1
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Woodworth JS, Contreras V, Christensen D, Naninck T, Kahlaoui N, Gallouët AS, Langlois S, Burban E, Joly C, Gros W, Dereuddre-Bosquet N, Morin J, Liu Olsen M, Rosenkrands I, Stein AK, Krøyer Wood G, Follmann F, Lindenstrøm T, Hu T, Le Grand R, Pedersen GK, Mortensen R. MINCLE and TLR9 agonists synergize to induce Th1/Th17 vaccine memory and mucosal recall in mice and non-human primates. Nat Commun 2024; 15:8959. [PMID: 39420177 PMCID: PMC11487054 DOI: 10.1038/s41467-024-52863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Development of new vaccines tailored for difficult-to-target diseases is hampered by a lack of diverse adjuvants for human use, and none of the currently available adjuvants induce Th17 cells. Here, we develop a liposomal adjuvant, CAF®10b, that incorporates Mincle and Toll-like receptor 9 agonists. In parallel mouse and non-human primate studies comparing to CAF® adjuvants already in clinical trials, we report species-specific effects of adjuvant composition on the quality and magnitude of the responses. When combined with antigen, CAF®10b induces Th1 and Th17 responses and protection against a pulmonary infection with Mycobacterium tuberculosis in mice. In non-human primates, CAF®10b induces higher Th1 responses and robust Th17 responses detectable after six months, and systemic and pulmonary Th1 and Th17 recall responses, in a sterile model of local recall. Overall, CAF®10b drives robust memory antibody, Th1 and Th17 vaccine-responses via a non-mucosal immunization route across both rodent and primate species.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Emma Burban
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Ming Liu Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Ann-Kathrin Stein
- Department of Vaccine Development, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Tu Hu
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
3
|
Woodworth JS, Contreras V, Christensen D, Naninck T, Kahlaoui N, Gallouët AS, Langlois S, Burban E, Joly C, Gros W, Dereuddre-Bosquet N, Morin J, Olsen ML, Rosenkrands I, Stein AK, Wood GK, Follmann F, Lindenstrøm T, LeGrand R, Pedersen GK, Mortensen R. A novel adjuvant formulation induces robust Th1/Th17 memory and mucosal recall responses in Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529651. [PMID: 36865310 PMCID: PMC9980079 DOI: 10.1101/2023.02.23.529651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Emma Burban
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Ming Liu Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ann-Kathrin Stein
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
4
|
Du JJ, Zhou SH, Cheng ZR, Xu WB, Zhang RY, Wang LS, Guo J. MUC1 Specific Immune Responses Enhanced by Coadministration of Liposomal DDA/MPLA and Lipoglycopeptide. Front Chem 2022; 10:814880. [PMID: 35186882 PMCID: PMC8854779 DOI: 10.3389/fchem.2022.814880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Mucin 1 (MUC1), a well-known tumor-associated antigen and attractive target for tumor immunotherapy, is overexpressed in most human epithelial adenomas with aberrant glycosylation. However, its low immunogenicity impedes the development of MUC1-targeted antitumor vaccines. In this study, we investigated three liposomal adjuvant systems containing toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) and auxiliary lipids of different charges: cationic lipid dimethyldioctadecylammonium (DDA), neutral lipid distearoylglycerophosphocholine (DSPC) or anionic lipid dioleoylphosphatidylglycerol (DOPG), respectively. ELISA assay evidenced that the positively charged DDA/MPLA liposomes are potent immune activators, which induced remarkable levels of anti-MUC1 antibodies and exhibited robust Th1-biased immune responses. Importantly, the antibodies induced by DDA/MPLA liposomes efficiently recognized and killed MUC1-positive tumor cells through complement-mediated cytotoxicity. In addition, antibody titers in mice immunized with P2-MUC1 vaccine were significantly higher than those from mice immunized with P1-MUC1 or MUC1 vaccine, which indicated that the lipid conjugated on MUC1 antigen also played important role for immunomodulation. This study suggested that the liposomal DDA/MPLA with lipid-MUC1 is a promising antitumor vaccine, which can be used for the immunotherapy of various epithelial carcinomas represented by breast cancer.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zi-Ru Cheng
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Long-Sheng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, China
- *Correspondence: Long-Sheng Wang, ; Jun Guo,
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
- *Correspondence: Long-Sheng Wang, ; Jun Guo,
| |
Collapse
|
5
|
Photochemical Internalization: Light Paves Way for New Cancer Chemotherapies and Vaccines. Cancers (Basel) 2020; 12:cancers12010165. [PMID: 31936595 PMCID: PMC7016662 DOI: 10.3390/cancers12010165] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.
