1
|
Khasawneh LQ, Alsafar H, Alblooshi H, Allam M, Patrinos GP, Ali BR. The diversity and clinical implications of genetic variants influencing clopidogrel bioactivation and response in the Emirati population. Hum Genomics 2024; 18:2. [PMID: 38173046 PMCID: PMC10765826 DOI: 10.1186/s40246-023-00568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.
Collapse
Affiliation(s)
- Lubna Q Khasawneh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Habiba Alsafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Krami AM, Ratib C, Charoute H, Rouba H, Roky R, Barakat A, Nahili H. Association between G2677T/A polymorphism in ABCB1 gene and the risk of drug resistance epilepsy: An updated systematic review and meta-analysis. Epilepsy Res 2022; 185:106977. [PMID: 35853334 DOI: 10.1016/j.eplepsyres.2022.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Epilepsy is a common serious brain condition characterized by the abnormal electrical activity of neurons. In most cases, epileptic patients respond to antiepileptic drugs. Approximately, one-third of patients prove medically intractable. The ABCB1 gene is a superfamily of ATP-binding cassette (ABC) transporters that encode a drug-transport protein, lead to cells and organs protects and eliminates toxic agents. We performed this meta-analysis to assess the association between G2677T/A in the ABCB1 gene and the risk of drug resistance in epileptic patients. METHODS Two online libraries (PubMed and Scopus) were used to identify studies that report the relationship between G2677T/A polymorphism in the MDR1 gene and the risk of antiepileptic drug resistance. The meta-analysis was performed using Review Manager 5.3 software. The pooled odds ratios and 95 % confidence intervals (CIs) were calculated using a random or fixed effects model according to the heterogeneity between studies. RESULTS A total of 33 eligible studies were included in this meta-analysis which 4192 patients were drug-resistant and 5079 patients were drug-responsive. As a result, a significant association was observed in overall population for the genetic model GG+GA vs AA (OR with 95 % CI = 0,56 [0.34,0.93]; P = 0.02). The subgroup ethnicity analysis showed a significant decrease in the risk of AEDs resistance in the Caucasian population. CONCLUSION In conclusion, our analysis demonstrates that G2677T/A polymorphism in the ABCB1 gene decreases the risk of drug resistance. More studies are needed in the different ethnic groups to clarify the role of polymorphism in AEDs resistance.
Collapse
Affiliation(s)
- Al Mehdi Krami
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco; Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Chorouk Ratib
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco; Laboratory of Biotechnology environment and health, Faculty of Science El Jadida, Morocco
| | - Hicham Charoute
- Research unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco.
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Rachida Roky
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Halima Nahili
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| |
Collapse
|
3
|
Vázquez M, Fagiolino P. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy. Epilepsia Open 2021; 7 Suppl 1:S47-S58. [PMID: 34560816 PMCID: PMC9340310 DOI: 10.1002/epi4.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Drug‐resistant epilepsy has been explained by different mechanisms. The most accepted one involves overexpression of multidrug transporters proteins at the blood brain barrier and brain metabolizing enzymes. This hypothesis is one of the main pharmacokinetic reasons that lead to the lack of response of some antiseizure drug substrates of these transporters and enzymes due to their limited entrance into the brain and limited stay at the sites of actions. Although uncontrolled seizures can be the cause of the overexpression, some antiseizure medications themselves can cause such overexpression leading to treatment failure and thus refractoriness. However, it has to be taken into account that the inductive effect of some drugs such as carbamazepine or phenytoin not only impacts on the brain but also on the rest of the body with different intensity, influencing the amount of drug available for the central nervous system. Such induction is not only local drug concentration but also time dependent. In the case of valproic acid, the deficient disposition of ammonia due to a malfunction of the urea cycle, which would have its origin in an intrinsic deficiency of L‐carnitine levels in the patient or by its depletion caused by the action of this antiseizure drug, could lead to drug‐resistant epilepsy. Many efforts have been made to change this situation. In order to name some, the administration of once‐daily dosing of phenytoin or the coadministration of carnitine with valproic acid would be preferable to avoid iatrogenic refractoriness. Another could be the use of an adjuvant drug that down‐regulates the expression of transporters. In this case, the use of cannabidiol with antiseizure properties itself and able to diminish the overexpression of these transporters in the brain could be a novel therapy in order to allow penetration of other antiseizure medications into the brain.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Bruxel EM, do Canto AM, Bruno DCF, Geraldis JC, Lopes-Cendes I. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open 2021; 7 Suppl 1:S94-S120. [PMID: 34486831 PMCID: PMC9340306 DOI: 10.1002/epi4.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Collapse
Affiliation(s)
- Estela M Bruxel
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda M do Canto
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Danielle C F Bruno
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C Geraldis
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
5
|
Tamimi DE, Abduljabbar R, Yousef AM, Saeed RM, Zawiah M. Association between ABCB1 polymorphisms and response to antiepileptic drugs among Jordanian epileptic patients. Neurol Res 2021; 43:724-735. [PMID: 33949294 DOI: 10.1080/01616412.2021.1922182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Genetic polymorphisms of drug efflux transporters as ATP-binding cassette subfamily B, member 1 (ABCB1) have been suggested to modulate antiepileptic drugs (AEDs) response. We aimed to explore the association of ABCB1 polymorphisms and AEDs resistance among epileptic patients. METHODS A total of 86 Jordanian epileptic patients treated with AEDs was included in the study. DNA was extracted from blood samples and genotyping and haplotypes analyses were conducted for Nine single nucleotide polymorphisms (SNPs) on the ABCB1 gene. RESULTS Data revealed that none of the examined SNPs were associated with resistance to AEDs neither on the level of alleles nor genotypes. However, strong association was found between rs2235048 (OR = 10.6; 95%CI = [1.89-59.8], p= 0.01), rs1045642 (OR = 14; 95%CI = [1.3-156.7], p= 0.02), rs2032582 (OR = 9.1; 95%CI = [1.4-57.3], p= 0.04) and rs1128503 (OR = 18.7; 95%CI = [1.6-222.9], p= 0.02), ABCB1 polymorphisms and resistance to AEDs among females but not males. Haplotype analysis revealed statistically significant associations. The strongest significant associations were for haplotypes containing 2677G_1236 T in two-SNPshaplotypes (OR = 4.2; 95%CI = [1.2-14.9], p = 0.024); three-SNPs-haplotypes (OR = 4.2; 95% CI = [1.2-14.9], p = 0.02); four-SNPs-haplotypes (OR = 4.1; 95%CI = [1.2-14.3], p = 0.026). CONCLUSION Data suggests that there is a gender dependent association between ABCB1 genetic polymorphisms and response to AEDs. Additionally, ABCB1 haplotypes influence the response to AEDs. Further investigation is needed to confirm the results of this study.
Collapse
Affiliation(s)
- Duaa Eid Tamimi
- Department of Pharmacology, School of Medicine, the University of Jordan, Amman, Jordan
| | - Rami Abduljabbar
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, the University of Jordan, Amman, Jordan
| | - Al-Motassem Yousef
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, the University of Jordan, Amman, Jordan
| | - Ramzi Mukred Saeed
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, the University of Jordan, Amman, Jordan
| | - Mohammed Zawiah
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, the University of Jordan, Amman, Jordan.,Department of Pharmacy Practice, College of Clinical Pharmacy, Hodeidah University, Hodeidah, Yemen
| |
Collapse
|
6
|
Elmagid DSA, Abdelsalam M, Magdy H, Tharwat N. The association between MDR1 C3435T genetic polymorphism and the risk of multidrug-resistant epilepsy in Egyptian children. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is a chronic disease affecting about 2% of the population and is considered a serious neurological disease. Despite its good prognosis, 20–30% of epileptic patients were not cured of their seizures even with the many trials of antiepileptic drug (AED) therapy. The resistance mechanism is still unclear, maybe due to the effect of the genetic factors on the bioavailability of the drugs. Consequently, the association between therapy resistance and the presence of a gene called “multidrug resistance 1 (MDR1)” had been proposed. Thus, the present study aimed to understand the relationship between the genetic polymorphism of MDR1C3435T and the resistance to AEDs.
