1
|
Vighetto V, Pascucci E, Percivalle NM, Troia A, Meiburger KM, Broek MRPVD, Segers T, Cauda V. Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography. ULTRASONICS SONOCHEMISTRY 2025; 113:107242. [PMID: 39874777 PMCID: PMC11808528 DOI: 10.1016/j.ultsonch.2025.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
In the context of molecular imaging, the present work explores an innovative platform made of lipid-coated nanocrystals as contrast-enhanced agent for both ultrasound imaging and sonoluminescence. At first, the dynamics of gas bubbles generation and cavitation under insonation with either pristine or lipid-coated nanocrystals (ZnO-Lip) are described, and the differences between the two colloidal systems are highlighted. These ZnO-Lip show an unprecedented ability to assist cavitation, which is reflected in enhanced sonoluminescent light emission with respect to the pristine nanocrystals or the pure water. Highly defined and sharp sonoluminescent images of cultured cells are indeed obtained, for the first time, when ZnO-Lip are used. Furthermore, ZnO-Lip were adopted as a nanosized agent for contrast-enhanced ultrasound imaging, i.e. echography, first in solutions, and then on ex-vivo tissues. A prolonged over time and bright imaging effect is observed when adopting the developed nanoparticles. Furthermore, their nanometric size and potential targeting with biomolecules would allow ease extravasation and tissue or even cell penetration, achieving enhanced-contrast imaging. Finally, the stimuli-responsive therapeutic applications of ZnO-Lip against tumors is overviewed, aiming to achieve a fully theranostic approach.
Collapse
Affiliation(s)
- V Vighetto
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129 Turin, Italy
| | - E Pascucci
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - N M Percivalle
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - A Troia
- Ultrasounds & Chemistry Lab, Advanced Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica (I.N.Ri.M.), Strada delle Cacce 91, 10135 Turin, Italy
| | - K M Meiburger
- Polito(BIO)Med Lab, Politecnico di Torino, 10129 Turin, Italy; Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - M R P van den Broek
- BIOS/Lab on a Chip Group, Max-Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | - T Segers
- BIOS/Lab on a Chip Group, Max-Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | - V Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129 Turin, Italy.
| |
Collapse
|
2
|
Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-Based Approaches in the Diagnosis and Treatment of Brain Tumors. J Clin Med 2024; 13:7449. [PMID: 39685907 DOI: 10.3390/jcm13237449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastomas are highly invasive brain tumors among perilous diseases. They are characterized by their fast proliferation and delayed detection that render them a significant focal point for medical research endeavors within the realm of cancer. Among glioblastomas, Glioblastoma multiforme (GBM) is the most aggressive and prevalent malignant brain tumor. For this, nanomaterials such as metallic and lipid nanoparticles and quantum dots have been acknowledged as efficient carriers. These nano-materials traverse the blood-brain barrier (BBB) and integrate and reach the necessary regions for neuro-oncology imaging and treatment purposes. This paper provides a thorough analysis on nanoparticles used in the diagnosis and treatment of brain tumors, especially for GBM.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Seyed Abdolvahab Banihashemian
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Farshid Zamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Davood Mehrabani
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
3
|
Asfiya R, Xu L, Paramanantham A, Kabytaev K, Chernatynskaya A, McCully G, Yang H, Srivastava A. Physio-chemical Modifications to Re-engineer Small Extracellular Vesicles for Targeted Anticancer Therapeutics Delivery and Imaging. ACS Biomater Sci Eng 2024; 10:697-722. [PMID: 38241003 PMCID: PMC10956554 DOI: 10.1021/acsbiomaterials.3c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Cancer theranostics developed through nanoengineering applications are essential for targeted oncologic interventions in the new era of personalized and precision medicine. Recently, small extracellular vesicles (sEVs) have emerged as an attractive nanoengineering platform for tumor-directed anticancer therapeutic delivery and imaging of malignant tumors. These natural nanoparticles have multiple advantages over synthetic nanoparticle-based delivery systems, such as intrinsic targeting ability, less immunogenicity, and a prolonged circulation time. Since the inception of sEVs as a viable replacement for liposomes (synthetic nanoparticles) as a drug delivery vehicle, many studies have attempted to further the therapeutic efficacy of sEVs. This article discusses engineering strategies for sEVs using physical and chemical methods to enhance their anticancer therapeutic delivery performance. We review physio-chemical techniques of effective therapeutic loading into sEV, sEV surface engineering for targeted entry of therapeutics, and its cancer environment sensitive release inside the cells/organ. Next, we also discuss the novel hybrid sEV systems developed by a combination of sEVs with lipid and metal nanoparticles to garner each component's benefits while overcoming their drawbacks. The article extensively analyzes multiple sEV labeling techniques developed and investigated for live tracking or imaging sEVs. Finally, we discuss the theranostic potential of engineered sEVs in future cancer care regimens.
Collapse
Affiliation(s)
- Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Lei Xu
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Kuanysh Kabytaev
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Anna Chernatynskaya
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
- Ellis Fischel Cancer Centre, University of Missouri School of Medicine, Columbia, Missouri 65212, United States
| |
Collapse
|
4
|
Racca L, Rosso G, Carofiglio M, Fagoonee S, Mesiano G, Altruda F, Cauda V. Effective combination of biocompatible zinc oxide nanocrystals and high-energy shock waves for the treatment of colorectal cancer. Cancer Nanotechnol 2023; 14:37. [DOI: 10.1186/s12645-023-00195-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/08/2023] [Indexed: 03/10/2025] Open
Abstract
Abstract
Background
Colorectal cancer (CRC) is the third most diagnosed tumor worldwide, with a very high mortality rate, second only to lung cancer. Current treatments, such as surgery, chemotherapy or radiotherapy, are not effective enough and show several limitations. Among the emerging strategies, nanomedicine offers very powerful tools in cancer treatment. Recently, the combination of nanoparticle antitumor effect with a triggering external stimulation was formulated to boost up the cytotoxic activity.
