1
|
Tian Y, Peng X, Yang X. Decreased PD-L1 contributes to preeclampsia by suppressing GM-CSF via the JAK2/STAT5 signal pathway. Sci Rep 2025; 15:3124. [PMID: 39856320 PMCID: PMC11759946 DOI: 10.1038/s41598-025-87349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligand PD-L1 have been detected at the materno-embryonic interface in both human and murine pregnancy models. However, research regarding the PD-1/PD-L1 signal in preeclampsia (PE) is limited. In the present investigation, 30 normal pregnant females and 30 PE patients were enrolled. Cellular functional experiments were performed in two trophoblast cell lines by transfection with lentiviral vectors for overexpression and down-regulation of PD-L1. The placental expressions of PD-1, PD-L1, and granulocyte macrophage colony-stimulating factor (GM-CSF) exhibited a notable reduction in PE cases compared with healthy pregnancies. Cellular functional experiments indicated that excessive PD-L1 expression significantly enhanced trophoblast migratory, invasive, and proliferative capabilities while inhibiting cell apoptosis. Additionally, the administration of lentivirus-mediated PD-L1 overexpression could alleviate clinical symptoms (hypertension, proteinuria) of PE-like rats. Therefore, decreased PD-L1 may contribute to PE by inhibiting GM-CSF via activating the JAK2/STAT5 pathway. Our study provides a novel pathway that can be targeted for the therapy of this disease.
Collapse
Affiliation(s)
- Yingying Tian
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xu Peng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
2
|
Timis T, Buruiana S, Dima D, Nistor M, Muresan XM, Cenariu D, Tigu AB, Tomuleasa C. Advances in Cell and Immune Therapies for Melanoma. Biomedicines 2025; 13:98. [PMID: 39857682 PMCID: PMC11761552 DOI: 10.3390/biomedicines13010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
The incidence rate of cutaneous melanoma is on the rise worldwide, due to increased exposure to UV radiation, aging populations, and exposure to teratogen agents. However, diagnosis is more precise, and the increased number of new cases is related to the improved diagnosis tools. Despite better early diagnosis and better therapies, melanoma has remained a significant public health challenge because of its aggressive behavior and high potential for metastasis. In 2020, cutaneous melanoma constituted approximately 1.3% of all cancer deaths that occurred within the European Union, thereby highlighting the necessity for effective prevention, timely diagnosis, and sustainable treatment measures, especially as a growing number of cases occur among younger patients. Melanoma is regarded as one of the most inflamed cancers due to its high immune cell presence and strong response to immunotherapy, fueling the need for development of immune-driven innovative treatments. Approved therapies, including immune checkpoint inhibitors (e.g., anti-PD-1 and anti-CTLA-4), have notably improved survival rates in melanoma. However, the limitations of the PD-1/PD-L1 and CTLA-4 axes inhibitors, such as low response rates, treatment resistance, and toxicity, have driven the need for continued research and advancements in treatment strategies. Current clinical trials are exploring various combinations of immune checkpoint inhibitors with costimulatory receptor agonists, chemotherapy, targeted therapies, and other immunotherapies, with the goal of improving outcomes and reducing side effects for melanoma patients. Emerging approaches, including adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) and oncolytic virotherapy, are showing promise. While CAR-T cell therapy has been less successful in melanoma compared to blood cancers, ongoing research is addressing challenges like the tumor microenvironment and antigen specificity. This review provides an overview of the requirement for advances in these medications, to mark a significant step forward in melanoma management, set to bring a fresh breath of hope for patients.