Result
A non-significant association was found between MDR1 C3435T single-nucleotide polymorphism (SNP) and drug-resistant epilepsy. However, there was statistical significance in the association between the drug type and the genotype distribution, in cases that were maintained on sodium valproate and MDR1C3435T genotype.
Conclusion
Possible involvement of the MDR1 gene C 3435T polymorphism with sodium valproate resistance clarifies the importance of genetic variability in response to the drug and may help to find novel genetic therapy for epilepsy, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Future studies with bigger sample sizes and in other racial populations will be necessary.
Collapse
|
7
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
8
|
Xiao Q, Zhou Y, Lauschke VM. Impact of variants in ATP-binding cassette transporters on breast cancer treatment. Pharmacogenomics 2020; 21:1299-1310. [DOI: 10.2217/pgs-2020-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There has been substantial interest in the impact of ATP-binding cassette (ABC) transporter variability on breast cancer drug resistance. Here, we provide a systematic review of ABC variants in breast cancer therapy. Notably, most studies used small heterogeneous cohorts and their identified associations lack statistical stringency, replication and mechanistic support. We conclude that commonly studied ABC polymorphisms are not suitable to accurately predict therapy response or toxicity in breast cancer patients and cannot guide treatment decisions. However, recent research shows that ABC transporters harbor a plethora of rare variants with individually small effect sizes, and we argue that a shift in strategy from target variant interrogation to comprehensive profiling might hold promise to drastically improve the predictive power of outcome models.
Collapse
Affiliation(s)
- Qingyang Xiao
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
9
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
10
|
Božina N, Sporiš IŠ, Božina T, Klarica-Domjanović I, Tvrdeić A, Sporiš D. Pharmacogenetics and the treatment of epilepsy: what do we know? Pharmacogenomics 2020; 20:1093-1101. [PMID: 31588875 DOI: 10.2217/pgs-2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Seizure control with antiepileptic drugs (AEDs) as well as susceptibility to adverse drug reactions varies among individuals with epilepsy. This interindividual variability is partly determined by genetic factors. However, genetic testing to predict the efficacy and toxicity of AEDs is limited and genetic variability is, as yet, largely unexplainable. Accordingly, genetic testing can only be advised in a very limited number of cases in clinical routine. Currently, by applying different methodologies, many trials have been undertaken to evaluate cost benefits of preventive pharmacogenetic analysis for patients. There is significant progress in sequencing technologies, and focus is on next-generation sequencing-based methods, like exome and genome sequencing. In this review, an overview of the current scientific knowledge considering the pharmacogenetics of AEDs is given.
Collapse
Affiliation(s)
- Nada Božina
- Department of Laboratory Diagnostics, Division of Pharmacogenomics & Therapy Individualiation, University Hospital Centre Zagreb, 10000 Zagreb, Croatia.,Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Šušak Sporiš
- Department of Neurology, University Hospital Dubrava, 10000 Zagreb, Croatia.,Faculty of Dental Medicine & Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Božina
- Department of Medical Chemistry, Biochemistry & Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Davor Sporiš
- Department of Neurology, University Hospital Dubrava, 10000 Zagreb, Croatia.,Faculty of Dental Medicine & Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Ivashchenko DV, Tereshchenko OV, Temirbulatov II, Akmalova KA, Grishina EA, Zastrozhin MS, Savchenko LM, Bryun EA, Sychev DA. Pharmacogenetics of the safety of phenazepam in alcohol withdrawal syndrome: haplotype and combinatorial analyses of polymorphic variants in the pharmacokinetic factor genes. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2020. [DOI: 10.14412/2074-2711-2020-2-17-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- D. V. Ivashchenko
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | | | - I. I. Temirbulatov
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - K. A. Akmalova
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - E. A. Grishina
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - M. S. Zastrozhin
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia;
Moscow Research and Practical Center of Addictions, Moscow Healthcare Department
| | - L. M. Savchenko
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - E. A. Bryun
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia;
Moscow Research and Practical Center of Addictions, Moscow Healthcare Department
| | - D. A. Sychev
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| |
Collapse
|
12
|
Shao S, Hu L, Han Z, Hou K, Fang H, Zhang G, Feng Y, Huang L. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: a meta-analysis. Transl Androl Urol 2020; 9:673-683. [PMID: 32420174 PMCID: PMC7215018 DOI: 10.21037/tau.2020.03.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Sirolimus (SRL) is an immunosuppressive drug and substrate of the P-glycoprotein (P-GP) encoded by ABCB1. The relationship between ABCB1 polymorphism and the pharmacokinetics of SRL in different studies were conflicting in renal transplant recipients. Thus, this meta-analysis aims to investigate the influence of ABCB1 C3435T, C1236T, and G2677T/A polymorphisms on the dose-adjusted trough level (C/D) of SRL in renal transplant recipients. Methods PubMed, Embase, and the Cochrane Library were searched for relevant studies. The quality of each eligible study was assessed according to Newcastle-Ottawa Scale. The STATA 15.0 was adopted to perform the meta-analysis. The fixed-effects model was used for pooled results with low heterogeneity (I2 ≤50%); otherwise, the random-effects model was used. Results A total of 6 studies were included in the meta-analysis. Results of pooled analysis showed no significant association of SRL C/D ratio with ABCB1 C3435T polymorphism. The subgroup analysis based on different ethnic groups and different time-points after SRL initiation in renal transplant recipients were also conducted. No significant association was observed in these subgroups. Significant associations were showed between ABCB1 C1236T polymorphism and the C/D ratio of SRL in the homozygous model (TT vs. CC; WMD: −45.54; 95% CI: −75.15, −15.94; P=0.003), and also in subgroup of Caucasian (TT vs. CC; WMD: −46.57; 95% CI: −91.90, −1.25; P=0.044 and TT vs. CC + CT; WMD: −52.10; 95% CI: −95.38, −8.82; P=0.018). Significant differences were found in association between the ABCB1 G2677T/A polymorphism and the C/D ratio of SRL, including the homozygous model (TT vs. GG; WMD: −76.47; 95% CI: −126.37, −26.58; P= 0.003), the heterozygous model (GT vs. GG,WMD: 178.62; 95% CI: 125.03, 232.22; P= 0.000), the dominant model (GT + TT vs. GG; WMD: 82.23; 95% CI: 36.28, 128.17; P=0.000), the recessive model (TT vs. GG + GT; WMD: −179.38; 95% CI: −283.33, −75.42; P=0.001), and the over-dominant model (GT vs. GG + TT; WMD: 199.44; 95% CI: 84.84, 314.05; P=0.001). Conclusions No significant association exists between ABCB1 C3435T polymorphism and the C/D ratio of SRL in renal transplant recipients. To achieve target therapeutic concentrations, ABCB1 C1236T homozygous mutant TT genotype will require a higher dose of sirolimus than wild type GG, especially in Caucasian renal transplant recipients. ABCB1 G2677T/A TT genotype will also need a higher dose of sirolimus genotype. Genotyping of ABCB1 might help to improve the individualization of SRL for renal transplant recipients. Further studies are expected to provide high-quality evidence.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China.,Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Zaigang Han
- Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Kelu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Huihui Fang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Guijie Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
13
|
ABCB1 Polymorphisms and Drug-Resistant Epilepsy in a Tunisian Population. DISEASE MARKERS 2019; 2019:1343650. [PMID: 31871496 PMCID: PMC6913308 DOI: 10.1155/2019/1343650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Abstract
Background Epilepsy is one of the most common neurological disorders with about 30% treatment failure rate. An interindividual variations in efficacy of antiepileptic drugs (AEDs) make the treatment of epilepsy challenging, which can be attributed to genetic factors such as ATP-Binding Cassette sub-family B, member1 (ABCB1) gene polymorphisms. Objective The main objective of the present study is to evaluate the association of ABCB1 C1236T, G2677T, and C3435T polymorphisms with treatment response among Tunisian epileptic patients. Materials and Methods One hundred epileptic patients, originated from north of Tunisia, were recruited and categorized into 50 drug-resistant and 50 drug-responsive patients treated with antiepileptic drugs (AEDs) as per the International League Against Epilepsy. DNA of patients was extracted and ABCB1 gene polymorphisms studied using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results The C1236T, G2677T, and C3435T polymorphisms were involved into AED resistance. Significant genotypic (C1236T TT (p ≤ 0.001); G2677T TT (p = 0.001); C3435T TT (p ≤ 0.001)) and allelic associations (C1236T T (3.650, p ≤ 0.001); G2677TT (1.801, p = 0.044); C3435T T (4.730, p ≤ 0.001)) with drug resistance epilepsy (DRE) were observed. A significant level of linkage disequilibrium (LD) was also noted between ABCB1 polymorphisms. Patients with the haplotypes CT and TT (C1236T-G2677T); GT, TC, and TT (G2677T-C3435T); CT and TT (C1236T-C3435T); CTT, TTC, TGT, and TTT (C1236T-G2677T-C3435T) were also significantly associated to AED resistance. Conclusions The response to antiepileptics seems to be modulated by TT genotypes, T alleles, and the predicted haplotypes for the tested SNPs in our population. Genetic analysis is a valuable tool for predicting treatment response and thus will contribute to personalized medicine for Tunisian epileptic patients.