Results
In this work, we show the synergistic effect of oleic acid-capped zinc oxide nanocrystals (ZnO NCs) and mechanical high-energy shock waves (SW) in the treatment for CRC cells, in vitro. We tested two different types of ZnO NCs synthetized in our laboratory, the basal undoped ZnO NCs and the iron-doped ones (Fe:ZnO NCs). The presence of the oleic acid capping and the further amino-propyl functionalization guarantee a high colloidal stability to both NCs, while the iron doping confers to Fe:ZnO NCs interesting magnetic properties useful for imaging applications in a clinical perspective. Thus, the iron-doped ZnO NCs are very attractive as potentially theranostic nanoparticles, allowing both stimuli-responsive therapy and magnetic resonance imaging.
Importantly, two colon adenocarcinoma cell lines, the HT-29 and the Dukes’ type C Colo 320DM cells were tested, both showing a good bio-tolerance and internalization rates of NCs. With the aim of eradicating the CRC cells, the possible synergism between the undoped/iron-doped ZnO NCs and an external physical stimulus, i.e., high-energy SW, was then here investigated in vitro. We demonstrated that the combined treatment resulted in an augmentation of the antitumor activity, especially for Colo 320DM cells, when compared to controls. Moreover, a repeated and sequenced SW treatment (three times/day, 3SW) after ZnO NCs exposure resulted in a further increased mortality of CRC cells.
Conclusion
Our work proposes the combination of the cytotoxic activity of ZnO NCs with the SW external stimulation to obtain a booster of the antitumor activity, which warrants further investigation in vivo on CRC as well as on other tumors.
Graphical Abstract
Collapse
|
5
|
Hyung S, Ko J, Heo YJ, Blum SM, Kim ST, Park SH, Park JO, Kang WK, Lim HY, Klempner SJ, Lee J. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. SCIENCE ADVANCES 2023; 9:eadk1098. [PMID: 38000030 PMCID: PMC10672184 DOI: 10.1126/sciadv.adk1098] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Gastric cancer (GC) with peritoneal metastases and malignant ascites continues to have poor prognosis. Exosomes mediate intercellular communication during cancer progression and promote therapeutic resistance. Here, we report the significance of exosomes derived from malignant ascites (EXOAscites) in cancer progression and use modified exosomes as resources for cancer therapy. EXOAscites from patients with GC stimulated invasiveness and angiogenesis in an ex vivo three-dimensional autologous tumor spheroid microfluidic system. EXOAscites concentration increased invasiveness, and blockade of their secretion suppressed tumor progression. In MET-amplified GC, EXOAscites contain abundant MET; their selective delivery to tumor cells enhanced angiogenesis and invasiveness. Exosomal MET depletion substantially reduced invasiveness; an additive therapeutic effect was induced when combined with MET and/or VEGFR2 inhibition in a patient-derived MET-amplified GC model. Allogeneic MET-harboring exosome delivery induced invasion and angiogenesis in a MET non-amplified GC model. MET-amplified patient tissues showed higher exosome concentration than their adjacent normal tissues. Manipulating exosome content and production may be a promising complementary strategy against GC.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | | | - Steven M. Blum
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
7
|
Raguraman R, Bhavsar D, Kim D, Ren X, Sikavitsas V, Munshi A, Ramesh R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett 2023; 558:216093. [PMID: 36822543 PMCID: PMC10025995 DOI: 10.1016/j.canlet.2023.216093] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Exosomes are small phospholipid bilayer vesicles that are naturally produced by all living cells, both prokaryotes and eukaryotes. The exosomes due to their unique size, reduced immunogenicity, and their ability to mimic synthetic liposomes in carrying various anticancer drugs have been tested as drug delivery vehicles for cancer treatment. An added advantage of developing exosomes as a drug carrier is the ease of manipulating their intraluminal content and their surface modification to achieve tumor-targeted drug delivery. In the past ten-years, there has been an exponential increase in the number of exosome-related studies in cancer. Preclinical studies demonstrate exosomes-mediated delivery of chemotherapeutics, biologicals and natural products produce potent anticancer activity both, in vitro and in vivo. In contrast, the number of exosome-based clinical trials are few due to challenges in the manufacturing and scalability related to large-scale production of exosomes and their storage and stability. Herein, we discuss recent advances in exosome-based drug delivery for cancer treatment in preclinical and clinical studies and conclude with challenges to be overcome for translating a larger number of exosome-based therapies into the clinic.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dhaval Bhavsar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- School of Chemical, Biological and Material Engineering, The University of Oklahoma, Norman, Oklahoma, 73019, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Traditional vs. Microfluidic Synthesis of ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24031875. [PMID: 36768199 PMCID: PMC9916368 DOI: 10.3390/ijms24031875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Microfluidics provides a precise synthesis of micro-/nanostructures for various applications, including bioengineering and medicine. In this review article, traditional and microfluidic synthesis methods of zinc oxide (ZnO) are compared concerning particle size distribution, morphology, applications, reaction parameters, used reagents, and microfluidic device materials. Challenges of traditional synthesis methods are reviewed in a manner where microfluidic approaches may overcome difficulties related to synthesis precision, bulk materials, and reproducibility.