Collapse
|
6
|
Schmidt ST, Pedersen GK, Christensen D. Rational Design and In Vivo Characterization of Vaccine Adjuvants. ILAR J 2019; 59:309-322. [PMID: 30624655 DOI: 10.1093/ilar/ily018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Many different adjuvants are currently being developed for subunit vaccines against a number of pathogens and diseases. Rational design is increasingly used to develop novel vaccine adjuvants, which requires extensive knowledge of, for example, the desired immune responses, target antigen-presenting cell subsets, their localization, and expression of relevant pattern-recognition receptors. The adjuvant mechanism of action and efficacy are usually evaluated in animal models, where mice are by far the most used. In this review, we present methods for assessing adjuvant efficacy and function in animal models: (1) whole-body biodistribution evaluated by using fluorescently and radioactively labeled vaccine components; (2) association and activation of immune cell subsets at the injection site, in the draining lymph node, and the spleen; (4) adaptive immune responses, such as cytotoxic T-lymphocytes, various T-helper cell subsets, and antibody responses, which may be quantitatively evaluated using ELISA, ELISPOT, and immunoplex assays and qualitatively evaluated using flow cytometric and single cell sequencing assays; and (5) effector responses, for example, antigen-specific cytotoxic potential of CD8+ T cells and antibody neutralization assays. While the vaccine-induced immune responses in mice often correlate with the responses induced in humans, there are instances where immune responses detected in mice are not translated to the human situation. We discuss some examples of correlation and discrepancy between mouse and human immune responses and how to understand them.
Collapse
Affiliation(s)
- Signe Tandrup Schmidt
- Statens Serum Institut, Center for Vaccine Research, Department of Infectious Disease Immunology, Copenhagen S, Denmark
| | - Gabriel Kristian Pedersen
- Statens Serum Institut, Center for Vaccine Research, Department of Infectious Disease Immunology, Copenhagen S, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Center for Vaccine Research, Department of Infectious Disease Immunology, Copenhagen S, Denmark
| |
Collapse
|
7
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
8
|
Blakney AK, McKay PF, Christensen D, Yus BI, Aldon Y, Follmann F, Shattock RJ. Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. J Control Release 2019; 304:65-74. [PMID: 31071377 DOI: 10.1016/j.jconrel.2019.04.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
Self-amplifying RNA (saRNA) is well suited as a vaccine platform against chlamydia, as it is relatively affordable and scalable, has been shown to induce immunity against multivalent antigens, and can result in protein expression for up to 60 days. Cationic adjuvant formulations (CAFs) have been previously investigated as an adjuvant for protein subunit vaccines; here we optimize the CAFs for delivery of saRNA in vivo and observe the immunogenicity profile in the context of both cellular and humoral immunity against the major outer membrane protein (MOMP) of Chlamydia trachomatis. We tested both liposomal and emulsion based CAFs with solid and fluid phase lipids, with or without the TLR agonists R848 and 3M-052, for in vitro transfection efficiency and cytotoxicity. We then optimized the RNA/delivery system ratio for in vivo delivery using saRNA coding for firefly luciferase (fLuc) as a reporter protein in vivo. We observed that while the fluid phase liposome formulations showed the highest in vitro transfection efficiency, the fluid and solid phase liposomes had equivalent luciferase expression in vivo. Incorporation of R848 or 3M-052 into the formulation was not observed to affect the delivery efficiency of saRNA either in vitro or in vivo. MOMP-encoding saRNA complexed with CAFs resulted in both MOMP-specific cellular and humoral immunity, and while there was a slight enhancement of IFN-γ+ T-cell responses when R848 was incorporated into the formulation, the self-adjuvanting effects of RNA appeared to dominate the immune response. These studies establish that CAFs are efficient delivery vehicles for saRNA both for in vitro transfections and in vivo immunogenicity and generate cellular and humoral responses that are proportionate to protein expression.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Imperial College London, London, UK
