1
|
Yu S, Rejinold NS, Choi G, Choy JH. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. NANOSCALE HORIZONS 2025; 10:460-483. [PMID: 39648727 DOI: 10.1039/d4nh00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Over the last two decades, advancements in nanomaterials and nanoscience have paved the path for the emergence of nano-medical convergence science, significantly impacting healthcare. In our review, we highlight how these advancements are applied in various biomedical technologies such as drug delivery systems, bio-imaging for diagnostic and therapeutic purposes. Recently, novel inorganic nanohybrid drugs have been developed, combining multifunctional inorganic nanomaterials with therapeutic agents (known as inorganic medicinal nanoarchitectonics). These innovative drugs are actively utilized in cutting-edge medical treatments, including targeted anti-cancer therapy, photo and radiation therapy, and immunotherapy. This review provides a detailed overview of the current development status of inorganic medicinal nanoarchitectonics and explores potential future directions in their advancements.
Collapse
Affiliation(s)
- Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea
- Tokyo Tech Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Institute of Science Tokyo, Yokohama 226853, Japan
| |
Collapse
|
2
|
Casteleiro B, Rocha M, Sousa AR, Pereira AM, Martinho JMG, Pereira C, Farinha JPS. Multifunctional Nanoparticles with Superparamagnetic Mn(II) Ferrite and Luminescent Gold Nanoclusters for Multimodal Imaging. Polymers (Basel) 2023; 15:4392. [PMID: 38006116 PMCID: PMC10674285 DOI: 10.3390/polym15224392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Gold nanoclusters (AuNCs) with fluorescence in the Near Infrared (NIR) by both one- and two-photon electronic excitation were incorporated in mesoporous silica nanoparticles (MSNs) using a novel one-pot synthesis procedure where the condensation polymerization of alkoxysilane monomers in the presence of the AuNCs and a surfactant produced hybrid MSNs of 49 nm diameter. This method was further developed to prepare 30 nm diameter nanocomposite particles with simultaneous NIR fluorescence and superparamagnetic properties, with a core composed of superparamagnetic manganese (II) ferrite nanoparticles (MnFe2O4) coated with a thin silica layer, and a shell of mesoporous silica decorated with AuNCs. The nanocomposite particles feature NIR-photoluminescence with 0.6% quantum yield and large Stokes shift (290 nm), and superparamagnetic response at 300 K, with a saturation magnetization of 13.4 emu g-1. The conjugation of NIR photoluminescence and superparamagnetic properties in the biocompatible nanocomposite has high potential for application in multimodal bioimaging.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural, Institute of Molecular Sciences (IMS) and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
| | - Mariana Rocha
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
| | - Ana R. Sousa
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
- IFIMUP—Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - André M. Pereira
- IFIMUP—Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - José M. G. Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences (IMS) and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Clara Pereira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
| | - José P. S. Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences (IMS) and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
3
|
Li D, Song C, Zhang J, Zhao X. Targeted delivery and apoptosis induction activity of peptide-transferrin targeted mesoporous silica encapsulated resveratrol in MCF-7 cells. J Pharm Pharmacol 2023; 75:49-56. [PMID: 36173891 DOI: 10.1093/jpp/rgac028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/04/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Resveratrol (Res) was a naturally occurring polyphenol compound. It has various beneficial effects, including anti-inflammatory, anti-oxidant and anti-cancer effects. However, the anti-cancer activity was hindered by its low targeting and drug release performance. Thus, we synthesized transferrin-cathepsin B cleavable peptide modified mesoporous silica nanoparticle encapsulated Res (Tf-Res-MSN). METHODS Res was encapsulated in mesoporous silica nanoparticles (MSN), which was a kind of drug carrier complex. Tf was modified to recognize the cancer cells. Cathepsin B cleavable peptide (Pep) was used to combine Res-MSN complex and Tf to construct the final product. Pep was used as linker and trigger for Res release. KEY FINDINGS The smart nanocarriers were increased the drug release performance of Res in human breast cancer (MCF-7) cells. The physicochemical properties of Tf-Res-MSN were assessed by zeta potential, UV-Prove, diffraction scanning calorimetry (DSC), nitrogen physisorption analysis and transmission electron microscope (TEM). MTT assay, AO and Annexin V-FITC/PI staining were performed to explore the anti-tumour activity of Tf-Res-MSN. The results showed that Tf-Res-MSN significantly decreased cell viability and increased cell apoptosis. The inhibition rate and apoptotic rate of Tf-Res-MSN in MCF-7 cells were 95.75% and 80.8%, respectively. CONCLUSION Our study demonstrated that Tf-Res-MSN was a valuable technique with potential value in breast cancer applications.
