1
|
Gila F, Khoddam S, Jamali Z, Ghasemian M, Shakeri S, Dehghan Z, Fallahi J. Personalized medicine in colorectal cancer: a comprehensive study of precision diagnosis and treatment. Per Med 2025; 22:59-81. [PMID: 39924822 DOI: 10.1080/17410541.2025.2459050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Colorectal cancer is a common and fatal disease that affects many people globally. CRC is classified as the third most prevalent cancer among males and the second most frequent cancer among females worldwide. The purpose of this article is to examine how personalized medicine might be used to treat colorectal cancer. The classification of colorectal cancer based on molecular profiling, including the detection of significant gene mutations, genomic instability, and gene dysregulation, is the main topic of this discussion. Advanced technologies and biomarkers are among the detection methods that are explored, demonstrating their potential for early diagnosis and precise prognosis. In addition, the essay explores the world of treatment possibilities by providing light on FDA-approved personalized medicine solutions that provide individualized and precise interventions based on patient characteristics. This article assesses targeted treatments like cetuximab and nivolumab, looks at the therapeutic usefulness of biomarkers like microsatellite instability (MSI) and circulating tumor DNA (ctDNA), and investigates new approaches to combat resistance. Through this, our review provides a thorough overview of personalized medicine in the context of colorectal cancer, ultimately highlighting its potential to revolutionize the field and improve patient care.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jamali
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohmmad Ghasemian
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Fong WJ, Tan HM, Garg R, Teh AL, Pan H, Gupta V, Krishna B, Chen ZH, Purwanto NY, Yap F, Tan KH, Chan KYJ, Chan SY, Goh N, Rane N, Tan ESE, Jiang Y, Han M, Meaney M, Wang D, Keppo J, Tan GCY. Comparing feature selection and machine learning approaches for predicting CYP2D6 methylation from genetic variation. Front Neuroinform 2024; 17:1244336. [PMID: 38449836 PMCID: PMC10915285 DOI: 10.3389/fninf.2023.1244336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/18/2023] [Indexed: 03/08/2024] Open
Abstract
Introduction Pharmacogenetics currently supports clinical decision-making on the basis of a limited number of variants in a few genes and may benefit paediatric prescribing where there is a need for more precise dosing. Integrating genomic information such as methylation into pharmacogenetic models holds the potential to improve their accuracy and consequently prescribing decisions. Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic gene conventionally associated with the metabolism of commonly used drugs and endogenous substrates. We thus sought to predict epigenetic loci from single nucleotide polymorphisms (SNPs) related to CYP2D6 in children from the GUSTO cohort. Methods Buffy coat DNA methylation was quantified using the Illumina Infinium Methylation EPIC beadchip. CpG sites associated with CYP2D6 were used as outcome variables in Linear Regression, Elastic Net and XGBoost models. We compared feature selection of SNPs from GWAS mQTLs, GTEx eQTLs and SNPs within 2 MB of the CYP2D6 gene and the impact of adding demographic data. The samples were split into training (75%) sets and test (25%) sets for validation. In Elastic Net model and XGBoost models, optimal hyperparameter search was done using 10-fold cross validation. Root Mean Square Error and R-squared values were obtained to investigate each models' performance. When GWAS was performed to determine SNPs associated with CpG sites, a total of 15 SNPs were identified where several SNPs appeared to influence multiple CpG sites. Results Overall, Elastic Net models of genetic features appeared to perform marginally better than heritability estimates and substantially better than Linear Regression and XGBoost models. The addition of nongenetic features appeared to improve performance for some but not all feature sets and probes. The best feature set and Machine Learning (ML) approach differed substantially between CpG sites and a number of top variables were identified for each model. Discussion The development of SNP-based prediction models for CYP2D6 CpG methylation in Singaporean children of varying ethnicities in this study has clinical application. With further validation, they may add to the set of tools available to improve precision medicine and pharmacogenetics-based dosing.