Collapse
|
9
|
Percivalle NM, Carofiglio M, Conte M, Rosso G, Bentivogli A, Mesiano G, Vighetto V, Cauda V. Artificial and Naturally Derived Phospholipidic Bilayers as Smart Coatings of Solid-State Nanoparticles: Current Works and Perspectives in Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415815. [PMID: 36555455 PMCID: PMC9779745 DOI: 10.3390/ijms232415815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in nanomedicine toward cancer treatment have considered exploiting liposomes and extracellular vesicles as effective cargos to deliver therapeutic agents to tumor cells. Meanwhile, solid-state nanoparticles are continuing to attract interest for their great medical potential thanks to their countless properties and possible applications. However, possible drawbacks arising from the use of nanoparticles in nanomedicine, such as the nonspecific uptake of these materials in healthy organs, their aggregation in biological environments and their possible immunogenicity, must be taken into account. Considering these limitations and the intrinsic capability of phospholipidic bilayers to act as a biocompatible shield, their exploitation for effectively encasing solid-state nanoparticles seems a promising strategy to broaden the frontiers of cancer nanomedicine, also providing the possibility to engineer the lipid bilayers to further enhance the therapeutic potential of such nanotools. This work aims to give a comprehensive overview of the latest developments in the use of artificial liposomes and naturally derived extracellular vesicles for the coating of solid-state nanoparticles for cancer treatment, starting from in vitro works until the up-to-date advances and current limitations of these nanopharmaceutics in clinical applications, passing through in vivo and 3D cultures studies.
Collapse
|
10
|
Barui S, Percivalle NM, Conte M, Dumontel B, Racca L, Carofiglio M, Cauda V. Development of doped ZnO-based biomimicking and tumor-targeted nanotheranostics to improve pancreatic cancer treatment. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractDespite different nanomaterials were developed so far against cancer, their potential drawbacks are still scarcely considered. The off-target delivery of a therapeutic compound, as well as the non-specific uptake of these nanomaterials by healthy tissues or organs, and their potential immunogenicity are some of the major issues that still have to be faced prior to a successful clinical translation. This work aims to develop an innovative theranostic, biocompatible, and drug-loaded nanoconstruct based on Gadolinium-doped Zinc Oxide (ZnO-Gd) nanocrystals (NCs), focusing on one of the most lethal diseases, i.e., pancreatic cancer. The use of zinc oxide is motivated by the huge potential of this nanomaterial already demonstrated for in vitro and in vivo applications, while the Gadolinium doping confers magnetic properties useful for diagnostics. Furthermore, an innovative biomimetic shell is here used to coat the NCs: it is composed of a lipid bilayer made from extracellular vesicles (EVs) combined with other synthetic lipids and a peptide targeting the pancreatic tumor microenvironment. To complete the nanoconstruct therapeutic function, Gemcitabine, a first-line drug for pancreatic cancer treatment, was adsorbed on the ZnO-Gd NCs prior to the coating with the above-mentioned lipidic shell. The aim of this work is thus to strongly enhance the therapeutic capability of the final nanoconstruct, providing it with high biocompatibility, colloidal stability in biological media, efficient cargo loading and release properties, as well as active targeting for site-selective drug delivery. Furthermore, the magnetic properties of the ZnO-Gd NCs core can in future allow efficient in situ bioimaging capabilities based on Magnetic Resonance Imaging technique. The obtained nanoconstructs were tested on two different pancreatic cancer cell lines, i.e., BxPC-3 and the metastatic AsPC-1, proving high cell internalization levels, mediated by the targeting peptide exposed on the nanoconstruct. Cellular cytotoxicity assay performed on both cell lines dictated ~ 20% increased cell killing efficacy of Gemcitabine when delivered through the nanoconstruct rather than as a free drug. Taken together, our designed theranostic nanoconstruct can have a significant impact on the standard treatment of pancreatic cancer.
Collapse
|
11
|
Dumontel B, Susa F, Limongi T, Vighetto V, Debellis D, Canta M, Cauda V. Nanotechnological engineering of extracellular vesicles for the development of actively targeted hybrid nanodevices. Cell Biosci 2022; 12:61. [PMID: 35568919 PMCID: PMC9107671 DOI: 10.1186/s13578-022-00784-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
Background We propose an efficient method to modify B-cell derived EVs by loading them with a nanotherapeutic stimuli-responsive cargo and equipping them with antibodies for efficient targeting of lymphoma cells. Results The post-isolation engineering of the EVs is accomplished by a freeze–thaw method to load therapeutically-active zinc oxide nanocrystals (ZnO NCs), obtaining the so-called TrojanNanoHorse (TNH) to recall the biomimetism and cytotoxic potential of this novel nanoconstruct. TNHs are further modified at their surface with anti-CD20 monoclonal antibodies (TNHCD20) achieving specific targeting against lymphoid cancer cell line. The in vitro characterization is carried out on CD20+ lymphoid Daudi cell line, CD20-negative cancerous myeloid cells (HL60) and the healthy counterpart (B lymphocytes). The TNH shows nanosized structure, high colloidal stability, even over time, and good hemocompatibility. The in vitro characterization shows the high biocompatibility, targeting specificity and cytotoxic capability. Importantly, the selectivity of TNHCD20 demonstrates significantly higher interaction towards the target lymphoid Daudi cell line compared to the CD20-negative cancerous myeloid cells (HL60) and the healthy counterpart (lymphocytes). An enhanced cytotoxicity directed against Daudi cancer cells is demonstrated after the TNHCD20 activation with high-energy ultrasound shock-waves (SW). Conclusion This work demonstrates the efficient re-engineering of EVs, derived from healthy cells, with inorganic nanoparticles and monoclonal antibodies. The obtained hybrid nanoconstructs can be on-demand activated by an external stimulation, here acoustic pressure waves, to exploit a cytotoxic effect conveyed by the ZnO NCs cargo against selected cancer cells. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00784-9.