| | - Paul F McKay
- Department of Medicine, Imperial College London, London, UK
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Yoann Aldon
- Department of Medicine, Imperial College London, London, UK
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
9
|
|
10
|
Rodrigues L, Raftopoulos KN, Tandrup Schmidt S, Schneider F, Dietz H, Rades T, Franzyk H, Pedersen AE, Papadakis CM, Christensen D, Winter G, Foged C, Hubert M. Immune responses induced by nano-self-assembled lipid adjuvants based on a monomycoloyl glycerol analogue after vaccination with the Chlamydia trachomatis major outer membrane protein. J Control Release 2018; 285:12-22. [PMID: 29964134 DOI: 10.1016/j.jconrel.2018.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/31/2023]
Abstract
Nanocarriers based on inverse hexagonal liquid crystalline phases (hexosomes) show promising potential as vaccine delivery systems. Their unique internal structure, composed of both lipophilic domains and water-containing channels, renders them capable of accommodating immunopotentiating compounds and antigens. However, their adjuvant properties are poorly understood. We hypothesized that the supramolecular structure of the lyotropic liquid crystalline phase influences the immunostimulatory activity of lipid-based nanocarriers. To test this, hexosomes were designed containing the lipid phytantriol (Phy) and the immunopotentiator monomycoloyl glycerol-1 (MMG-1). Self-assembly of Phy and MMG-1 into nanocarriers featuring an internal hexagonal phase was confirmed by small-angle X-ray scattering and cryogenic transmission electron microscopy. The effect of the nanostructure on the adjuvant activity was studied by comparing the immunogenicity of Phy/MMG-1 hexosomes with MMG-1-containing lamellar liquid crystalline nanoparticles (liposomes, CAF04). The quality and magnitude of the elicited immune responses were determined after vaccination of CB6/F1 mice using the Chlamydia trachomatis major outer membrane protein (MOMP) as antigen. MMG-1-based hexosomes potentiated significantly stronger MOMP-specific humoral responses than CAF04 liposomes. The liposome-based vaccine formulation induced a much stronger MOMP-specific cell-mediated immune response compared to hexosome-adjuvanted MOMP, which elicited minimal MOMP-specific T-cell stimulation after vaccination. Hence, our data demonstrates that hexosomal and liposomal adjuvants activate the immune system via different mechanisms. Our work provides valuable insights into the adjuvant potential of hexosomes and emphasizes that engineering of the supramolecular structure can be used to design adjuvants with customized immunological properties.
Collapse
Affiliation(s)
- Letícia Rodrigues
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, DE-81377 Munich, Germany
| | - Konstantinos N Raftopoulos
- Physics Department, Soft Matter Physics Group, Technische Universität München, James-Franck-Straße 1, DE-85748 Garching, Germany
| | - Signe Tandrup Schmidt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Infectious Disease Immunology, Vaccine Adjuvant Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Fabian Schneider
- Physics Department, Institute for Advanced Study, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, DE-85748 Garching, Germany
| | - Hendrik Dietz
- Physics Department, Institute for Advanced Study, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, DE-85748 Garching, Germany
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Anders Elm Pedersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Christine M Papadakis
- Physics Department, Soft Matter Physics Group, Technische Universität München, James-Franck-Straße 1, DE-85748 Garching, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Vaccine Adjuvant Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, DE-81377 Munich, Germany
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Madlen Hubert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, DE-81377 Munich, Germany.
| |
Collapse
|
11
|
Abstract
R- and S-Glycerol mycolates derived from single synthetic α-, keto- and methoxy-mycolic acids are described.