Collapse
Affiliation(s)
- Wei Jing Fong
- Computational Biology, National University of Singapore, Singapore, Singapore
| | - Hong Ming Tan
- Computational Biology, National University of Singapore, Singapore, Singapore
| | - Rishabh Garg
- Computational Biology, National University of Singapore, Singapore, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hong Pan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Varsha Gupta
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bernadus Krishna
- Computational Biology, National University of Singapore, Singapore, Singapore
| | - Zou Hui Chen
- Computational Biology, National University of Singapore, Singapore, Singapore
| | | | - Fabian Yap
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
| | - Kok Yen Jerry Chan
- KK Women's and Children's Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National University Hospital, Singapore, Singapore
| | | | - Nikita Rane
- Institute of Mental Health,Singapore, Singapore
| | | | | | - Mei Han
- Computational Biology, National University of Singapore, Singapore, Singapore
| | - Michael Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dennis Wang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jussi Keppo
- Computational Biology, National University of Singapore, Singapore, Singapore
| | - Geoffrey Chern-Yee Tan
- Computational Biology, National University of Singapore, Singapore, Singapore
- Institute of Mental Health,Singapore, Singapore
| |
Collapse
|
3
|
Smith DA, Sadler MC, Altman RB. Promises and challenges in pharmacoepigenetics. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e18. [PMID: 37560024 PMCID: PMC10406571 DOI: 10.1017/pcm.2023.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 08/11/2023]
Abstract
Pharmacogenetics, the study of how interindividual genetic differences affect drug response, does not explain all observed heritable variance in drug response. Epigenetic mechanisms, such as DNA methylation, and histone acetylation may account for some of the unexplained variances. Epigenetic mechanisms modulate gene expression and can be suitable drug targets and can impact the action of nonepigenetic drugs. Pharmacoepigenetics is the field that studies the relationship between epigenetic variability and drug response. Much of this research focuses on compounds targeting epigenetic mechanisms, called epigenetic drugs, which are used to treat cancers, immune disorders, and other diseases. Several studies also suggest an epigenetic role in classical drug response; however, we know little about this area. The amount of information correlating epigenetic biomarkers to molecular datasets has recently expanded due to technological advances, and novel computational approaches have emerged to better identify and predict epigenetic interactions. We propose that the relationship between epigenetics and classical drug response may be examined using data already available by (1) finding regions of epigenetic variance, (2) pinpointing key epigenetic biomarkers within these regions, and (3) mapping these biomarkers to a drug-response phenotype. This approach expands on existing knowledge to generate putative pharmacoepigenetic relationships, which can be tested experimentally. Epigenetic modifications are involved in disease and drug response. Therefore, understanding how epigenetic drivers impact the response to classical drugs is important for improving drug design and administration to better treat disease.
Collapse
Affiliation(s)
- Delaney A Smith
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marie C Sadler
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
WANG YINGYING, ZHOU YING, WANG YU, YU LUSHAN, ZENG SU. Epigenetic Regulation of Drug Transporters in Cancer. DRUG METABOLISM HANDBOOK 2022:573-603. [DOI: 10.1002/9781119851042.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 PMCID: PMC9553121 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
6
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Mora Y, Reyes ME, Zanella L, Mora B, Buchegger K, Ili C, Brebi P. Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms. Pharmacogenomics 2021; 22:777-790. [PMID: 34281355 DOI: 10.2217/pgs-2021-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance is a significant clinical challenge, limiting the drug response in cancer. Several mechanisms associated with drug resistance have been characterized, and the role of epigenetics in generating resistance to platinum-based drugs has been clarified. Epigenetic mechanisms such as DNA methylation, histone modification, long noncoding RNA, and microRNA affect the expression of genes implicated in absorption, distribution, metabolism and excretion (ADME) of drugs, and other non-ADME genes that encode enzymes involved in the processes of cell proliferation, DNA repair, apoptosis and signal transduction key in the development of chemoresistance in cancer, specifically in platinum-based drugs. This review summarizes current discoveries in epigenetic regulation implicated in platinum drug resistance in cancer and the main clinical trials based on epigenetic therapy, evaluating their potential synergy with platinum-based drugs.
Collapse
Affiliation(s)
- Yuselin Mora
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, 8370003, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Bárbara Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, 4810101, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| |
Collapse
|
8
|
Wang X, Wei L, Yang J, Wang Y, Chen S, Yang K, Meng X, Zhang L. DNA methylation determines the regulation of pregnane X receptor on CYP3A4 expression. Clin Exp Pharmacol Physiol 2021; 48:250-259. [PMID: 33048369 DOI: 10.1111/1440-1681.13420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