Collapse
|
12
|
Carofiglio M, Conte M, Racca L, Cauda V. Synergistic Phenomena between Iron-Doped ZnO Nanoparticles and Shock Waves Exploited against Pancreatic Cancer Cells. ACS APPLIED NANO MATERIALS 2022; 5:17212-17225. [PMID: 36851991 PMCID: PMC9953328 DOI: 10.1021/acsanm.2c04211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
We propose the use of iron-doped zinc oxide nanoparticles (Fe:ZnO NPs) showing theranostic capabilities and being synergistically active against pancreatic ductal adenocarcinoma once combined with mechanical pressure waves, such as shock waves. Fe:ZnO NPs are synthesized by employing oleic acid as a capping agent and are functionalized with amino-propyl groups. We first report their superior characteristics with respect to undoped ZnO NPs in terms of magnetic properties, colloidal stability, cytocompatibility, and internalization into BxPC-3 pancreatic cancer cells in vitro. These Fe:ZnO NPs are also cytocompatible toward normal pancreatic cells. We then perform a synergistic cell treatment with both shock waves and Fe:ZnO NPs once internalized into cells. We also evaluate the contribution to the synergistic activity of the NPs located in the extracellular space. Results show that both NPs and shock waves, when administered separately, are safe to cells, while their combination provokes an enhanced cell death after 24 h. Various mechanisms are then considered, such as dissolution of NPs, production of free radicals, and cell membrane disruption or permeation. It is understood so far that iron-doped ZnO NPs can degrade intracellularly into zinc cations, while the use of shock waves produce cell membrane permeabilization and possible rupture. In contrast, the production of reactive oxygen species is here ruled out. The provoked cell death can be recognized in both apoptotic and necrotic events. The proposed work is thus a first proof-of-concept study enabling promising future applications to deep-seated tumors such as pancreatic cancer, which is still an unmet clinical need with a tremendous death rate.
Collapse
|
13
|
Zhang X, Cui H, Zhang W, Li Z, Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater 2022; 22:491-517. [PMID: 36330160 PMCID: PMC9619151 DOI: 10.1016/j.bioactmat.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor vaccination is a promising approach for tumor immunotherapy because it presents high specificity and few side effects. However, tumor vaccines that contain only a single tumor antigen can allow immune system evasion by tumor variants. Tumor antigens are complex and heterogeneous, and identifying a single antigen that is uniformly expressed by tumor cells is challenging. Whole tumor cells can produce comprehensive antigens that trigger extensive tumor-specific immune responses. Therefore, tumor cells are an ideal source of antigens for tumor vaccines. A better understanding of tumor cell-derived vaccines and their characteristics, along with the development of new technologies for antigen delivery, can help improve vaccine design. In this review, we summarize the recent advances in tumor cell-derived vaccines in cancer immunotherapy and highlight the different types of engineered approaches, mechanisms, administration methods, and future perspectives. We discuss tumor cell-derived vaccines, including whole tumor cell components, extracellular vesicles, and cell membrane-encapsulated nanoparticles. Tumor cell-derived vaccines contain multiple tumor antigens and can induce extensive and potent tumor immune responses. However, they should be engineered to overcome limitations such as insufficient immunogenicity and weak targeting. The genetic and chemical engineering of tumor cell-derived vaccines can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor immunotherapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of tumor cell-derived vaccines.
Collapse
Affiliation(s)
- Xinyi Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Corresponding author. Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Corresponding author. Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200444, China.
| |
Collapse
|
14
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
15
|
Vighetto V, Troia A, Laurenti M, Carofiglio M, Marcucci N, Canavese G, Cauda V. Insight into Sonoluminescence Augmented by ZnO-Functionalized Nanoparticles. ACS OMEGA 2022; 7:6591-6600. [PMID: 35252655 PMCID: PMC8892914 DOI: 10.1021/acsomega.1c05837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
Recent advances in optical imaging techniques rely on the use of nanosized contrast agents for in vitro and in vivo applications. We report on an imaging method based on the inertial cavitation of ultrasound-irradiated water solutions that lead to sonoluminescence (SL), here, newly proposed in combination with semiconductor nanoparticles, in particular, aminopropyl-functionalized zinc oxide nanocrystals. The obtained measurements confirm the ability of such nanocrystals to increase the sonoluminescence emission, together with the ability to modify the SL spectrum when compared to the pure water behavior. In particular, it is shown that the UV component of SL is absorbed by the semiconductor behavior that is also confirmed in different biologically relevant media. Finally, optical images of nanocrystal-assisted SL are acquired for the first time, in particular, in biological buffers, revealing that at low ultrasound intensities, SL is measurable only when the nanocrystals are present in solution. All of these results witness the role of amine-functionalized zinc oxide nanocrystals for sonoluminescence emission, which makes them very good candidates as efficient nanocontrast agents for SL imaging for biological and biomedical applications.