Collapse
Affiliation(s)
- Dongning Li
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chengzhu Song
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Zhao
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Raj R, Pinto SN, Crucho CIC, Das S, Baleizão C, Farinha JPS. Optically traceable PLGA-silica nanoparticles for cell-triggered doxorubicin delivery. Colloids Surf B Biointerfaces 2022; 220:112872. [PMID: 36179611 DOI: 10.1016/j.colsurfb.2022.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Fluorescent silica nanoparticles with a polymer shell of poly (D, L-lactide-co-glycolide) (PLGA) can provide traceable cell-triggered delivery of the anticancer drug doxorubicin (DOX), protecting the cargo while in transit and releasing it only intracellularly. PLGA with 50:50 lactide:glycolide ratio was grown by surface-initiated ring-opening polymerization (ROP) from silica nanoparticles of ca. 50 nm diameter, doped with a perylenediimide (PDI) fluorescent dye anchored to the silica structure. After loading DOX, release from the core-shell particles was evaluated in solution at physiological pH (7.4), and in human breast cancer cells (MCF-7) after internalization. The hybrid silica-PLGA nanoparticles can accommodate a large cargo of DOX, and the release in solution (PBS) due to PLGA hydrolysis is negligible for at least 72 h. However, once internalized in MCF-7 cells, the nanoparticles release the DOX cargo by degradation of the PLGA. Accumulation of DOX in the nucleus causes cell apoptosis, with the drug-loaded nanoparticles found to be as potent as free DOX. Our fluorescently traceable hybrid silica-PLGA nanoparticles with cell-triggered cargo release offer excellent prospects for the controlled delivery of anticancer drugs, protecting the cargo while in transit and efficiently releasing the drug once inside the cell.
Collapse
Affiliation(s)
- Ritu Raj
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| | - Sandra N Pinto
- iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carina I C Crucho
- iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| | - Carlos Baleizão
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - José Paulo S Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
5
|
Casteleiro B, Martinho JMG, Farinha JPS. Encapsulation of gold nanoclusters: stabilization and more. NANOSCALE 2021; 13:17199-17217. [PMID: 34622909 DOI: 10.1039/d1nr04939a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles with only a few atoms, known as gold nanoclusters (AuNCs), have dimensions below 2 nm and feature singular properties such as size dependent luminescence. AuNCs are also highly photostable and have catalytic activity, low toxicity and good biocompatibility. With these properties, they are extremely promising candidates for application in bioimaging, sensing and catalysis. However, when stabilized only with small capping ligands, their use is hindered by lack of colloidal stability. Encapsulation of the AuNCs can contribute to provide a more robust protection and even to improve their properties. Here, we review the encapsulation of AuNCs in polymers, silica and metal organic frameworks (MOFs) for applications in bioimaging, sensing and catalysis.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Manuel Gaspar Martinho
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Paulo Sequeira Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
6
|