The expression and activity of CYP3A4 vary among individuals. With the development of epigenetics, it is now possible to elucidate interindividual differences in drug-metabolizing enzymes. Here, we aimed to explore the potential relationship between DNA methylation and CYP3A4 expression. We analyzed the effect of a DNA methylation inhibitor, 5-aza-2-deoxycytidine, on pregnane X receptor (PXR) and CYP3A4 expression in HepG2 cells. In addition, pCpGL-CYP3A4-promoter and pCpGL-CYP3A4-enhancer plus promoter plasmids were constructed, methylated, and transfected. We found that treatment with 5-aza-2-deoxycytidine significantly increased the expression of PXR and CYP3A4 in a concentration- and time-dependent manner. In addition, CYP3A4 expression was significantly enhanced by overexpressing PXR via transfection of pSG5-PXR plasmids. Methylation of CYP3A4 enhancer inhibited CYP3A4 transcriptional activity mediated through PXR and inhibited the binding of PXR and CYP3A4 promoter. We also observed that when the promoter and enhancer of CYP3A4 were methylated, CYP3A4 expression did not increase after treatment with rifampicin. In conclusion, the investigation demonstrates that DNA methylation of CYP3A4 enhancer significantly inhibits CYP3A4 expression, mediated through PXR, which is not influenced by rifampicin.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Luman Wei
- Department of Pharmacy, Zhengzhou People's Hospital, Zhengzhou, China
| | - Jingke Yang
- Laboratory of Cardiovascular Disease and Drug Research, The 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yiting Wang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Shitong Chen
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiangguang Meng
- Laboratory of Cardiovascular Disease and Drug Research, The 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Peedicayil J. Pharmacoepigenetics and Pharmacoepigenomics: An Overview. Curr Drug Discov Technol 2020; 16:392-399. [PMID: 29676232 DOI: 10.2174/1570163815666180419154633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The rapid and major advances being made in epigenetics are impacting pharmacology, giving rise to new sub-disciplines in pharmacology, pharmacoepigenetics, the study of the epigenetic basis of variation in response to drugs; and pharmacoepigenomics, the application of pharmacoepigenetics on a genome-wide scale. METHODS This article highlights the following aspects of pharmacoepigenetics and pharmacoepigenomics: epigenetic therapy, the role of epigenetics in pharmacokinetics, the relevance of epigenetics to adverse drug reactions, personalized medicine, drug addiction, and drug resistance, and the use of epigenetic biomarkers in drug therapy. RESULTS Epigenetics is having an increasing impact on several areas of pharmacology. CONCLUSION Pharmacoepigenetics and pharmacoepigenomics are new sub-disciplines in pharmacology and are likely to have an increasing impact on the use of drugs in clinical practice.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
10
|
Rodrigues AD, Lai Y, Shen H, Varma MVS, Rowland A, Oswald S. Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides: Where Is the Evidence for Its Relevance in Drug-Drug Interactions? Drug Metab Dispos 2020; 48:205-216. [PMID: 31879282 DOI: 10.1124/dmd.119.089615] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 02/13/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs), expressed in human liver (OATP1B1, OATP1B3, and OATP2B1) and intestine (OATP2B1), govern the pharmacokinetics (PK) of drugs (e.g., statins) and endogenous substrates (e.g., coproporphyrin I [CPI]). Their expression is known to be modulated (e.g., disease, age, and environmental factors), and they also present as the loci of clinically relevant polymorphisms and drug interactions involving inhibition. In comparison, relatively few clinical reports describe the induction of OATPs, although the effect of inducers (e.g., rifampicin [RIF], carbamazepine [CBZ]) on OATP biomarker plasma levels and statin PK has been reported. Of note, available human tissue (e.g., biopsy) protein and messenger RNA expression profiling data indicate that OATPs in gut and liver are not induced by prototypical inducers such as RIF when compared with cytochrome P450 3A4 (CYP3A4), P-glycoprotein (Pgp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). Such results are consistent with in vitro human hepatocyte data. Therefore, the observed impact of RIF, and possibly CBZ, on statin PK (>20% decrease in the area under the plasma concentration vs. time curve) cannot be ascribed to OATP induction with certainty. In fact, most statins and CPI have been shown to present variously as substrates of RIF-inducible proteins such as CYP3A4, Pgp, MRP2, and BCRP. Interpretation of multidose RIF data is further complicated by its autoinduction, which likely leads to decreased inhibition of OATP. In the absence of more conclusive OATP induction data, caution is needed when modeling drug-drug interactions involving multidose inducers such as RIF. SIGNIFICANCE STATEMENT: Presently, there is limited direct clinical evidence supporting the notion that human liver and gut organic anion transporting polypeptides (OATPs) are inducible by agents like rifampicin (RIF). Such data need to be reconciled and will pose challenges for attempting to incorporate OATP induction into physiologically based pharmacokinetics models. Although disparate sets of tissue biopsy (atorvastatin and carbamazepine) and in vitro hepatocyte (phenobarbital, chenodeoxycholate, and amprenavir) data present OATP messenger RNA induction (≥2-fold) by agents beyond RIF, the clinical relevance of such data needs to be determined.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Yurong Lai
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Hong Shen
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Andrew Rowland
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Stefan Oswald
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| |
Collapse
|
11
|
Wu C, Xu L, Shi L, Gao X, Li J, Zhu X, Zhang C. Supramolecularly self-assembled nano-twin drug for reversing multidrug resistance. Biomater Sci 2018; 6:2261-2269. [DOI: 10.1039/c8bm00437d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new approach to reverse the multidrug resistance for cancer therapy.
