated levels of antibodies titer, cytokines, interleukins and immune cells (NK, DC and MA) population. Conclusion The findings indicate that the potential vaccine candidates could be effective immunotherapeutic agents that modify the treatment strategies of cutaneous melanoma.
Collapse
Affiliation(s)
- Sana Khalid
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Jinlei Guo
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou, China
- Zhejiang Province Engineering Research Center of Intelligent Medicine, Wenzhou, China
- The 1st School of Medical, School of Information and Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Song F, Tarantino P, Garrido-Castro A, Lynce F, Tolaney SM, Schlam I. Immunotherapy for Early-Stage Triple Negative Breast Cancer: Is Earlier Better? Curr Oncol Rep 2024; 26:21-33. [PMID: 38198112 DOI: 10.1007/s11912-023-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF REVIEW In this narrative review, we discuss the optimal timing of immune checkpoint inhibitors (ICI) in early triple negative breast cancer (TNBC), the landscape of predictive biomarkers for the use of immunotherapy, and the mounting literature suggesting a benefit for an early use of ICI. RECENT FINDINGS TNBC is associated with a poor prognosis relative to other breast cancer subtypes, and until recently, the treatment of TNBC was limited to cytotoxic chemotherapy. In 2021, the immune-checkpoint inhibitor, pembrolizumab, was approved in combination with neoadjuvant chemotherapy for patients with high-risk early stage TNBC. This approval changed the treatment paradigm of early TNBC concomitantly raised several challenges in clinical practice, pertaining to patient selection, toxicity management, and post-neoadjuvant treatment, among others. The introduction of neoadjuvant chemoimmunotherapy has transformed the treatment landscape for early TNBC. However, several challenges, including patient selection, toxicity management, and the identification of predictive biomarkers, need to be addressed. Future research should focus on refining the timing and duration of immunotherapy, optimizing the chemotherapy partner, and exploring novel predictive biomarkers of response or toxicity.
Collapse
Affiliation(s)
- Fei Song
- Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
| | - Ana Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ilana Schlam
- Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA.
- Tufts University, Boston, MA, USA.
| |
Collapse
|
6
|
Alsadat Mahmoudian R, Amirhosein M, Mahmoudian P, Fardi Golyan F, Mokhlessi L, Maftooh M, Khazaei M, Nassiri M, Mahdi Hassanian S, Ghayour-Mobarhan M, Ferns GA, Shahidsales S, Avan A. The therapeutic potential value of Cancer-testis antigens in immunotherapy of gastric cancer. Gene 2023; 853:147082. [PMID: 36464170 DOI: 10.1016/j.gene.2022.147082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Gastric cancer (GC) is the fourth most common cause of mortality and the fifth for incidence, globally. Diagnosis, early prognosis, and therapy remains challenging for this condition, and new tumor-associated antigens are required for its detection and immunotherapy. Cancer-testis antigens (CTAs) are a subfamily of tumor-associated antigens (TAAs) that have been identified as potential biomarkers and targets for cancer immunotherapy. The CTAs-restricted expression pattern in tumor cells and their potential immunogenicity identify them as attractive target candidates in CTA-based diagnosis or prognosis or immunotherapy. To date, numerous studies have reported the dysregulation of CTAs in GC. Several clinical trials have been done to assess CTA-based immunotherapeutic potential in the treatment of GC patients. NY-ESO-1, MAGE, and KK-LC-1 have been used in GC clinical trials. We review recent studies that have investigated the potential of the CTAs in GC regarding the expression, function, aggressive phenotype, prognosis, and immunological responses as well as their possible clinical significance as immunotherapeutic targets with a focus on challenges and future interventions.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maharati Amirhosein
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leila Mokhlessi
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany.
| | - Mina Maftooh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK.
| | | | - Amir Avan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Cosci I, Grande G, Di Nisio A, Rocca MS, Del Fiore P, Benna C, Mocellin S, Ferlin A. Cutaneous Melanoma and Hormones: Focus on Sex Differences and the Testis. Int J Mol Sci 2022; 24:ijms24010599. [PMID: 36614041 PMCID: PMC9820190 DOI: 10.3390/ijms24010599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Cutaneous melanoma, the most aggressive type of skin cancer, remains one the most represented forms of cancer in the United States and European countries, representing, in Australia, the primary cause of cancer-related deaths. Recently, many studies have shown that sex disparities previously observed in most cancers are particularly accentuated in melanoma, where male sex is consistently associated with an increased risk of disease progression and a higher mortality rate. The causes of these sex differences rely on biological mechanisms related to sex hormones, immune homeostasis and oxidative processes. The development of newer therapies, such as immune checkpoint inhibitors (ICIs) (i.e., anti-PD-1 and anti-CTLA-4 monoclonal antibodies) has dramatically changed the treatment landscape of metastatic melanoma patients, though ICIs can interfere with the immune response and lead to inflammatory immune-related adverse events (irAEs). Recently, some studies have shown a potential adverse influence of this immunotherapy treatment also on male fertility and testicular function. However, while many anticancer drugs are known to cause defects in spermatogenesis, the effects of ICIs therapy remain largely unknown. Notwithstanding the scarce and conflicting information available on this topic, the American Society of Clinical Oncology guidelines recommend sperm cryopreservation in males undergoing ICIs. As investigations regarding the long-term outcomes of anticancer immunotherapy on the male reproductive system are still in their infancy, this review aims to support and spur future research in order to understand a potential gonadotoxic effect of ICIs on testicular function, spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Ilaria Cosci
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Andrea Di Nisio
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Clara Benna
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, 35128 Padova, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-8212723
| |
Collapse
|
8
|
Deng Q, Natesan R, Cidre-Aranaz F, Arif S, Liu Y, Rasool RU, Wang P, Mitchell-Velasquez E, Das CK, Vinca E, Cramer Z, Grohar PJ, Chou M, Kumar-Sinha C, Weber K, Eisinger-Mathason TK, Grillet N, Grünewald T, Asangani IA. Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Rep 2022; 39:110971. [PMID: 35705030 PMCID: PMC9716578 DOI: 10.1016/j.celrep.2022.110971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.