Santos AC, Alves SP, Carvalhão G, Correia NT, Viciosa MT, Farinha JPS. Phase diagrams of temperature-responsive copolymers p(MEO2MA-co-OEGMA) in water. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Hochstrasser J, Juère E, Kleitz F, Wang W, Kübel C, Tallarek U. Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. J Colloid Interface Sci 2021; 592:296-309. [PMID: 33676192 DOI: 10.1016/j.jcis.2021.02.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Although many synthetic pathways allow to fine-tune the morphology of dendritic mesoporous silica nanoparticles (DMSNs), the control of their particle size and mesopore diameter remains a challenge. Our study focuses on either increasing the mean particle size or adjusting the pore size distribution, changing only one parameter (particle or pore size) at a time. The dependence of key morphological features (porosity; pore shape and pore dimensions) on radial distance from the particle center has been investigated in detail. EXPERIMENTS Three-dimensional reconstructions of the particles obtained by scanning transmission electron microscopy (STEM) tomography were adapted as geometrical models for the quantification of intraparticle morphologies by radial porosity and chord length distribution analyses. Structural properties of the different synthesized DMSNs have been complementary characterized using TEM, SEM, nitrogen physisorption, and dynamic light scattering. FINDINGS The successful independent tuning of particle and pore sizes of the DMSNs could be confirmed by conventional analysis methods. Unique morphological features, which influence the uptake and release of guest molecules in biomedical applications, were uncovered from analyzing the STEM tomography-based reconstructions. It includes the quantification of structural hierarchy, identification of intrawall openings and pores, as well as the distinction of pore shapes (conical vs. cylindrical).
Collapse
Affiliation(s)
- Janika Hochstrasser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Estelle Juère
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Wu Wang
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Materials and Earth Sciences, Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
8
|
Gonçalves JLM, Lopes ABC, Baleizão C, Farinha JPS. Mesoporous Silica Nanoparticles Modified inside and out for ON:OFF pH-Modulated Cargo Release. Pharmaceutics 2021; 13:716. [PMID: 34068257 PMCID: PMC8153141 DOI: 10.3390/pharmaceutics13050716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Highly efficient pH-modulated cargo release was achieved with a new hybrid nanocarrier composed of a mesoporous silica core with functionalized pores and a grafted pH-responsive crosslinked polymer shell of 2-(diisopropylamino)ethyl methacrylate (pKa ≈ 6.5). The retention/release performance of the system was optimized by a novel approach using selective functionalization of the silica pores to tune the carrier-cargo interaction and by tunning the amount of grafted polymer. The system features excellent retention of cationic cargo at low pH and a burst release at higher pH. This results from the expanded-collapsed conformation transition of the pH-responsive polymer shell and the simultaneous change in the interaction between the cargo and the polymer shell and the modified pore walls. At low pH, the electrostatic interaction of the cationic cargo with the protonated amine groups of the extended polymer shell retains the cargo, resulting in very low leakage (OFF state). At high pH, the electrostatic interaction with the cargo is lost (due to deprotonation of the polymer amine groups), and the polymer shell collapses, squeezing out the cargo in a burst release (ON state). Pore functionalization in combination with the stimuli-responsive polymer shell is a very promising strategy to design high-performance ON:OFF smart hybrid nanocarriers for stimuli-actuated cargo release, with great potential for application in the controlled release of drugs and other biologically active agents.
Collapse
Affiliation(s)
| | | | - Carlos Baleizão
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.L.M.G.); (A.B.C.L.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.L.M.G.); (A.B.C.L.)