Collapse
Affiliation(s)
- Chenwei Wu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai
| | - Li Xu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai
| | - Leilei Shi
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai
| | - Xihui Gao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai
| | - Jing Li
- Department of Pharmacy
- Shanghai Children Hospital
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|
12
|
Combined study of genetic and epigenetic biomarker risperidone treatment efficacy in Chinese Han schizophrenia patients. Transl Psychiatry 2017; 7:e1170. [PMID: 28696411 PMCID: PMC5538123 DOI: 10.1038/tp.2017.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023] Open
Abstract
Nowadays, risperidone is an atypical antipsychotic drug that has been increasingly used for treatment and maintenance therapy in schizophrenia. However, partially affected by genetic or environmental factors, there is significant difference in treatment outcomes among patients. In this study, we aimed to interpret the difference between good and poor responders treated with risperidone in both genetic and epigenetic levels in 288 mainland Chinese patients. We recruited a Henan cohort including 98 patients as initial discovery group and then confirmed our results in Shanghai cohort. In genetic studies, we found 10 candidate single-nucleotide polymorphisms (SNPs) and 2 rare variants in Henan cohort by next-generation sequencing of 100 risperidone-response-related genes. After replication in Shanghai cohort by massarray platform, ultimately, rs6706232 and rs4818 were significantly associated with risperidone response in the two cohort meta-analysis (P=0.024 and 0.04, respectively). Besides, we also selected another reported 17 candidate SNPs associated with risperidone drug response to replicate in our mainland Chinese samples, while, we found no significant SNPs after Bonferroni correction. In epigenetic studies, we investigated the methylation status in promoters or gene-coding region of risperidone drug response-related genes including CYP3A4, CYP2D6, ABCB1, HTR2A, DRD2. Totally we found seven significant CpG sites in the meta-analysis with Bonferroni-corrected PCYP3A4_CpG_-36=0.0014, PCYP3A4_CpG_-258=0.0013, PCYP3A4_CpG_-296=0.0014, PCYP3A4_CpG_-367:-372:-374=0.028, PCYP2D6_CpG_193=0.012, PCYP2D6_CpG_242:244:250=0.00076 and PCYP2D6_CpG_284=0.034, respectively. As genetic and epigenetic factors may interactively affect drug response, we finally carried out a multivariant interaction analysis with multifactor dimensionality reduction and discovered a significant four-locus model (CYP3A4_CpG_-82:-86 +rs6280+rs1800497+rs6265, P=0.038) affecting drug response. These findings could partially explain different risperidone response outcome in Chinese population in a systematic level.
Collapse
|
13
|
Tien YC, Piekos SC, Pope C, Zhong XB. Phenobarbital Treatment at a Neonatal Age Results in Decreased Efficacy of Omeprazole in Adult Mice. Drug Metab Dispos 2017; 45:330-335. [PMID: 28062542 PMCID: PMC5325062 DOI: 10.1124/dmd.116.073601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/28/2016] [Indexed: 02/02/2023] Open
Abstract
Drug-drug interactions (DDIs) occur when the action of one drug interferes with or alters the activity of another drug taken concomitantly. This can lead to decreased drug efficacy or increased toxicity. Because of DDIs, physicians in the clinical practice attempt to avoid potential interactions when multiple drugs are coadministrated; however, there is still a large knowledge gap in understanding how drugs taken in the past can contribute to DDIs in the future. The goal of this study was to investigate the consequence of neonatal drug exposure on efficacy of other drugs administered up through adult life. We selected a mouse model to test phenobarbital exposure at a neonatal age and its impact on efficacy of omeprazole in adult life. The results of our experiment show an observed decrease in omeprazole's ability to raise gastric pH in adult mice that received single or multiple doses of phenobarbital at a neonatal age. This effect may be associated with the permanent induction of cytochrome P450 enzymes in adult liver after neonatal phenobarbital treatment. Our data indicates that DDIs may result from drugs administered in the past in an animal model and should prompt re-evaluation of how DDIs are viewed and how to avoid long-term DDIs in clinical practice.
Collapse
Affiliation(s)
- Yun-Chen Tien
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Stephanie C Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
14
|
Prasad B, Vrana M, Mehrotra A, Johnson K, Bhatt DK. The Promises of Quantitative Proteomics in Precision Medicine. J Pharm Sci 2016; 106:738-744. [PMID: 27939376 DOI: 10.1016/j.xphs.2016.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
Abstract
Precision medicine approach has a potential to ensure optimum efficacy and safety of drugs at individual patient level. Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models could play a significant role in precision medicine by predicting interindividual variability in drug disposition and response. In order to develop robust PBPK/PD models, it is imperative that the critical physiological parameters affecting drug disposition and response and their variability are precisely characterized. Currently used PBPK/PD modeling software, for example, Simcyp and Gastroplus, encompass information such as organ volumes, blood flows to organs, body fat composition, glomerular filtration rate, etc. However, the information on the interindividual variability of the majority of the proteins associated with PK and PD, for example, drug metabolizing enzymes, transporters, and receptors, are not fully incorporated into these PBPK modeling platforms. Such information is significant because the population factors such as age, genotype, disease, and gender can affect abundance or activity of these proteins. To fill this critical knowledge gap, mass spectrometry-based quantitative proteomics has emerged as an important technique to characterize interindividual variability in the protein abundance of drug metabolizing enzymes, transporters, and receptors. Integration of these quantitative proteomics data into in silico PBPK/PD modeling tools will be crucial toward precision medicine.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195.