Collapse
Affiliation(s)
- Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
| | - Shehbeel Arif
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Endrit Vinca
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zvi Cramer
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | | | - Margaret Chou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Grünewald
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Lead contact,Correspondence:
| |
Collapse
|
9
|
Abstract
Melanoma is a relentless type of skin cancer which involves myriad signaling pathways which regulate many cellular processes. This makes melanoma difficult to treat, especially when identified late. At present, therapeutics include chemotherapy, surgical resection, biochemotherapy, immunotherapy, photodynamic and targeted approaches. These interventions are usually administered as either a single-drug or in combination, based on tumor location, stage, and patients' overall health condition. However, treatment efficacy generally decreases as patients develop treatment resistance. Genetic profiling of melanocytes and the discovery of novel molecular factors involved in the pathogenesis of melanoma have helped to identify new therapeutic targets. In this literature review, we examine several newly approved therapies, and briefly describe several therapies being assessed for melanoma. The goal is to provide a comprehensive overview of recent developments and to consider future directions in the field of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Pavan Kumar Dhanyamraju, Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA17033, USA. Tel: +1-6096474712, E-mail:
| | - Trupti N. Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
10
|
Sufyan M, Shahid F, Irshad F, Javaid A, Qasim M, Ashfaq UA. Implementation of Vaccinomics and In-Silico Approaches to Construct Multimeric Based Vaccine Against Ovarian Cancer. Int J Pept Res Ther 2021; 27:2845-2859. [PMID: 34690620 PMCID: PMC8524215 DOI: 10.1007/s10989-021-10294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/03/2022]
Abstract
One of the most common gynecologic cancers is ovarian cancer and ranked third after the other two most common cancers: cervical and uterine. The highest mortality rate has been observed in the case of ovarian cancer. To treat ovarian cancer, an immune-informatics approach was used to design a multi-epitope vaccine (MEV) structure. Epitopes prediction of the cancer testis antigens (NY-ESO-1), A-Kinase anchor protein (AKAP4), Acrosin binding protein (ACRBP), Piwi-like protein (PIWIL3), and cancer testis antigen 2 (LAGE-1) was done. Non-toxic, highly antigenic, non-allergenic, and overlapping epitopes were shortlisted for vaccine construction. Chosen T-cell epitopes displayed a robust binding attraction with their corresponding Human Leukocyte Antigen (HLA) alleles demonstrated 97.59% of population coverage. The vaccine peptide was established by uniting three key constituents, comprising the 14 epitopes of CD8 + cytotoxic T lymphocytes (CTLs), 5 helper epitopes, and the adjuvant. For the generation of the effective response of CD4 + cells towards the T-helper cells, granulocyte–macrophage-colony-stimulating factor (GM-CSF) was applied. With the addition of adjuvants and linkers, the construct size was 547 amino acids. The developed MEV structure was predicted to be antigenic, non-toxic, non-allergenic, and firm in nature. I-tasser anticipated the 3D construction of MEV. Moreover, disulfide engineering further enhanced the stability of the final vaccine protein. In-silico cloning and vaccine codon optimization were done to analyze the up-regulation of its expression. The outcomes established the vaccine’s immunogenicity and safety profile, besides its aptitude to encourage both humoral and cellular immune responses. The offered vaccine, grounded on our in-silico investigation, may be considered for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Faiza Irshad
- Environment Biotechnology Lab, Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
11
|
Naik PP. Current Trends of Immunotherapy in the Treatment of Cutaneous Melanoma: A Review. Dermatol Ther (Heidelb) 2021; 11:1481-1496. [PMID: 34339016 PMCID: PMC8484371 DOI: 10.1007/s13555-021-00583-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma remains a severe public health threat, with annual incidence increasing slowly but steadily over 4 decades. While early-stage melanomas can typically be treated with complete surgical excision with favorable results, the development of metastatic cancer, which is related to a lower survival rate, is linked to the primary tumor's rising stage and other high-risk features. Even though the first discoveries of an immunological anti-tumor response were published about a century ago, immunotherapy has only been a feasible therapeutic option for cutaneous melanoma in the last 30 years. Nonetheless, for the treatment of various cancers, including metastatic melanoma, the area of cancer immunotherapy has made significant progress in the last decade. As a result, melanoma continues to be the subject of several preclinical and clinical investigations to further understand cancer immunobiology and test different tumor immunotherapies. Immunotherapy's resistance to radiation and cytotoxic chemotherapy is one of its most distinguishing features. Furthermore, the discovery of biomarkers will aid in patient stratification and management during immunotherapy treatment. In this article, we discuss current knowledge and recent developments in immune-mediated therapy of melanoma.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Dubai, United Arab Emirates.