Collapse
|
14
|
Gagliardo T, Gandini G, Gallucci A, Menchetti M, Bianchi E, Turba ME, Cauduro A, Corlazzoli DS, Gianni S, Baroni M, Bernardini M, Gentilini F. ABCB1 c.-6-180T>G polymorphism and clinical risk factors in a multi-breed cohort of dogs with refractory idiopathic epilepsy. Vet J 2019; 253:105378. [PMID: 31685133 DOI: 10.1016/j.tvjl.2019.105378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Epilepsy is the most common chronic neurological disorder in dogs. Approximately 20-30% of dogs do not achieve satisfactory seizure control with two or more anti-epileptic drugs at appropriate dosages. This condition, defined as refractory epilepsy, is a multifactorial condition involving both acquired and genetic factors. The P glycoprotein might play and important role in the pathophysiological mechanism and it is encoded by the ABCB1 gene. An association between a single nucleotide variation of the ABCB1 gene (c.-6-180T>G) and phenobarbital resistance has previously been reported in a Border collie population with idiopathic epilepsy. To date, the presence and relevance of this polymorphism has not been assessed in other breeds. A multicentre retrospective, case-control study was conducted to investigate associations between ABCB1 c.-6-180T>G, clinical variables, and refractoriness in a multi-breed population of dogs with refractory idiopathic epilepsy. A secondary aim was to evaluate the possible involvement of the ABCB1 c.-6-180T>G single nucleotide variation this population. Fifty-two refractory and 50 responsive dogs with idiopathic epilepsy were enrolled. Of these, 45 refractory and 50 responsive (control) dogs were genotyped. The G allele was found in several breeds, but there was no evidence of association with refractoriness (P=0.69). The uncertain role of the c.-6-180T>G variation was further suggested by an association between the T/T genotype with both refractoriness and responsiveness in different breeds. Furthermore, high seizure density (cluster seizure) was the main clinical risk factor for refractory idiopathic epilepsy (P=0.003).
Collapse
Affiliation(s)
- T Gagliardo
- Department of Veterinary Medical Sciences, University of Bologna, 50 via Tolara di sopra, Ozzano dell'Emilia, BO 40064, Italy.
| | - G Gandini
- Department of Veterinary Medical Sciences, University of Bologna, 50 via Tolara di sopra, Ozzano dell'Emilia, BO 40064, Italy
| | - A Gallucci
- Department of Veterinary Medical Sciences, University of Bologna, 50 via Tolara di sopra, Ozzano dell'Emilia, BO 40064, Italy
| | - M Menchetti
- Department of Veterinary Medical Sciences, University of Bologna, 50 via Tolara di sopra, Ozzano dell'Emilia, BO 40064, Italy
| | - E Bianchi
- Department of Veterinary Medical Sciences, University of Parma, 80 via Tiglio, Parma, PR 43100, Italy
| | - M E Turba
- Genefast, Bologna, 17/d via Castelfranco, Valsamoggia, BO 40053, Italy
| | - A Cauduro
- Neurovet Professional Association, 29 via Maestri del lavoro, Legnano, MI 20025, Italy
| | - D S Corlazzoli
- Roma Sud Veterinary Clinic, 24 via Pilade Mazza, Rome, RM 00173, Italy
| | - S Gianni
- Gran Sasso Veterinary Clinic, 26 via Donatello, Milan, MI 20131, Italy
| | - M Baroni
- Valdinievole Veterinary Hospital, 123 via Nigra Costantino, Monsummano Terme, PT 51015, Italy
| | - M Bernardini
- Portoni Rossi Veterinary Hospital, 57/a via Roma, Zola Predosa, BO 40069, Italy
| | - F Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, 50 via Tolara di sopra, Ozzano dell'Emilia, BO 40064, Italy
| |
Collapse
|
15
|
ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144:357-376. [PMID: 31051235 DOI: 10.1016/j.phrs.2019.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-resistant epilepsy (DRE) affects approximately one third of epileptic patients. Among various theories that try to explain multidrug resistance, the transporter hypothesis is the most extensively studied. Accordingly, the overexpression of efflux transporters in the blood-brain barrier (BBB), mainly from the ATP binding cassette (ABC) superfamily, may be responsible for hampering the access of antiepileptic drugs into the brain. P-glycoprotein and other efflux transporters are known to be upregulated in endothelial cells, astrocytes and neurons of the neurovascular unit, a functional barrier critically involved in the brain penetration of drugs. Inflammation and oxidative stress involved in the pathophysiology of epilepsy together with uncontrolled recurrent seizures, drug-associated induction and genetic polymorphisms are among the possible causes of ABC transporters overexpression in DRE. The aforementioned pathological mechanisms will be herein discussed together with the multiple strategies to overcome the activity of efflux transporters in the BBB - from direct transporters inhibition to down-regulation of gene expression resorting to RNA interference (RNAi), or by targeting key modulators of inflammation and seizure-mediated signalling.
Collapse
|
16
|
Salvador-Martín S, García-González X, García MI, Blanco C, García-Alfonso P, Robles L, Grávalos C, Pachón V, Longo F, Martínez V, Sanjurjo-Sáez M, López-Fernández LA. Clinical utility of ABCB1 genotyping for preventing toxicity in treatment with irinotecan. Pharmacol Res 2018; 136:133-139. [PMID: 30213564 DOI: 10.1016/j.phrs.2018.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
Abstract
Preventing severe irinotecan-induced adverse reactions would allow us to offer better treatment and improve patients' quality of life. Transporters, metabolizing enzymes, and genes involved in the folate pathway have been associated with irinotecan-induced toxicity. We analyzed 12 polymorphisms in UGT1A1, ABCB1, ABCG2, ABCC4, ABCC5, and MTHFR in 158 patients with metastatic colorectal cancer treated with irinotecan and studied the association with grade >2 adverse reactions (CTCAE). Among the most frequent ADRs, the SNPs rs1128503, rs2032582, and rs1045642 in ABCB1 and rs1801133 in MTHFR were associated with hematological toxicity and overall toxicity. The SNP rs11568678 in ABCC4 was also associated with overall toxicity. After correction of P values using a false discovery rate, only ABCB1 variants remained statistically significant. Haplotype analysis in ABCB1 showed an 11.3-fold and 4.6-fold increased risk of hematological toxicity (95% CI, 1.459-88.622) and overall toxicity (95% CI, 2.283-9.386), respectively. Consequently, genotyping of the three SNPs in ABCB1 can predict overall toxicity and hematological toxicity with a diagnostic odds ratio of 4.40 and 9.94, respectively. Genotyping of ABCB1 variants can help to prevent severe adverse reactions to irinotecan-based treatments in colorectal cancer.