| | - Marc Vrana
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| | - Aanchal Mehrotra
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| | - Katherine Johnson
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| | - Deepak Kumar Bhatt
- Department of Pharmaceutics, University of Washington, Seattle, P.O. Box 357610, Washington 98195
| |
Collapse
|
15
|
Nasr R, Sleiman F, Awada Z, Zgheib NK. The pharmacoepigenetics of drug metabolism and transport in breast cancer: review of the literature and in silico analysis. Pharmacogenomics 2016; 17:1573-85. [DOI: 10.2217/pgs-2016-0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The focus of this manuscript is on DNA methylation and miRNA regulation of drug-metabolizing enzymes and drug transporters involved in the disposition of drugs commonly used in breast cancer. We start with a review of the available scant literature and follow with an in silico analysis of the CpG islands and miRNA binding sites of genes of interest. We make the case that there is room for further research to include more genes and miRNAs despite the extensive sharing of miRNA targets by candidate genes of interest. We also stress on the role of peripheral blood as a source of pharmacoepigenetic biomarkers, and point out the lack of toxicoepigenetic studies in breast cancer.
Collapse
Affiliation(s)
- Rihab Nasr
- Department of Anatomy, Cell Biology & Physiology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| | - Fatima Sleiman
- Department of Pharmacology & Toxicology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| | - Zeinab Awada
- Department of Pharmacology & Toxicology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| | - Natalie K Zgheib
- Department of Pharmacology & Toxicology, American University of Beirut Faculty of Medicine (AUBFM), Beirut, Lebanon
| |
Collapse
|
16
|
Fisel P, Schaeffeler E, Schwab M. DNA Methylation of ADME Genes. Clin Pharmacol Ther 2016; 99:512-27. [PMID: 27061006 DOI: 10.1002/cpt.343] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
The epigenetic regulation of expression of genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs contributes to interindividual variability in drug response. Epigenetic mechanisms include DNA methylation, histone modifications, and miRNAs. This review systematically outlines the influence of DNA methylation on ADME gene expression and highlights the consequences for interindividual variability in drug response or drug-induced toxicity and the implications for personalized medicine.
Collapse
Affiliation(s)
- P Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - E Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - M Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
18
|
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9:1153-76. [PMID: 26501795 PMCID: PMC5712454 DOI: 10.2217/bmm.15.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much evidence has documented that microRNAs (miRNAs) play an important role in the modulation of interindividual variability in the production of drug metabolizing enzymes and transporters (DMETs) and nuclear receptors (NRs) through multidirectional interactions involving environmental stimuli/stressors, the expression of miRNA molecules and genetic polymorphisms. MiRNA expression has been reported to be affected by drugs and miRNAs themselves may affect drug metabolism and toxicity. In cancer research, miRNA biomarkers have been identified to mediate intrinsic and acquired resistance to cancer therapies. In drug safety assessment, miRNAs have been found associated with cardiotoxicity, hepatotoxicity and nephrotoxicity. This review article summarizes published studies to show that miRNAs can serve as early biomarkers for the evaluation of drug efficacy and drug safety.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - William Mattes
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
19
|
Yu D, Green B, Tolleson WH, Jin Y, Mei N, Guo Y, Deng H, Pogribny I, Ning B. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem Pharmacol 2015; 98:215-23. [PMID: 26296572 DOI: 10.1016/j.bcp.2015.08.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 2C19 (CYP2C19) is involved in the metabolism of many drugs. Extensive studies have demonstrated that genetic variants and endogenous and environmental factors play important roles in the expression of CYP2C19. However, the role of microRNAs (miRNAs) in controlling CYP2C19 expression has not been investigated completely. In the present study, we performed in silico analysis to rank putative miRNA/CYP2C19 hybrids with regards to the predicted stabilities of their duplexes and then we applied a series of biochemical and molecular assays to elucidate the underlying functional mechanisms for the regulation of CYP2C19 by miRNAs. In silico analysis indicated that hsa-miR-23a-3p and hsa-miR-29a-3p target the coding region of CYP2C19 with hybrid stabilities of -27.5kcal/mol and -23.3kcal/mol, respectively. RNA electrophoresis mobility shift assays showed that both hsa-miR-23a-3p and hsa-miR-29a-3p miRNAs were able to bind directly to their cognate targets in the CYP2C19 transcript. Further, a significant inverse correlation was found between chemically-induced up-regulation of hsa-miR-29a-3p and CYP2C19 expression in HepaRG cells. In addition, inverse correlations were also observed in human liver tissue samples between the level of CYP2C19 mRNA expression and both hsa-miR-23a-3p and hsa-miR-29a-3p levels. All these results demonstrated the suppressing role of hsa-miR-29a-3p on CYP2C19 expression.