| |
Collapse
|
12
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
13
|
Hossain SM, Lynch-Sutherland CF, Chatterjee A, Macaulay EC, Eccles MR. Can Immune Suppression and Epigenome Regulation in Placenta Offer Novel Insights into Cancer Immune Evasion and Immunotherapy Resistance? EPIGENOMES 2021; 5:16. [PMID: 34968365 PMCID: PMC8594685 DOI: 10.3390/epigenomes5030016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of mortality and morbidity in the developed world. Cancer progression involves genetic and epigenetic alterations, accompanied by aggressive changes, such as increased immune evasion, onset of metastasis, and drug resistance. Similar to cancer, DNA hypomethylation, immune suppression, and invasive cell behaviours are also observed in the human placenta. Mechanisms that lead to the acquisition of invasive behaviour, immune evasion, and drug and immunotherapy resistance are presently under intense investigations to improve patient outcomes. Here, we review current knowledge regarding the similarities between immune suppression and epigenome regulation, including the expression of repetitive elements (REs), endogenous retroviruses (ERVs) and transposable elements (TEs) in cells of the placenta and in cancer, which are associated with changes in immune regulation and invasiveness. We explore whether immune suppression and epigenome regulation in placenta offers novel insights into immunotherapy resistance in cancer, and we also discuss the implications and the knowledge gaps relevant to these findings, which are rapidly being accrued in these quite disparate research fields. Finally, we discuss potential linkages between TE, ERV and RE activation and expression, regarding mechanisms of immune regulation in placenta and cancer. A greater understanding of the role of immune suppression and associated epigenome regulation in placenta could help to elucidate some comparable mechanisms operating in cancer, and identify potential new therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Chiemi F. Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Male fertility during and after immune checkpoint inhibitor therapy: A cross-sectional pilot study. Eur J Cancer 2021; 152:41-48. [PMID: 34062486 DOI: 10.1016/j.ejca.2021.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are widely used and may induce long-term survival in various types of cancer. Yet, there is scarce evidence on potential effects on patient fertility and the necessity of cryopreservation before treatment onset. The aim of our study was to assess the prevalence of male infertility after initiation of ICI treatment. METHODS This is a monocenter, cross-sectional pilot study. Fertility was investigated by spermiogram, analysis of sexual hormones and questionnaires on sexual function and sexual activity. Male patients under the age of 60 years previously or currently treated with ICI for cutaneous malignancies or uveal melanoma were included. RESULTS Twenty-five patients were included, with a median age of 49 years. Eighteen of 22 (82%) available spermiograms showed no pathologies, all patients reported a normal sexual function and sexual activity. Of four patients with pathological spermiogram, three patients were diagnosed with azoospermia and one with oligoasthenoteratozoospermia. Three patients had significant confounding factors (previous inguinal radiotherapy, chemotherapy and chronic alcohol abuse, and bacterial orchitis). One patient with normal spermiogram before ICI treatment presented 1 year after initiation with azoospermia, showing an asymptomatic, inflammatory infiltrate with predominantly neutrophil granulocytes, macrophages and T-lymphocytes in the ejaculate. Infectious causes were ruled out; andrological examination was unremarkable. A second case with reduced sperm counts during treatment may be ICI-induced also. CONCLUSIONS Most patients had no restrictions in fertility, yet an inflammatory loss of spermatogenesis seems possible. Cryopreservation should be discussed with all patients with potential future desire for children before treatment.