Collapse
Affiliation(s)
- Sara Salvador-Martín
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Xandra García-González
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María I García
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carolina Blanco
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Pilar García-Alfonso
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luis Robles
- Hospital Universitario Doce de Octubre, Instituto de Investigación Hospital Doce de Octubre, Madrid, Spain
| | - Cristina Grávalos
- Hospital Universitario Doce de Octubre, Instituto de Investigación Hospital Doce de Octubre, Madrid, Spain
| | - Vanessa Pachón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRICYS), CIBERONC, Madrid, Spain
| | - Federico Longo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRICYS), CIBERONC, Madrid, Spain
| | - Virginia Martínez
- Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz, Spain
| | - María Sanjurjo-Sáez
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luis A López-Fernández
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Spanish Clinical Research Network (SCReN), Spain.
| |
Collapse
|
17
|
Schoretsanitis G, de Leon J, Diaz FJ. Prolactin levels: sex differences in the effects of risperidone, 9-hydroxyrisperidone levels, CYP2D6 and ABCB1 variants. Pharmacogenomics 2018; 19:815-823. [PMID: 29914302 DOI: 10.2217/pgs-2018-0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM The role of sex on the association of plasma prolactin levels with risperidone (R) and 9-hydroxyrisperidone (9-OHR) concentrations is investigated. METHODS Plasma R and prolactin concentrations, CYP2D6 and exon 21 and 26 ABCB1 gene variants were studied in 110 patients. RESULTS In females, a 1 ng/ml increase in R levels was associated with a significant 1.02% increase in prolactin levels. In males, a 1 ng/ml increase in 9-OHR levels was associated with a significant 1.18% increase in prolactin levels. ABCB1 haplotype 12 had significant but opposite effects in males and females. In the combined sample, 9-OHR, but not R levels had significant effects on prolactin levels. CONCLUSION Genes had sex-specific effects on risperidone-associated prolactin elevations.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- University Hospital of Psychiatry, Bern, Switzerland.,Department of Psychiatry, Psychotherapy & Psychosomatics, RWTH Aachen University, Aachen, Germany, & JARA - Translational Brain Medicine
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY 40508, USA.,Psychiatry & Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain.,Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| | - Francisco J Diaz
- Department of Biostatistics, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Orlandi A, Paolino MC, Striano P, Parisi P. Clinical reappraisal of the influence of drug-transporter polymorphisms in epilepsy. Expert Opin Drug Metab Toxicol 2018; 14:505-512. [PMID: 29804481 DOI: 10.1080/17425255.2018.1473377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although novel antiepileptic drugs (AEDs) have been recently released, the issue of drug resistance in epileptic patients remains unsolved and largely unpredictable. Areas covered: We aim to assess the clinical impact of genetic variations that may influence the efficacy of medical treatment in epilepsy patients. Indeed, many genes, including genes encoding drug transporters (ABCB1), drug targets (SCN1A), drug-metabolizing enzymes (CYP2C9, CYP2C19), and human leucocyte antigen (HLA) proteins, may regulate the mechanisms of drug resistance in epilepsy. This review specifically focuses on the ABC genes, which encode multidrug resistance-associated proteins (MRPs) and may reduce the blood-brain barrier penetration of anticonvulsant AEDs. Expert opinion: Drug resistance remains a crucial problem in epilepsy patients. Pharmacogenomic studies may improve our understanding of drug responses and drug resistance by exploring the impact of gene variants and predicting drug responses and tolerability.
Collapse
Affiliation(s)
- Azzurra Orlandi
- a Child Neurology, Chair of Pediatrics, NESMOS Department, Faculty of Medicine and Psychology , Sapienza University, c/o Sant'Andrea Hospital , Rome , Italy
| | - Maria Chiara Paolino
- a Child Neurology, Chair of Pediatrics, NESMOS Department, Faculty of Medicine and Psychology , Sapienza University, c/o Sant'Andrea Hospital , Rome , Italy
| | - Pasquale Striano
- b Pediatric Neurology and Muscular Diseases Unit, Departments of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute , University of Genoa , Genova , Italy
| | - Pasquale Parisi
- a Child Neurology, Chair of Pediatrics, NESMOS Department, Faculty of Medicine and Psychology , Sapienza University, c/o Sant'Andrea Hospital , Rome , Italy
| |
Collapse
|
19
|
Ajmi M, Boujaafar S, Zouari N, Amor D, Nasr A, Rejeb NB, Amor SB, Omezzine A, Benammou S, Bouslama A. Association between ABCB1 polymorphisms and response to first-generation antiepileptic drugs in a Tunisian epileptic population. Int J Neurosci 2017; 128:705-714. [DOI: 10.1080/00207454.2017.1412964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marwa Ajmi
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Boujaafar
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nadia Zouari
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Dorra Amor
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Nasr
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nabila Ben Rejeb
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sana Ben Amor
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sofien Benammou
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
20
|
In Vitro Assessment of the Effect of Antiepileptic Drugs on Expression and Function of ABC Transporters and Their Interactions with ABCC2. Molecules 2017; 22:molecules22101484. [PMID: 28961159 PMCID: PMC6151573 DOI: 10.3390/molecules22101484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 01/16/2023] Open
Abstract
ABC transporters have a significant role in drug disposition and response and various studies have implicated their involvement in epilepsy pharmacoresistance. Since genetic studies till now are inconclusive, we thought of investigating the role of xenobiotics as transcriptional modulators of ABC transporters. Here, we investigated the effect of six antiepileptic drugs (AEDs) viz. phenytoin, carbamazepine, valproate, lamotrigine, topiramate and levetiracetam, on the expression and function of ABCB1, ABCC1, ABCC2 and ABCG2 in Caco2 and HepG2 cell lines through real time PCR, western blot and functional activity assays. Further, the interaction of AEDs with maximally induced ABCC2 was studied. Carbamazepine caused a significant induction in expression of ABCB1 and ABCC2 in HepG2 and Caco2 cells, both at the transcript and protein level, together with increased functional activity. Valproate caused a significant increase in the expression and functional activity of ABCB1 in HepG2 only. No significant effect of phenytoin, lamotrigine, topiramate and levetiracetam on the transporters under study was observed in either of the cell lines. We demonstrated the interaction of carbamazepine and valproate with ABCC2 with ATPase and 5,6-carboxyfluorescein inhibition assays. Thus, altered functionality of ABCB1 and ABCC2 can affect the disposition and bioavailability of administered drugs, interfering with AED therapy.