Collapse
Affiliation(s)
- Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bridgett Green
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Nan Mei
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Helen Deng
- Arkansas Department of Health, Little Rock, AR 72205, USA
| | - Igor Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
20
|
Seripa D, Panza F, Daragjati J, Paroni G, Pilotto A. Measuring pharmacogenetics in special groups: geriatrics. Expert Opin Drug Metab Toxicol 2015; 11:1073-88. [PMID: 25990744 DOI: 10.1517/17425255.2015.1041919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 (CYP) enzymes oxidize about 80% of the most commonly used drugs. Older patients form a very interesting clinical group in which an increased prevalence of adverse drug reactions (ADRs) and therapeutic failures (TFs) is observed. Might CYP drug metabolism change with age, and justify the differences in drug response observed in a geriatric setting? AREAS COVERED A complete overview of the CYP pharmacogenetics with a focus on the epigenetic CYP gene regulation by DNA methylation in the context of advancing age, in which DNA methylation might change. EXPERT OPINION Responder phenotypes consist of a continuum spanning from ADRs to TFs, with the best responders at the midpoint. CYP genetics is the basis of this continuum on which environmental and physiological factors act, modeling the phenotype observed in clinical practice. Physiological age-related changes in DNA methylation, the main epigenetic mechanisms regulating gene expression in humans, results in a physiological decrease in CYP gene expression with advancing age. This may be one of the physiological changes that, together with increased drug use, contributed to the higher prevalence of ADRs and TFs observed in the geriatric setting, thus, making geriatrics a special group for pharmacogenetics.
Collapse
Affiliation(s)
- Davide Seripa
- IRCCS Casa Sollievo della Sofferenza, Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences , San Giovanni Rotondo, Foggia , Italy
| | | | | | | | | |
Collapse
|
21
|
Peng L, Zhong X. Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B 2015; 5:106-12. [PMID: 26579435 PMCID: PMC4629221 DOI: 10.1016/j.apsb.2015.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 12/18/2022] Open
Abstract
The drug metabolism is a biochemical process on modification of pharmaceutical substances through specialized enzymatic systems. Changes in the expression of drug-metabolizing enzyme genes can affect drug metabolism. Recently, epigenetic regulation of drug-metabolizing enzyme genes has emerged as an important mechanism. Epigenetic regulation refers to heritable factors of genomic modifications that do not involve changes in DNA sequence. Examples of such modifications include DNA methylation, histone modifications, and non-coding RNAs. This review examines the widespread effect of epigenetic regulations on genes involved in drug metabolism, and also suggests a network perspective of epigenetic regulation. The epigenetic mechanisms have important clinical implications and may provide insights into effective drug development and improve safety of drug therapy.
Collapse
Key Words
- CAR, constitutive androstane receptor
- DNA methylation
- DNMTs, DNA methyltransferases
- Drug metabolism
- Epigenetics
- H3K27me3, histone 3 lysine 27 trimethylation
- H3K36me3, histone 3 lysine 36 trimethylation
- H3K4me1, histone 3 lysine 4 monomethylation
- H3K4me2, histone 3 lysine 4 dimethylation
- H3K4me3, histone 3 lysine 4 trimethylation
- H3K9me2, histone 3 lysine 9 dimethylation
- H3K9me3, histone 3 lysine 9 trimethylation
- HATs, histone acetyltransferases
- HDAC, histone deacetylases
- Histone modification
- Non-coding RNA
- P450s, cytochrome P450s
- SULTs, sulfotransferases
- TSS, transcription start sites
- Transporter
- UGTs, UDP-glucuronosyltransferases
- UTR, untranslated region
- lncRNAs, long non-coding RNAs
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
|
22
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
23
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
24
|
Bonder MJ, Kasela S, Kals M, Tamm R, Lokk K, Barragan I, Buurman WA, Deelen P, Greve JW, Ivanov M, Rensen SS, van Vliet-Ostaptchouk JV, Wolfs MG, Fu J, Hofker MH, Wijmenga C, Zhernakova A, Ingelman-Sundberg M, Franke L, Milani L. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics 2014; 15:860. [PMID: 25282492 PMCID: PMC4287518 DOI: 10.1186/1471-2164-15-860] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background The liver plays a central role in the maintenance of homeostasis and health in general. However, there is substantial inter-individual variation in hepatic gene expression, and although numerous genetic factors have been identified, less is known about the epigenetic factors. Results By analyzing the methylomes and transcriptomes of 14 fetal and 181 adult livers, we identified 657 differentially methylated genes with adult-specific expression, these genes were enriched for transcription factor binding sites of HNF1A and HNF4A. We also identified 1,000 genes specific to fetal liver, which were enriched for GATA1, STAT5A, STAT5B and YY1 binding sites. We saw strong liver-specific effects of single nucleotide polymorphisms on both methylation levels (28,447 unique CpG sites (meQTL)) and gene expression levels (526 unique genes (eQTL)), at a false discovery rate (FDR) < 0.05. Of the 526 unique eQTL associated genes, 293 correlated significantly not only with genetic variation but also with methylation levels. The tissue-specificities of these associations were analyzed in muscle, subcutaneous adipose tissue and visceral adipose tissue. We observed that meQTL were more stable between tissues than eQTL and a very strong tissue-specificity for the identified associations between CpG methylation and gene expression. Conclusions Our analyses generated a comprehensive resource of factors involved in the regulation of hepatic gene expression, and allowed us to estimate the proportion of variation in gene expression that could be attributed to genetic and epigenetic variation, both crucial to understanding differences in drug response and the etiology of liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-860) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| | | |
Collapse
|
25
|
Ivanov M, Barragan I, Ingelman-Sundberg M. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci 2014; 35:384-96. [PMID: 24993164 DOI: 10.1016/j.tips.2014.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/13/2014] [Accepted: 05/23/2014] [Indexed: 12/15/2022]
Abstract
There are pronounced interindividual variations in drug metabolism, drug responses, and the incidence of adverse drug reactions. To a certain extent such variability can be explained by genetic factors, but epigenetic modifications, which are relatively scarcely described so far, also contribute. It is known that a novel class of drugs termed epidrugs intervene in the epigenetic control of gene expression, and many of these are now in clinical trials for disease treatment. In addition, disease prognosis and drug treatment success can be monitored using epigenetic biomarkers. Here we review these novel aspects in pharmacology and address intriguing future opportunities for gene-specific epigenetic editing.