| |
Collapse
|
9
|
Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Mater Today Bio 2021; 9:100096. [PMID: 33665604 PMCID: PMC7903011 DOI: 10.1016/j.mtbio.2021.100096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Scaffolds for bone tissue regeneration should provide the right cues for stem cell adhesion and proliferation, but also lead to their osteogenic differentiation. Hydrogels of modified platelet lysates (PLMA) show the proper mechanical stability for cell encapsulation and contain essential bioactive molecules required for cell maintenance. We prepared a novel PLMA-based nanocomposite for bone repair and regeneration capable of releasing biofactors to induce osteogenic differentiation. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were encapsulated in PLMA hydrogels containing bioactive mesoporous silica nanoparticles previously loaded with dexamethasone and functionalized with calcium and phosphate ions. After 21 d of culture, hBM-MSCs remained viable, presented a stretched morphology, and showed signs of osteogenic differentiation, namely the presence of significant amounts of alkaline phosphatase, bone morphogenic protein-2 and osteopontin, hydroxyapatite, and calcium nodules. Developed for the first time, PLMA/MSNCaPDex nanocomposites were able to guide the differentiation of hBM-MSCs without any other osteogenic supplementation.
Collapse
|
10
|
Tavares MT, Gaspar VM, Monteiro MV, Farinha JPS, Baleizao C, Mano J. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication 2021; 13. [PMID: 33455952 DOI: 10.1088/1758-5090/abdc86] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/15/2021] [Indexed: 01/12/2023]
Abstract
Leveraging 3D bioprinting for processing stem cell-laden biomaterials has unlocked a tremendous potential for fabricating living 3D constructs for bone tissue engineering. Even though several bioinks developed to date display suitable physicochemical properties for stem cell seeding and proliferation, they generally lack the nanosized minerals present in native bone bioarchitecture. To enable the bottom-up fabrication of biomimetic 3D constructs for bioinstructing stem cells pro-osteogenic differentiation, herein we developed multi-bioactive nanocomposite bioinks that combine the organic and inorganic building blocks of bone. For the organic component gelatin methacrylate (GelMA), a photocrosslinkable denaturated collagen derivative used for 3D bioprinting was selected due to its rheological properties display of cell adhesion moities to which bone tissue precursors such as human bone marrow derived mesenchymal stem cells (hBM-MSCs) can attach to. The inorganic building block was formulated by incorporating mesoporous silica nanoparticles functionalized with calcium, phosphate and dexamethasone (MSNCaPDex), which previously proven to induce osteogenic differentiation. The newly formulated photocrosslinkable nanocomposite GelMA bioink incorporating MSNCaPDex nanoparticles and laden with hBM-MSCs was sucessfully processed into a 3D bioprintable construct with structural fidelity and well dispersed nanoparticles throughout the hydrogel matrix. These nanocomposite constructs could induce the deposition of apatite in vitro, thus showing attractive bioactivity properties. Viability and differentiation studies showed that hBM-MSCs remained viable and exhibited osteogenic differentiation biomarkers when incorporated in GelMA/MSNCaPDex constructs and without requiring further biochemical nor mechanical stimuli. Overall, our nanocomposite bioink has demonstrated excellent processability via extrusion bioprinting into osteogenic constructs with potential application in bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Márcia T Tavares
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa Instituto Superior Técnico, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, Lisboa, 1049-001, PORTUGAL
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal, 3810-193, PORTUGAL
| | - Maria V Monteiro
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago Aveiro, Portugal, Aveiro, Portugal, 3810-193, PORTUGAL
| | - José Paulo S Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa Instituto Superior Técnico, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, Lisboa, 1049-001, PORTUGAL
| | - Carlos Baleizao
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, 1049-001, PORTUGAL
| | - João Mano
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, CICECO - Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal, 3810-193, PORTUGAL
| |
Collapse
|
11
|
L. M. Gonçalves J, J. Castanheira E, P. C. Alves S, Baleizão C, Farinha JP. Grafting with RAFT-gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture. Polymers (Basel) 2020; 12:E2175. [PMID: 32977680 PMCID: PMC7598713 DOI: 10.3390/polym12102175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive polymer materials are used in smart nanocarriers to provide the stimuli-actuated mechanical and chemical changes that modulate cargo delivery. To take full advantage of the potential of stimuli-responsive polymers for controlled delivery applications, these have been grafted to the surface of mesoporous silica particles (MSNs), which are mechanically robust, have very large surface areas and available pore volumes, uniform and tunable pore sizes and a large diversity of surface functionalization options. Here, we explore the impact of different RAFT-based grafting strategies on the amount of a pH-responsive polymer incorporated in the shell of MSNs. Using a "grafting to" (gRAFT-to) approach we studied the effect of polymer chain size on the amount of polymer in the shell. This was compared with the results obtained with a "grafting from" (gRAFT-from) approach, which yield slightly better polymer incorporation values. These two traditional grafting methods yield relatively limited amounts of polymer incorporation, due to steric hindrance between free chains in "grafting to" and to termination reactions between growing chains in "grafting from." To increase the amount of polymer in the nanocarrier shell, we developed two strategies to improve the "grafting from" process. In the first, we added a cross-linking agent (gRAFT-cross) to limit the mobility of the growing polymer and thus decrease termination reactions at the MSN surface. On the second, we tested a hybrid grafting process (gRAFT-hybrid) where we added MSNs functionalized with chain transfer agent to the reaction media containing monomer and growing free polymer chains. Our results show that both modifications yield a significative increase in the amount of grafted polymer.