Collapse
Affiliation(s)
- Tanase Timis
- Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Oncology, Bistrița Emergency Hospital, 420094 Bistrița, Romania
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemițanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ximena Maria Muresan
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Dillman RO, Bota DA. Next-generation vaccines are showing promise against glioblastoma. Oncotarget 2024; 15:543-548. [PMID: 39102214 PMCID: PMC11299660 DOI: 10.18632/oncotarget.28636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
| | - Daniela A. Bota
- Correspondence to:Daniela A. Bota, Chao Family Comprehensive Cancer Center, Departments of Neurology and Neurological Surgery, University of California, Irvine, Orange, CA 92868, USA email
| |
Collapse
|
4
|
Mihalik NE, Steinberger KJ, Stevens AM, Bobko AA, Hoblitzell EH, Tseytlin O, Akhter H, Dziadowicz SA, Wang L, O’Connell RC, Monaghan KL, Hu G, Mo X, Khramtsov VV, Tseytlin M, Driesschaert B, Wan EC, Eubank TD. Dose-Specific Intratumoral GM-CSF Modulates Breast Tumor Oxygenation and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1589-1604. [PMID: 37756529 PMCID: PMC10656117 DOI: 10.4049/jimmunol.2300326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.
Collapse
Affiliation(s)
- Nicole E. Mihalik
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Alyson M. Stevens
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Andrey A. Bobko
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Ryan C. O’Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210, USA
| | - Valery V. Khramtsov
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Mark Tseytlin
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
- C. Eugene Bennet Department of Chemistry, West Virginia University, Morgantown, WV, 26505, United States
| | - Edwin C.K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26505
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
5
|
Dillman RO, Nistor GI, Keirstead HS. Autologous dendritic cells loaded with antigens from self-renewing autologous tumor cells as patient-specific therapeutic cancer vaccines. Hum Vaccin Immunother 2023:2198467. [PMID: 37133853 DOI: 10.1080/21645515.2023.2198467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
A promising personal immunotherapy is autologous dendritic cells (DC) loaded ex vivo with autologous tumor antigens (ATA) derived from self-renewing autologous cancer cells. DC-ATA are suspended in granulocyte-macrophage colony stimulating factor at the time of each subcutaneous injection. Previously, irradiated autologous tumor cell vaccines have produced encouraging results in 150 cancer patients, but the DC-ATA vaccine demonstrated superiority in single-arm and randomized trials in metastatic melanoma. DC-ATA have been injected into more than 200 patients with melanoma, glioblastoma, and ovarian, hepatocellular, and renal cell cancers. Key observations include: [1] greater than 95% success rates for tumor cell cultures and monocyte collection for dendritic cell production; [2] injections are well-tolerated; [3] the immune response is rapid and includes primarily TH1/TH17 cellular responses; [4] efficacy has been suggested by delayed but durable complete tumor regressions in patients with measurable disease, by progression-free survival in glioblastoma, and by overall survival in melanoma.
Collapse
Affiliation(s)
| | - Gabriel I Nistor
- Research and Development, AIVITA Biomedical Inc, Irvine, CA, USA
| | | |
Collapse
|
6
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Sang X, Gao T, Liu X, Shen Y, Chang L, Fu S, Yang H, Yang H, Mu W, Liang S, Zhang Z, Zhang N, Liu Y. Two-Wave Variable Nanotheranostic Agents for Dual-Mode Imaging-Guided Photo-Induced Triple-Therapy for Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201834. [PMID: 35918610 PMCID: PMC9507363 DOI: 10.1002/advs.202201834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photothermal therapy (PTT) is a promising strategy for cancer treatment, but its clinical application relies heavily on accurate tumor positioning and effective combination. Nanotheranostics has shown superior application in precise tumor positioning and treatment, bringing potential opportunities for developing novel PTT-based therapies. Here, a nanotheranostic agent is proposed to enhance magnetic resonance imaging (MRI)/ near-infrared fluorescence imaging (NIRFI) imaging-guided photo-induced triple-therapy for cancer. Thermosensitive liposomes co-loaded with SPIONs/IR780 and Abemaciclib (SIA-TSLs), peptide ACKFRGD, and click group 2-cyano-6-amino-benzothiazole (CABT) are co-modified on the surface of SIA-TSLs to form SIA-αTSLs. ACKFRGD can be hydrolyzed to expose the 1, 2-thiolamino groups in the presence of cathepsin B in tumors, which click cycloaddition with the cyano group on CABT, resulting in the formation of SIA-αTSLs aggregates. The aggregation of SIA-αTSLs in tumors enhances the MRI/NIRFI imaging capability and enables precise PTT. Photo-induced triple-therapy enhances precision cancer therapy. First, PTT ablates specific tumors and induces ICD via localized photothermal. Second, local tumor heating promotes the rupture of SIA-αTSLs, which release Abemaciclib to block the tumor cell cycle and inhibit Tregs proliferation. Third, injecting GM-CSF into tumor tissue leads to recruitment of dendritic cells and initiation of antitumor immunity. Collectively, these results present a promising nanotheranostic strategy for future cancer therapy.