Collapse
|
15
|
Jakobsen MK, Traynor S, Stæhr M, Duijf PG, Nielsen AY, Terp MG, Pedersen CB, Guldberg P, Ditzel HJ, Gjerstorff MF. The Cancer/Testis Antigen Gene VCX2 Is Rarely Expressed in Malignancies but Can Be Epigenetically Activated Using DNA Methyltransferase and Histone Deacetylase Inhibitors. Front Oncol 2021; 10:584024. [PMID: 33634013 PMCID: PMC7900521 DOI: 10.3389/fonc.2020.584024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
Identification of novel tumor-specific targets is important for the future development of immunotherapeutic strategies using genetically engineered T cells or vaccines. In this study, we characterized the expression of VCX2, a member of the VCX/Y cancer/testis antigen family, in a large panel of normal tissues and tumors from multiple cancer types using immunohistochemical staining and RNA expression data. In normal tissues, VCX2 was detected in the germ cells of the testis at all stages of maturation but not in any somatic tissues. Among malignancies, VCX2 was only found in tumors of a small subset of melanoma patients and thus rarely expressed compared to other cancer/testis antigens such as GAGE and MAGE-A. The expression of VCX2 correlated with that of other VCX/Y genes. Importantly, we found that expression of VCX2 was inversely correlated with promoter methylation and could be activated by treatment with a DNA methyltransferase inhibitor in multiple breast cancer and melanoma cell lines and a breast cancer patient-derived xenograft. The effect could be further potentiated by combining the DNA methyltransferase inhibitor with a histone deacetylase inhibitor. Our results show that the expression of VCX2 can be epigenetically induced in cancer cells and therefore could be an attractive target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette Stæhr
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal G Duijf
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaraby Y Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
17
|
Ma X, Zhang Y, Wang S, Wei H, Yu J. Immune checkpoint inhibitor (ICI) combination therapy compared to monotherapy in advanced solid cancer: A systematic review. J Cancer 2021; 12:1318-1333. [PMID: 33531977 PMCID: PMC7847663 DOI: 10.7150/jca.49174] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the efficacy and safety of immune checkpoint inhibitor (ICI) two-drug combination therapy in patients with advanced malignancy. Methods: We searched PubMed, PMC, EMBASE, EBSCO, Cochrane Central Register of Controlled Trials (CENTRAL), American Society of Clinical Oncology (ASCO and the European Society of Medical Oncology (ESMO) to identify primary research reporting the survival outcomes and safety of ICI combination therapy in patients with advanced malignancy. We performed a meta-analysis that evaluated the risk ratio (RR) and its 95% confidence interval (CI) for objective response rates (ORR) and disease control rates (DCR), hazard ratio (HR) and 95% CI for progression-free survival (PFS) and overall survival time (OS), and RR and 95% CI for adverse events (AEs). Results: The final 10 studies (15 cohorts) and 2410 patients were included in the meta-analysis. The ICI combination therapy resulted in improved ORR (RR 1.82, 95% CI 1.31-2.54, p = 0.0004), DCR (RR 1.41, 95% CI 1.29-1.55, p < 0.0001), PFS (HR 0.83, 95% CI 0.74-0.94, p = 0.003) and OS (HR 0.90, 95% CI 0.82-0.98, p = 0.02) in patients with advanced malignant tumors. The incidence of some high grade (≥3) AEs increased, such as fatigue, nausea, diarrhea, colitis, rash, pruritus, elevated transaminase and lipase. Conclusion: Our study showed that ICI combination therapy can improve ORR, DCR, PFS and OS in patients with advanced malignancy. Compared with ICI monotherapy, ICI combination therapy was more likely to induce severe AEs.
Collapse
Affiliation(s)
- Xiaoting Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Yujian Zhang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Huamin Wei
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| |
Collapse
|
18
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Targeting Tumor-Associated Macrophages to Increase the Efficacy of Immune Checkpoint Inhibitors: A Glimpse into Novel Therapeutic Approaches for Metastatic Melanoma. Cancers (Basel) 2020; 12:cancers12113401. [PMID: 33212945 PMCID: PMC7698460 DOI: 10.3390/cancers12113401] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapeutic intervention for a variety of advanced/metastatic solid tumors, including melanoma, but in a large number of cases, patients fail to establish a sustained anti-tumor immunity and to achieve a long-lasting clinical benefit. Cells of the tumor micro-environment such as tumor-associated M2 macrophages (M2-TAMs) have been reported to limit the efficacy of immunotherapy, promoting tumor immune evasion and progression. Thus, strategies targeting M2-TAMs have been suggested to synergize with immune checkpoint blockade. This review recapitulates the molecular mechanisms by which M2-TAMs promote cancer immune evasion, with focus on the potential cross-talk between pharmacological interventions targeting M2-TAMs and ICIs for melanoma treatment.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
- Correspondence: ; Tel.: +39-06-7259-6338
| |
Collapse
|
19
|
Leonardi GC, Candido S, Falzone L, Spandidos DA, Libra M. Cutaneous melanoma and the immunotherapy revolution (Review). Int J Oncol 2020; 57:609-618. [PMID: 32582963 PMCID: PMC7384846 DOI: 10.3892/ijo.2020.5088] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
In a relatively short period of time, treatment strategies for metastatic melanoma have radically changed leading to an unprecedented improvement in patient survival. In this period, immunotherapy options have evolved from cytokine‑based approaches to antibody‑mediated inhibition of immune checkpoints, cancer vaccines and pharmacological modulation of the melanoma microenvironment. Combination of immunotherapy strategies and the association of immune checkpoint inhibitors (ICIs) with BRAF V600 targeted therapy show encouraging results. The future of drug development in this field is promising. The comprehension of primary and acquired resistance mechanisms to ICIs and the dissection of melanoma immunobiology will be instrumental for the development of new treatment strategies and to improve clinical trial design. Moreover, biomarker discovery will help patient stratification and management during immunotherapy treatment. In this review, we summarize landmark clinical trials of immune checkpoint inhibitors in advanced melanoma and discuss the rational for immunotherapy combinations. Immunotherapy approaches at early stage of clinical development and recent advances in melanoma immunotherapy biomarker development are also discussed.