Collapse
Affiliation(s)
| | | | | | - Carlos Baleizão
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (J.L.M.G.); (E.J.C.); (S.P.C.A.)
| | - José Paulo Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (J.L.M.G.); (E.J.C.); (S.P.C.A.)
| |
Collapse
|
12
|
Tavares MT, Oliveira MB, Gaspar VM, Mano JF, S. Farinha JP, Baleizão C. Efficient Single‐Dose Induction of Osteogenic Differentiation of Stem Cells Using Multi‐Bioactive Hybrid Nanocarriers. ACTA ACUST UNITED AC 2020; 4:e2000123. [DOI: 10.1002/adbi.202000123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Márcia T. Tavares
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
- Centro de Química Estrutural and Department of Chemical EngineeringInstituto Superior Técnico Universidade de Lisboa Lisboa 1049‐001 Portugal
| | - Mariana B. Oliveira
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José Paulo S. Farinha
- Centro de Química Estrutural and Department of Chemical EngineeringInstituto Superior Técnico Universidade de Lisboa Lisboa 1049‐001 Portugal
| | - Carlos Baleizão
- Centro de Química Estrutural and Department of Chemical EngineeringInstituto Superior Técnico Universidade de Lisboa Lisboa 1049‐001 Portugal
| |
Collapse
|
13
|
Gonçalves JLM, Crucho CIC, Alves SPC, Baleizão C, Farinha JPS. Hybrid Mesoporous Nanoparticles for pH-Actuated Controlled Release. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E483. [PMID: 30917559 PMCID: PMC6474099 DOI: 10.3390/nano9030483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Among a variety of inorganic-based nanomaterials, mesoporous silica nanoparticles (MSNs) have several attractive features for application as a delivery system, due to their high surface areas, large pore volumes, uniform and tunable pore sizes, high mechanical stability, and a great diversity of surface functionalization options. We developed novel hybrid MSNs composed of a mesoporous silica nanostructure core and a pH-responsive polymer shell. The polymer shell was prepared by RAFT polymerization of 2-(diisopropylamino)ethyl methacrylate (pKa ~6.5), using a hybrid grafting approach. The hybrid nanoparticles have diameters of ca. 100 nm at pH < 6.5 and ca. 60 nm at pH > 6.5. An excellent control of cargo release is achieved by the combined effect of electrostatic interaction of the cargo with the charged silica and the extended cationic polymer chains at low pH, and the reduction of electrostatic attraction with a simultaneous collapse of the polymer chains to a globular conformation at higher pH. The system presents a very low (almost null) release rate at acidic pH values and a large release rate at basic pH, resulting from the squeezing-out effect of the coil-to-globule transition in the polymer shell.