Collapse
Affiliation(s)
- Veronica Vighetto
- Department
of Applied Science and Technology, Politecnico
di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Adriano Troia
- Ultrasounds
& Chemistry Lab, Advanced Metrology for Quality of Life, Istituto
Nazionale di Ricerca Metrologica (I.N.Ri.M.), Strada delle Cacce 91, 10135 Turin, Italy
| | - Marco Laurenti
- Department
of Applied Science and Technology, Politecnico
di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Carofiglio
- Department
of Applied Science and Technology, Politecnico
di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Niccolò Marcucci
- Department
of Applied Science and Technology, Politecnico
di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giancarlo Canavese
- Department
of Applied Science and Technology, Politecnico
di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department
of Applied Science and Technology, Politecnico
di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
16
|
Revisiting Flubendazole Through Nanocrystal Technology: Statistical Design, Characterization and Its Potential Inhibitory Effect on Xenografted Lung Tumor Progression in Mice. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
18
|
Lin W, Cai XD. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front Oncol 2021; 11:758884. [PMID: 34804956 PMCID: PMC8602829 DOI: 10.3389/fonc.2021.758884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cell-derived extracellular vesicles (CEVs), a novel type of therapeutic agent in cancer treatment, can be prepared from the autocrine secretion of various cancer cells, the direct extraction of cancer cells and the combination of cancer cell-derived membranes with advanced materials. With various bioactive molecules, exosomes are produced by cells for intercellular communication. Although cancer cell-derived exosomes are known to inhibit tumor apoptosis and promote the progression of cancer, researchers have developed various innovative strategies to prepare anti-tumor vesicles from cancer cells. With current strategies for anti-tumor vesicles, four different kinds of CEVs are classified including irradiated CEVs, advanced materials combined CEVs, chemotherapeutic drugs loaded CEVs and genetically engineered CEVs. In this way, CEVs can not only be the carriers for anti-tumor drugs to the target tumor area but also act as immune-active agents. Problems raised in the strategies mainly concerned with the preparation, efficacy and application. In this review, we classified and summarized the current strategies for utilizing the anti-tumor potential of CEVs. Additionally, the challenges and the prospects of this novel agent have been discussed.
Collapse
Affiliation(s)
- Weijian Lin
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xing-Dong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Extracellular Vesicles Tropism: A Comparative Study between Passive Innate Tropism and the Active Engineered Targeting Capability of Lymphocyte-Derived EVs. MEMBRANES 2021; 11:membranes11110886. [PMID: 34832115 PMCID: PMC8617986 DOI: 10.3390/membranes11110886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Cellular communications take place thanks to a well-connected network of chemical–physical signals, biomolecules, growth factors, and vesicular messengers that travel inside or between cells. A deep knowledge of the extracellular vesicle (EV) system allows for a better understanding of the whole series of phenomena responsible for cell proliferation and death. To this purpose, here, a thorough immuno-phenotypic characterization of B-cell EV membranes is presented. Furthermore, the cellular membrane of B lymphocytes, Burkitt lymphoma, and human myeloid leukemic cells were characterized through cytofluorimetry assays and fluorescent microscopy analysis. Through cytotoxicity and internalization tests, the tropism of B lymphocyte-derived EVs was investigated toward the parental cell line and two different cancer cell lines. In this study, an innate capability of passive targeting of the native EVs was distinguished from the active targeting capability of monoclonal antibody-engineered EVs, able to selectively drive the vesicles, enhancing their internalization into the target cancer cells. In particular, the specific targeting ability of anti-CD20 engineered EVs towards Daudi cells, highly expressing CD20 marker on their cell membrane, was proved, while almost no internalization events were observed in HL60 cells, since they did not express an appreciable amount of the CD20 marker on their plasma membranes.
Collapse
|
20
|
Carofiglio M, Laurenti M, Vighetto V, Racca L, Barui S, Garino N, Gerbaldo R, Laviano F, Cauda V. Iron-Doped ZnO Nanoparticles as Multifunctional Nanoplatforms for Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2628. [PMID: 34685064 PMCID: PMC8540240 DOI: 10.3390/nano11102628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are currently among the most promising nanomaterials for theranostics. However, they suffer from some drawbacks that could prevent their application in nanomedicine as theranostic agents. The doping of ZnO NPs can be effectively exploited to enhance the already-existing ZnO properties and introduce completely new functionalities in the doped material. Herein, we propose a novel synthetic approach for iron-doped ZnO (Fe:ZnO) NPs as a multifunctional theranostic nanoplatform aimed at cancer cell treatment. Pure ZnO and Fe:ZnO NPs, with two different levels of iron doping, were synthesized by a rapid wet-chemical method and analyzed in terms of morphology, crystal structure and chemical composition. Interestingly, Fe:ZnO NPs featured bioimaging potentialities thanks to superior optical properties and novel magnetic responsiveness. Moreover, iron doping provides a way to enhance the electromechanical behavior of the NPs, which are then expected to show enhanced therapeutic functionalities. Finally, the intrinsic therapeutic potentialities of the NPs were tested in terms of cytotoxicity and cellular uptake with both healthy B lymphocytes and cancerous Burkitt's lymphoma cells. Furthermore, their biocompatibility was tested with a pancreatic ductal adenocarcinoma cell line (BxPC-3), where the novel properties of the proposed iron-doped ZnO NPs can be potentially exploited for theranostics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; (M.C.); (M.L.); (V.V.); (L.R.); (S.B.); (N.G.); (R.G.); (F.L.)
| |
Collapse
|
21
|
Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells Int 2021; 2021:8502021. [PMID: 34603454 PMCID: PMC8481068 DOI: 10.1155/2021/8502021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Achievement of high targeting efficiency for a drug delivery system remains a challenge of tumor diagnoses and nonsurgery therapies. Although nanoparticle-based drug delivery systems have made great progress in extending circulation time, improving durability, and controlling drug release, the targeting efficiency remains low. And the development is limited to reducing side effects since overall survival rates are mostly unchanged. Therefore, great efforts have been made to explore cell-driven drug delivery systems in the tumor area. Cells, particularly those in the blood circulatory system, meet most of the demands that the nanoparticle-based delivery systems do not. These cells possess extended circulation times and innate chemomigration ability and can activate an immune response that exerts therapeutic effects. However, new challenges have emerged, such as payloads, cell function change, cargo leakage, and in situ release. Generally, employing cells from the blood circulatory system as cargo carriers has achieved great benefits and paved the way for tumor diagnosis and therapy. This review specifically covers (a) the properties of red blood cells, monocytes, macrophages, neutrophils, natural killer cells, T lymphocytes, and mesenchymal stem cells; (b) the loading strategies to balance cargo amounts and cell function balance; (c) the cascade strategies to improve cell-driven targeting delivery efficiency; and (d) the features and applications of cell membranes, artificial cells, and extracellular vesicles in cancer treatment.