Collapse
Affiliation(s)
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, I-95123 Catania
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, I-95123 Catania
| |
Collapse
|
20
|
Luo B, Yun X, Li J, Fan R, Guo WW, Liu C, Lin YD, Ge YY, Zeng X, Bi SQ, Nong WX, Zhang QM, Xie XX. Cancer-testis Antigen OY-TES-1 Expression and Immunogenicity in Hepatocellular Carcinoma. Curr Med Sci 2020; 40:719-728. [PMID: 32862383 DOI: 10.1007/s11596-020-2241-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Cancer testis (CT) antigens have received particular attention in cancer immunotherapy. OY-TES-1 is a member of CT antigens. This study was to evaluate OY-TES-1 expression and immunogenicity in hepatocelluar carcinoma (HCC). OY-TES-1 mRNA expression was detected in 56 HCC tissues and 5 normal liver tissues by reverse transcriptase PCR (RT-PCR). Of the 56 cases of HCC tissues tested, 37 cases had tumor and matched adjacent non-cancer tissues and were subjected to both RT-PCR and quantitative real-time PCR. OY-TES-1 protein was subsequently observed on a panel of tissue microarrays. Sera from patients were tested for OY-TES-1 antibody by ELISA. To identify OY-TES-1 capable of inducing cellular immune response, OY-TES-1 protein was used to sensitize dentritic cells and the cytotoxicity effect was measured in vitro. The results showed that OY-TES-1 mRNA was highly expressed in 41 of the 56 (73.21%) HCC tissues, whereas none in 5 normal liver tissues. OY-TES-1 mRNA was frequently expressed not only in HCC tissues (72.97%, 27/37), but also in paired adjacent non-cancer tissues (64.86%, 24/37). But the mean expression level of OY-TES-1 mRNA in HCC tissues was significantly higher than that in adjacent non-cancer tissues (0.76854 vs. 0.09834, P=0.021). Immunohistochemistry showed that OY-TES-1 protein expression was detected in 6 of the 49 cases of HCC tissues, and absent in 9 cases of normal liver and 6 cases of cirrhosis tissues. Seropositivity was detected in 10 of the 45 HCC patients, but not detected in 17 cirrhosis patients and 76 healthy donors. The specific cytotoxic T cells elicited by OY-TES-1 could kill HLA-A2+ HCC cell line which expressed OY-TES-1. The target lysis was mainly HLA class I -dependent and could be blocked by antibodies against monomorphic HLA class I but not HLA class II molecule. In summary, OY-TES-1 expression is up-regulated in HCC tissues and can be recognized by humoral and cellular responses, which suggests that OY-TES-1 is an attractive target for tumor immunotherapy in HCC.
Collapse
Affiliation(s)
- Bin Luo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xiang Yun
- Department of Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jing Li
- Clinical Laboratory, Chinese Medicine Hospital, Quanzhou, 362000, China
| | - Rong Fan
- School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, 530021, China
| | - Wen-Wen Guo
- Department of Pathology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chang Liu
- Department of Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Yong-da Lin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Ying-Ying Ge
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xia Zeng
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Shui-Qing Bi
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Wei-Xia Nong
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
| | - Qing-Mei Zhang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
| | - Xiao-Xun Xie
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory Research on Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
21
|
Charles J, Chaperot L, Hannani D, Bruder Costa J, Templier I, Trabelsi S, Gil H, Moisan A, Persoons V, Hegelhofer H, Schir E, Quesada JL, Mendoza C, Aspord C, Manches O, Coulie PG, Khammari A, Dreno B, Leccia MT, Plumas J. An innovative plasmacytoid dendritic cell line-based cancer vaccine primes and expands antitumor T-cells in melanoma patients in a first-in-human trial. Oncoimmunology 2020; 9:1738812. [PMID: 32313721 PMCID: PMC7153838 DOI: 10.1080/2162402x.2020.1738812] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of immune checkpoint inhibitors has been shown to depend on preexisting antitumor immunity; thus, their combination with cancer vaccines is an attractive therapeutic approach. Plasmacytoid dendritic cells (PDC) are strong inducers of antitumor responses and represent promising vaccine candidates. We developed a cancer vaccine approach based on an allogeneic PDC line that functioned as a very potent antigen-presenting cell in pre-clinical studies. In this phase Ib clinical trial, nine patients with metastatic stage IV melanoma received up to 60 million irradiated PDC line cells loaded with 4 melanoma antigens, injected subcutaneously at weekly intervals. The primary endpoints were safety and tolerability. The vaccine was well tolerated and no serious vaccine-induced side effects were recorded. Strikingly, there was no allogeneic response toward the vaccine, but a significant increase in the frequency of circulating anti-tumor specific T lymphocytes was observed in two patients, accompanied by a switch from a naïve to memory phenotype, thus demonstrating priming of antigen-specific T-cells. Signs of clinical activity were observed, including four stable diseases according to IrRC and vitiligoïd lesions. Four patients were still alive at week 48. We also demonstrate the in vitro enhancement of specific T cell expansion induced by the synergistic combination of peptide-loaded PDC line with anti-PD-1, as compared to peptide-loaded PDC line alone. Taken together, these clinical observations demonstrate the ability of the PDC line based-vaccine to prime and expand antitumor CD8+ responses in cancer patients. Further trials should test the combination of this vaccine with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Julie Charles
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Laurence Chaperot
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Dalil Hannani
- Immune checkpoint inhibitors, PDCline Pharma, Grenoble
| | - Juliana Bruder Costa
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Isabelle Templier
- Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Sabiha Trabelsi
- Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Hugo Gil
- Pathology Department, Institut de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Anaick Moisan