Collapse
|
21
|
Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017; 8:301. [PMID: 28729850 PMCID: PMC5498483 DOI: 10.3389/fneur.2017.00301] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a common neurological disorder that affects over 70 million people worldwide. Despite the recent introduction of new antiseizure drugs (ASDs), about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early identification of patients who will become refractory to ASDs could help direct such patients to appropriate non-pharmacological treatment, but the complexity in the temporal patterns of epilepsy could make such identification difficult. The target hypothesis and transporter hypothesis are the most cited theories trying to explain refractory epilepsy, but neither theory alone fully explains the neurobiological basis of pharmacoresistance. This review summarizes evidence for and against several major theories, including the pharmacokinetic hypothesis, neural network hypothesis, intrinsic severity hypothesis, gene variant hypothesis, target hypothesis, and transporter hypothesis. The discussion is mainly focused on the transporter hypothesis, where clinical and experimental data are discussed on multidrug transporter overexpression, substrate profiles of ASDs, mechanism of transporter upregulation, polymorphisms of transporters, and the use of transporter inhibitors. Finally, future perspectives are presented for the improvement of current hypotheses and the development of treatment strategies as guided by the current understanding of refractory epilepsy.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Epilepsy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
22
|
Glauser TA, Holland K, O’Brien VP, Keddache M, Martin LJ, Clark PO, Cnaan A, Dlugos D, Hirtz DG, Shinnar S, Grabowski G. Pharmacogenetics of antiepileptic drug efficacy in childhood absence epilepsy. Ann Neurol 2017; 81:444-453. [PMID: 28165634 PMCID: PMC6171340 DOI: 10.1002/ana.24886] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine whether common polymorphisms in CACNA1G, CACNA1H, CACNA1I, and ABCB1 are associated with differential short-term seizure outcome in childhood absence epilepsy (CAE). METHODS Four hundred forty-six CAE children in a randomized double-blind trial of ethosuximide, lamotrigine, and valproate had short-term seizure outcome determined. Associations between polymorphisms (minor allele frequency ≥ 15%) in 4 genes and seizure outcomes were assessed. In vitro electrophysiology on transfected CACNA1H channels determined impact of 1 variant on T-type calcium channel responsiveness to ethosuximide. RESULTS Eighty percent (357 of 446) of subjects had informative short-term seizure status (242 seizure free, 115 not seizure free). In ethosuximide subjects, 2 polymorphisms (CACNA1H rs61734410/P640L, CACNA1I rs3747178) appeared more commonly among not-seizure-free participants (p = 0.011, odds ratio [OR] = 2.63, 95% confidence limits [CL] = 1.25-5.56; p = 0.026, OR = 2.38, 95% CL = 1.11-5.00). In lamotrigine subjects, 1 ABCB1 missense polymorphism (rs2032582/S893A; p = 0.015, OR = 2.22, 95% CL = 1.16-4.17) was more common in not-seizure-free participants, and 2 CACNA1H polymorphisms (rs2753326, rs2753325) were more common in seizure-free participants (p = 0.038, OR = 0.52, 95% CL = 0.28-0.96). In valproate subjects, no common polymorphisms were associated with seizure status. In vitro electrophysiological studies showed no effect of the P640L polymorphism on channel physiology in the absence of ethosuximide. Ethosuximide's effect on rate of decay of CaV 3.2 was significantly less for P640L channel compared to wild-type channel. INTERPRETATION Four T-type calcium channel variants and 1 ABCB1 transporter variant were associated with differential drug response in CAE. The in vivo P640L variant's ethosuximide effect was confirmed by in vitro electrophysiological studies. This suggests that genetic variation plays a role in differential CAE drug response. Ann Neurol 2017;81:444-453.
Collapse
Affiliation(s)
- Tracy A. Glauser
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Valerie P. O’Brien
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mehdi Keddache
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peggy O. Clark
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Avital Cnaan
- Division of Biostatistics and Study Methodology, Children’s National Health System, Washington, D.C
| | - Dennis Dlugos
- Division of Neurology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Deborah G Hirtz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Shlomo Shinnar
- Division of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, New York
| | - Gregory Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IBY, Hila L. Relationship between ABCB1 3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic review and meta-analysis. BMC Neurol 2017; 17:32. [PMID: 28202008 PMCID: PMC5311838 DOI: 10.1186/s12883-017-0801-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022] Open
Abstract
Background Antiepileptic drugs (AEDs) are effective medications available for epilepsy. However, many patients do not respond to this treatment and become resistant. Genetic polymorphisms may be involved in the variation of AEDs response. Therefore, we conducted an updated systematic review and a meta-analysis to investigate the contribution of the genetic profile on epilepsy drug resistance. Methods We proceeded to the selection of eligible studies related to the associations of polymorphisms with resistance to AEDs therapy in epilepsy, published from January 1980 until November 2016, using Pubmed and Cochrane Library databases. The association analysis was based on pooled odds ratios (ORs) and 95% confidence intervals (CIs). Results From 640 articles, we retained 13 articles to evaluate the relationship between ATP-binding cassette sub-family C member 1 (ABCB1) C3435T polymorphism and AEDs responsiveness in a total of 454 epileptic AEDs-resistant cases and 282 AEDs-responsive cases. We found a significant association with an OR of 1.877, 95% CI 1.213–2.905. Subanalysis by genotype model showed a more significant association between the recessive model of ABCB1 C3435T polymorphism (TT vs. CC) and the risk of AEDs resistance with an OR of 2.375, 95% CI 1.775–3.178 than in the dominant one (CC vs. TT) with an OR of 1.686, 95% CI 0.877–3.242. Conclusion Our results indicate that ABCB1 C3435T polymorphism, especially TT genotype, plays an important role in refractory epilepsy. As genetic screening of this genotype may be useful to predict AEDs response before starting the treatment, further investigations should validate the association.
Collapse
Affiliation(s)
- Malek Chouchi
- Department of Genetic, Tunis El Manar University, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia. .,Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Hedia Klaa
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Kalthoum Tizaoui
- Division of Histology and Immunology Division, Department of Basic Sciences, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Ilhem Ben-Youssef Turki
- Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology, UR12SP24 Abnormal Movements of Neurologic Diseases, Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| | - Lamia Hila
- Department of Genetic, Faculty of Medicine of Tunis, 15 Jebel Lakhdhar street, La Rabta, 1007, Tunis, Tunisia
| |
Collapse
|
24
|
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2017; 667:27-39. [PMID: 28082152 PMCID: PMC5846849 DOI: 10.1016/j.neulet.2017.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Genetic variation can influence response to antiepileptic drug (AED) treatment through various effector processes. Metabolism of many AEDs is mediated by the cytochrome P450 (CYP) family; some of the CYPs have allelic variants that may affect serum AED concentrations. ‘Precision medicine’ focuses on the identification of an underlying genetic aetiology allowing personalised therapeutic choices. Certain human leukocyte antigen, HLA, alleles are associated with an increased risk of idiosyncratic adverse drug reactions. New results are emerging from large-scale multinational efforts, likely imminently to add knowledge of value from a pharmacogenetic perspective.
There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic.
Collapse
Affiliation(s)
- Simona Balestrini
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom; Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom.
| |
Collapse
|
25
|
Striano P, Vari MS, Mazzocchetti C, Verrotti A, Zara F. Management of genetic epilepsies: From empirical treatment to precision medicine. Pharmacol Res 2016; 107:426-429. [PMID: 27080588 DOI: 10.1016/j.phrs.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
Abstract
Despite the over 20 antiepileptic drugs (AEDs) now licensed for epilepsy treatment, seizures can be effectively controlled in about ∼70% of patients. Thus, epilepsy treatment is still challenging in about one third of patients and this may lead to a severe medically, physically, and socially disabling condition. However, there is clear evidence of heterogeneity of response to existing AEDs and a significant unmet need for effective intervention. A number of studies have shown that polymorphisms may influence the poor or inadequate therapeutic response as well as the occurrence of adverse effects. In addition, the new frontier of genomic technologies, including chromosome microarrays and next-generation sequencing, improved our understanding of the genetic architecture of epilepsies. Recent findings in some genetic epilepsy syndromes provide insights into mechanisms of epileptogenesis, unrevealing the role of a number of genes with different functions, such as ion channels, proteins associated to the vesical synaptic cycle or involved in energy metabolism. The rapid progress of high-throughput genomic sequencing and corresponding analysis tools in molecular diagnosis are revolutionizing the practice and it is a fact that for some monogenic epilepsies the molecular confirmation may influence the choice of the treatment. Moreover, the novel genetic methods, that are able to analyze all known genes at a reasonable price, are of paramount importance to discover novel therapeutic avenues and individualized (or precision) medicine.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genova, Italy.