Collapse
Affiliation(s)
- Xiao Sang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Xiaoqing Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Yelong Shen
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical University324 Jingwu Weiqi RoadJinanShandong Province250021China
| | - Lili Chang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Han Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Huizhen Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Weiwei Mu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Zipeng Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| |
Collapse
|
8
|
Zeng W, Pan J, Fang Z, Jia J, Zhang R, He M, Zhong H, He J, Yang X, Shi Y, Zhong B, Zeng J, Fu B, Huang M, Liu H. A Novel PD-L1-Containing MSLN Targeting Vaccine for Lung Cancer Immunotherapy. Front Immunol 2022; 13:925217. [PMID: 35795680 PMCID: PMC9251065 DOI: 10.3389/fimmu.2022.925217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Therapeutic tumor vaccines have become an important breakthrough in the treatment of various solid tumors including lung cancer. Dendritic cells (DCs)-based tumor vaccines targeting tumor-associated antigens (TAAs) play a key role in immunotherapy and immunoprevention. However, the weak immunogenicity of TAAs and low immune response rates are a major challenge faced in the application of therapeutic tumor vaccines. Here, we tested whether targeting an attractive target Mesothelin (MSLN) and PD-L1 immune checkpoint molecule to DCs in vivo would elicit therapeutic antitumor cytotoxic T lymphocyte (CTL) response. We generated specific MSLN fragment combined with PD-L1 and GM-CSF peptide immunogen (MSLN-PDL1-GMCSF) based on the novel anti-PD-L1 vaccination strategy we recently developed for the cancer treatment and prevention. We found that DCs loaded with MSLN-PDL1-GMCSF vaccine elicited much stronger endogenous anti-PD-L1 antibody and T cell responses in immunized mice and that antigen specific CTLs had cytolytic activities against tumor cells expressing both MSLN and PD-L1. We demonstrated that vaccination with MSLN-PDL1-GMCSF potently inhibited the tumor growth of MSLN+ and PD-L1+ lung cancer cells, exhibiting a significant therapeutic anti-tumor potential. Furthermore, PD-1 blockade further improved the synergistic antitumor therapeutic efficacy of MSLN-PDL1-GMCSF vaccine in immunized mice. In summary, our data demonstrated for the first time that this PD-L1-containing MSLN therapeutic vaccine can induce persistent anti-PD-L1 antibody and CTL responses, providing an effective immunotherapeutic strategy for lung cancer immunotherapy by combining MSLN-PDL1-GMCSF vaccine and PD-1 blockade.
Collapse
Affiliation(s)
- Wuyi Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayi Pan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zixuan Fang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiangtao Jia
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menghua He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hanyu Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiashan He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinyu Yang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Shi
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bei Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bishi Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Maoping Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hui Liu, ; Maoping Huang,
| | - Hui Liu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
- *Correspondence: Hui Liu, ; Maoping Huang,
| |
Collapse
|
9
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal 2022; 20:63. [PMID: 35538545 PMCID: PMC9092709 DOI: 10.1186/s12964-022-00871-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background The tumor microenvironment consists of stromal cells, extracellular matrix, and physicochemical properties (e.g., oxygenation, acidification). An important element of the tumor niche are cancer-associated fibroblasts (CAFs). They may constitute up to 80% of the tumor mass and share some features with myofibroblasts involved in the process of wound healing. CAFs can facilitate cancer progression. However, their interaction with melanoma cells is still poorly understood.