Collapse
Affiliation(s)
- José L M Gonçalves
- Centro de Química Estrutural and CQFM-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Carina I C Crucho
- Centro de Química Estrutural and CQFM-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Sérgio P C Alves
- Centro de Química Estrutural and CQFM-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Carlos Baleizão
- Centro de Química Estrutural and CQFM-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - José Paulo S Farinha
- Centro de Química Estrutural and CQFM-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
14
|
Rodrigues AS, Charreyre MT, Favier A, Baleizão C, Farinha JPS. Temperature-responsive copolymers without compositional drift by RAFT copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and 2-(diethylamino)ethyl acrylate. Polym Chem 2019. [DOI: 10.1039/c8py01615a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermoresponsive copolymers based on AEtMACl and protonated DEAEA feature RAFT copolymerization kinetics with both apparent reactivity ratios of about 1.
Collapse
Affiliation(s)
- Ana Sofia Rodrigues
- Centro de Química Estrutural (CQE) and Institute of Nanoscience and Nanotechnology (IN)
- Instituto Superior Técnico
- University of Lisbon
- Lisboa
- Portugal
| | | | - Arnaud Favier
- Univ Lyon
- ENS de Lyon
- CNRS USR 3010
- Laboratoire Joliot-Curie (LJC)
- F-69364 Lyon
| | - Carlos Baleizão
- Centro de Química Estrutural (CQE) and Institute of Nanoscience and Nanotechnology (IN)
- Instituto Superior Técnico
- University of Lisbon
- Lisboa
- Portugal
| | - José Paulo S. Farinha
- Centro de Química Estrutural (CQE) and Institute of Nanoscience and Nanotechnology (IN)
- Instituto Superior Técnico
- University of Lisbon
- Lisboa
- Portugal
| |
Collapse
|
15
|
Bulk dynamics of the thermoresponsive random copolymer of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA). POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ribeiro T, Coutinho E, Rodrigues AS, Baleizão C, Farinha JPS. Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release. NANOSCALE 2017; 9:13485-13494. [PMID: 28862282 DOI: 10.1039/c7nr03395h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are excellent nanocarriers, featuring very high cargo capacity due to their large surface area and pore volume. The particle and pore dimensions can be accurately tuned, and both the internal and external surfaces allow versatile functionalization. We developed hybrid MSNs with diameters around 140 nm, with the external surface selectively modified with a temperature-responsive biocompatible copolymer to control cargo release. The nanoparticles feature either a polymer brush or a gel-like responsive shell, produced by grafting from RAFT polymerization of PEG-acrylate macromonomers. The hybrid nanoparticles have fluorescent molecules incorporated into the inorganic network providing excellent optical properties for traceability and imaging. The cargo release profiles are explained by a temperature-controlled "pumping" mechanism: at low temperature (ca. 20 °C) the polymer shell is hydrophilic and expanded, opposing cargo diffusion out of the shell and retaining the molecules released from the mesopores; above room temperature (ca. 40-50 °C) the polymer network becomes more hydrophobic and collapses onto the silica surface, releasing the cargo by a sponge-like squeezing effect. The release kinetics depends on the polymer shell type, with better results obtained for the gel-coated nanoparticles. Our proof-of-concept system shows that by modulating the temperature, it is possible to achieve a pumping regime that increases the release rate in a controlled way.
Collapse
Affiliation(s)
- T Ribeiro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
17
|
Wuttke S, Lismont M, Escudero A, Rungtaweevoranit B, Parak WJ. Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 2017; 123:172-183. [DOI: 10.1016/j.biomaterials.2017.01.025] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/12/2016] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
|
18
|
Muthu MS, Mehata AK, Viswanadh MK. Upconversion nanotheranostics: emerging designs for integration of diagnosis and therapy. Nanomedicine (Lond) 2017; 12:577-580. [DOI: 10.2217/nnm-2017-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Madaswamy S Muthu
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|