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Cell Therapy and Engineering Unit, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint Ismier, France
| | - Virginie Persoons
- Cell Therapy and Engineering Unit, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint Ismier, France
| | - Harald Hegelhofer
- Cell Therapy and Engineering Unit, Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint Ismier, France
| | - Edith Schir
- Délégation à la Recherche Clinique et à l'Innovation, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Caroline Aspord
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Olivier Manches
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Amir Khammari
- Onco-dermatology Department, CHU Nantes, CIC 1413, CRCINA, Nantes University, Nantes, France
| | - Brigitte Dreno
- Onco-dermatology Department, CHU Nantes, CIC 1413, CRCINA, Nantes University, Nantes, France
| | - Marie-Thérèse Leccia
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,Dermatology Department, Pôle Pluridisciplinaire de Médecine, CHU Grenoble Alpes, Grenoble, France
| | - Joel Plumas
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France.,Immune checkpoint inhibitors, PDCline Pharma, Grenoble
| |
Collapse
|
22
|
Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. Int J Mol Sci 2020; 21:ijms21072367. [PMID: 32235439 PMCID: PMC7178114 DOI: 10.3390/ijms21072367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Although melanoma is one of the most immunogenic tumors, it has an ability to evade anti-tumor immune responses by exploiting tolerance mechanisms, including negative immune checkpoint molecules. The most extensively studied checkpoints represent cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Immune checkpoint inhibitors (ICI), which were broadly applied for melanoma treatment in the past decade, can unleash anti-tumor immune responses and result in melanoma regression. Patients responding to the ICI treatment showed long-lasting remission or disease control status. However, a large group of patients failed to respond to this therapy, indicating the development of resistance mechanisms. Among them are intrinsic tumor properties, the dysfunction of effector cells, and the generation of immunosuppressive tumor microenvironment (TME). This review discusses achievements of ICI treatment in melanoma, reasons for its failure, and promising approaches for overcoming the resistance. These methods include combinations of different ICI with each other, strategies for neutralizing the immunosuppressive TME and combining ICI with other anti-cancer therapies such as radiation, oncolytic viral, or targeted therapy. New therapeutic approaches targeting other immune checkpoint molecules are also discussed.
Collapse
|
23
|
Taherian-Esfahani Z, Dashti S. Cancer-testis antigens: An update on their roles in cancer immunotherapy. Hum Antibodies 2020; 27:171-183. [PMID: 30909205 DOI: 10.3233/hab-190366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several recent studies have assessed suitability of tumor antigens for immunotherapy. Based on the restricted expression pattern in somatic tissues, cancer-testis antigens (CTAs) are possible candidates for cancer immunotherapy. These antigens are expressed in various tumors including gastrointestinal, breast, skin and hematologic malignancies. OBJECTIVES To find clinical trials utilizing CTAs in cancer patients. METHODS We searched PubMed, google scholar and specific websites that registers clinical trials. RESULTS A number of clinical trials have been designed to evaluate safety and efficacy of CTA-based treatments. The results of some of them have been promising. In the current literature search, we summarized the clinical trials of CTA-based therapies in cancer patients. CONCLUSIONS Based on the availability of different formulations of CTA-based vaccines, future researches should compare efficiency of these modalities.
Collapse
|
24
|
Danilova A, Misyurin V, Novik A, Girdyuk D, Avdonkina N, Nekhaeva T, Emelyanova N, Pipia N, Misyurin A, Baldueva I. Cancer/testis antigens expression during cultivation of melanoma and soft tissue sarcoma cells. Clin Sarcoma Res 2020; 10:3. [PMID: 32042403 PMCID: PMC6998350 DOI: 10.1186/s13569-020-0125-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autologous dendritic cells (DC) loaded with tumor-associated antigens (TAAs) are a promising approach for anticancer immunotherapy. Polyantigen lysates appear to be an excellent source of TAAs for loading onto the patient's dendritic cells. Cancer/testis antigens (CTA) are expressed by a wide range of tumors, but are minimally expressed on normal tissues, and could serve as a universal target for immunotherapy. However, CTA expression levels can vary significantly in patients with the same tumor type. We proposed that patients who do not respond to DC-based therapy may have distinct features of the CTA expression profile on tumor cells. PATIENTS AND METHODS We compared the gene expression of the principal families CTA in 22 melanoma and 27 soft tissue and bone sarcomas cell lines (STBS), received from patients and used for DC vaccine preparation. RESULTS The majority (47 of 49, 95.9%) cell lines showed CTA gene activity. The incidence of gene expression of GAGE, NYESO1, MAGEA1, PRAME's was significantly different (adj. p < 0.05) between melanoma and sarcoma cell lines. The expression of the SCP1 gene was detected neither in melanoma cells nor in the STBS cells. Clustering by the gene expression profile revealed four different expression patterns. We found three main patterns types: hyperexpression of multiple CTA, hyperexpression of one CTA with almost no expression of others, and no expression of CTA. All clusters types exist in melanoma and sarcoma cell lines. We observed dependence of killing efficacy from the PRAME (rho = 0.940, adj. p < 0.01) expression during real-time monitoring with the xCELLigence system of the interaction between melanoma or sarcoma cells with the T-lymphocytes activated by the lysate of selected allogenous melanoma cell lines with high expression of CTA. CONCLUSION Our results demonstrate that one can use lysates from allogeneic melanoma cell lines as a source of CTA for DC load during the production of anticancer vaccines for the STBS treatment. Patterns of CTA expression should be evaluated as biomarkers of response in prospective clinical trials.