Methods We obtained CAFs using conditioned media derived from primary and metastatic melanoma cells, and via co-culture with melanoma cells on Transwell inserts. Using 2D and 3D wound healing assays and Transwell invasion method we evaluated CAFs’ motile activities, while coverslips with FITC-labeled gelatin, gelatin zymography, and fluorescence-based activity assay were employed to determine the proteolytic activity of the examined cells. Western Blotting method was used for the identification of CAFs’ markers as well as estimation of the mediators of MMPs’ (matrix metalloproteinases) expression levels. Lastly, CAFs’ secretome was evaluated with cytokine and angiogenesis proteomic arrays, and lactate chemiluminescence-based assay. Results Acquired FAP-α/IL6-positive CAFs exhibited elevated motility expressed as increased migration and invasion ratio, as well as higher proteolytic activity (area of digestion, MMP2, MMP14). Furthermore, fibroblasts activated by melanoma cells showed upregulation of the MMPs’ expression mediators’ levels (pERK, p-p38, CD44, RUNX), enhanced secretion of lactate, several cytokines (IL8, IL6, CXCL1, CCL2, ICAM1), and proteins related to angiogenesis (GM-CSF, DPPIV, VEGFA, PIGF). Conclusions Observed changes in CAFs’ biology were mainly driven by highly aggressive melanoma cells (A375, WM9, Hs294T) compared to the less aggressive WM1341D cells and could promote melanoma invasion, as well as impact inflammation, angiogenesis, and acidification of the tumor niche. Interestingly, different approaches to CAFs acquisition seem to complement each other showing interactions between studied cells. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00871-x.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | | | - Michał Majkowski
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wrocław, Poland.,Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413, Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| |
Collapse
|
10
|
Blood Eosinophils Are Associated with Efficacy of Targeted Therapy in Patients with Advanced Melanoma. Cancers (Basel) 2022; 14:cancers14092294. [PMID: 35565423 PMCID: PMC9104271 DOI: 10.3390/cancers14092294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Eosinophils appear to contribute to the efficacy of immunotherapy and their frequency was suggested as a predictive biomarker. Whether this observation could be transferred to patients treated with targeted therapy remains unknown. Methods: Blood and serum samples of healthy controls and 216 patients with advanced melanoma were prospectively and retrospectively collected. Freshly isolated eosinophils were phenotypically characterized by flow cytometry and co-cultured in vitro with melanoma cells to assess cytotoxicity. Soluble serum markers and peripheral blood counts were used for correlative studies. Results: Eosinophil-mediated cytotoxicity towards melanoma cells, as well as phenotypic characteristics, were similar when comparing healthy donors and patients. However, high relative pre-treatment eosinophil counts were significantly associated with response to MAPKi (p = 0.013). Eosinophil-mediated cytotoxicity towards melanoma cells is dose-dependent and requires proximity of eosinophils and their target in vitro. Treatment with targeted therapy in the presence of eosinophils results in an additive tumoricidal effect. Additionally, melanoma cells affected eosinophil phenotype upon co-culture. Conclusion: High pre-treatment eosinophil counts in advanced melanoma patients were associated with a significantly improved response to MAPKi. Functionally, eosinophils show potent cytotoxicity towards melanoma cells, which can be reinforced by MAPKi. Further studies are needed to unravel the molecular mechanisms of our observations.