Collapse
|
22
|
Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13091423. [PMID: 34575499 PMCID: PMC8467828 DOI: 10.3390/pharmaceutics13091423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nanomedicine is an emerging treatment approach for many cancers, characterized by having high sensitivity and selectivity for tumor cells and minimal toxic effects induced by the conventional chemotherapeutics. In these context, smart nanoparticles (NPs) are getting increasingly relevant in the development of new therapies. NPs with specific chemical composition and/or structure and being stimuli-responsive to magnetic, light or ultrasound waves are new promising tools. In the present work, amorphous-titania propyl-amine functionalized (a-TiO2-NH2) NPs, coated with bovine serum albumin (BSA), are stimulated with high energy shock waves to induce cytotoxic effects in cancer cells. First, a new method to coat a-TiO2-NH2 NPs with BSA (a-TiO2-NH2/BSA) was proposed, allowing for a high dispersion and colloidal stability in a cell culture media. The a-TiO2-NH2/BSA NPs showed no cancer cell cytotoxicity. In a second step, the use of shock waves to stimulate a-TiO2-NH2/BSA NPs, was evaluated and optimized. A systematic study was performed in in vitro cell culture aiming to impair the cancer cell viability: NP concentrations, time steps and single versus multiple shock waves treatments were studied. The obtained results highlighted the relevance of NPs design and administration time point with respect to the shock wave treatment and allow to hypothesize mechanical damages to cells.
Collapse
|
23
|
Stepankova H, Swiatkowski M, Kruszynski R, Svec P, Michalkova H, Smolikova V, Ridoskova A, Splichal Z, Michalek P, Richtera L, Kopel P, Adam V, Heger Z, Rex S. The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells. Int J Nanomedicine 2021; 16:4431-4449. [PMID: 34234435 PMCID: PMC8257049 DOI: 10.2147/ijn.s304902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest. METHODS Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere. After detailed characterization, the resulting ZnO NPs were subjected to in vitro testing of cytotoxicity toward TNBrCa and normal breast epithelial cells. Further, their biocompatibility was evaluated. RESULTS The resulting ZnO NPs provide distinct morphological features, size, biocompatibility, and selective cytotoxicity toward TNBrCa cells. They internalize into two types of TNBrCa cells and imbalance their redox homeostasis, influencing their metabolism, morphology, and ultimately leading to their death via apoptosis or necrosis. CONCLUSION The crucial properties of ZnO NPs seem to be their morphology, size, and zinc content. The ZnO NPs with the most preferential values of all three properties show great promise for a future potential use in the therapy of TNBrCa.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Marcin Swiatkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Vendula Smolikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Mendel University in Brno, Brno, Czechia
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
24
|
Giacobino C, Canta M, Fornaguera C, Borrós S, Cauda V. Extracellular Vesicles and Their Current Role in Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13092280. [PMID: 34068657 PMCID: PMC8126043 DOI: 10.3390/cancers13092280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent years, immunotherapy has shown great advancement, becoming a powerful tool to combat cancer. In this context, the use of biologically derived vesicles has also acquired importance for cancer immunotherapy. Extracellular vesicles are thus proposed to transport molecules able to trigger an immune response and thus fight cancer cells. As a particular immunotherapeutic approach, a new technique also consists in the exploitation of extracellular vesicles as new cancer vaccines. The present review provides basic notions on cancer immunotherapy and describes several clinical trials in which therapeutic anticancer vaccines are tested. In particular, the potential of extracellular vesicles-based therapeutic vaccines in the treatment of cancer patients is highlighted, even with advanced stage-cancer. A focus on the clinical studies, already completed or still in progress, is offered and a systematic collection and reorganization of the present literature on this topic is proposed to the reader. Abstract Extracellular vesicles (EVs) are natural particles formed by the lipid bilayer and released from almost all cell types to the extracellular environment both under physiological conditions and in presence of a disease. EVs are involved in many biological processes including intercellular communication, acting as natural carriers in the transfer of various biomolecules such as DNA, various RNA types, proteins and different phospholipids. Thanks to their transfer and targeting abilities, they can be employed in drug and gene delivery and have been proposed for the treatment of different diseases, including cancer. Recently, the use of EVs as biological carriers has also been extended to cancer immunotherapy. This new technique of cancer treatment involves the use of EVs to transport molecules capable of triggering an immune response to damage cancer cells. Several studies have analyzed the possibility of using EVs in new cancer vaccines, which represent a particular form of immunotherapy. In the literature there are only few publications that systematically group and collectively discuss these studies. Therefore, the purpose of this review is to illustrate and give a partial reorganization to what has been produced in the literature so far. We provide basic notions on cancer immunotherapy and describe some clinical trials in which therapeutic cancer vaccines are tested. We thus focus attention on the potential of EV-based therapeutic vaccines in the treatment of cancer patients, overviewing the clinically relevant trials, completed or still in progress, which open up new perspectives in the fight against cancer.
Collapse
Affiliation(s)
- Carla Giacobino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (C.G.); (M.C.)
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (C.G.); (M.C.)
| | - Cristina Fornaguera
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (C.F.); (S.B.)
| | - Salvador Borrós
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (C.F.); (S.B.)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (C.G.); (M.C.)