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genova, Italy
| | | | - Alberto Verrotti
- Department of Pediatrics, University of L' Aquila, LAquila, Italy
| | - Federico Zara
- Laboratory of Neurosciences and Neurogenetics, Department of Head and Neck Diseases, G. Gaslini Institute, Genova, Italy
| |
Collapse
|
26
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Abstract
Genetic factors contribute to the high interindividual variability in response to antiepileptic drugs. However, most genetic markers identified to date have limited sensitivity and specificity, and the value of genetic testing in guiding antiepileptic drug (AED) therapy is limited. The best defined indication for testing relates to HLA-B*15:02 genotyping to identify those individuals of South Asian ethnicity who are at high risk for developing serious adverse cutaneous reactions to carbamazepine. The indication for HLA-A*31:01 testing to identify individuals at risk for skin reactions from carbamazepine, or for CYP2C9 genotyping to identify individuals at risk for serious skin reactions from phenytoin is less compelling. The use of genetic testing to guide epilepsy treatment is likely to increase in the future, as better understanding of the function of epilepsy genes will permit the application of precision medicine targeting the biological mechanisms responsible for epilepsy in the specific individual.
Collapse
Affiliation(s)
| | - Emilio Perucca
- a 1 C. Mondino National Neurological Institute, Pavia, Italy.,b 2 Department of Internal Medicine and Therapeutics, Division of Clinical and Experimental Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
28
|
|
29
|
Abstract
Epilepsy is a serious neurological disorder that affects more than 60 million people worldwide. Intractable epilepsy (IE) refers to approximately 20%-30% of epileptic patients who fail to achieve seizure control with antiepileptic drug (AED) treatment. Although the mechanisms underlying IE are not well understood, it has been hypothesized that multidrug transporters such as P-glycoprotein (P-gp) play a major role in drug efflux at the blood-brain barrier, and may be the underlying factor in the variable responses of patients to AEDs. The main goal of the present review is to show evidence from different areas that support the idea that the overexpression of P-gp is associated with IE. We discuss here evidence from animal studies, pharmacology, clinical cases and genetic studies.
Collapse
Affiliation(s)
- Guang-Xin Wang
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Da-Wei Wang
- b Department of Biochemistry and Molecular Biology , School of Medicine, Shandong University , Jinan , P.R. China
| | - Yong Liu
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Yan-Hui Ma
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| |
Collapse
|
30
|
Efectos de los inductores antiepilépticos en la neuropsicofarmacología: una cuestión ignorada. Parte II: cuestiones farmacológicas y comprensión adicional. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2015; 8:167-88. [DOI: 10.1016/j.rpsm.2014.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
31
|
Li H, Wang B, Chang C, Wu M, Xu Y, Jiang Y. The roles of variants in human multidrug resistance (MDR1) gene and their haplotypes on antiepileptic drugs response: a meta-analysis of 57 studies. PLoS One 2015; 10:e0122043. [PMID: 25816099 PMCID: PMC4376792 DOI: 10.1371/journal.pone.0122043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/05/2015] [Indexed: 12/24/2022] Open
Abstract
Objective Previous studies reported the associations between the ATP-binding cassette sub-family B member 1 (ABCB1, also known as MDR1) polymorphisms and their haplotypes with risk of response to antiepileptic drugs in epilepsy, however, the results were inconclusive. Methods The Pubmed, Embase, Web of Science, CNKI and Chinese Biomedicine databases were searched up to July 15, 2014. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a fixed-effects or random-effects model based on heterogeneity tests. Meta-regression and Galbraith plot analysis were carried out to explore the possible heterogeneity. Results A total of 57 studies involving 12407 patients (6083 drug-resistant and 6324 drug-responsive patients with epilepsy) were included in the pooled-analysis. For all three polymorphisms (C3435T, G2677T/A, and C1236T), we observed a wide spectrum of minor allele frequencies across different ethnicities. A significantly decreased risk of AEDs resistance was observed in Caucasian patients with T allele of C3435T variant, which was still significant after adjusted by multiple testing corrections (T vs C: OR=0.83, 95%CI=0.71-0.96, p=0.01). However, no significant association was observed between the other two variants and AEDs resistance. Of their haplotypes in ABCB1 gene (all studies were in Indians and Asians), no significant association was observed with AEDs resistance. Moreover, sensitivity and Cumulative analysis showed that the results of this meta-analysis were stable. Conclusion In summary, this meta-analysis demonstrated that effect of C3435T variant on risk of AEDs resistance was ethnicity-dependent, which was significant in Caucasians. Additionally, further studies in different ethnic groups are warranted to clarify possible roles of haplotypes in ABCB1 gene in AEDs resistance, especially in Caucasians.
Collapse
Affiliation(s)
- Hui Li
- Department of neurology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Bing Wang
- Department of neurology, Huai’an Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Cheng Chang
- Department of neurology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Minghua Wu
- Department of neurology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Yun Xu
- Department of neurology, Nanjing Drum Tower Hospital affiliated with Medical School of Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (YJ); (YX)
| | - Yajun Jiang
- Department of neurology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, China
- * E-mail: (YJ); (YX)
| |
Collapse
|
32
|
Abstract
Refractory epilepsy, estimated to affect 10-20% children with epilepsy, can have profound effect on the education, social and cognitive functioning and recreational activities of the child. The definitions are still evolving. A detailed clinical evaluation may reveal an accurate syndromic and etiological diagnosis. The recent advances in neuroimaging and electrophysiology have revolutionized the management of children with refractory epilepsy and supplement the clinical evaluation. Genetic and metabolic evaluation may be indicated in selected cases. The rational use of anti-epileptic drugs, epilepsy surgery and dietary therapies are the mainstay in the management. Various experimental treatment options and pharmacogenetics offer hope for future.
Collapse
Affiliation(s)
- Satinder Aneja
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, 110001, India,
| | | |
Collapse
|
33
|
Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 2014; 10:1337-54. [PMID: 25162314 DOI: 10.1517/17425255.2014.952630] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Human ATP-binding cassette (ABC) transporters act as translocators of numerous substrates across extracellular and intracellular membranes, thereby contributing to bioavailability and consequently therapy response. Genetic polymorphisms are considered as critical determinants of expression level or activity and subsequently response to selected drugs. AREAS COVERED Here the influence of polymorphisms of the prominent ABC transporters P-glycoprotein (MDR1, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and the multidrug resistance-associated protein (MRP) 2 (ABCC2) as well as MRP3 (ABCC3) on the pharmacokinetic of drugs and associated consequences on therapy response and clinical outcome is discussed. EXPERT OPINION ABC transporter genetic variants were assumed to affect interindividual differences in pharmacokinetics and subsequently clinical response. However, decades of medical research have not yielded in distinct and unconfined reproducible outcomes. Despite some unique results, the majority were inconsistent and dependent on the analyzed cohort or study design. Therefore, variability of bioavailability and drug response may be attributed only by a small amount to polymorphisms in transporter genes, whereas transcriptional regulation or post-transcriptional modification seems to be more critical. In our opinion, currently identified genetic variants of ABC efflux transporters can give some hints on the role of transporters at interfaces but are less suitable as biomarkers to predict therapeutic outcome.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein , Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel , Germany +49 431 597 3500 ; +49 431 597 3522 ;
| | | |
Collapse
|
34
|
Li M, Tan J, Yang X, Su L, Xie J, Liang B, Long J, Jiang H, Wei Q, Shen T, Chen Q, Yan Y, Wu G, Gu L. The ABCB1-C3435T polymorphism likely acts as a risk factor for resistance to antiepileptic drugs. Epilepsy Res 2014; 108:1052-67. [PMID: 24794827 DOI: 10.1016/j.eplepsyres.2014.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/22/2013] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
|
35
|
Ekenstedt KJ, Oberbauer AM. Inherited epilepsy in dogs. Top Companion Anim Med 2014; 28:51-8. [PMID: 24070682 DOI: 10.1053/j.tcam.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Abstract
Epilepsy is the most common neurologic disease in dogs and many forms are considered to have a genetic basis. In contrast, some seizure disorders are also heritable, but are not technically defined as epilepsy. Investigation of true canine epilepsies has uncovered genetic associations in some cases, however, many remain unexplained. Gene mutations have been described for 2 forms of canine epilepsy: primary epilepsy (PE) and progressive myoclonic epilepsies. To date, 9 genes have been described to underlie progressive myoclonic epilepsies in several dog breeds. Investigations into genetic PE have been less successful, with only 1 causative gene described. Genetic testing as an aid to diagnosis, prognosis, and breeding decisions is available for these 10 forms. Additional studies utilizing genome-wide tools have identified PE loci of interest; however, specific genetic tests are not yet developed. Many studies of dog breeds with PE have failed to identify genes or loci of interest, suggesting that, similar to what is seen in many human genetic epilepsies, inheritance is likely complex, involving several or many genes, and reflective of environmental interactions. An individual dog's response to therapeutic intervention for epilepsy may also be genetically complex. Although the field of inherited epilepsy has faced challenges, particularly with PE, newer technologies contribute to further advances.