Collapse
|
11
|
Ryu SH, Shin HS, Eum HH, Park JS, Choi W, Na HY, In H, Kim TG, Park S, Hwang S, Sohn M, Kim ED, Seo KY, Lee HO, Lee MG, Chu MK, Park CG. Granulocyte Macrophage-Colony Stimulating Factor Produces a Splenic Subset of Monocyte-Derived Dendritic Cells That Efficiently Polarize T Helper Type 2 Cells in Response to Blood-Borne Antigen. Front Immunol 2022; 12:767037. [PMID: 35069539 PMCID: PMC8778578 DOI: 10.3389/fimmu.2021.767037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that prime naive T cells and initiate adaptive immunity. Although the genetic deficiency and transgenic overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) signaling were reported to influence the homeostasis of DCs, the in vivo development of DC subsets following injection of GM-CSF has not been analyzed in detail. Among the treatment of mice with different hematopoietic cytokines, only GM-CSF generates a distinct subset of XCR1-33D1- DCs which make up the majority of DCs in the spleen after three daily injections. These GM-CSF-induced DCs (GMiDCs) are distinguished from classical DCs (cDCs) in the spleen by their expression of CD115 and CD301b and by their superior ability to present blood-borne antigen and thus to stimulate CD4+ T cells. Unlike cDCs in the spleen, GMiDCs are exceptionally effective to polarize and expand T helper type 2 (Th2) cells and able to induce allergic sensitization in response to blood-borne antigen. Single-cell RNA sequencing analysis and adoptive cell transfer assay reveal the sequential differentiation of classical monocytes into pre-GMiDCs and GMiDCs. Interestingly, mixed bone marrow chimeric mice of Csf2rb+/+ and Csf2rb-/- demonstrate that the generation of GMiDCs necessitates the cis expression of GM-CSF receptor. Besides the spleen, GMiDCs are generated in the CCR7-independent resident DCs of the LNs and in some peripheral tissues with GM-CSF treatment. Also, small but significant numbers of GMiDCs are generated in the spleen and other tissues during chronic allergic inflammation. Collectively, our present study identifies a splenic subset of CD115hiCD301b+ GMiDCs that possess a strong capacity to promote Th2 polarization and allergic sensitization against blood-borne antigen.
Collapse
Affiliation(s)
- Seul Hye Ryu
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyun Soo Shin
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Hyeon Eum
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wanho Choi
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunju In
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sejung Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soomin Hwang
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Moah Sohn
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Hae-Ock Lee
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Therapeutic Antibody Research Center, Genuv Inc., Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 2021; 18:558-576. [PMID: 34006998 PMCID: PMC8130796 DOI: 10.1038/s41571-021-00507-y] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Immune-checkpoint inhibitors and chimeric antigen receptor (CAR) T cells are revolutionizing oncology and haematology practice. With these and other immunotherapies, however, systemic biodistribution raises safety issues, potentially requiring the use of suboptimal doses or even precluding their clinical development. Delivering or attracting immune cells or immunomodulatory factors directly to the tumour and/or draining lymph nodes might overcome these problems. Hence, intratumoural delivery and tumour tissue-targeted compounds are attractive options to increase the in situ bioavailability and, thus, the efficacy of immunotherapies. In mouse models, intratumoural administration of immunostimulatory monoclonal antibodies, pattern recognition receptor agonists, genetically engineered viruses, bacteria, cytokines or immune cells can exert powerful effects not only against the injected tumours but also often against uninjected lesions (abscopal or anenestic effects). Alternatively, or additionally, biotechnology strategies are being used to achieve higher functional concentrations of immune mediators in tumour tissues, either by targeting locally overexpressed moieties or engineering 'unmaskable' agents to be activated by elements enriched within tumour tissues. Clinical trials evaluating these strategies are ongoing, but their development faces issues relating to the administration methodology, pharmacokinetic parameters, pharmacodynamic end points, and immunobiological and clinical response assessments. Herein, we discuss these approaches in the context of their historical development and describe the current landscape of intratumoural or tumour tissue-targeted immunotherapies.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Eduardo Castanon
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France.
- INSERM U1015, Gustave Roussy, Villejuif, France.
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France.
| |
Collapse
|
13
|
Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021; 22:ijms22179376. [PMID: 34502287 PMCID: PMC8430744 DOI: 10.3390/ijms22179376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM–CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM–CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT–GM–CSF–danger signal system by means of artificial cancer specific promoters or a modified delivery system.
Collapse
Affiliation(s)
- Irina Alekseenko
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: (I.A.); (E.S.)
| | - Alexey Kuzmich
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Sofia Kondratieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Victor Pleshkan
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Correspondence: (I.A.); (E.S.)
| |
Collapse
|
14
|
Mihalik NE, Wen S, Driesschaert B, Eubank TD. Formulation and In Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech 2021; 22:191. [PMID: 34169366 DOI: 10.1208/s12249-021-02049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-β-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS "M1" controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.
Collapse
|
15
|
Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021; 9:vaccines9060668. [PMID: 34207062 PMCID: PMC8233841 DOI: 10.3390/vaccines9060668] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Collapse
|