- Correspondence:
| |
Collapse
|
25
|
Kugeratski FG, McAndrews KM, Kalluri R. Multifunctional Applications of Engineered Extracellular Vesicles in the Treatment of Cancer. Endocrinology 2021; 162:6067593. [PMID: 33411885 PMCID: PMC8502448 DOI: 10.1210/endocr/bqaa250] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are key players of intercellular communication in the physiological and pathological setting. In cancer, EVs mediate complex signaling mechanisms between cancer cells and the tumor microenvironment (TME), and can influence tumor progression and the response to existing therapies. Importantly, EVs can be loaded with therapeutic agents and modified to display tumor-targeting molecules. In the field of nanomedicine, EVs have been engineered to serve as therapeutic delivery vehicles for several anticancer agents, including antibodies, chemotherapy, compounds, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated endonuclease 9), and small interfering RNA (siRNA). Notably, the engineered EVs were shown to suppress malignant features of cancer cells, to elicit antitumor immunity, and to decrease tumor angiogenesis. Here, we review the EV-based therapies designed to target cancer cells and to educate components of the TME to drive antitumor responses. These studies illustrate the multifunctional applications of EVs in the development of anticancer therapies and their translational potential for cancer treatment.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Correspondence: Raghu Kalluri, MD, PhD, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Parinaz Fathi
- Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois
- National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda Maryland
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda Maryland
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda Maryland
- Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
27
|
Biomimetic Amorphous Titania Nanoparticles as Ultrasound Responding Agents to Improve Cavitation and ROS Production for Sonodynamic Therapy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conventional therapies to treat cancer often exhibit low specificity, reducing the efficiency of the treatment and promoting strong side effects. To overcome these drawbacks, new ways to fight cancer cells have been developed so far focusing on nanosystems. Different action mechanisms to fight cancer cells have been explored using nanomaterials, being their remote activation one of the most promising. Photo- and sonodynamic therapies are relatively new approaches that emerged following this idea. These therapies are based on the ability of specific agents to generate highly cytotoxic reactive oxygen species (ROS) by external stimulation with light or ultrasounds (US), respectively. Crystalline (TiO2) and amorphous titania (a-TiO2) nanoparticles (NPs) present a set of very interesting characteristics, such as their photo-reactivity, photo stability, and effective bactericidal properties. Their production is inexpensive and easily scalable; they are reusable and demonstrated already to be nontoxic. Therefore, these NPs have been increasingly studied as promising photo- or sonosensitizers to be applied in photodynamic/sonodynamic therapies in the future. However, they suffer from poor colloidal stability in aqueous and biological relevant media. Therefore, various organic and polymer-based coatings have been proposed. In this work, the role of a-TiO2 based NPs synthesized through a novel, room-temperature, base-catalyzed, sol-gel protocol in the generation of ROS and as an enhancer of acoustic inertial cavitation was evaluated under ultrasound irradiation. A novel biomimetic coating based on double lipidic bilayer, self-assembled on the a-TiO2-propylamine NPs, is proposed to better stabilize them in water media. The obtained results show that the biomimetic a-TiO2-propylamine NPs are promising candidates to be US responding agents, since an improvement of the cavitation effect occurs in presence of the developed NPs. Further studies will show their efficacy against cancer cells.
Collapse
|
28
|
Abstract
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate the blood–brain barrier (BBB). NPs possess optical, magnetic and photodynamic properties that can be exploited by surface modification, bio composition, contrast agents’ encapsulation and coating by tumor-derived cells. Hence, nanotechnology has brought on a revolution in the field of diagnosis and imaging of brain tumors and cancers. Recently, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by deep skin tumors and cancer malignancies for imaging. The review focuses on nanotechnology-based diagnostic and imaging approaches for exploration in brain tumors and cancers. Moreover, the review also summarizes a few strategies to image glioblastoma and cancers by multimodal functional nanocomposites for more precise and accurate clinical diagnosis. Their unique physicochemical attributes, including nanoscale sizes, larger surface area, explicit structural features and ability to encapsulate diverse molecules on their surface, render nanostructured materials as excellent nano-vehicles to cross the blood–brain barrier and convey drug molecules to their target region. This review sheds light on the current progress of various kinds of nanomaterials, such as liposomes, nano-micelles, dendrimers, carbon nanotubes, carbon dots and NPs (gold, silver and zinc oxide NPs), for efficient drug delivery in the treatment and diagnosis of brain cancer.
Collapse
|
29
|
Canta M, Cauda V. The investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behaviour: a tutorial review. Biomater Sci 2020; 8:6157-6174. [PMID: 33079078 DOI: 10.1039/d0bm01086c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the last 30 years the research about zinc oxide nanoparticles (ZnO NPs) and their related toxicity has shown a boom. ZnO NPs show cytotoxicity for both prokaryotic and eukaryotic cells and many studies demonstrated their selective toxicity towards cancer cells. However, with the increasing number of publications, it is observed an increase in the discrepancies obtained between the various results. Soon the scientific community understood that the ZnO NC toxicity behaviour is affected by many factors, related not only to the ZnO NPs themselves, but also to the experimental conditions used. Many recent reviews discussed these parameters by reporting experimental evidence and tried to assess the general statements about the ZnO NP cytotoxicity. This information is extremely useful for the evaluation of which type of ZnO NPs is more or less suitable for a specific study or application. However, despite that, a deep comprehension of the ZnO NP behaviour in relation to the different experimental conditions is still lacking. Actually, a full understanding of the reasons behind the NP behaviour is essential to better assess their biological activity and in particular their therapeutic application, avoiding undesired effects both in the experimental and clinical contexts. This tutorial review aims to be an experimental and practical guide for scientists that faced with the use of ZnO NPs for biomedical applications and, in particular, for their therapeutic purposes. The driving idea is to not simply summarize the results reported in the literature, but to provide instruments for a deep comprehension of the mechanisms affecting the ZnO NP cytotoxicity and behavior. This review also aims to point out the critical experimental parameters to be considered when working with these NPs, as well as the main related risks and limitations that scientists have to face.