Collapse
Affiliation(s)
- Kari J Ekenstedt
- Department of Animal and Food Science, College of Agriculture, Food, and Environmental Sciences, University of Wisconsin - River Falls, River Falls, WI, USA.
| | | |
Collapse
|
36
|
Influence of ATP-binding cassette polymorphisms on neurological outcome after traumatic brain injury. Neurocrit Care 2014; 19:192-8. [PMID: 23896815 DOI: 10.1007/s12028-013-9881-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND As important mediators of solute transport at the blood-brain and blood-cerebrospinal fluid barriers, ATP-binding cassette (ABC) transporters (including ABCB1, ABCC1, and ABCC2), impact the bioavailability of drugs and endogenous substrates in the brain. While several ABCB1, ABCC1, and ABCC2 single nucleotide polymorphisms (SNPs) have been identified, their impact on outcome after traumatic brain injury (TBI) is unknown. HYPOTHESIS ABCB1, ABCC1, and ABCC2 SNPs are associated with Glasgow Outcome Scale (GOS) score after TBI. METHODS DNA samples from 305 adult patients with severe TBI (Glasgow Coma Scale, GCS score ≤ 8) were genotyped for tagging SNPs of ABCB1 (rs1045642; rs1128503), ABCC1 (rs212093; rs35621; rs4148382), and ABCC2 (rs2273697). For each SNP, patients were dichotomized based on presence of variant allele for multivariate analysis to determine associations with GOS assigned at 6 months adjusting for GCS, Injury Severity score, age, and patient sex. RESULTS For ABCB1 rs1045642, patients homozygous for the T allele were less likely to be assigned poor outcome versus those possessing the C allele [CT/CC; odds of unfavorable GOS = 0.71(0.55-0.92)]. For ABCC1 rs4148382, patients homozygous for the G allele were less likely to be assigned poor outcome versus those possessing the A allele [AG/AA; odds of unfavorable GOS = 0.73(0.55-0.98)]. CONCLUSIONS In this single-center study, patients homozygous for the T allele of ABCB1 rs1045642 or the G allele of ABCC1 rs4148382 were found to have better outcome after severe TBI. Further study is necessary to replicate these very preliminary findings and to determine whether these associations are due to central nervous system bioavailability of ABC transporter drug substrates commonly used in the management of TBI, brain efflux of endogenous solutes, or both.
Collapse
|
37
|
Balan S, Bharathan SP, Vellichiramal NN, Sathyan S, Joseph V, Radhakrishnan K, Banerjee M. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance. PLoS One 2014; 9:e89253. [PMID: 24586633 PMCID: PMC3931716 DOI: 10.1371/journal.pone.0089253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022] Open
Abstract
Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala.
Collapse
Affiliation(s)
- Shabeesh Balan
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
- R. Madhavan Nayar Center for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | | - Sanish Sathyan
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
| | - Vijai Joseph
- Department of Medicine, Memorial-Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kurupath Radhakrishnan
- R. Madhavan Nayar Center for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Center for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
38
|
Sun G, Sun X, Guan L. Association of MDR1 gene C3435T polymorphism with childhood intractable epilepsy: a meta-analysis. J Neural Transm (Vienna) 2014; 121:717-24. [PMID: 24553780 DOI: 10.1007/s00702-014-1169-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 12/30/2022]
Abstract
Drug-resistant epilepsy is also referred to as intractable, medically refractory, or pharmacoresistant epilepsy. Approximately, one-third of patients with epilepsy have recurrent seizures despite therapy. Multidrug resistance 1 (MDR1) gene may play a role in drug-resistance in epilepsy. To assess the association between MDR1 C3435T polymorphism and the response to anticonvulsants in childhood intractable epilepsy, we conducted a systematic review and meta-analysis. Studies were obtained from the electronic database of PubMed, Medline, Embase and CNKI up to September 2013. All the case-control association researches evaluating the role of MDR1 C3435T polymorphism in childhood epilepsy to antiepileptic drugs were identified. The odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for comparisons of the alleles and genotypes with co-dominant (C/C vs. T/T, C/T vs. T/T), dominant (C/C + C/T vs. T/T), and recessive (C/C vs. C/T + T/T) models in overall and in ethnicity subgroups to measure the strength of genetic association. A total of 8 related studies, including 634 drug-resistant patients, 615 drug-responsive patients and 1,052 healthy controls were pooled in this meta-analysis. The allelic association of MDR1 C3435T with risk of drug-resistance was not significant (OR 1.03, 95% CI 0.87-1.22, P = 0.73; OR 1.00, 95% CI 0.86-1.16, P = 0.98) in overall and in the subgroup analysis by ethnicity (Asian: OR 0.95, 95% CI 0.77-1.18, P = 0.67; Caucasian: OR 1.18, 95% CI 0.89-1.57, P = 0.25). Neither association was found in other genetic models. Our results did not show a significant association between MDR1 C3435T polymorphism and response to anticonvulsant drugs, suggesting that this polymorphism may not be a risk factor to childhood intractable epilepsy.
Collapse
Affiliation(s)
- Guilian Sun
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China,
| | | | | |
Collapse
|
39
|
Qu J, Zhang Y, Yang ZQ, Mao XY, Zhou BT, Yin JY, He H, Li XP, Long HY, Lv N, Xu XJ, Xiao B, Zhang Y, Tang Q, Hu DL, Zhou HH, Liu ZQ. Gene-wide tagging study of the association between KCNT1 polymorphisms and the susceptibility and efficacy of genetic generalized epilepsy in Chinese population. CNS Neurosci Ther 2013; 20:140-6. [PMID: 24279416 DOI: 10.1111/cns.12169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022] Open
Abstract
AIMS The causes of genetic generalized epilepsies (GGEs) are still uncertain now. Some studies found that the human potassium channel, subfamily T, member 1 (KCNT1) is the candidate gene causing malignant migrating partial seizures of infancy and autosomal dominant nocturnal frontal lobe epilepsy which are all rare genetic generalized epilepsies. The aims of this study were going to evaluate the association between KCNT1 common variations and the susceptibility and drug resistance of genetic generalized epilepsies in Chinese population. METHODS The allele-specific MALDI-TOF mass spectrometry method was used to assess 17 tagSNPs (tagged single-nucleotide polymorphisms) of KCNT1 in 284 healthy Chinese controls and 483 Chinese GGEs patients including 279 anti-epileptic drug-responsive patients and 204 drug-resistant patients. RESULTS Genotype distributions of all the selected tagSNPs were consistent with Hardy-Weinberg equilibrium in GGEs and healthy controls. None of the all 17 tagSNPs alleles were found to be related with the susceptibility and drug resistance of genetic generalized epilepsies. The frequencies of haplotype 5 and haplotype 1 were significantly lower in GGEs than that in healthy controls (2% vs. 4%, OR = 0.47 [0.27-0.94], P = 0.03) and obviously higher in drug-resistant patients than that in drug-response patients (6% vs. 3%, OR = 2.56 [1.23-5.35], P = 0.01). However, after the correction of multiple comparisons with Bonferroni's method, we found that the above two haplotypes were not associated with the susceptibility and drug resistance in GGEs and healthy controls. CONCLUSION This gene-wide tagging study revealed no association between KCNT1 17 common variations and susceptibility of GGEs or AEDs (anti-epileptic drugs) efficacy of genetic generalized epilepsies in Chinese population.