Collapse
Affiliation(s)
- Maxim Ivanov
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Isabel Barragan
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Hopkins AM, O'Doherty CE, Foster DJ, Upton RN, Proudman SM, Wiese MD. Individualization of leflunomide dosing in rheumatoid arthritis patients. Per Med 2014; 11:449-461. [PMID: 29783485 DOI: 10.2217/pme.14.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leflunomide is largely considered to be a second-line treatment option for rheumatoid arthritis (RA). Those who fail to respond, tend to progress to treatment with expensive biological agents, which can also be associated with serious toxicities. Optimizing leflunomide treatment to meet the needs of individuals would hence be beneficial in terms of patient outcomes and health care expenditure. In this respect, therapeutic drug monitoring (TDM) may be useful, as plasma concentrations of leflunomide's active metabolite, teriflunomide, correlate with response to treatment, but are highly variable between patients. A number of pharmacogenetic markers have also been identified that influence response and toxicity. Incorporation of these findings into clinical practice could facilitate more efficient use of leflunomide.
Collapse
Affiliation(s)
- Ashley M Hopkins
- University of South Australia, Sansom Institute for Health Research, School of Pharmacy & Medical Sciences, Frome Road, GPO Box 2471, Adelaide, South Australia, 5000, Australia.,University of South Australia, Australian Centre for Pharmacometrics, School of Pharmacy & Medical Sciences, Frome Road, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Catherine E O'Doherty
- University of South Australia, Australian Centre for Pharmacometrics, School of Pharmacy & Medical Sciences, Frome Road, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - David Jr Foster
- University of South Australia, Australian Centre for Pharmacometrics, School of Pharmacy & Medical Sciences, Frome Road, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Richard N Upton
- University of South Australia, Australian Centre for Pharmacometrics, School of Pharmacy & Medical Sciences, Frome Road, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Susanna M Proudman
- Royal Adelaide Hospital, Department of Rheumatology, North Terrace, Adelaide, South Australia, 5000, Australia.,Adelaide University, Discipline of Medicine, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Michael D Wiese
- University of South Australia, Sansom Institute for Health Research, School of Pharmacy & Medical Sciences, Frome Road, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
27
|
Abstract
In the past several years, human genetics studies have progressed from monogenic to complex and common diseases because of the advancement in technologies. There is increased knowledge of the pharmacokinetics and pharmacogenomics of the drugs in adults as well as in children. These technological developments provided new diagnostic, prognostic, and therapeutic opportunities. We are now in a position to address many additional ambitious questions. For instance, in clinical medicine, interindividual variation in drug response is a major problem. Some of the heterogeneity of drug safety and efficacy among individuals can be explained by pharmacogenomics. It has also the potential to improve the treatment in both adults and children. In pediatrics however, there is ontogeny and metabolic capacity in children is different compared to adults. Several specific developmental changes may underlie some of the variability in drug response seen in children. They may also be responsible for adverse drug reactions (ADRs). Therefore, much of the diversity in drug effects cannot be explained by studying the genomic diversity alone. It is necessary to include the effect of growth (involves variations in gene expression) along with genetic differences when explaining the variability in treatment response. In this respect epigenomics may expand the scope of pharmacogenomics towards optimization of drug therapy. Future studies must focus on periods of maturation of the drug-metabolizing enzymes and polymorphisms in their genes by using candidate gene approach, gene expression analysis, genome-wide haplotype mapping, and proteomics. The integration of genetic data and clinical phenotypes along with the role of other factors is necessary to evaluate both efficacy and ADRs of any drug. It may require extensive genetic epidemiological studies spanning over many years.