Collapse
Affiliation(s)
- Anna Danilova
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
- Department of Oncoimmunology, N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Vsevolod Misyurin
- N.N. Blokhin’ National Medical Cancer Research Center, Kashirskoye sh. 24, Moscow, 115478 Russian Federation
| | - Aleksei Novik
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Dmitry Girdyuk
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Natalia Avdonkina
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Tatiana Nekhaeva
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Natalia Emelyanova
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Nino Pipia
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| | - Andrey Misyurin
- N.N. Blokhin’ National Medical Cancer Research Center, Kashirskoye sh. 24, Moscow, 115478 Russian Federation
| | - Irina Baldueva
- N.N. Petrov’ National Medical Cancer Research Center, Leningradskaya str., 68, Pesochniy, Saint-Petersburg, 197758 Russian Federation
| |
Collapse
|
25
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
26
|
Melanoma and autoimmunity: spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res 2019; 29:231-236. [PMID: 30615013 DOI: 10.1097/cmr.0000000000000573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until now, malignancy has been considered a cellular problem represented by the perturbed (uncontrolled) division of the cells associated with invasion and metastasis. Contrary to this classical approach, a new perspective suggests that cancerous disease is, in fact, a supracellular problem represented by inadequate evolution of complex supracellular processes (embryogenesis, development, regeneration, etc.). Such complex processes would be disconnected from the real needs of the body, inducing unnecessary or even dangerous events such as an exacerbated rate of the cell division, angiogenesis, immunosuppression (specific to embryogenesis and melanoma), invasion (mediated by trophoblastic/placental factors in melanoma), and migration (specific to neural crest cells, which generate melanocytes - the most common origin for melanoma). As a result, a correct and comprehensive interpretation of cancer (causes, evolution, therapy, and prevention) should be conducted from a supracellular perspective. After presenting the supracellular perspective, this article further investigates the favorable evolution of malignant melanoma in two distinct situations: in patients receiving no therapy and in patients treated with immune-checkpoint inhibitors. In patients receiving no therapy, spontaneous regressions of melanoma could be the result of several autoimmune reactions (inducing not only melanoma regression but also vitiligo, an autoimmune event frequently associated with melanoma). Patients treated with immune-checkpoint inhibitors develop similar autoimmune reactions, which are clearly correlated with better therapeutic results. The best example is vitiligo, which is considered a positive prognostic factor for patients receiving immune-checkpoint inhibitors. This finding indicates that immune-checkpoint inhibitors induce distinct types of autoimmune events, some corresponding to specific favorable autoimmune mechanisms (favoring tumor regression) and others to common unfavorable adverse reactions (which should be avoided or minimized). In conclusion, the spectrum of autoimmune reactions induced by immune-checkpoint inhibitors should be restricted in the near future to only these specific favorable autoimmune mechanisms. In this way, the unnecessary autoimmune reactions/autoaggressions could be avoided (a better quality of life), and treatment specificity and efficiency should increase (a higher response rate for melanoma therapy).
Collapse
|
27
|
Weiss SA, Wolchok JD, Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin Cancer Res 2019; 25:5191-5201. [PMID: 30923036 PMCID: PMC6726509 DOI: 10.1158/1078-0432.ccr-18-1550] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Melanoma is among the most sensitive of malignancies to immune modulation. Although multiple trials conducted over decades with vaccines, cytokines, and cell therapies demonstrated meaningful responses in a small subset of patients with metastatic disease, a true increase in overall survival (OS) within a randomized phase III trial was not observed until the development of anti-CTLA-4 (ipilimumab). Further improvements in OS for metastatic disease were observed with the anti-PD-1-based therapies (nivolumab, pembrolizumab) as single agents or combined with ipilimumab. A lower bound for expected 5-year survival for metastatic melanoma is currently approximately 35% and could be as high as 50% for the nivolumab/ipilimumab combination among patients who would meet criteria for clinical trials. Moreover, a substantial fraction of long-term survivors will likely remain progression-free without continued treatment. The hope and major challenge for the future is to understand the immunobiology of tumors with primary or acquired resistance to anti-PD-1 or anti-PD-1/anti-CTLA-4 and to develop effective immune therapies tailored to individual patient subsets not achieving long-term clinical benefit. Additional goals include optimal integration of immune therapy with nonimmune therapies, the development and validation of predictive biomarkers in the metastatic setting, improved prognostic and predictive biomarkers for the adjuvant setting, understanding mechanisms of and decreasing toxicity, and optimizing the duration of therapy.