Collapse
Affiliation(s)
- Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | | |
Collapse
|
30
|
Villata S, Canta M, Cauda V. EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. Int J Mol Sci 2020; 21:ijms21176048. [PMID: 32842627 PMCID: PMC7504061 DOI: 10.3390/ijms21176048] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural carriers produced by many different cell types that have a plethora of functions and roles that are still under discovery. This review aims to be a compendium on the current advancement in terms of EV modifications and re-engineering, as well as their potential use in nanomedicine. In particular, the latest advancements on artificial EVs are discussed, with these being the frontier of nanomedicine-based therapeutics. The first part of this review gives an overview of the EVs naturally produced by cells and their extraction methods, focusing on the possibility to use them to carry desired cargo. The main issues for the production of the EV-based carriers are addressed, and several examples of the techniques used to upload the cargo are provided. The second part focuses on the engineered EVs, obtained through surface modification, both using direct and indirect methods, i.e., engineering of the parental cells. Several examples of the current literature are proposed to show the broad variety of engineered EVs produced thus far. In particular, we also report the possibility to engineer the parental cells to produce cargo-loaded EVs or EVs displaying specific surface markers. The third and last part focuses on the most recent advancements based on synthetic and chimeric EVs and the methods for their production. Both top-down or bottom-up techniques are analyzed, with many examples of applications.
Collapse
|
31
|
Carofiglio M, Barui S, Cauda V, Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5194. [PMID: 33850629 PMCID: PMC7610589 DOI: 10.3390/app10155194] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.
Collapse
Affiliation(s)
- Marco Carofiglio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Sugata Barui
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
32
|
Racca L, Limongi T, Vighetto V, Dumontel B, Ancona A, Canta M, Canavese G, Garino N, Cauda V. Zinc Oxide Nanocrystals and High-Energy Shock Waves: A New Synergy for the Treatment of Cancer Cells. Front Bioeng Biotechnol 2020; 8:577. [PMID: 32582682 PMCID: PMC7289924 DOI: 10.3389/fbioe.2020.00577] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
In the last years, different nanotools have been developed to fight cancer cells. They could be administered alone, exploiting their intrinsic toxicity, or remotely activated to achieve cell death. In the latter case, ultrasound (US) has been recently proposed to stimulate some nanomaterials because of the US outstanding property of deep tissue penetration and the possibility of focusing. In this study, for the first time, we report on the highly efficient killing capability of amino-propyl functionalized ZnO nanocrystals (ZnO NCs) in synergy with high-energy ultrasound shock waves (SW) for the treatment of cancer cells. The cytotoxicity and internalization of ZnO NCs were evaluated in cervical adenocarcinoma KB cells, as well as the safety of the SW treatment alone. Then, the remarkably high cytotoxic combination of ZnO NCs and SW was demonstrated, comparing the effect of multiple (3 times/day) SW treatments toward a single one, highlighting that multiple treatments are necessary to achieve efficient cell death. At last, preliminary tests to understand the mechanism of the observed synergistic effect were carried out, correlating the nanomaterial surface chemistry to the specific type of stimulus used. The obtained results can thus pave the way for a novel nanomedicine treatment, based on the synergistic effect of nanocrystals combined with highly intense mechanical pressure waves, offering high efficiency, deep and focused tissue penetration, and a reduction of side effects on healthy cells.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Veronica Vighetto
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Nadia Garino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| |
Collapse
|
33
|
de la Torre P, Pérez-Lorenzo MJ, Alcázar-Garrido Á, Flores AI. Cell-Based Nanoparticles Delivery Systems for Targeted Cancer Therapy: Lessons from Anti-Angiogenesis Treatments. Molecules 2020; 25:715. [PMID: 32046010 PMCID: PMC7038177 DOI: 10.3390/molecules25030715] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
The main strategy of cancer treatment has focused on attacking the tumor cells. Some cancers initially responsive to chemotherapy become treatment-resistant. Another strategy is to block the formation of tumor vessels. However, tumors also become resistant to anti-angiogenic treatments, mostly due to other cells and factors present in the tumor microenvironment, and hypoxia in the central part of the tumor. The need for new cancer therapies is significant. The use of nanoparticle-based therapy will improve therapeutic efficacy and targeting, while reducing toxicity. However, due to inefficient accumulation in tumor sites, clearance by reticuloendothelial organs and toxicity, internalization or conjugation of drug-loaded nanoparticles (NPs) into mesenchymal stem cells (MSCs) can increase efficacy by actively delivering them into the tumor microenvironment. Nanoengineering MSCs with drug-loaded NPs can increase the drug payload delivered to tumor sites due to the migratory and homing abilities of MSCs. However, MSCs have some disadvantages, and exosomes and membranes from different cell types can be used to transport drug-loaded NPs actively to tumors. This review gives an overview of different cancer approaches, with a focus on hypoxia and the emergence of NPs as drug-delivery systems and MSCs as cellular vehicles for targeted delivery due to their tumor-homing potential.
Collapse
Affiliation(s)
| | | | | | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas 12), Avda. de Cordoba s/n, 28041 Madrid, Spain; (P.d.l.T.); (M.J.P.-L.)
| |
Collapse
|
34
|
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019; 11:E1979. [PMID: 31835327 PMCID: PMC6966613 DOI: 10.3390/cancers11121979] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fast diagnosis and more efficient therapies for cancer surely represent one of the huge tasks for the worldwide researchers' and clinicians' community. In the last two decades, our understanding of the biology and molecular pathology of cancer mechanisms, coupled with the continuous development of the material science and technological compounds, have successfully improved nanomedicine applications in oncology. This review argues on nanomedicine application of engineered extracellular vesicles (EVs) in oncology. All the most innovative processes of EVs engineering are discussed together with the related degree of applicability for each one of them in cancer nanomedicines.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (T.L.); (B.D.); (V.V.)
| |
Collapse
|