Collapse
|
28
|
Ingelman-Sundberg M, Zhong XB, Hankinson O, Beedanagari S, Yu AM, Peng L, Osawa Y. Potential role of epigenetic mechanisms in the regulation of drug metabolism and transport. Drug Metab Dispos 2013; 41:1725-31. [PMID: 23918665 PMCID: PMC3781370 DOI: 10.1124/dmd.113.053157] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/05/2013] [Indexed: 01/28/2023] Open
Abstract
This is a report of a symposium on the potential role of epigenetic mechanisms in the control of drug disposition sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2013 meeting in Boston, MA, April 21, 2013. Epigenetics is a rapidly evolving area, and recent studies have revealed that expression of drug-metabolizing enzymes and transporters is regulated by epigenetic factors, including histone modification, DNA methylation, and noncoding RNAs. The symposium speakers provided an overview of genetic and epigenetic mechanisms underlying variable drug metabolism and drug response, as well as the implications for personalized medicine. Considerable insight into the epigenetic mechanisms in differential regulation of the dioxin-inducible drug and carcinogen-metabolizing enzymes CYP1A1 and 1B1 was provided. The role of noncoding microRNAs in the control of drug metabolism and disposition through targeting of cytochrome P450 (P450) enzymes and ATP-binding cassette membrane transporters was discussed. In addition, potential effects of xenobiotics on chromatin interactions and epigenomics, as well as the possible role of long noncoding RNAs in regulation of P450s during liver maturation were presented.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden (M.I.-S.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (X.-B.Z., L.P.); Interdepartmental Molecular Toxicology Program and the Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California (O.H., S.B.); Department of Biochemistry and Molecular Medicine, University of California at Davis School of Medicine, Sacramento, California (A.-M.Y.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (Y.O.)
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhong XB, Leeder JS. Epigenetic regulation of ADME-related genes: focus on drug metabolism and transport. Drug Metab Dispos 2013; 41:1721-4. [PMID: 23935066 PMCID: PMC3920173 DOI: 10.1124/dmd.113.053942] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Epigenetic regulation of gene expression refers to heritable factors that are functionally relevant genomic modifications but that do not involve changes in DNA sequence. Examples of such modifications include DNA methylation, histone modifications, noncoding RNAs, and chromatin architecture. Epigenetic modifications are crucial for packaging and interpreting the genome, and they have fundamental functions in regulating gene expression and activity under the influence of physiologic and environmental factors. Recently, epigenetics has become one of the fastest-growing areas of science and has now become a central issue in biologic studies of development and disease pathogenesis. The interest in epigenetics is also true for studies of drug metabolism and transport. In this issue of Drug Metabolism and Disposition, a series of articles is presented to demonstrate the role of epigenetic factors in regulating the expression of genes involved in drug absorption, distribution, metabolism, and excretion in organ development, tissue-specific gene expression, sexual dimorphism, and in the adaptive response to xenobiotic exposure, both therapeutic and toxic. The articles also demonstrate that, in addition to genetic polymorphisms, epigenetics may also contribute to wide interindividual variations in drug metabolism and transport. Identification of functionally relevant epigenetic biomarkers in human specimens has the potential to improve prediction of drug responses based on patient's epigenetic profiles.
Collapse
Affiliation(s)
- Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.B.Z.); and Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City, Kansas City, Missouri (J.S.L.)
| | | |
Collapse
|
30
|
Eliasson E, Sim SC, Rane A, Ingelman-Sundberg M. Institutional Profile: Karolinska Institutet. Pharmacogenomics 2012; 13:1887-91. [DOI: 10.2217/pgs.12.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research in pharmacogenomics has been intensive at Karolinska Institutet (KI) for approximately 25 years. Initial initiatives were focused on the identification and characterization of novel CYP2D6 alleles causing ultrarapid or defective drug metabolism. Such discoveries were possible owing to the early implementation of therapeutic drug monitoring and the access to individuals phenotyped with respect to drug metabolism. The translational work at KI has been of utmost importance for successful research, including functional characterization and clinical validation of allelic variants in drug metabolism, as well as discoveries of novel polymorphisms, recent examples being the CYP2C19 and UGT2B17 genes. The clinical pharmacology laboratory at KI campus Huddinge is one of the leading sites for therapeutic drug monitoring in northern Europe and obtains an increasing number of clinical requests, also important for pharmacogenetic research. Furthermore, the recently opened Center for Hematology and Regenerative Medicine, with a clear translational emphasis, offers an opportunity for studying drug metabolism and toxicity in vitro by use of human hepatocytes.
Collapse
Affiliation(s)
- Erik Eliasson
- Karolinska Institutet, Department of Laboratory Medicine, Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sarah C Sim
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Rane
- Karolinska Institutet, Department of Laboratory Medicine, Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|