Collapse
Affiliation(s)
- Sarah A Weiss
- Yale University School of Medicine, New Haven, Connecticut.
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mario Sznol
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Zhou YT, Qiu JJ, Wang Y, Liu PC, Lv Q, Du ZG. Sperm Protein Antigen 17 Expression Correlates With Lymph Node Metastasis and Worse Overall Survival in Patients With Breast Cancer. Front Oncol 2019; 9:710. [PMID: 31417875 PMCID: PMC6685407 DOI: 10.3389/fonc.2019.00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose: The expression and role of sperm protein antigen 17 (SPA17), which has been confirmed to be immunogenic, in breast cancer remain unclear. We examined the expression of SPA17 in breast cancer and assessed its effect on patient prognosis and its function in breast cancer development. Methods: SPA17 expression was evaluated by immunohistochemistry and Q-RT-PCR in 120 breast tissue samples. Correlation of SPA17 expression with the patients' clinicopathological parameters and overall survival was assessed. The function of SPA17 was also explored. Results: By reviewing Gene Expression Omnibus datasets, we found that SPA17 expression in ductal breast carcinoma in situ (log2[fold change] = 1.14, p-value = 0.004) and invasive ductal breast cancer (log2[fold change] = 1.03, p-value = 0.016) tissues was 2.20 and 2.05 times higher, respectively, than that in normal breast tissues. Our result also showed that 27% (27/100) of breast cancer samples expressed SPA17 but none of the normal breast (0/20) samples did. Lymph node metastasis (p < 0.001) and molecular subtyping (p = 0.002) were independent factors associated with SPA17 expression. Most importantly, SPA17 expression resulted in poor prognosis. In addition, cell function assay validated that SPA17 increased the migration (p < 0.001) and invasion (p = 0.007) of breast cancer cells, but not affected the proliferation of breast cancer cells. Conclusion: Our results demonstrated the vital role of SPA17 in the development and metastasis of breast cancer and that SPA17 may be a new therapeutic target in improving breast cancer prognosis.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- West China Hospital, Sichuan University, Chengdu, China
| | - Juan-Juan Qiu
- West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- West China Hospital, Sichuan University, Chengdu, China
| | | | - Qing Lv
- West China Hospital, Sichuan University, Chengdu, China
| | - Zheng-Gui Du
- West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Dashti S, Taherian-Esfahani Z. Cellular immune responses against cancer-germline genes in cancers. Hum Antibodies 2019; 28:57-64. [PMID: 31356200 DOI: 10.3233/hab-190392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cancer-germline genes are a class of genes that are normally expressed in testis, trophoblast and few somatic tissues but abnormally expressed in tumor tissues. Their expression signature indicates that they can induce cellular immune responses, thus being applied as targets in cancer immunotherapy. OBJECTIVES To obtain the data of cellular immune responses against cancer-germline genes in cancer. METHODS We searched PubMed/Medline with the key words cancer-germline antigen, cancer-testis antigen, CD4+ T cell, CD8+ T cell and cancer. RESULTS About 40 cancer-germline genes have been shown to induce T cell specific responses in cancer patients. Melanoma, lung and breast cancer are among the mostly assessed cancer types. Several epitopes have been identified which can be used in immunotherapy of cancer. CONCLUSION Cellular immune responses against cancer-germline genes are indicative of appropriateness of these genes as therapeutic targets.
Collapse
|
30
|
Seifi-Alan M, Shamsi R, Ghafouri-Fard S. Application of cancer-testis antigens in immunotherapy of hepatocellular carcinoma. Immunotherapy 2019; 10:411-421. [PMID: 29473472 DOI: 10.2217/imt-2017-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide common malignancy with poor prognosis. Several studies have aimed at identification of appropriate biomarkers for early detection of this cancer. Cancer-testis antigens (CTAs) as a novel group of tumor-associated antigens have been demonstrated to be expressed in HCC samples as well as peripheral blood samples from these patients but not in the corresponding adjacent noncancerous samples. Such pattern of expression has provided them an opportunity to be used as immunotherapeutic targets. The detection of spontaneous immune responses against CTAs in HCC patients has prompted design of CTA-based immunotherapeutic protocols in these patients. The results of some clinical trials have been promising in a subset of patients.
Collapse
Affiliation(s)
- Mahnaz Seifi-Alan
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Astaneh M, Dashti S, Esfahani ZT. Humoral immune responses against cancer-testis antigens in human malignancies. Hum Antibodies 2019; 27:237-240. [PMID: 31006681 DOI: 10.3233/hab-190377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer-testis antigens (CTAs) are a class of cancer antigens with extensive expression in human cancers. Many researchers have detected antibody responses against these tumor antigens in serum of cancer patients. OBJECTIVES To evaluate the relevance of humoral immune responses against CTAs in clinical outcome of cancer patientsMETHODS: We searched PubMed/Medline with the key words cancer-testis antigen, antibody, humoral response and cancer. RESULTS Humoral immune responses against CTAs have been detected in several human malignancies including skin, breast, brain and ovarian cancers. Some studies have shown associations between the presence of these responses in patients and patients' survival. CONCLUSION Humoral immune responses against CTAs are putative biomarkers for cancer detection and follow-up.
Collapse
|