Collapse
Affiliation(s)
- Jian Qu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University Xiangya School of Medicine, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Grover S, Kukreti R. A systematic review and meta-analysis of the role ofABCC2variants on drug response in patients with epilepsy. Epilepsia 2013; 54:936-45. [DOI: 10.1111/epi.12132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Sandeep Grover
- Institute of Genomics and Integrative Biology (IGIB); Council of Scientific and Industrial Research (CSIR); Delhi; India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB); Council of Scientific and Industrial Research (CSIR); Delhi; India
| |
Collapse
|
41
|
Cascorbi I. P‐glycoprotein (MDR1/ABCB1). PHARMACOGENOMICS OF HUMAN DRUG TRANSPORTERS 2013:271-293. [DOI: 10.1002/9781118353240.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Genetic association analysis of transporters identifies ABCC2 loci for seizure control in women with epilepsy on first-line antiepileptic drugs. Pharmacogenet Genomics 2012; 22:447-65. [PMID: 22565165 DOI: 10.1097/fpc.0b013e3283528217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The ATP-binding cassette (ABC) superfamily of transporters is known to efflux antiepileptic drugs (AEDs) primarily in the brain, gastrointestinal tract, liver, and kidneys. In addition, they are also known to be involved in estrogen disposition and may modulate seizure susceptibility and drug response. The objective of the present study was to investigate the role of genetic variants from ABC transporters in seizure control in epilepsy patients treated with monotherapy of first-line AEDs for 12 months. METHODS On the basis of gene coverage and functional significance, a total of 98 single nucleotide polymorphisms from ABCB1, ABCC1, and ABCC2 were genotyped in 400 patients from North India. Of these, 216 patients were eligible for therapeutic assessment. Genetic variants were compared between the 'no-seizures' and the 'recurrent-seizures' groups. Bonferroni corrections for multiple comparisons and adjustment for covariates were performed before assessment of associations. RESULTS Functionally relevant promoter polymorphisms from ABCC2: c.-1549G>A and c.-1019A>G either considered alone or in haplotype and diplotype combinations were observed for a significant association with seizure control in women (odds ratio>3.5, P<10, power>95%). Further, low protein-expressing CGT and TGT (c.-24C>T, c.1249G>A, c.3972C>T) haplotypes were always observed to be present in combination with the AG (c.-1549G>A, c.-1019A>G) haplotype that was over-represented in women with 'no seizures'. CONCLUSION The distribution of the associated variants supports the involvement of ABCC2 in controlling seizures in women possibly by lowering of its expression. The biological basis of this finding could be an altered interaction of ABCC2 with AEDs and estrogens. These results necessitate replication in a larger pool of patients.
Collapse
|
43
|
Muñana K, Nettifee-Osborne J, Bergman R, Mealey K. Association between ABCB1 Genotype and Seizure Outcome in Collies with Epilepsy. J Vet Intern Med 2012; 26:1358-64. [DOI: 10.1111/j.1939-1676.2012.01006.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/13/2012] [Accepted: 08/15/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
- K.R. Muñana
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University; Raleigh; NC
| | - J.A. Nettifee-Osborne
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University; Raleigh; NC
| | - R.L. Bergman
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University; Raleigh; NC
| | - K.L. Mealey
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine, Washington State University; Pullman; WA
| |
Collapse
|
44
|
Qu J, Zhou BT, Yin JY, Xu XJ, Zhao YC, Lei GH, Tang Q, Zhou HH, Liu ZQ. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci Ther 2012; 18:647-51. [PMID: 22630058 DOI: 10.1111/j.1755-5949.2012.00336.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
AIMS Some study found that ATP-binding cassette (ABC) efflux transporters play an important role in antiepileptic drug resistance, especially ABCB1 and ABCC2. The aims of this study were to evaluate the relationship between the genetic polymorphisms of ABCC2 and ABCB1 and the therapeutic efficacy of antiepileptic drugs (AEDs) in Chinese epileptic patients. METHODS ABCB1 rs1045642 (3435C>T) and ABCC2 rs717620 (-24C>T), rs3740066 (3972C>T), and rs2273697 (1249G>A) polymorphisms loci in 537 Chinese epilepsy patients (217 drug resistant patients and 320 drug responders) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS ABCC2 rs717620 -24TT genotype was significantly associated with drug resistant epilepsy (odds ratio [OR]= 4.06 [1.79-9.20], P= 0.001). The OR values of ABCC2 rs717620 -24 CT+TT genotypes and ABCC2 rs3740066 (3972C>T) CT+TT genotypes were markedly higher in drug resistant patients (OR = 1.57 [1.08-2.29], P= 0.018; OR = 1.49 [1.02-2.18], P= 0.038, respectively) compared with responsive patients. ABCC2 rs2273697 (1249G>A) and ABCB1 rs1045642 (3435C>T) polymorphisms were not associated with drug resistant epilepsy. Linkage disequilibrium (LD) test showed that the ABCC2 rs717620 were in strong LD with rs2273697 (D'= 0.694) and rs3740066 (D'= 0.699). The frequencies of haplotypes TGT (ABCC2 -24C>T/ABCC2 1249G>A/ABCC2 3972C>T) in resistant patients was significantly higher than those in responsive patients (21.0% vs. 14.2%, P < 0.05). CONCLUSION ABCC2-24C>T, 3972C>T polymorphisms and one ABCC2 haplotype is associated with AED resistance; ABCC2 1249G>A and ABCB1 3435C>T polymorphisms are not associated with AED resistance in our study. These data suggest that ABCC2 polymorphisms and haplotype may affect the response of antiepileptic drugs.
Collapse
Affiliation(s)
- Jian Qu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University Xiangya School of Medicine, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Silverton L, Dean M, Moitra K. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease. ACTA ACUST UNITED AC 2011; 26:169-79. [PMID: 22098604 DOI: 10.1515/dmdi.2011.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and deletion events have been identified in ABC genes, resulting in either gene birth or gene death indicating that the process of gene evolution is still ongoing in this group of transporters. Additionally, polymorphisms in these genes are linked to variations in expression, function, drug disposition and drug response. Single nucleotide polymorphisms in the ABC genes may be considered as markers of individual risk for adverse drug reactions or susceptibility to complex diseases as they can uniquely influence the quality and quantity of gene product. As the ABC genes continue to evolve, globalization will yield additional migration and racial admixtures that will have far reaching implications for the pharmacogenetics of this unique family of transporters in the context of human health.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- Animals
- Evolution, Molecular
- Genetic Variation
- Humans
- Lipoproteins/genetics
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/genetics
- Pharmacogenetics
Collapse
Affiliation(s)
- Latoya Silverton
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
46
|
Cavalleri GL, McCormack M, Alhusaini S, Chaila E, Delanty N. Pharmacogenomics and epilepsy: the road ahead. Pharmacogenomics 2011; 12:1429-47. [DOI: 10.2217/pgs.11.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is one of the most common, serious neurological disorders, affecting an estimated 50 million people worldwide. The condition is typically treated using antiepileptic drugs of which there are 16 in widespread use. However, there are many different syndrome and seizure types within epilepsy and information guiding clinicians on the most effective drug and dose for individual patients is lacking. Further, all of the antiepileptic drugs have associated adverse reactions, some of which are severe and life-threatening. Here, we review the pharmacogenomic work to date in the context of these issues and comment on key aspects of study design that are required to speed up the identification of clinically relevant genetic factors.
Collapse
Affiliation(s)
| | - Mark McCormack
- Molecular & Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Saud Alhusaini
- Molecular & Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elijah Chaila
- The Division of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Norman Delanty
- Molecular & Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
- The Division of Neurology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
47
|
Lack of association of ABCB1 haplotypes on five loci with response to treatment in epilepsy. Seizure 2011; 20:546-53. [DOI: 10.1016/j.seizure.2011.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/21/2011] [Accepted: 04/01/2011] [Indexed: 11/20/2022] Open
|