Collapse
Affiliation(s)
- Omar T Ali
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK
| | - Mohaned M Sahb
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK
| | | | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK.
| |
Collapse
|
12
|
Mohr N, Kappel C, Kramer S, Bros M, Grabbe S, Zentel R. Targeting cells of the immune system: mannosylated HPMA–LMA block-copolymer micelles for targeting of dendritic cells. Nanomedicine (Lond) 2016; 11:2679-2697. [DOI: 10.2217/nnm-2016-0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Successful tumor immunotherapy depends on the induction of strong and sustained tumor antigen-specific immune responses by activated antigen-presenting cells (APCs) such as dendritic cells (DCs). Since nanoparticles have the potential to codeliver tumor-specific antigen and DC-stimulating adjuvant in a DC-targeting manner, we wanted to assess the suitability of mannosylated HPMA-LMA block polymers for immunotherapy. Materials & methods: Fluorescence-labeled block copolymer micelles derived from P(HPMA)-block-P(LMA) copolymers and according statistical copolymers were synthesized via RAFT polymerization, and loaded with the APC activator L18-MDP. Both types of copolymers were conjugated with D-mannose to target the mannose receptor as expressed by DCs and macrophages. The extent and specificity of micelle binding and activation of APCs was monitored using mouse spleen cells and bone marrow-derived DC (BMDC). Results: Nontargeting HPMA-LMA statistical copolymers showed strong unspecific cell binding. HPMA-LMA block copolymers bound DC only when conjugated with mannose, and in a mannose receptor-specific manner. Mannosylated HPMA-LMA block copolymers were internalized by DC. DC-targeting HPMA-LMA block copolymers mediated DC activation when loaded with L18-MDP. Conclusion: Mannosylated HPMA-LMA block copolymers are a promising candidate for the delvopment of DC-targeting nanovaccines.
Collapse
Affiliation(s)
- Nicole Mohr
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Cinja Kappel
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Stefan Kramer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| |
Collapse
|
13
|
Hjálmsdóttir Á, Bühler C, Vonwil V, Roveri M, Håkerud M, Wäckerle-Men Y, Gander B, Johansen P. Cytosolic Delivery of Liposomal Vaccines by Means of the Concomitant Photosensitization of Phagosomes. Mol Pharm 2016; 13:320-9. [PMID: 26704885 DOI: 10.1021/acs.molpharmaceut.5b00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the greatest pharmaceutical challenges in vaccinology is the delivery of antigens to the cytosol of antigen-presenting cells (APCs) in order to allow for the stimulation of major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell responses, which may act on intracellular infections or cancer. Recently, we described a novel method for cytotoxic T-lymphocyte (CTL) vaccination by combining antigens with a photosensitizer and light for cytosolic antigen delivery. The goal of the current project was to test this immunization method with particle-based formulations. Liposomes were prepared from dipalmitoylphosphatidylcholine and cholesterol, and the antigen ovalbumin (OVA) or the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) was separately encapsulated. C57BL/6 mice were immunized intradermally with OVA liposomes or a combination of OVA and TPCS2a liposomes, and light was applied the next day for activation of the photosensitizer resulting in cytosolic release of antigen from phagosomes. Immune responses were tested both after a prime only regime and after a prime-boost scheme with a repeat immunization 2 weeks post priming. Antigen-specific CD8(+) T-cell responses and antibody responses were analyzed ex vivo by flow cytometry and ELISA methods. The physicochemical stability of liposomes upon storage and light exposure was analyzed in vitro. Immunization with both TPCS2a- and OVA-containing liposomes greatly improved CD8(+) T-cell responses as compared to immunization without TPCS2a and as measured by proliferation in vivo and cytokine secretion ex vivo. In contrast, OVA-specific antibody responses (IgG1 and IgG2c) were reduced after immunization with TPCS2a-containing liposomes. The liposomal formulation protected the photosensitizer from light-induced inactivation during storage. In conclusion, the photosensitizer TPCS2a was successfully formulated in liposomes and enabled a shift from MHC class II to MHC class I antigen processing and presentation for stimulation of strong CD8(+) T-cell responses. Therefore, photosensitive particulate vaccines may have the potential to add to current vaccine practice a new method of vaccination that, as opposed to current vaccines, can stimulate strong CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Ásdís Hjálmsdóttir
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Céline Bühler
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Vera Vonwil
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Maurizio Roveri
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Monika Håkerud
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland.,Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital , Montebello, 0310 Oslo, Norway
| | - Ying Wäckerle-Men
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| |
Collapse
|
14
|
Affiliation(s)
- Istvan Toth
- School of Pharmacy, Australia Centre of Excellence, The University of Queensland, Wooloongabba, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072; Australia
| |
Collapse
|